JP2007139272A - Continuous type microwave heating furnace - Google Patents

Continuous type microwave heating furnace Download PDF

Info

Publication number
JP2007139272A
JP2007139272A JP2005331777A JP2005331777A JP2007139272A JP 2007139272 A JP2007139272 A JP 2007139272A JP 2005331777 A JP2005331777 A JP 2005331777A JP 2005331777 A JP2005331777 A JP 2005331777A JP 2007139272 A JP2007139272 A JP 2007139272A
Authority
JP
Japan
Prior art keywords
heated
microwave heating
heating furnace
temperature
rod body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331777A
Other languages
Japanese (ja)
Inventor
Akira Kagohashi
章 籠橋
Shigetsu Oshima
士月 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
Original Assignee
Takasago Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd filed Critical Takasago Industry Co Ltd
Priority to JP2005331777A priority Critical patent/JP2007139272A/en
Publication of JP2007139272A publication Critical patent/JP2007139272A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous type microwave heating furnace capable of properly adjusting microwave output by continuously measuring an internal temperature of accumulated powder and grain when continuously carrying out microwave heating of accumulated powdery or granular objects to be heated. <P>SOLUTION: The microwave heating furnace is for continuously carrying out microwave heating of the objects to be heated being powder and/or grain, and it has a temperature measuring means for measuring the internal temperature of the accumulated powder and grain M. The temperature measuring means 22 is provided with a slit part 30 formed in a predetermined portion of a furnace body 12, a rod body 32 including a thermocouple measuring the internal temperature of the objects M to be heated via the slit part 30, and a moving mechanism 40 moving the rod body 32. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は連続式マイクロ波加熱炉に関し、特に、粉体や粒体の被加熱物の加熱温度を適切に制御して加熱することのできる連続式マイクロ波加熱炉に関する。   The present invention relates to a continuous microwave heating furnace, and more particularly, to a continuous microwave heating furnace capable of appropriately controlling and heating a heating temperature of an object to be heated such as powder or granules.

従来のバーナやヒータなどの外部加熱式の加熱炉では、熱源からの輻射あるいは燃焼空気や加熱された雰囲気の対流などにより被加熱物はその外周面から加熱される。この場合には、雰囲気温度を測定監視することで被加熱物の温度を適切に制御することが可能である。   In a conventional external heating type heating furnace such as a burner or a heater, an object to be heated is heated from its outer peripheral surface by radiation from a heat source or convection of combustion air or a heated atmosphere. In this case, the temperature of the object to be heated can be appropriately controlled by measuring and monitoring the atmospheric temperature.

近年、被加熱物を自己発熱によりその内部から加熱するマイクロ波加熱が盛んに研究されるようになった。このようなマイクロ波加熱は、極めて短時間で被加熱物を昇温することができるので、大幅な生産性の向上が可能であるとされている。   In recent years, microwave heating, in which an object to be heated is heated from the inside by self-heating, has been actively studied. Such microwave heating can increase the temperature of an object to be heated in a very short time, and is considered to be able to significantly improve productivity.

一般に、被加熱物である誘電体をマイクロ波で加熱すると、被加熱物は表面からのみでなくその内部からも同時に加熱される。しかし、通常は加熱処理時のマイクロ波加熱炉の炉内温度は、被加熱物の表面温度よりもかなり低いために被加熱物の表面から熱が放射され、結果的に被加熱物の中心部と表面部との間に温度差を生じる。このため成形された被加熱物では変形したりクラックなどの欠陥が発生しやすい(特許文献1など参照)。   Generally, when a dielectric that is an object to be heated is heated by microwaves, the object to be heated is heated not only from the surface but also from the inside. However, since the temperature inside the microwave heating furnace during heat treatment is usually much lower than the surface temperature of the object to be heated, heat is radiated from the surface of the object to be heated, resulting in the center of the object being heated. A temperature difference is generated between the surface portion and the surface portion. For this reason, the molded article to be heated is likely to be deformed or have a defect such as a crack (see Patent Document 1).

また、マイクロ波の特性として、誘電体(被加熱物)が高温になればなるほどその誘電体のマイクロ波吸収率は大きくなる。従って、被加熱物に部位による温度差が生じると、温度の低い部位に比べて温度の高い部位のマイクロ波吸収率が高くなるので、その部位の温度はさらに高くなる。このように、一旦被加熱物に部位による温度差が生じると、マイクロ波加熱を継続することによってさらに部位間の温度差が拡大されることになる。   In addition, as microwave characteristics, the higher the temperature of the dielectric (object to be heated), the greater the microwave absorption rate of the dielectric. Therefore, when a temperature difference occurs in the heated object depending on the part, the microwave absorption rate of the part having a higher temperature is higher than that of the part having a lower temperature, and therefore the temperature of the part is further increased. As described above, once a temperature difference due to the part occurs in the object to be heated, the temperature difference between the parts is further expanded by continuing the microwave heating.

一般に、マイクロ波加熱時の被加熱物の温度測定は非接触式の赤外線放射温度計などが用いられているが、このような温度計では被加熱物の表面温度しか知ることができない。例えば、被加熱物が堆積した状態で容器に収容されている粉体である場合には、マイクロ波加熱により堆積した粉体の内部の粉体が急速に昇温するので、従来の非接触式の赤外線放射温度計などによる温度測定は適当ではない。このため、マイクロ波加熱中に堆積粉体の内部温度を測定して、内部温度が急上昇(いわゆる暴走)しないようにマイクロ波出力を調整することのできる連続式マイクロ波加熱炉の開発が望まれていた。
特開平6−345541号公報
In general, a non-contact infrared radiation thermometer is used to measure the temperature of an object to be heated during microwave heating, but such a thermometer can only know the surface temperature of the object to be heated. For example, in the case of powder stored in a container in a state where an object to be heated is deposited, the temperature inside the powder deposited by microwave heating rapidly increases, so that the conventional non-contact type Temperature measurement with an infrared radiation thermometer is not appropriate. Therefore, it is desirable to develop a continuous microwave heating furnace that can measure the internal temperature of the deposited powder during microwave heating and adjust the microwave output so that the internal temperature does not rise rapidly (so-called runaway). It was.
JP-A-6-345541

本発明は、上記のような要請に鑑みてなされたもので、堆積した粉体又は粒体状の被加熱物(以後、粉粒体という)を連続的にマイクロ波加熱するに当たって、堆積粉粒体の内部温度を連続的に測定してマイクロ波出力を適切に調整することのできる連続式マイクロ波加熱炉の提供を課題とする。   The present invention has been made in view of the above-described demands, and in the continuous microwave heating of a deposited powder or granular object to be heated (hereinafter referred to as a granular material), the accumulated granular particles It is an object of the present invention to provide a continuous microwave heating furnace capable of continuously measuring the internal temperature of the body and appropriately adjusting the microwave output.

本発明者らは従来の赤外線放射温度計などに代えて熱電対を内蔵したシース熱電対などの棒体を用いることで、堆積した粉粒体の内部温度を精度よく簡便に測定できること着目して本発明を完成させた。   The present inventors pay attention to the fact that the internal temperature of the deposited granular material can be accurately and simply measured by using a rod such as a sheathed thermocouple incorporating a thermocouple instead of a conventional infrared radiation thermometer or the like. The present invention has been completed.

本発明の連続式マイクロ波加熱炉は、一端に被加熱物の入口を、他端に被加熱物の出口を有し、少なくとも加熱帯を備えた炉体と、加熱帯で被加熱物を加熱するマイクロ波加熱手段と、被加熱物の温度を測定する温度測定手段と、温度測定手段で測定された温度に基づいて、マイクロ波加熱手段のマイクロ波出力を制御する制御手段と、入口から出口へ炉体を貫通して被加熱物を搬送する搬送手段とを備える連続式マイクロ波加熱炉であって、被加熱物は粉体および/または粒体であり、温度測定手段は、炉体の所定箇所に形成したスリット部と、このスリット部を介して被加熱物の内部温度を測定する熱電対を内蔵する棒体と、この棒体を移動する移動機構とを備えることを特徴とする。   The continuous microwave heating furnace of the present invention has an inlet for an object to be heated at one end, an outlet for the object to be heated at the other end, and at least a furnace body provided with a heating zone, and heats the object to be heated by the heating zone. A microwave heating means, a temperature measuring means for measuring the temperature of the object to be heated, a control means for controlling the microwave output of the microwave heating means based on the temperature measured by the temperature measuring means, and an inlet to an outlet A continuous microwave heating furnace having a conveying means for conveying an object to be heated through the furnace body, wherein the object to be heated is a powder and / or a granule, and the temperature measuring means is a It is characterized by comprising a slit portion formed at a predetermined location, a rod body incorporating a thermocouple for measuring the internal temperature of the object to be heated through the slit portion, and a moving mechanism for moving the rod body.

温度測定手段の移動機構は、棒体を支持して下降動作、水平進行動作、上昇動作、水平後退動作を順次繰り返すことができ、水平進行動作では棒体を被加熱物の搬送速度に同調して進行させることができる。ここで、温度測定手段の棒体は、先端部を封止した金属製のパイプに熱電対を内蔵して棒体としたものであり周知のシース熱電対を用いてもよい。   The moving mechanism of the temperature measuring means supports the rod body and can repeat the descending operation, horizontal traveling operation, ascending operation, and horizontal receding operation in sequence. In the horizontal traveling operation, the rod body is synchronized with the conveyance speed of the object to be heated. Can be advanced. Here, the rod body of the temperature measuring means is a rod body in which a thermocouple is built in a metal pipe whose tip is sealed, and a well-known sheathed thermocouple may be used.

また、本発明の連続式マイクロ波加熱炉において、棒体は、鉛直方向に対して5〜75°傾斜して被加熱物に挿抜されるようにしてもよい。   Further, in the continuous microwave heating furnace of the present invention, the rod body may be inserted into and removed from the object to be heated with an inclination of 5 to 75 ° with respect to the vertical direction.

本発明の連続式マイクロ波加熱炉において、炉体の所定箇所に形成したスリット部にはマイクロ波の漏洩を防止するマイクロ波漏洩防止手段を備えることが望ましく、マイクロ波漏洩防止手段としてはカーボンラバー材チョーク構造が好適である。   In the continuous microwave heating furnace of the present invention, it is desirable that the slit portion formed at a predetermined portion of the furnace body is provided with microwave leakage prevention means for preventing microwave leakage, and the microwave leakage prevention means is a carbon rubber. A material chalk structure is preferred.

本発明の連続式マイクロ加熱炉は、粉粒体を被加熱物とするので、熱電対を内蔵する棒体を挿入することで堆積した粉粒体の内部温度を容易に測定することができる。また、棒体を所定の軌跡に沿って移動する移動機構を備えているので、加熱帯の所定の位置で連続して搬送される各容器ごとの粉粒体の内部温度を測定することができる。そして、この測定温度に基づいてマイクロ波の出力を適切に制御できるので、本発明の連続式マイクロ加熱炉によれば、所望の加熱処理を施した均一な品質を有する粉粒体を効率よく、また、安定した品質で得ることができる。   Since the continuous micro-heating furnace of the present invention uses the granular material as the object to be heated, it is possible to easily measure the internal temperature of the accumulated granular material by inserting a rod body incorporating a thermocouple. Moreover, since the moving mechanism which moves a rod body along a predetermined | prescribed locus | trajectory is provided, the internal temperature of the granular material for every container continuously conveyed by the predetermined position of a heating zone can be measured. . And since it is possible to appropriately control the output of the microwave based on this measured temperature, according to the continuous micro-heating furnace of the present invention, it is possible to efficiently produce a granular material having a uniform quality subjected to a desired heat treatment, Moreover, it can be obtained with stable quality.

また、棒体を傾斜して粉粒体へ挿抜することで、棒体が破損す危険を回避しかつ挿入動作を容易にすることができる。   Moreover, the risk of damaging the rod body can be avoided and the insertion operation can be facilitated by inclining the rod body and inserting / removing it into / from the granular material.

また、スリット部にマイクロ波漏洩防止手段を備えるので、マイクロ波が外部へ漏れることがなく、炉体近傍でも安全に作業することができる。マイクロ波漏洩防止手段にカーボンラバー材チョーク構造を用いることで、移動機構による棒体の移動動作を阻害することなくマイクロ波の漏洩を防止することができる。   Moreover, since the microwave leakage preventing means is provided in the slit portion, the microwave does not leak to the outside, and the work can be safely performed even in the vicinity of the furnace body. By using the carbon rubber material choke structure as the microwave leakage prevention means, it is possible to prevent the leakage of the microwave without hindering the movement operation of the rod body by the movement mechanism.

以下、本発明の好適な一実施形態につて図を参照しながら説明する。図3は本発明の連続式マイクロ波加熱炉の全体構成を示す側面概要図であり、図1は図3のA部断面拡大図であり、図2は図3のB−B断面を示す。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic side view showing the overall configuration of the continuous microwave heating furnace of the present invention, FIG. 1 is an enlarged cross-sectional view of a portion A in FIG. 3, and FIG.

本発明のマイクロ波加熱炉10は、被加熱物の入口51と出口52とを有する炉体12と、入口51から出口52へ炉体12を貫通して被加熱物Mを搬送する搬送手段14と、被加熱物Mを加熱するマイクロ波加熱手段16と、被加熱物Mの温度を測定する温度測定手段22と、この温度測定手段22で測定された温度に基づいて、マイクロ波発振器18のマイクロ波出力を制御する制御手段24とを備えている。   The microwave heating furnace 10 of the present invention includes a furnace body 12 having an inlet 51 and an outlet 52 for an object to be heated, and conveying means 14 for conveying the object to be heated M through the furnace body 12 from the inlet 51 to the outlet 52. The microwave heating means 16 for heating the object to be heated M, the temperature measuring means 22 for measuring the temperature of the object to be heated M, and the microwave oscillator 18 based on the temperature measured by the temperature measuring means 22. And a control means 24 for controlling the microwave output.

マイクロ波加熱手段16は、所定の出力でマイクロ波を発振するマイクロ波発振器18と、このマイクロ波発振器18から加熱帯Hへマイクロ波を導く導波管20とを有している。ここで、マイクロ波加熱手段には特に制限はなく、従来用いられている周知のものを用いることができる。   The microwave heating means 16 includes a microwave oscillator 18 that oscillates a microwave with a predetermined output, and a waveguide 20 that guides the microwave from the microwave oscillator 18 to the heating zone H. Here, there is no restriction | limiting in particular in a microwave heating means, The well-known thing used conventionally can be used.

炉体12は、加熱帯Hと冷却帯Cとを有し、加熱帯Hはステンレス鋼などの耐熱性の鋼材をマイクロ波が漏洩しないように溶接などで密閉構造とした炉殻26で区画されている。   The furnace body 12 has a heating zone H and a cooling zone C, and the heating zone H is defined by a furnace shell 26 that is made of a heat-resistant steel material such as stainless steel and has a sealed structure by welding or the like so that microwaves do not leak. ing.

被加熱物Mは、平均粒径が数μm〜数十mmまでの粉体や、平均粒径が数十mmを越える粒体であり、シュレッダーダストなどの金属粉末、あるいはセラミックボールや軽量骨材などのセラミック粒体などを例示することができる。本実施形態では、被加熱物Mは被加熱物とほぼ等しい誘電率を持つ耐火物で形成され、加熱室14内にほぼ水平に配置された上部開口の例えば匣鉢などの容器28に堆積して収容されている。   The object to be heated M is a powder having an average particle size of several μm to several tens of mm, or a granule having an average particle size exceeding several tens of mm, and is a metal powder such as shredder dust, a ceramic ball or a lightweight aggregate. Examples thereof include ceramic particles. In the present embodiment, the object to be heated M is formed of a refractory material having a dielectric constant substantially equal to that of the object to be heated, and is deposited in a container 28 such as a mortar, which is disposed in the heating chamber 14 substantially horizontally. Is contained.

温度測定手段22は、炉殻26に炉体12の長手方向に所定の幅で開口したスリット部30と、先端を被加熱物Mに挿入して、堆積した粉粒体の内部温度を測定する棒体32と、この棒体32を容器28の搬送速度に同調して移動させる移動機構40とからなっている。   The temperature measuring means 22 measures the internal temperature of the deposited granular material by inserting the slit portion 30 opened to the furnace shell 26 with a predetermined width in the longitudinal direction of the furnace body 12 and the tip into the object to be heated M. It comprises a rod 32 and a moving mechanism 40 that moves the rod 32 in synchronization with the conveyance speed of the container 28.

棒体32は、図示しないアロメル・クロメルなどの熱電対を収容する先端封止の金属パイプからなるケース部32aと、この熱電対とリード線36とを接続する接続部32bとを備える。このような棒体32として、周知のシース熱電対を好適に用いることができる。なお、ケース部32aには係止部材32cが固着されており、移動機構Dと係止して棒体32を後述する軌跡に沿って移動させることができる。   The rod body 32 includes a case portion 32 a made of a metal pipe with a sealed tip that accommodates a thermocouple such as alumel and chromel (not shown), and a connection portion 32 b that connects the thermocouple and the lead wire 36. As such a rod 32, a known sheath thermocouple can be suitably used. Note that a locking member 32c is fixed to the case portion 32a, and the rod 32 can be moved along a trajectory described later by locking with the moving mechanism D.

移動機構40としては、図4に示すような構成を例示することができる。この移動機構40は、棒体32を矢印Xのように水平方向に移動させる第1シリンダ42と、棒体32を矢印Yのように上下方向に移動させる第2シリンダ44とを備えている。第2シリンダ44は、第1シリンダ42のシリンダロッド42aの先端に固設された移動可能な台車46に固定されている。また、第2シリンダ44のシリンダロッド44aには支持部材48の一端が固定されており、支持部材48の他端は棒体32の係止部材32cと係止して棒体32を支持するようになっている。台車46はスリット30の上方に配置した軌道50上をシリンダロッド44aの動作に合わせて進退することができる。このように構成される移動機構40を用いることで、棒体32を図6の軌跡に沿って移動させることができる。   As the moving mechanism 40, a structure as shown in FIG. 4 can be illustrated. The moving mechanism 40 includes a first cylinder 42 that moves the bar 32 in the horizontal direction as indicated by an arrow X, and a second cylinder 44 that moves the bar 32 in the vertical direction as indicated by an arrow Y. The second cylinder 44 is fixed to a movable carriage 46 fixed to the tip of the cylinder rod 42 a of the first cylinder 42. Further, one end of a support member 48 is fixed to the cylinder rod 44a of the second cylinder 44, and the other end of the support member 48 is engaged with an engagement member 32c of the rod body 32 to support the rod body 32. It has become. The carriage 46 can advance and retreat on the track 50 disposed above the slit 30 in accordance with the operation of the cylinder rod 44a. By using the moving mechanism 40 configured as described above, the rod body 32 can be moved along the locus of FIG.

また、スリット部30には、棒体32のケース部32aと摺接しスリット部30の開口を閉塞するカーボンラバー材チョーク構造34が設けられており、加熱帯Hからのマイクロ波の外部への漏洩を防止している。カーボンラバー材チョーク構造34は、マイクロ波の吸収率が高いカーボン粉末を練り込んでシート状に形成した弾性体(カーボン含有ラバーなど)を、図2に示すようにスリット30の長辺に沿って対向するように配置して、その弾性を利用して互いに曲面で当接させることでスリットの開口を閉塞するとともに、その当接部に棒体32のケース部32aを移動可能に摺接する構造であり、マイクロ波漏洩防止手段として機能する。   Further, the slit portion 30 is provided with a carbon rubber material choke structure 34 that is in sliding contact with the case portion 32a of the rod 32 and closes the opening of the slit portion 30, and leakage of microwaves from the heating zone H to the outside. Is preventing. The carbon rubber material chalk structure 34 is an elastic body (carbon-containing rubber or the like) formed by kneading carbon powder having a high microwave absorption rate into a sheet shape along the long side of the slit 30 as shown in FIG. It is arranged so as to oppose each other, and the opening of the slit is closed by contacting the curved surfaces with each other by utilizing its elasticity, and the case portion 32a of the rod body 32 is slidably contacted with the contact portion. Yes, it functions as microwave leakage prevention means.

本実施形態の連続式マイクロ波加熱炉10は、従来のローラハース加熱炉の加熱源をマイクロ波加熱手段16としたものである。搬送手段14は、被加熱物Mの進行方向に対して直角に所定の間隔で平行に配置された複数のローラ38と、図示しないチェーンなどで連結した駆動装置とからなる。搬送手段14は、ローラ38を回転駆動することにより、被加熱物Mを収容した容器28を炉体12の入口51から出口52に向かって搬送する。なお、搬送手段14はローラ38と駆動装置との組み合わせに限定されるものではなく、被加熱物を炉体12の入口から出口まで搬送できればよく、ネットコンベアあるいはプッシャー方式などでもよい。   The continuous microwave heating furnace 10 of the present embodiment uses a heating source of a conventional roller hearth heating furnace as a microwave heating means 16. The conveying means 14 includes a plurality of rollers 38 arranged in parallel at a predetermined interval perpendicular to the traveling direction of the article to be heated M, and a driving device connected by a chain (not shown). The conveying means 14 conveys the container 28 containing the article to be heated M from the inlet 51 to the outlet 52 of the furnace body 12 by rotationally driving the roller 38. The conveying means 14 is not limited to the combination of the roller 38 and the driving device, and it is sufficient that the object to be heated can be conveyed from the inlet to the outlet of the furnace body 12, and may be a net conveyor or a pusher system.

次に、移動機構40の動作と棒体(以後、シース熱電対という)32による温度測定方法とについて説明する。   Next, the operation of the moving mechanism 40 and a temperature measurement method using a rod (hereinafter referred to as a sheath thermocouple) 32 will be described.

移動機構40は、図6に示す軌跡に沿ってシース熱電対32を移動させる。すなわち、下降動作S1→水平進行動作S2→上昇動作S3→水平後退動作S4である。これらの動作によりシース熱電対32は以下のように作用して容器28に堆積して収容されている粉粒体Mの温度を容器ごとに連続して測定することができる。なお、本明細書では、加熱帯Hのスリット30が設けられた範囲を温度測定ゾーンTとし、また、この温度測定ゾーンTの入口側を測定開始点Ts、出口側を測定終了点Teとする。   The moving mechanism 40 moves the sheath thermocouple 32 along the locus shown in FIG. That is, descending operation S1 → horizontal traveling operation S2 → rising operation S3 → horizontal backward operation S4. By these operations, the sheath thermocouple 32 acts as follows and can continuously measure the temperature of the granular material M deposited and accommodated in the container 28 for each container. In this specification, the range in which the slit 30 of the heating zone H is provided is the temperature measurement zone T, the entrance side of the temperature measurement zone T is the measurement start point Ts, and the exit side is the measurement end point Te. .

まず、シース熱電対32は、測定開始点Tsで、シース部先端が粉粒体Mや容器28に接触しない位置で待機している。次に、一の容器に入った粉粒体m1がシース熱電対32の直下に搬送されたら、シース熱電対32をdだけ下降させて先端を粉粒体m1の所定の深さまで挿入する(下降動作S1)。 First, the sheath thermocouple 32 stands by at the measurement start point Ts at a position where the tip of the sheath portion does not come into contact with the granular material M or the container 28. Next, when the granular material m 1 contained in one container is conveyed directly under the sheath thermocouple 32, the sheath thermocouple 32 is lowered by d and the tip is inserted to a predetermined depth of the granular material m 1. (Descent operation S1).

粉粒体m1は搬送手段14により所定の速度で搬送されるので、シース熱電対32を搬送速度に同調させて進行方向にlだけ移動させる(水平進行動作S2)。なお、ここではシース熱電対32は粉粒体m1に挿入されたままであるので、この水平進行動作S2の間に一の容器に入った粉粒体m1の温度が測定される。 Since the granular material m 1 is transported by the transport means 14 at a predetermined speed, the sheath thermocouple 32 is moved by l in the traveling direction in synchronization with the transport speed (horizontal traveling operation S2). Since here sheathed thermocouple 32 remains inserted in the granular material m 1, the temperature of the granular material m 1 entering the first container during the horizontal traveling operation S2 is measured.

進行方向にlだけ移動させて測定終了点Teに到達したら、シース熱電対32をdだけ上昇させて先端を粉粒体m1から抜却する(上昇動作S3)。 When the measurement end point Te is reached by moving by 1 in the traveling direction, the sheath thermocouple 32 is raised by d and the tip is removed from the powder m 1 (ascending operation S3).

シース熱電対32のシース部先端を粉粒体m1から抜却したら、シース熱電対32をそのまま水平に進行方向とは反対方向に測定開始点Tsまで後退させる(後退動作S4)。そして、次の容器に入った粉粒体m2がシース熱電対32の直下に搬送されるまで待機する。このS1〜S4の動作を繰り返すことで、温度測定ゾーンTにおける粉粒体Mの温度を所望の温度に維持することができる。 After抜却the sheath tip of a sheath thermocouple 32 from granular material m 1, is retracted to the measurement starting point Ts in the opposite direction as it is horizontally moving direction of the sheath thermocouple 32 (retracts S4). Then, the process waits until granular material m 2 entering the next container is transported to immediately below the sheathed thermocouple 32. By repeating the operations of S1 to S4, the temperature of the powder M in the temperature measurement zone T can be maintained at a desired temperature.

なお、粉粒体Mの温度測定に当たっては、図5に示すようにシース熱電対32を鉛直線Lに対して角度αをもって挿抜するようにしてもよい。この時、角度αは、鉛直線Lに対して5〜75°の範囲にするとよい。αが5°未満、すなわちシース熱電対32を粉粒体Mの堆積面に対してほぼ垂直に挿入すると、粉粒体Mの平均粒径がシース部32aの外径の約1/4以上の場合には、シース部32aの先端が個々の粉粒体と干渉してしまい、堆積している粉粒体の所望の測定部位までシース部32aの先端を到達させることができない場合がある。甚だしい場合には、シース部32aが曲がったり、シース熱電対32が破損したりすることがある。また、αが75°を越えて大きくなると、容器28と干渉することがあるので適当ではない。より好ましくは10〜30°である。   In measuring the temperature of the granular material M, the sheath thermocouple 32 may be inserted / extracted with respect to the vertical line L at an angle α as shown in FIG. At this time, the angle α may be in the range of 5 to 75 ° with respect to the vertical line L. When α is less than 5 °, that is, when the sheath thermocouple 32 is inserted substantially perpendicular to the deposition surface of the powder M, the average particle diameter of the powder M is about 1/4 or more of the outer diameter of the sheath portion 32a. In some cases, the distal end of the sheath portion 32a interferes with individual powder particles, and the distal end of the sheath portion 32a may not reach the desired measurement site of the accumulated granular material. In a severe case, the sheath portion 32a may be bent or the sheath thermocouple 32 may be damaged. In addition, if α exceeds 75 °, it may interfere with the container 28, which is not appropriate. More preferably, it is 10 to 30 °.

シース熱電対32を角度を設けて粉粒体Mに挿入することで、挿入する力Fは水平の分力f1を生じる。シース部32aは、この分力f1で粉体粒子を順次移動させて隙間を作り、シース部32aの先端を所望の内部まで容易にかつ安全に挿入させることができる。この場合には、移動機構40の第2シリンダが台車46上に角度αを設けて固定されているので、移動機構40は図6の点線で示すS1’→S2’→S3’→S4の軌跡に沿て動作する。すなわち、シース熱電対32を下降させるステップS1’と、上昇させるステップS3’ではシース熱電対32を角度αだけ傾斜させて動作(挿抜)させるわけである。 By inserting the sheath thermocouple 32 into the granular material M at an angle, the inserting force F generates a horizontal component force f 1 . Sheath portion 32a may create a gap the powder particles is successively moved in the component force f 1, the distal end of the sheath portion 32a can be easily and safely inserted to the desired internal. In this case, since the second cylinder of the moving mechanism 40 is fixed on the carriage 46 with an angle α, the moving mechanism 40 has a locus of S1 ′ → S2 ′ → S3 ′ → S4 indicated by a dotted line in FIG. It works along. That is, in the step S1 ′ for lowering the sheath thermocouple 32 and the step S3 ′ for raising, the sheath thermocouple 32 is operated (inserted / removed) by being inclined by the angle α.

なお、本発明のマイクロ波加熱炉は上記の実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更してもよい。例えば、加熱帯Hの炉殻12の内周面にセラミック繊維などからなる耐火性の断熱材を貼設してもよい。このような断熱材を貼設することで、表面からの熱の放射を抑制して被加熱物の表面と内部との温度差を縮小することができる。   In addition, the microwave heating furnace of this invention is not limited to said embodiment, You may change in the range which does not deviate from the main point of this invention. For example, a refractory heat insulating material made of ceramic fiber or the like may be attached to the inner peripheral surface of the furnace shell 12 of the heating zone H. By sticking such a heat insulating material, radiation of heat from the surface can be suppressed and the temperature difference between the surface of the object to be heated and the inside can be reduced.

また、上記の実施の形態では、加熱源をマイクロ波加熱のみとしたが、化石燃料を用いるバーナ加熱や電気ヒータ加熱などの外部加熱手段を併設してもよい。このような外部加熱手段を併用することで、被加熱物の内部と表層部との温度差を縮小して加熱できるので、特に低温時には効率のよい加熱を施すことができる。   In the above embodiment, the heating source is only microwave heating, but external heating means such as burner heating using an fossil fuel or electric heater heating may be provided. By using such an external heating means in combination, the temperature difference between the inside of the article to be heated and the surface layer portion can be reduced and heated, so that efficient heating can be performed particularly at low temperatures.

本発明の連続式マイクロ波加熱炉によれば、粉粒体Mの内部温度を常に測定してその測定温度によりマイクロ波発生器のマイクロ波出力を制御することができる。従って、粉粒体Mが過熱することを回避して、所望の加熱処理を施した安定した品質の粉粒体を得ることができる。   According to the continuous microwave heating furnace of the present invention, the internal temperature of the granular material M can always be measured, and the microwave output of the microwave generator can be controlled by the measured temperature. Therefore, it is possible to avoid overheating of the granular material M, and to obtain a stable quality granular material subjected to a desired heat treatment.

本発明は、金属原料の粉粒体や軽量骨材などの加熱処理、例えば、溶融処理やゼオライト化処理などに好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for heat treatment of metal raw material granules and lightweight aggregates, for example, melting treatment and zeolitic treatment.

本実施の形態の連続式マイクロ波加熱炉の構成を示す縦断面概要図である。It is a longitudinal cross-sectional schematic diagram which shows the structure of the continuous microwave heating furnace of this Embodiment. 図1の横断面概要図である。It is a cross-sectional schematic diagram of FIG. 本実施の形態の連続式マイクロ波加熱炉の側面概要図である。It is a side surface schematic diagram of the continuous microwave heating furnace of this Embodiment. 移動機構の一例を示す概要図である。(a)は側面概略図、(b)はE視正面概要図である。It is a schematic diagram which shows an example of a moving mechanism. (A) is a schematic side view, and (b) is a schematic front view of E view. 他の実施の形態を示す部分断面概要図である。It is a partial cross-sectional schematic diagram which shows other embodiment. 移動機構の動作を示す軌跡である。It is a locus | trajectory which shows operation | movement of a moving mechanism.

符号の説明Explanation of symbols

12:炉体 14:搬送手段 16:マイクロ波加熱手段 18:マイクロ波発生器 20:導波管 22:温度測定手段 24:制御手段 26:炉殻 30:スリット部 32:棒体 34:カーボンラバー材チョーク構造 38:ローラ 40:移動機構 42:第1シリンダ 44:第2シリンダ 46:台車 48:支持部材 50:軌道 C:冷却帯 H:加熱帯 T:温度測定ゾーン 12: Furnace body 14: Conveying means 16: Microwave heating means 18: Microwave generator 20: Waveguide 22: Temperature measuring means 24: Control means 26: Furnace shell 30: Slit part 32: Rod body 34: Carbon rubber Material choke structure 38: Roller 40: Movement mechanism 42: First cylinder 44: Second cylinder 46: Cart 48: Support member 50: Track C: Cooling zone H: Heating zone T: Temperature measurement zone

Claims (7)

一端に被加熱物の入口を、他端に被加熱物の出口を有し、少なくとも加熱帯を備えた炉体と、
前記加熱帯で前記被加熱物を加熱するマイクロ波加熱手段と、
前記被加熱物の温度を測定する温度測定手段と、
前記温度測定手段で測定された温度に基づいて、前記マイクロ波加熱手段のマイクロ波出力を制御する制御手段と、
前記入口から出口へ前記炉体を貫通して前記被加熱物を搬送する搬送手段と、を備える連続式マイクロ波加熱炉であって、
前記被加熱物は粉体および/または粒体であり、
前記温度測定手段は、前記炉体の所定箇所に形成したスリット部と、該スリット部を介して前記被加熱物の内部温度を測定する熱電対を内蔵する棒体と、該棒体を移動する移動機構とを備えることを特徴とする連続式マイクロ波加熱炉。
A furnace body having an inlet of an object to be heated at one end and an outlet of the object to be heated at the other end, and at least a heating zone;
Microwave heating means for heating the object to be heated in the heating zone;
Temperature measuring means for measuring the temperature of the object to be heated;
Control means for controlling the microwave output of the microwave heating means based on the temperature measured by the temperature measuring means;
A continuous microwave heating furnace comprising: conveying means for conveying the object to be heated through the furnace body from the inlet to the outlet;
The heated object is a powder and / or a granule,
The temperature measuring means moves the rod body, a slit portion formed at a predetermined location of the furnace body, a rod body containing a thermocouple for measuring the internal temperature of the object to be heated via the slit portion, and the rod body A continuous microwave heating furnace comprising a moving mechanism.
前記移動機構は、前記棒体を支持して下降動作、水平進行動作、上昇動作、水平後退動作を順次繰り返す請求項1に記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to claim 1, wherein the moving mechanism supports the rod body and sequentially repeats a descending operation, a horizontal traveling operation, an ascending operation, and a horizontal receding operation. 前記水平進行動作は前記棒体を前記被加熱物の搬送速度に同調して進行させる動作である請求項2に記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to claim 2, wherein the horizontal traveling operation is an operation of advancing the rod body in synchronization with a conveyance speed of the object to be heated. 前記棒体は、鉛直方向に対して5〜75°傾斜している請求項1〜3のいずれかに記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to any one of claims 1 to 3, wherein the rod body is inclined by 5 to 75 ° with respect to a vertical direction. 前記棒体は、シース熱電対である請求項1〜4のいずれかに記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to claim 1, wherein the rod body is a sheath thermocouple. 前記スリット部は、マイクロ波の漏洩を防止するマイクロ波漏洩防止手段を備える請求項1〜5のいずれかに記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to any one of claims 1 to 5, wherein the slit portion includes microwave leakage prevention means for preventing leakage of microwaves. 前記マイクロ波漏洩防止手段は、カーボンラバー材チョーク構造である請求項6に記載の連続式マイクロ波加熱炉。   The continuous microwave heating furnace according to claim 6, wherein the microwave leakage prevention means has a carbon rubber material choke structure.
JP2005331777A 2005-11-16 2005-11-16 Continuous type microwave heating furnace Pending JP2007139272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331777A JP2007139272A (en) 2005-11-16 2005-11-16 Continuous type microwave heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331777A JP2007139272A (en) 2005-11-16 2005-11-16 Continuous type microwave heating furnace

Publications (1)

Publication Number Publication Date
JP2007139272A true JP2007139272A (en) 2007-06-07

Family

ID=38202359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331777A Pending JP2007139272A (en) 2005-11-16 2005-11-16 Continuous type microwave heating furnace

Country Status (1)

Country Link
JP (1) JP2007139272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
JP2013216943A (en) * 2012-04-09 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method of producing reduced iron
FR3031119A1 (en) * 2014-12-29 2016-07-01 Saint Gobain Isover METHOD FOR MEASURING INSIDE A MATTRESS OF MINERAL OR VEGETABLE FIBERS
JP2016151047A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Method of drying iron production auxiliary material
JP2017069113A (en) * 2015-10-01 2017-04-06 合默麟開發股▲ふん▼有限公司 Microwave heating system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266026A (en) * 1985-09-18 1987-03-25 Toppan Printing Co Ltd Temperature measuring method
JPS63153394A (en) * 1986-12-17 1988-06-25 日立金属株式会社 Temperature control method
JPS63266798A (en) * 1987-04-22 1988-11-02 New Japan Radio Co Ltd Wire drawing furnace
JPS63285121A (en) * 1987-05-18 1988-11-22 Power Reactor & Nuclear Fuel Dev Corp Device for roasting-reducing by microwave heating
JPH04229986A (en) * 1990-07-19 1992-08-19 Cem Corp Movable sealed vessel contents heating temperature control type microwave heater
JPH04251186A (en) * 1991-01-08 1992-09-07 Kobe Steel Ltd Microwave melting furnace for treating liquid
JPH09134779A (en) * 1995-09-22 1997-05-20 Eastman Kodak Co Device that heats fluid fluid
JP2000171307A (en) * 1998-12-08 2000-06-23 Takehiro Matsuse Direct measurement principle of substance temperature during microwave heating and device therefor
JP2005141990A (en) * 2003-11-05 2005-06-02 Tokyo Denshi Kk Microwave heating device
JP2005331158A (en) * 2004-05-19 2005-12-02 Takasago Ind Co Ltd Microwave heat treatment device
JP2006284156A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Firing furnace

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266026A (en) * 1985-09-18 1987-03-25 Toppan Printing Co Ltd Temperature measuring method
JPS63153394A (en) * 1986-12-17 1988-06-25 日立金属株式会社 Temperature control method
JPS63266798A (en) * 1987-04-22 1988-11-02 New Japan Radio Co Ltd Wire drawing furnace
JPS63285121A (en) * 1987-05-18 1988-11-22 Power Reactor & Nuclear Fuel Dev Corp Device for roasting-reducing by microwave heating
JPH04229986A (en) * 1990-07-19 1992-08-19 Cem Corp Movable sealed vessel contents heating temperature control type microwave heater
JPH04251186A (en) * 1991-01-08 1992-09-07 Kobe Steel Ltd Microwave melting furnace for treating liquid
JPH09134779A (en) * 1995-09-22 1997-05-20 Eastman Kodak Co Device that heats fluid fluid
JP2000171307A (en) * 1998-12-08 2000-06-23 Takehiro Matsuse Direct measurement principle of substance temperature during microwave heating and device therefor
JP2005141990A (en) * 2003-11-05 2005-06-02 Tokyo Denshi Kk Microwave heating device
JP2005331158A (en) * 2004-05-19 2005-12-02 Takasago Ind Co Ltd Microwave heat treatment device
JP2006284156A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Firing furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
JP2013216943A (en) * 2012-04-09 2013-10-24 Nippon Steel & Sumitomo Metal Corp Method of producing reduced iron
FR3031119A1 (en) * 2014-12-29 2016-07-01 Saint Gobain Isover METHOD FOR MEASURING INSIDE A MATTRESS OF MINERAL OR VEGETABLE FIBERS
WO2016108006A1 (en) * 2014-12-29 2016-07-07 Saint-Gobain Isover Method for measuring inside a batt of mineral or plant fibres
US10768163B2 (en) 2014-12-29 2020-09-08 Saint-Gobain Isover Method for measuring inside a blanket of mineral or plant fibres
JP2016151047A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Method of drying iron production auxiliary material
JP2017069113A (en) * 2015-10-01 2017-04-06 合默麟開發股▲ふん▼有限公司 Microwave heating system

Similar Documents

Publication Publication Date Title
US6530780B2 (en) Continuous sintering furnace and use thereof
JP2007139272A (en) Continuous type microwave heating furnace
US20100252550A1 (en) High temperature furnace using microwave energy
US10323315B2 (en) Carburizing device
KR102133832B1 (en) Aluminum extrusion system
JP6285232B2 (en) Heat treatment furnace
JP6645391B2 (en) Total organic carbon analyzer
KR101782825B1 (en) Gas supply tube and heat processing device
JP2005331158A (en) Microwave heat treatment device
JP5950042B2 (en) Gas supply pipe and heat treatment equipment
JP6624723B2 (en) Rotary kiln
JP2014240720A (en) Mesh belt furnace for sintering
JP2000161859A (en) External heating rotary kiln furnace and its operation control method
JP5483272B2 (en) Continuous heat treatment furnace
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
JP5685808B2 (en) Induction heating method and induction heating apparatus
JP6767784B2 (en) Continuous heat treatment furnace
KR200483126Y1 (en) Heating furnace
JP2007113873A (en) Microwave heating furnace
JP6273519B2 (en) Method for sintering powder compact
JP6951500B2 (en) Continuous heat treatment furnace
JP4110958B2 (en) Gas supply control method and gas supply control apparatus in heat treatment apparatus
KR20230097112A (en) Method and system for determining a range of temperature values of a molten metal bath
KR101208108B1 (en) Apparatus for manufacturing foam of pellet
JPS6347838Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A131 Notification of reasons for refusal

Effective date: 20110506

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025