JP2007143266A - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
JP2007143266A
JP2007143266A JP2005332640A JP2005332640A JP2007143266A JP 2007143266 A JP2007143266 A JP 2007143266A JP 2005332640 A JP2005332640 A JP 2005332640A JP 2005332640 A JP2005332640 A JP 2005332640A JP 2007143266 A JP2007143266 A JP 2007143266A
Authority
JP
Japan
Prior art keywords
battery
assembled
battery system
discharger
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005332640A
Other languages
Japanese (ja)
Inventor
Riichi Kitano
利一 北野
Mikio Yamazaki
幹夫 山崎
Akihiro Miyasaka
明宏 宮坂
Akira Yamashita
明 山下
Takahisa Masashiro
尊久 正代
Keiichi Saito
景一 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005332640A priority Critical patent/JP2007143266A/en
Publication of JP2007143266A publication Critical patent/JP2007143266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery system which supplies power while effectively utilizing the ability of a battery, avoiding the capacity drop between battery lines. <P>SOLUTION: In a nickel hydrogen storage battery system which supplies a load 5 with power outputted by a plurality of battery packs 1 constituted of two or more combined nickel hydrogen storage batteries, via converters in two or more dischargers 4. Electric paths between the battery packs 1 and the converters in the discharger 4 are electrically connected with each other by a common conductive cable 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電池システムに関する。   The present invention relates to a battery system.

ニッケル水素蓄電池は、鉛蓄電池に比べてエネルギー密度が大きく、電池寿命の長さや環境負荷の少ないことが特長である。軽量、小型で持ち運びで有利であるため、車載バッテリーや災害対策用電源として近年急速に普及しつつある。   Nickel metal hydride storage batteries have a higher energy density than lead storage batteries and are characterized by long battery life and low environmental impact. Since it is lightweight, compact, and convenient to carry, it has been rapidly spreading in recent years as an on-board battery and disaster countermeasure power source.

ニッケル水素蓄電池を電源として用いる場合には、例えば、単セルと呼ばれる1本(平均電圧1.2V、容量95Ah)を10直列にしたものを1単位(1モジュールと称する)とし、4モジュールを直列接続したものを2つ並列接続して用いる。   When using a nickel-metal hydride storage battery as a power source, for example, one unit (average voltage 1.2 V, capacity 95 Ah) 10 units in series is used as one unit (referred to as one module), and four modules are connected in series. Two connected ones are used in parallel.

下記特許文献1、2、3には、複数の組電池と、充電制御手段と、放電制御手段とを備えた電源装置が記載され、特許文献1には、組電池の製造日付に基づいて組電池使用可能期間を算出して組電池交換日付を表示することが記載され、特許文献2には、組電池の放電容量試験を実行する電池監視手段を設けることが記載され、特許文献3には、前記電池監視手段が組電池の残存容量を算出し、その結果に基づいて当該組電池の補充電時期を決定することが記載されている。   Patent Documents 1, 2, and 3 listed below describe a power supply device that includes a plurality of assembled batteries, a charge control unit, and a discharge control unit. Patent Document 1 describes the assembly based on the manufacturing date of the assembled battery. It is described that the battery usable period is calculated and the assembled battery replacement date is displayed, and Patent Document 2 describes that a battery monitoring unit for performing a discharge capacity test of the assembled battery is provided, and Patent Document 3 describes It is described that the battery monitoring means calculates the remaining capacity of the assembled battery and determines the auxiliary charging time of the assembled battery based on the result.

特開2004-119112号公報JP 2004-119112 A 特開2004-120856号公報JP 2004-120856 JP 特開2004-120857号公報JP 2004-120857 JP

次世代のさらなる通信設備の電力需要に対応するため、より大容量、例えば出力30kWhのニッケル水素蓄電池システムが構成可能である。このようなシステムにおいては、例えば、定格1.2Vのセルを10本直列し、これを1モジュールとしてさらに4モジュールを直列して、これを1系(下記組電池に相当)とし、6系を搭載する。さらに、間欠充電を行うための充電器、電池電圧を負荷の電圧許容範囲に収めるための放電器、および制御部を備える。図2に上記システムの構成図を示す。   In order to meet the power demand of the next generation of further communication facilities, a nickel-metal hydride storage battery system with a larger capacity, for example, an output of 30 kWh, can be configured. In such a system, for example, 10 cells with a rating of 1.2 V are connected in series, this is taken as 1 module, and 4 modules are further connected in series, making this 1 system (corresponding to the following assembled battery), and 6 systems. Mount. Furthermore, a charger for performing intermittent charging, a discharger for keeping the battery voltage within the allowable voltage range of the load, and a control unit are provided. FIG. 2 shows a configuration diagram of the system.

図2において、複数の組電池1が、充電器3を介して整流器2の出力によって充電され、複数の放電器4を介して負荷5へ電力を供給するようになっている。   In FIG. 2, the plurality of assembled batteries 1 are charged by the output of the rectifier 2 through the charger 3, and supply power to the load 5 through the plurality of dischargers 4.

放電器4は、電池電圧が負荷の電圧許容範囲を上回るときはコンバータによる降圧を行い(降圧モード)、許容範囲内のときは電池出力をコンバータ非経由でバイパスし(バイパスモード)、許容範囲を下回るときはコンバータによる昇圧を行う(昇圧モード)。   When the battery voltage exceeds the allowable voltage range of the load, the discharger 4 performs step-down by the converter (step-down mode). When the battery voltage is within the allowable range, the battery output is bypassed without passing through the converter (bypass mode). When it falls below, boosting by the converter is performed (boost mode).

さらに、上記の30kWhシステムを実現させ、そのシステムを3台並列することで、100kWh級のシステムを実現させることができる。   Furthermore, a 100 kWh class system can be realized by realizing the 30 kWh system described above and paralleling three such systems.

しかし、この30kWhニッケル水素蓄電池システムでは、3台の放電器4がそれぞれ昇圧、バイパスおよび降圧の判断を行っているため、各系の組電池1のわずかな容量ばらつきがわずかな電圧差となって現れ、放電器4の昇圧、降圧動作に入るタイミングが異なる。先にバイパスモードに入った放電器4の出力電圧は、未だ降圧モードにある他の放電器4の出力電圧より高くなるため、負荷5への電力供給の多くを先にバイパスモードに入った放電器4が担うことになる。従って、先にバイパスモードに入った放電器4の配下にある電池系列は他よりも著しく容量低下が早い。その放電器4の系列は先に切り離された後、残りの系列の負担が大きくなり出力容量を超えるため残りの系列も切り離され、結果として電池は余力を残したままシステムの放電は停止する。   However, in this 30 kWh nickel-metal hydride storage battery system, since the three dischargers 4 make judgments on boosting, bypassing and stepping down, slight capacity variations of the assembled batteries 1 of each system become slight voltage differences. Appearing, the timing of the step-up / step-down operation of the discharger 4 is different. Since the output voltage of the discharger 4 that has already entered the bypass mode is higher than the output voltage of the other dischargers 4 that are still in the step-down mode, much of the power supply to the load 5 is released before the bypass mode has been entered first. The electric appliance 4 is responsible. Therefore, the battery line under the discharger 4 that has entered the bypass mode first has a significantly faster capacity drop than others. After the series of the discharger 4 is disconnected first, the burden of the remaining series becomes large and exceeds the output capacity, so that the remaining series is also disconnected, and as a result, the discharge of the system stops with the battery remaining.

上記の問題は、ニッケル水素蓄電池システムの場合に限らず、リチウムイオン電池などの二次電池を組合わせてなる組電池を複数個有し、前記組電池が出力する電力を複数のコンバータを介して負荷に供給する二次電池システム、さらには、一次電池を含めて、複数の電池を組合わせてなる複数の組電池が出力する電力を複数のコンバータを介して負荷に供給する電池システムにおいても生じる問題である。   The above problem is not limited to the nickel-metal hydride storage battery system, but has a plurality of assembled batteries formed by combining secondary batteries such as lithium ion batteries, and the power output from the assembled batteries is transmitted through a plurality of converters. This also occurs in a secondary battery system that supplies power to a load, and also in a battery system that supplies electric power output from a plurality of assembled batteries including a plurality of batteries including a primary battery to a load via a plurality of converters. It is a problem.

本発明は上記の問題に鑑みてなされたものであり、本発明が解決しようとする課題は、電池系列間の容量低下のばらつきを回避し、電池の能力を有効活用しながら電力供給をする電池システムを提供することにある。   The present invention has been made in view of the above problems, and a problem to be solved by the present invention is a battery that supplies power while avoiding variation in capacity reduction between battery series and effectively utilizing battery capacity. To provide a system.

上記課題を解決するために、本発明においては、請求項1に記載のように、
複数の電池を組合わせてなる複数の組電池が出力する電力を複数のコンバータを介して負荷に供給する電池システムであって、前記組電池と前記コンバータとの間の電路が共通導線によって互いに電気的に接続されていることを特徴とする電池システムを構成する。
In order to solve the above problems, in the present invention, as described in claim 1,
A battery system for supplying electric power output from a plurality of assembled batteries formed by combining a plurality of batteries to a load via a plurality of converters, wherein an electric circuit between the assembled battery and the converter is electrically connected to each other by a common conductor. The battery system is characterized by being connected to each other.

また、本発明においては、請求項2に記載のように、
請求項1記載の電池システムにおいて、前記組電池と前記共通導線との間に放電電流とは逆向きの電流が流れることを阻止する整流手段が設けられていることを特徴とする電池システムを構成する。
In the present invention, as described in claim 2,
2. The battery system according to claim 1, wherein a rectifying means is provided between the assembled battery and the common conductor to prevent a current opposite to a discharge current from flowing. To do.

また、本発明においては、請求項3に記載のように、
請求項1または2記載の電池システムにおいて、前記組電池と前記共通導線との間に直列抵抗が設けられていることを特徴とする電池システムを構成する。
In the present invention, as described in claim 3,
3. The battery system according to claim 1, wherein a series resistance is provided between the assembled battery and the common conductor.

また、本発明においては、請求項4に記載のように、
請求項1、2または3記載の電池システムにおいて、前記電池が二次電池であることを特徴とする電池システムを構成する。
In the present invention, as described in claim 4,
4. The battery system according to claim 1, 2, or 3, wherein the battery is a secondary battery.

また、本発明においては、請求項5に記載のように、
請求項4記載の電池システムにおいて、前記電池がニッケル水素蓄電池であることを特徴とする電池システムを構成する。
In the present invention, as described in claim 5,
5. The battery system according to claim 4, wherein the battery is a nickel metal hydride storage battery.

複数の電池を組合わせてなる組電池を複数個有し、前記組電池が出力する電力を複数のコンバータを介して負荷に供給する電池システムにおいて、前記組電池と前記コンバータとの間を共通導線によって互いに電気的に接続することによって、該コンバータの動作モードの切り替えに時差が無いようにし、その結果として、電池系列間の容量低下のばらつきを回避し、電池の能力を有効活用しながら電力供給をする電池システムを提供することが可能となる。   In a battery system having a plurality of assembled batteries formed by combining a plurality of batteries and supplying electric power output from the assembled battery to a load via a plurality of converters, a common conductor is provided between the assembled battery and the converter. By connecting them to each other, there is no time difference in switching the operation mode of the converter, and as a result, it is possible to avoid variation in capacity reduction between battery series and to supply power while effectively utilizing battery capacity. It is possible to provide a battery system that performs the following.

本発明においては、電池系列(下記組電池に相当)間の容量ばらつきを解消するため、全ての系列の電池出力を電気的に接続(マルチ接続)し、これを放電器へ入力する。電池出力には逆流阻止手段としてダイオードを設けて電池間で放電とは逆向きの電流が流れないようにしている。   In the present invention, in order to eliminate the capacity variation between battery series (corresponding to the following assembled battery), the battery outputs of all series are electrically connected (multi-connection) and input to the discharger. The battery output is provided with a diode as a backflow prevention means so that a current opposite to the discharge does not flow between the batteries.

複数の架を用いる場合には、架間にも共通導線を引き出し、分電盤で結合させて、システムの全ての電池系列出力を電気的に共有する。   In the case of using a plurality of racks, a common conducting wire is drawn between the racks and coupled with a distribution board to electrically share all battery system outputs of the system.

上記の構成によって、放電時、電圧の高い電池系列からは多く、電圧の低い系からは少なく電流が出力され、直列抵抗およびダイオードの電圧降下により、マルチ接続線においては電圧が均一となる。   With the above configuration, during discharging, a large amount of current is output from the battery series having a high voltage, and a small amount of current is output from the low voltage system.

つまり、全ての放電器の入力電圧は同じであるので、降圧モードからバイパスモードへの移行およびバイパスモードから昇圧モードへの移行のタイミングも同じとなる。ただし、この場合に、複数の放電器の仕様は同一であることが前提となっている。   That is, since the input voltages of all the dischargers are the same, the timing of the transition from the step-down mode to the bypass mode and the transition from the bypass mode to the step-up mode are also the same. However, in this case, it is assumed that the specifications of the plurality of dischargers are the same.

以下に、本発明の実施の形態について、電池がニッケル水素蓄電池である場合を例として、説明するが、本発明はこれに限られるものではない。   In the following, embodiments of the present invention will be described by taking the case where the battery is a nickel-metal hydride storage battery as an example, but the present invention is not limited to this.

図1は、本発明の実施の形態例を説明する図である。図において、複数のニッケル水素蓄電池を組合わせてなる組電池1(1系から6系までの6個)が、分電盤6、充電器3を介して整流器2の出力によって充電され、放電器4、分電盤6を介して負荷5へ電力を供給するようになっている。   FIG. 1 is a diagram for explaining an embodiment of the present invention. In the figure, an assembled battery 1 (six batteries from 1 system to 6 system) formed by combining a plurality of nickel metal hydride storage batteries is charged by the output of the rectifier 2 via the distribution board 6 and the charger 3, and discharged. 4. Electric power is supplied to the load 5 through the distribution board 6.

各放電器4はコンバータ(図示せず)を有し、組電池1が出力する電力は、該コンバータを介して負荷5に供給されるか、あるいは、該コンバータを介さずに(コンバータをバイパスして)放電器4を経由して負荷5に供給される。電池電圧が負荷5の電圧許容範囲を上回るときは、該コンバータが降圧を行い、降圧された電力が負荷5に供給され(降圧モード)、電池電圧が負荷5の電圧許容範囲を下回るときは、該コンバータが昇圧を行い、昇圧された電力が負荷5に供給され(昇圧モード)、電池電圧が負荷5の電圧許容範囲内のときは、組電池1が出力する電力は該コンバータを介さずに放電器4を単に経由するのみで負荷5に供給される(バイパスモード)。   Each discharger 4 has a converter (not shown), and the electric power output from the assembled battery 1 is supplied to the load 5 through the converter, or without passing through the converter (bypassing the converter). And) supplied to the load 5 via the discharger 4. When the battery voltage exceeds the allowable voltage range of the load 5, the converter performs step-down, the reduced power is supplied to the load 5 (step-down mode), and when the battery voltage falls below the allowable voltage range of the load 5, When the converter boosts and the boosted power is supplied to the load 5 (boost mode) and the battery voltage is within the voltage allowable range of the load 5, the power output from the assembled battery 1 does not pass through the converter. It is supplied to the load 5 simply through the discharger 4 (bypass mode).

本発明に係る電池システムの特徴は、電源である組電池1と前記コンバータとの間の電路が共通導線7によって互いに電気的に接続されていることにある。この特徴によって、各放電器4に入力される電池電圧は同一となり、各放電器4における動作モード(降圧、昇圧、バイパスの3モード)の間の移行が一斉に起こり、上記の問題点、すなわち、動作モード間の移行のタイミングがずれ、その結果として、電池の余力を残したままシステムの放電は停止するという問題点が解消される。ただし、この場合に、複数の放電器4の仕様は同一であることが前提となっている。   A feature of the battery system according to the present invention is that an electric path between the assembled battery 1 as a power source and the converter is electrically connected to each other by a common conductor 7. Due to this feature, the battery voltage input to each discharger 4 becomes the same, and the transition between the operation modes (three steps of step-down, step-up, and bypass) in each discharger 4 occurs at the same time. As a result, the problem that the discharge of the system stops with the remaining battery capacity remaining is eliminated. However, in this case, it is assumed that the specifications of the plurality of dischargers 4 are the same.

図1に示したニッケル水素蓄電池システムには、組電池1と共通導線7との間に放電電流とは逆向きの電流が流れることを阻止する整流手段であるダイオード8と、直列抵抗9とが設けられている。   The nickel-metal hydride storage battery system shown in FIG. 1 includes a diode 8 that is a rectifier that prevents a current opposite to the discharge current from flowing between the assembled battery 1 and the common conductor 7, and a series resistor 9. Is provided.

ダイオード8は、1つの組電池1から他の組電池1へ電流が流れる(逆流する)ことを防ぐ役割を果たす。ダイオード8を省くと、或る組電池1には、放電電流とは逆向きの電流が流れることになるが、その電流は、電池が鉛蓄電池である場合には、その組電池1の充電にも費やされるので、全く無駄に流れることにはならないので、この場合には、ダイオード8を省いてもよい。   The diode 8 plays a role of preventing current from flowing (reversely flowing) from one assembled battery 1 to another assembled battery 1. If the diode 8 is omitted, a current in the direction opposite to the discharge current flows in a certain battery pack 1, but this current is used for charging the battery pack 1 when the battery is a lead storage battery. In this case, the diode 8 may be omitted.

直列抵抗9は、これに放電電流が流れることによる電圧降下によって、放電時、電圧の高い組電池1からは多く、電圧の低い組電池1からは少なく電流が出力され、共通導線7においては電圧が均一となる。直列抵抗9は、その両端の電位差から組電池1の放電電流を算出することができるので、電池状態の監視にも役立つが、電力損失の原因にもなるので、これを省き、電圧降下発生の役割をダイオード8の抵抗と組電池1の内部抵抗とに持たせてもよい。   The series resistor 9 outputs a large amount of current from the assembled battery 1 with a high voltage and a small amount of voltage from the assembled battery 1 with a low voltage due to a voltage drop caused by a discharge current flowing therethrough. Becomes uniform. Since the series resistor 9 can calculate the discharge current of the assembled battery 1 from the potential difference between both ends, it is useful for monitoring the battery state, but it also causes power loss. A role may be given to the resistance of the diode 8 and the internal resistance of the assembled battery 1.

図1に示したニッケル水素蓄電池システムには、切離しスイッチ10が設けられている。この切離しスイッチ10によって、組電池1を系毎に切離すことができる。   The nickel hydrogen storage battery system shown in FIG. 1 is provided with a disconnect switch 10. With this disconnect switch 10, the assembled battery 1 can be disconnected for each system.

図1に示したニッケル水素蓄電池システムを1つの架に搭載し、そのような架を複数用意し、各架の共通導線7を引き出し、分電盤で結合させて、システムの全ての組電池1の出力を電気的に共有するようにしてもよい。これは、図1に示したニッケル水素蓄電池システムにおける組電池1の個数を複数倍にしたことに相当する。   The nickel-metal hydride storage battery system shown in FIG. 1 is mounted on one rack, a plurality of such racks are prepared, the common conductors 7 of each rack are drawn out, and connected by a distribution board, so that all the assembled batteries 1 of the system May be electrically shared. This is equivalent to multiplying the number of the assembled batteries 1 in the nickel metal hydride storage battery system shown in FIG.

以上、本発明の実施の形態について、電池がニッケル水素蓄電池である場合を例として、説明したが、本発明はこれに限られるものではない。   As described above, the embodiment of the present invention has been described by taking the case where the battery is a nickel metal hydride storage battery as an example, but the present invention is not limited to this.

以下に、本発明によって生じる効果について説明する。   Below, the effect produced by this invention is demonstrated.

(1)放電器出力点で並列構成するシステムでは、電池系列(組電池)間に容量ばらつきがあるとき降圧や昇圧に入るタイミングが放電器によって異なるため、容量が少ない電池系列を持つ放電器に電流が集中し、放電終了時は他の電池系列は余力を残すことになる。   (1) In a system that is configured in parallel with discharger output points, when there is a capacity variation between battery series (assembled batteries), the timing to enter step-down or step-up differs depending on the discharger. The current concentrates, and the remaining battery series has a surplus power at the end of the discharge.

本発明により、電池系列間に容量のばらつきがあっても放電時には容量の大きいものから大きな放電電流が流れるため、自然に容量低下のばらつきが解消される。ばらつきが解消されると各電池系列に均等に放電電流が分担され、電池の能力を有効に引き出すことが可能となる。   According to the present invention, even when there is a variation in capacity between battery series, a large discharge current flows from a large capacity during discharge, so that the variation in capacity reduction is naturally eliminated. When the variation is eliminated, the discharge current is equally distributed to each battery series, and the battery capacity can be effectively extracted.

(2)放電器の配下に電池が配置される構成では放電器の故障時にその配下の正常な電池系列まで使えなくなる。   (2) In the configuration in which the battery is arranged under the discharger, even when the discharger fails, the normal battery line under the discharger cannot be used.

本発明により、放電器に依存せずに電池系列は能力を発揮できるようになり、システムの信頼性が向上する。   According to the present invention, the battery series can exhibit its ability without depending on the discharger, and the reliability of the system is improved.

本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 複数の組電池と複数の放電器とを用いる電池システムの構成図である。It is a block diagram of the battery system using a some assembled battery and a some discharger.

符号の説明Explanation of symbols

1:組電池、2:整流器、3:充電器、4:放電器、5:負荷、6:分電盤、7:共通導線、8:ダイオード、9:直列抵抗、10:切離しスイッチ。   1: assembled battery, 2: rectifier, 3: charger, 4: discharger, 5: load, 6: distribution board, 7: common conductor, 8: diode, 9: series resistance, 10: disconnect switch.

Claims (5)

複数の電池を組合わせてなる複数の組電池が出力する電力を複数のコンバータを介して負荷に供給する電池システムであって、前記組電池と前記コンバータとの間の電路が共通導線によって互いに電気的に接続されていることを特徴とする電池システム。   A battery system for supplying electric power output from a plurality of assembled batteries formed by combining a plurality of batteries to a load via a plurality of converters, wherein an electric circuit between the assembled battery and the converter is electrically connected to each other by a common conductor. Battery system characterized by being connected to each other. 請求項1記載の電池システムにおいて、前記組電池と前記共通導線との間に放電電流とは逆向きの電流が流れることを阻止する整流手段が設けられていることを特徴とする電池システム。   The battery system according to claim 1, wherein a rectifying unit is provided between the assembled battery and the common conductor to prevent a current opposite to a discharge current from flowing. 請求項1または2記載の電池システムにおいて、前記組電池と前記共通導線との間に直列抵抗が設けられていることを特徴とする電池システム。   3. The battery system according to claim 1, wherein a series resistance is provided between the assembled battery and the common conductor. 4. 請求項1、2または3記載の電池システムにおいて、前記電池が二次電池であることを特徴とする電池システム。   4. The battery system according to claim 1, wherein the battery is a secondary battery. 請求項4記載の電池システムにおいて、前記電池がニッケル水素蓄電池であることを特徴とする電池システム。   The battery system according to claim 4, wherein the battery is a nickel metal hydride storage battery.
JP2005332640A 2005-11-17 2005-11-17 Battery system Pending JP2007143266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005332640A JP2007143266A (en) 2005-11-17 2005-11-17 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005332640A JP2007143266A (en) 2005-11-17 2005-11-17 Battery system

Publications (1)

Publication Number Publication Date
JP2007143266A true JP2007143266A (en) 2007-06-07

Family

ID=38205458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005332640A Pending JP2007143266A (en) 2005-11-17 2005-11-17 Battery system

Country Status (1)

Country Link
JP (1) JP2007143266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011322A1 (en) * 2007-07-13 2009-01-22 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2009171724A (en) * 2008-01-16 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> Bidirectional converter
JP2009232537A (en) * 2008-03-21 2009-10-08 Fanuc Ltd Motor controller
JP2009296719A (en) * 2008-06-03 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Dc backup power system and method of charging the same
JP2010282731A (en) * 2009-06-02 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Alkaline storage battery module, and method of determining deterioration of battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011322A1 (en) * 2007-07-13 2009-01-22 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2009022138A (en) * 2007-07-13 2009-01-29 Toyota Motor Corp Vehicle
AU2008276971B2 (en) * 2007-07-13 2012-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle
US8423209B2 (en) 2007-07-13 2013-04-16 Toyota Jidosha Kabushiki Kaisha Vehicle having power storage devices and charging line for supplying electric power provided from outside vehicle
JP2009171724A (en) * 2008-01-16 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> Bidirectional converter
JP2009232537A (en) * 2008-03-21 2009-10-08 Fanuc Ltd Motor controller
JP4512145B2 (en) * 2008-03-21 2010-07-28 ファナック株式会社 Motor control device
JP2009296719A (en) * 2008-06-03 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> Dc backup power system and method of charging the same
JP2010282731A (en) * 2009-06-02 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Alkaline storage battery module, and method of determining deterioration of battery

Similar Documents

Publication Publication Date Title
JP5624120B2 (en) Battery system and operation method
US10230249B2 (en) Battery pack, method for charging/discharging same, and power consumption device
JP3364836B2 (en) Voltage equalizer device and method thereof
US20120169124A1 (en) Output circuit for power supply system
US20130154569A1 (en) Electric energy storage system and method of maintaining the same
JP4163221B2 (en) Power supply system and discharge control method thereof
JP2009247145A (en) Power system
US11621558B2 (en) Electric energy supply device comprising a busbar matrix, and method for operating the energy supply device
JP2007143266A (en) Battery system
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
JP4724726B2 (en) DC power supply system and charging method thereof
US20200119563A1 (en) Battery management
JP2009148110A (en) Charger/discharger and power supply device using the same
KR101906384B1 (en) Apparatus for balancing battery cells
US11063450B2 (en) System and method for closed-transition transfer of DC battery banks on a grid scale battery energy storage system
JP4948907B2 (en) Battery system
JP6932607B2 (en) DC power supply system
JP4758788B2 (en) Power supply
JP4607087B2 (en) Battery system and output current control method
JP2007143291A (en) Method of controlling discharge of battery system, and program and recording medium for executing it
JP7278817B2 (en) Energy storage system and energy storage string
WO2017043109A1 (en) Storage battery device and storage battery system
JP4440249B2 (en) Battery system and upper limit current control method
JP2008301648A (en) Power system
KR20130021555A (en) The parallel connection device of the circuit for charge and discharge of multiple batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526