JP2007139401A - Thermosiphon - Google Patents

Thermosiphon Download PDF

Info

Publication number
JP2007139401A
JP2007139401A JP2005367104A JP2005367104A JP2007139401A JP 2007139401 A JP2007139401 A JP 2007139401A JP 2005367104 A JP2005367104 A JP 2005367104A JP 2005367104 A JP2005367104 A JP 2005367104A JP 2007139401 A JP2007139401 A JP 2007139401A
Authority
JP
Japan
Prior art keywords
tube
outer tube
pipe
thermosyphon
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367104A
Other languages
Japanese (ja)
Inventor
Shinichi Tateno
慎一 舘野
Tadahiko Ogawa
忠彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH RESOURCES KK
Original Assignee
EARTH RESOURCES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH RESOURCES KK filed Critical EARTH RESOURCES KK
Priority to JP2005367104A priority Critical patent/JP2007139401A/en
Publication of JP2007139401A publication Critical patent/JP2007139401A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient thermosiphon by increasing performance of a heat source fluid. <P>SOLUTION: In this double tube type thermosiphon 1, an inner tube 12 is passed through an outer tube 10, horizontally arranged and provided with both end openings 10a and 10b tightly sealed by plug bodies 14, and a working medium Q is sealed in a vacuum working space S between the outer tube 10 and the inner tube 12, and heat exchange with an outer tube outside area is carried out while running the heat source fluid M through the inner tube 12. When a two-phase refrigerant is used as the heat source fluid, starting performance and heat exchange efficiency are improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱サイフォンの構造に関し、特に、吸放熱管としての外管内に熱源流体通流用の内管を貫通させる二重管タイプの熱サイフォンに関する。  The present invention relates to a structure of a thermosyphon, and more particularly to a double-tube type thermosyphon in which an inner tube for heat source fluid flow is passed through an outer tube serving as a heat sink / radiator tube.

熱交換流体間の温度差が低いほど、熱交換効率が低下するヒートポンプ等の熱変換機器に対して、凝縮、蒸発相変化を利用して大量の熱を小温度差で運ぶことのできる熱サイフォンが近時、実用化されつつある。中でも、外管内に熱源流体通流用の内管を貫通させて例えば横置きで冷、温熱伝導を行なうものが実用上優れている点から注目されている。
例えば、特許文献1には、金属製外管の内部に外管よりも管長が長い内管を外管の長手方向に貫通して配置し、その外管の両端側から内管が挿通する孔を有するキャップを該孔に内管を挿通させながら差し入れて外管内を閉鎖し、さらにキャップに設けたフランジを外管の中央側に向けて絞るように加締め付けることにより、外管内を気密密閉する熱サイフォンが記載されている。
Thermosyphon capable of carrying a large amount of heat with a small temperature difference by utilizing condensation and evaporation phase change for heat conversion devices such as heat pumps where the heat exchange efficiency decreases as the temperature difference between heat exchange fluids decreases Recently, it is being put into practical use. Among them, the one that penetrates the inner pipe for flowing the heat source fluid through the outer pipe and performs cooling and heat conduction in a horizontal position, for example, has attracted attention because it is practically superior.
For example, in Patent Document 1, an inner tube having a longer pipe length than the outer tube is disposed inside the metal outer tube in the longitudinal direction of the outer tube, and the inner tube is inserted from both ends of the outer tube. A cap having a cap is inserted into the hole while the inner tube is inserted to close the outer tube, and a flange provided on the cap is tightened so as to squeeze toward the center of the outer tube, thereby hermetically sealing the inside of the outer tube. A thermosiphon is described.

特願2002−262289号公報Japanese Patent Application No. 2002-262289

特許文献1に記載されている従来の熱サイフォンにおいて、熱源流体として暖房時には温水を、冷房時には冷水を用いるが、熱サイフォンを長くした場合、放熱量が大きくなるので、流入端側と流出端側での温度差が大きくなってしまうとともに、温水などを流す際の管内での圧力損失が大きく、より効率の良い熱サイフォンが要望されている。
本発明は、熱源流体の性能を高め、高効率な熱サイフォンを提供することを、その目的とする。
In the conventional thermosyphon described in Patent Document 1, hot water is used as a heat source fluid during heating, and cold water is used during cooling. However, if the heat siphon is lengthened, the amount of heat radiation increases, so the inflow end side and the outflow end side Therefore, there is a demand for a more efficient thermosyphon with a large temperature difference in the pipe and a large pressure loss in the pipe when flowing hot water or the like.
An object of the present invention is to provide a highly efficient thermosyphon with improved performance of the heat source fluid.

上記目的を達成するため、本発明にかかる、横長に配置され両端開口を栓体で密閉させた外管内を長手方向に貫通して内管を配置させ、外管と内管との真空作動空間に作動媒体を封入させ、内管の内部に熱源流体を通流しつつ外管外域との熱交換を行う二重管式の熱サイフォンでは、熱源流体として二相冷媒を用いることを特徴としている。
本発明にかかる熱サイフォンにおいて、内管の内部に、内管と異なる材質であって熱源流体を通流する管材を挿入したことを特徴としている。
本発明にかかる熱サイフォンにおいて、内管又は管材には銅管を用いたことを特徴としている。
In order to achieve the above object, according to the present invention, a vacuum operating space between the outer tube and the inner tube is formed by penetrating the inner tube in the longitudinal direction through the outer tube which is disposed horizontally and sealed at both ends with plugs. The double-pipe thermosyphon that encloses the working medium and exchanges heat with the outer region of the outer tube while allowing the heat source fluid to flow inside the inner tube is characterized by using a two-phase refrigerant as the heat source fluid.
The thermosyphon according to the present invention is characterized in that a tube material made of a material different from the inner tube and flowing through a heat source fluid is inserted into the inner tube.
The thermosyphon according to the present invention is characterized in that a copper pipe is used as the inner pipe or the pipe material.

本発明によれば、横長に配置され両端開口を栓体で密閉させた外管内を長手方向に貫通して内管を配置させ、外管と内管との真空作動空間に作動媒体を封入させ、内管の内部に熱源流体を通流しつつ外管外域との熱交換を行う二重管式の熱サイフォンにおいて、熱源流体として二相冷媒を用いるので、圧力と温度変化による鋭敏性が高まり、加熱、冷却時の立ち上がり性能が優れるとともに、圧力損失が温水や冷水を用いる場合よりも格段に良くなり、高効率な熱サイフォンを提供することができる。  According to the present invention, the inner tube is disposed in the longitudinal direction through the outer tube which is disposed horizontally and sealed at both ends with plugs, and the working medium is sealed in the vacuum working space between the outer tube and the inner tube. In the double-pipe thermosyphon that exchanges heat with the outer region of the outer tube while passing the heat source fluid through the inner tube, since the two-phase refrigerant is used as the heat source fluid, the sensitivity due to changes in pressure and temperature is increased. The rise performance at the time of heating and cooling is excellent, and the pressure loss is much better than when hot water or cold water is used, and a highly efficient thermosyphon can be provided.

以下、本発明の実施の形態について図面を用いて説明する。本発明の熱サイフォンは、外管内に熱源流体Mの通流用の内管を貫通させ、熱源流体からの温、冷熱により外管内での作動媒体(媒体)の高速な蒸発、凝縮サイクルを通じて熱伝達を行なうことにより外管周囲を加温あるいは冷却させる熱伝達手段である。特に本実施形態において、熱サイフォンは、例えば建物の床下や室内空間等に横置きで複数個連結して配置されて、コンプレッサからの熱源流体Mとなる二相冷媒の供給により、加熱と冷却を行なわせる空調用の装置に適用した場合の例を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the thermosyphon of the present invention, the inner pipe for passing the heat source fluid M passes through the outer pipe, and heat is transferred through the high-speed evaporation and condensation cycle of the working medium (medium) in the outer pipe by the temperature and cold heat from the heat source fluid. Is a heat transfer means for heating or cooling the periphery of the outer tube. In particular, in this embodiment, a plurality of thermosyphons are arranged in a horizontal connection, for example, under the floor of a building or in an indoor space, and heated and cooled by supplying a two-phase refrigerant serving as a heat source fluid M from a compressor. An example in which the present invention is applied to an air conditioning apparatus to be performed will be described.

図1において、符号1は本実施形態の熱サイフォン1を示す。熱サイフォン1は、外管10と、外管内を長手方向に貫通配置された内管12と、内管12を外管10に対して配置支持しつつ外管内を密封する栓体14とを備えている。  In FIG. 1, the code | symbol 1 shows the thermosiphon 1 of this embodiment. The thermosyphon 1 includes an outer tube 10, an inner tube 12 that is disposed through the outer tube in the longitudinal direction, and a plug 14 that seals the outer tube while supporting the inner tube 12 with respect to the outer tube 10. ing.

図2,図4に示すよう、外管10と内管12との中間空隙部分には、作動媒体Qが充填されて作動空間とされ、真空とした該作動空間内での作動媒体の蒸発、凝縮作用を通じて外管10の外部を加温あるいは冷却する。本実施形態において、外管10は例えばアルミニウム合金を素材として両端を開口し、例えば管外形50mm、内径47mm、管長600mm〜4000mm程度のサイズで中空円筒形状に構成され、種々の用途に適用される際には横長状態で配置されて使用される。そして、この外管10に平行に外管と同材質の内管12が外管10を長手方向に貫通して配設されている。  As shown in FIGS. 2 and 4, the working medium Q is filled in the intermediate gap between the outer tube 10 and the inner tube 12 to form a working space, and the working medium is evaporated in the working space, which is evacuated. The outside of the outer tube 10 is heated or cooled through the condensation action. In the present embodiment, the outer tube 10 is made of, for example, an aluminum alloy and is opened at both ends. For example, the outer tube 10 is configured in a hollow cylindrical shape with a tube outer diameter of 50 mm, an inner diameter of 47 mm, and a tube length of about 600 mm to 4000 mm. In some cases, it is used in a horizontally long state. An inner tube 12 made of the same material as the outer tube is disposed in parallel with the outer tube 10 so as to penetrate the outer tube 10 in the longitudinal direction.

外管10は熱サイフォン全体の外形を決めて種々の支持物や支持構造に支持されるとともに、内部に作動媒体を封止して作動媒体Qによる伝達熱を外管10の外域と熱交換して周囲を直接的に加温、あるいは冷却させる。
本形態において、外管10の外形は筒状に限定されるものではなく、例えば中空角パイプを用いた四角形であっても良いし、別な多角形でも良い。ただコストの事を考えると、既製品で形状が多く生産されている筒状または四角形が好ましい。
The outer tube 10 determines the outer shape of the entire thermosyphon and is supported by various supports and support structures, and seals the working medium inside to exchange heat transferred by the working medium Q with the outer region of the outer tube 10. To warm or cool the surroundings directly.
In this embodiment, the outer shape of the outer tube 10 is not limited to a cylindrical shape, and may be, for example, a quadrangle using a hollow square pipe or another polygon. However, in consideration of the cost, a cylindrical shape or a quadrangular shape, which is already produced and produced in many shapes, is preferable.

本実施形態における最大の特徴は、内管12内の熱源流体Mに二相冷媒、例えばR410冷媒ガスを流す点にある。一般に冷媒ガスを流通させる場合、管内圧力は高くなるので、本形態では内管12に銅管を用いている。内管12内には二相冷媒が供給され、この二相冷媒の管内での状態変化により発生する熱を放熱あるいは外部から受熱して作動媒体Qを蒸発あるいは凝縮しつつ液相と気相との相変化を生じさせる。図1に示すように、内管12は外管の内径よりも小さい外径を有し、外管内に貫通挿入時に形成される外管内壁と内管外壁との間の空隙内に作動媒体を保持させる。内管12の管径は作動媒体Qによる熱伝達効率が良い大きさに設定している。本実施形態において、内管12は、外管内部で中心から若干下方に偏心した位置に配置されている。本実施形態において、内管12は、その管長が外管の管長よりも長く設定されており、この部分が内管の接続用突設部16とされる。内管12は、後述する栓体14の内管通係用孔15を貫通しさらに外管10内を長手方向に貫通した状態で栓体14に支持される。  The greatest feature in the present embodiment is that a two-phase refrigerant, for example, R410 refrigerant gas is allowed to flow through the heat source fluid M in the inner pipe 12. In general, when the refrigerant gas is circulated, the pressure in the pipe increases, and therefore, in this embodiment, a copper pipe is used for the inner pipe 12. A two-phase refrigerant is supplied into the inner pipe 12, and heat generated by a change in state of the two-phase refrigerant in the pipe is radiated or received from the outside to evaporate or condense the working medium Q, and the liquid phase and the gas phase Cause a phase change. As shown in FIG. 1, the inner tube 12 has an outer diameter smaller than the inner diameter of the outer tube, and the working medium is placed in a space between the outer tube inner wall and the inner tube outer wall formed when the inner tube 12 is inserted through the outer tube. Hold. The tube diameter of the inner tube 12 is set to a size with good heat transfer efficiency by the working medium Q. In the present embodiment, the inner tube 12 is arranged at a position slightly decentered downward from the center inside the outer tube. In the present embodiment, the inner tube 12 is set to have a tube length longer than the tube length of the outer tube, and this portion is used as the protruding portion 16 for connecting the inner tube. The inner pipe 12 is supported by the plug body 14 in a state of penetrating through an inner pipe engagement hole 15 of the plug body 14 to be described later and further penetrating through the outer pipe 10 in the longitudinal direction.

外管10の両端開口10a,10bは、栓体14によって封止され、外管内部が密閉されている。栓体14は、外管や内管と同様のアルミニウム合金から構成され、図3に示すように、中実の略円筒体で構成されている。本実施形態において、熱サイフォン1は、外管10の両端開口10a,10bの内部に栓体14を嵌合させた状態での図示しない外部加圧手段による外管への外部からの加圧により外管10と栓体14とを固定させて構成される。  Both end openings 10a and 10b of the outer tube 10 are sealed by a plug 14 and the inside of the outer tube is sealed. The plug 14 is made of an aluminum alloy similar to the outer tube and the inner tube, and is formed of a solid substantially cylindrical body as shown in FIG. In the present embodiment, the thermosyphon 1 is subjected to external pressure applied to the outer tube by an external pressure means (not shown) in a state where the plug body 14 is fitted inside the both end openings 10a and 10b of the outer tube 10. The outer tube 10 and the plug body 14 are fixed.

詳細には、栓体14は、外管10と同一外径の外栓部20と、外栓部20から段差状に縮径されて一体連結され外管内に挿入されて内壁10cに密着嵌合する内栓部22とを備えている。外栓部20は、外管10の両端開口10a、10bを封止する部分であり、両端開口10a,10bに外部から当てがわれてそれらの縁部に密着する。内栓部22は、外管10の内壁面に嵌合状に突入される中実円筒体からなり、実施形態では、この内栓部22において外部からの加圧を受け、さらに、外管内の密閉確保のためのシール部を形成させる。外栓部20と内栓部22とは同心の中実円筒で結合されている。  Specifically, the plug body 14 has an outer plug portion 20 having the same outer diameter as that of the outer tube 10, is reduced in a stepped shape from the outer plug portion 20, is integrally connected, is inserted into the outer tube, and is closely fitted to the inner wall 10 c. And an inner plug portion 22 to be provided. The outer plug portion 20 is a portion that seals the both end openings 10a and 10b of the outer tube 10, and is applied to the both end openings 10a and 10b from the outside and is in close contact with the edges thereof. The inner plug portion 22 is formed of a solid cylindrical body that is fitted into the inner wall surface of the outer tube 10 in a fitting manner. In the embodiment, the inner plug portion 22 is pressurized from the outside, and further in the outer tube. A seal portion is formed to ensure sealing. The outer plug portion 20 and the inner plug portion 22 are connected by a concentric solid cylinder.

図2,図3において、内栓部22にはシール手段が設けられている。シール手段は、作動空間Sを外部から直接的に密封させる密封手段であり、特に、弾性部材を用いてその形状復元力により作動空間を密封する。本実施形態において、シール手段は内栓部22の挿入端側寄りに周状に刻設された第1の溝24と、該溝内に嵌着される弾性密封部材としてのオーリング26とを含む。図2に示すように、栓体14を外管10に挿入嵌合させたときにはオーリング26は圧縮されてその弾発付勢力により管内外の水密、気密状態を保持させる。  2 and 3, the inner plug portion 22 is provided with a sealing means. The sealing means is a sealing means that directly seals the working space S from the outside, and in particular, seals the working space by its shape restoring force using an elastic member. In the present embodiment, the sealing means includes a first groove 24 circumferentially engraved near the insertion end side of the inner plug portion 22 and an O-ring 26 as an elastic sealing member fitted into the groove. Including. As shown in FIG. 2, when the plug 14 is inserted and fitted into the outer tube 10, the O-ring 26 is compressed and the water-tight and air-tight states inside and outside the tube are maintained by the elastic biasing force.

栓体14には、内管12を貫通して挿通させる孔15が設けられている。この孔15には内管12を気密状に貫通させる孔を有するシール用栓体30が嵌着される。そして、このシール用栓体30の孔を貫通し支持された状態で外管10内を内管12が長手方向に貫通して配設される。シール用栓体30の挿入端側にもオーリング32が介在されて栓体14の孔15と内管12との気密が確保される。符号34は、栓体14で外管10の両端開口10a,10bを閉鎖して内部を真空吸引し、さらにアルコール等の作動媒体Qを充填する際に用いられる孔15を封止する止め栓であり、作動媒体の充填後に嵌合されて内部を閉鎖させる。  The plug body 14 is provided with a hole 15 through which the inner tube 12 is inserted. The hole 15 is fitted with a sealing plug 30 having a hole that allows the inner tube 12 to pass through in an airtight manner. The inner tube 12 is disposed so as to penetrate the outer tube 10 in the longitudinal direction while being supported through the hole of the sealing plug 30. An O-ring 32 is also interposed on the insertion end side of the sealing plug 30 to ensure airtightness between the hole 15 of the plug 14 and the inner tube 12. Reference numeral 34 denotes a stopper plug that seals the hole 15 that is used when the stopper body 14 closes the both end openings 10a and 10b of the outer tube 10 and vacuums the inside, and is filled with a working medium Q such as alcohol. Yes, it is fitted after the working medium is filled to close the inside.

次に、熱サイフォン1の組付及び作用について説明する。図5,図6に示すように、外管10の中空内部を長手方向に内管12を挿通させる。その状態で、外管10の両端開口10a,10bからそれぞれシール用栓体30を介して内管12に栓体14A,14Bを両側から挿入嵌合させる。そして、溝24にオーリング26を装着した各栓体14を、それぞれ外管10の両端開口から外栓部20と内栓部22の段差部21に当たるまで押し入れて挿入嵌合させる。これにより、外管10と内管12の中間の作動空間Sを気密ならびに水密状に密封させる。この状態で図示しない挟み加圧装置等を用いて対向2箇所P1,P2から挟み付けるように加圧させ、外管10の一部を凹状に変形させることで、栓体14と外管10とが強固に固定される。なお、外管10の加圧加締めは2箇所だけでなく、4箇所その他の複数箇所で加締めてもよい。  Next, the assembly and operation of the thermosyphon 1 will be described. As shown in FIGS. 5 and 6, the inner tube 12 is inserted in the hollow direction of the outer tube 10 in the longitudinal direction. In this state, plugs 14A and 14B are inserted and fitted into the inner tube 12 from both ends openings 10a and 10b of the outer tube 10 via the sealing plug 30, respectively. Then, the plugs 14 having the O-rings 26 mounted in the grooves 24 are inserted and fitted by being pushed in from the openings at both ends of the outer tube 10 until they contact the stepped portions 21 of the outer plug portion 20 and the inner plug portion 22. Thereby, the working space S between the outer tube 10 and the inner tube 12 is sealed in an airtight and watertight manner. In this state, by using a pinch pressure device (not shown) or the like, pressure is applied so as to be pinched from two opposing locations P1 and P2, and a part of the outer tube 10 is deformed into a concave shape so that the plug body 14 and the outer tube 10 Is firmly fixed. In addition, the pressure caulking of the outer tube 10 may be caulked not only at two places but also at four places or other plural places.

このように、熱サイフォンの組み付けに際しては、内管12を外管10に通して両側から栓体1を嵌合させ、その後外管外面部から挟み加圧させるだけの極めて簡単な工程で、外管10の内部を密封固定させる。この後、内部を真空吸引し、さらにアルコール等の作動媒体Qを充填して止め栓34で封止することにより組み付けは完了する。  As described above, when assembling the thermosyphon, the outer tube 10 is passed through the outer tube 10, the plug 1 is fitted from both sides, and then the outer tube is sandwiched and pressurized from the outer surface of the outer tube. The inside of the tube 10 is hermetically fixed. Thereafter, the inside is vacuum-sucked, and the assembly is completed by filling with a working medium Q such as alcohol and sealing with a stopper plug 34.

作動空間Sに充填される作動媒体Qは、密閉空間の蒸発部と凝縮部とで相変化しながら熱輸送を行う作動流体である。使用に際しては、内管12に二層冷媒を供給することにより、作動媒体Qの温度と外管10の温度により二相冷媒が状態変化する。
例えば、内管内の二相冷媒は内管12で受熱して蒸発して凝縮しつつ熱運搬を行う過程で内管12の周囲、すなわち作動媒体Qが冷却される。また、外管10で受熱して蒸発した作動媒体Qが内管表面で凝縮しつつ熱運搬を行い、その過程で熱サイフォン1の周囲が冷却される。加温の場合、内管12の二相冷媒が冷却時と逆に作用して内管12を加熱し、作動空間S内の作動媒体Qが加熱されて膨張し、熱サイフォン1の周囲が加温される。
The working medium Q filled in the working space S is a working fluid that transports heat while changing phase between the evaporation unit and the condensing unit in the sealed space. In use, the state of the two-phase refrigerant changes depending on the temperature of the working medium Q and the temperature of the outer pipe 10 by supplying the two-layer refrigerant to the inner pipe 12.
For example, the two-phase refrigerant in the inner pipe receives the heat in the inner pipe 12, evaporates and condenses, and the surroundings of the inner pipe 12, that is, the working medium Q is cooled in the process of carrying heat. Further, the working medium Q that has received heat and evaporated by the outer tube 10 is transported while being condensed on the surface of the inner tube, and the periphery of the thermosyphon 1 is cooled in the process. In the case of heating, the two-phase refrigerant in the inner tube 12 acts in the opposite direction to that during cooling to heat the inner tube 12, the working medium Q in the working space S is heated and expands, and the surroundings of the thermosiphon 1 are heated. Be warmed.

以上のように、この実施形態においては、長手方向に貫通して内管12を配置させ、外管10と内管12との作動空間Sにアルコール等の作動媒体を封入させ、内管12の内部に二相冷媒を通流するので、圧力と温度変化による鋭敏性が高まり、加熱、冷却時の立ち上がり性能が優れるとともに、熱交換効率を温水や冷水を用いる場合よりも格段に良くなり、高効率な熱サイフォン1を製造することができる。  As described above, in this embodiment, the inner tube 12 is disposed so as to penetrate in the longitudinal direction, and a working medium such as alcohol is sealed in the working space S between the outer tube 10 and the inner tube 12. Since the two-phase refrigerant flows inside, the sensitivity to changes in pressure and temperature is increased, the startup performance during heating and cooling is excellent, and the heat exchange efficiency is much better than when using hot or cold water. An efficient thermosyphon 1 can be manufactured.

本実施形態では内管12に銅管を用いているので、二層冷媒を供給しても十分な耐圧性能を確保することができ、熱源流体として二層冷媒を使用することができ、加熱と冷却を効率よく行える。  In the present embodiment, since a copper pipe is used for the inner pipe 12, it is possible to ensure a sufficient pressure resistance performance even if a two-layer refrigerant is supplied, and the two-layer refrigerant can be used as a heat source fluid. Cooling can be performed efficiently.

本実施形態の熱サイフォン1は単独でも使用可能であるが、例えば数珠繋ぎに連続して使用することもできる。この場合、熱サイフォン1同士の接続は、熱源流体に温水や冷水を用いる場合、ゴム管や樹脂管などで内管12同士を連通させればよい。しかし、熱源流体として二相冷媒を用いる場合、水を利用する場合よりも管内圧が高くなるので、ゴム管や樹脂管などでは接続できない。そのため、本形態では内管同士を溶接等の手法で繋いで連通するようにした。  Although the thermosiphon 1 of this embodiment can be used alone, it can also be used continuously, for example, in a daisy chain. In this case, the connection between the thermosiphons 1 may be achieved by connecting the inner tubes 12 with a rubber tube, a resin tube, or the like when hot water or cold water is used as the heat source fluid. However, when a two-phase refrigerant is used as the heat source fluid, the internal pressure of the pipe is higher than when water is used, and therefore, it cannot be connected with a rubber pipe or a resin pipe. For this reason, in this embodiment, the inner pipes are connected by a technique such as welding.

ここで気をつけなければならないことは、溶接時の熱が内管12を伝わってシール用栓体30や栓体14に伝わってシール性能を低下させてしまうことが想定される点である。このような場合、外管10から突出する内管12の長さを大きくとり、伝達される温度を低くすることが考えられるが、金属管を長くすると隣接する熱サイフォン1の間が長くなり、大きな設置スペースを要してしまいかねない。  It should be noted here that it is assumed that heat at the time of welding is transmitted through the inner tube 12 to the sealing plug 30 and the plug 14 to deteriorate the sealing performance. In such a case, it is conceivable to increase the length of the inner tube 12 protruding from the outer tube 10 and lower the transmitted temperature, but if the metal tube is lengthened, the space between the adjacent thermosiphons 1 becomes longer, It can take a large installation space.

このような場合、例えば、図8に示すように、内管12に栓体14と同様のアルミニウム合金を使用し、その内部に、内管12と異なる材質、例えば銅管で形成されていて内管12の内径と略同径の管材50を挿入し、その内部に熱源流体として二層冷媒を通流する。  In such a case, for example, as shown in FIG. 8, an aluminum alloy similar to the plug 14 is used for the inner tube 12, and the inner tube 12 is formed of a material different from the inner tube 12, such as a copper tube. A pipe 50 having the same diameter as the inner diameter of the pipe 12 is inserted, and a two-layer refrigerant is passed through the pipe 50 as a heat source fluid.

このような構成とすると三重管構造となり、隣接する熱サイフォン1の管材50同士を溶接する場合でもシール用栓体30や栓体14に対する熱伝達を低減することができる。管材50は溶接時の作業性を考慮すると、溶接作業時には内管12の内部で長手方向に摺動可能にするのが好ましい。この場合、管材50の外径を内管12の内径よりも幾分小径とすればよい。そして、溶接作業終了後に内管12と管材50との間に熱伝導性に優れた充填剤を注入することで、内管12から作動媒体Qへの熱伝達性能の低下を抑えることができる。  With such a configuration, a triple pipe structure is formed, and heat transfer to the sealing plug 30 and the plug 14 can be reduced even when the pipe members 50 of the adjacent thermosyphons 1 are welded together. In consideration of workability at the time of welding, the pipe member 50 is preferably slidable in the longitudinal direction inside the inner pipe 12 at the time of welding work. In this case, the outer diameter of the pipe material 50 may be somewhat smaller than the inner diameter of the inner pipe 12. Then, by injecting a filler having excellent thermal conductivity between the inner pipe 12 and the pipe material 50 after the end of the welding operation, it is possible to suppress a decrease in heat transfer performance from the inner pipe 12 to the working medium Q.

本発明に係る熱サイフォン1は、上記した実施形態にのみ限定されるものではなく、特許請求の範囲に記載した発明の本質を逸脱しない範囲における改変も本発明に含まれる。例えば内管12にはアルミニウム合金、管材50には銅管を用いたが、材質の組み合わせとしてはこのようなものに限定されるものではない。外管、内管、栓体等の材質は、アルミニウム合金に限ることなく、ステンレス、ニッケル、タングステン、チタンその他作動媒体との反応による劣化を生じないような安定した材質を選択するとよい。  The thermosyphon 1 according to the present invention is not limited to the above-described embodiment, and modifications within a scope not departing from the essence of the invention described in the claims are also included in the present invention. For example, although an aluminum alloy is used for the inner tube 12 and a copper tube is used for the tube material 50, the combination of materials is not limited to this. The material of the outer tube, the inner tube, the plug, etc. is not limited to aluminum alloy, and it is preferable to select a stable material that does not deteriorate due to reaction with stainless steel, nickel, tungsten, titanium, or other working medium.

本発明の実施形態に係る熱サイフォンの一部切欠斜視説明図である。  It is a partially cutaway perspective explanatory view of a thermosyphon according to an embodiment of the present invention. 図1に示す熱サイフォンの縦断面図である。  It is a longitudinal cross-sectional view of the thermosiphon shown in FIG. 図1に示す熱サイフォンの栓体の側面図である。  It is a side view of the plug of the thermosyphon shown in FIG. 図1に示す熱サイフォンの分解斜視説明図である。  It is a disassembled perspective explanatory drawing of the thermosiphon shown in FIG. 図1に示す熱サイフォンへの栓体嵌合状態を示す一部省略拡大断面図である。  FIG. 2 is a partially omitted enlarged cross-sectional view showing a plug fitting state to the thermosyphon shown in FIG. 1. 図5A−A線の断面図である。  It is sectional drawing of the FIG. 5A-A line. 図1に示す熱サイフォンへの栓体嵌合時の作用説明図である。  It is action explanatory drawing at the time of the plug body fitting to the thermosyphon shown in FIG. 内管の内部に管材を挿通させた熱サイフォンの一部切欠斜視説明図である。  It is a partially cutaway perspective explanatory view of a thermosyphon in which a pipe material is inserted into the inner pipe.

符号の説明Explanation of symbols

1 熱サイフォン
10 外管
10a,10b 両端開口
12 内管
14 栓体
50 管材
M 熱源流体
Q 作動媒体
S 作動空間
DESCRIPTION OF SYMBOLS 1 Thermosyphon 10 Outer tube 10a, 10b Both-ends opening 12 Inner tube 14 Plug body 50 Tubing material M Heat source fluid Q Working medium S Working space

Claims (3)

横長に配置され両端開口を栓体で密閉させた外管内を長手方向に貫通して内管を配置させ、外管と内管との真空作動空間に作動媒体を封入させ、内管の内部に熱源流体を通流しつつ外管外域との熱交換を行う二重管式の熱サイフォンにおいて、
前記熱源流体として二相冷媒を用いることを特徴とする熱サイフォン。
The inner tube is arranged in the longitudinal direction through the outer tube that is horizontally long and sealed at both ends with plugs, and the working medium is sealed in the vacuum working space between the outer tube and the inner tube. In a double-pipe thermosyphon that exchanges heat with the outer area of the outer pipe while flowing the heat source fluid,
A thermosyphon using a two-phase refrigerant as the heat source fluid.
請求項1記載の熱サイフォンにおいて、
前記内管の内部に、前記内管と異なる材質であって前記熱源流体を通流する管材を挿入したことを特徴とする熱サイフォン。
The thermosyphon of claim 1.
A thermosyphon, wherein a pipe material made of a material different from the inner pipe and flowing through the heat source fluid is inserted into the inner pipe.
請求項1または2記載の熱サイフォンにおいて、
前記内管又は管材に銅管を用いたことを特徴とする熱サイフォン。
The thermosyphon according to claim 1 or 2,
A thermosyphon characterized by using a copper pipe as the inner pipe or pipe material.
JP2005367104A 2005-11-22 2005-11-22 Thermosiphon Pending JP2007139401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367104A JP2007139401A (en) 2005-11-22 2005-11-22 Thermosiphon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367104A JP2007139401A (en) 2005-11-22 2005-11-22 Thermosiphon

Publications (1)

Publication Number Publication Date
JP2007139401A true JP2007139401A (en) 2007-06-07

Family

ID=38202484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367104A Pending JP2007139401A (en) 2005-11-22 2005-11-22 Thermosiphon

Country Status (1)

Country Link
JP (1) JP2007139401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275918B1 (en) * 2011-05-06 2013-06-17 한준희 A bed using thermosyphon
JP2015021620A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275918B1 (en) * 2011-05-06 2013-06-17 한준희 A bed using thermosyphon
JP2015021620A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP5615526B2 (en) Insulated double pipe
JP2000146471A (en) Loop type heat pipe
KR860001995A (en) Refrigerant Flow Reversing Valve
KR101097390B1 (en) Heat pipe with double pipe structure
ES2305643T3 (en) METHOD FOR MANUFACTURING A HEAT TRANSFER DEVICE.
KR100485402B1 (en) Heat exchanger and method of constructing same
JP2007139401A (en) Thermosiphon
JP4366683B2 (en) Thermosyphon
JP3895322B2 (en) Cooling device for at least one of electrical and electronic devices
KR101014371B1 (en) Heat pipe
CA2898052A1 (en) Heat-wing
KR200242427Y1 (en) A triple-pipe type heat exchanger adopting high efficiency heat-medium radiator and a boiler adopting the same
JP2005265269A (en) Heat exchange pipe for refrigerating cycle
KR100888363B1 (en) The Manufacture Method Of Heat Pipe Using Brazing Process and Heat Pipe
CN109373791B (en) Stable pipeline heat radiation module
WO2016095590A1 (en) Bent pipe and a semiconductor refrigeration refrigerator with bent pipe
JP6095554B2 (en) Heat dissipation pipe
JP2007333270A (en) Heat-pump heat source equipment
JP2005077062A (en) Heat pump water heater
JP2005337336A (en) Liquefied gas evaporating device
KR102407158B1 (en) Vapor chamber with expanded heat dissipation surface area and manufacturing method thereof
JP2005156026A (en) Cooling device
CN116685109B (en) Abnormal thermal diode and manufacturing method and heat dissipation method thereof
US6820683B1 (en) Bubble cycling heat exchanger
KR100876453B1 (en) Heat pipe