JP2007137767A - Water-repellent and oil-repellent glass substrate - Google Patents

Water-repellent and oil-repellent glass substrate Download PDF

Info

Publication number
JP2007137767A
JP2007137767A JP2007054363A JP2007054363A JP2007137767A JP 2007137767 A JP2007137767 A JP 2007137767A JP 2007054363 A JP2007054363 A JP 2007054363A JP 2007054363 A JP2007054363 A JP 2007054363A JP 2007137767 A JP2007137767 A JP 2007137767A
Authority
JP
Japan
Prior art keywords
water
group
film
oil
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007054363A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3024024A external-priority patent/JPH04239633A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007054363A priority Critical patent/JP2007137767A/en
Publication of JP2007137767A publication Critical patent/JP2007137767A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-repellent and oil-repellent glass substrate formed with the fluorine-based coating film which has the good adhesiveness to the substrate and no pinhole and besides the excellent surface water-repellency and oil-repellency , thus to improve the performance of such apparatus as buildings, electric appliances, vehicles and industrial equipments, which require the coating of the excellent water-repellency and oil-repellency and of the excellent heat resistance, weatherability and wear resistance. <P>SOLUTION: The water-repellent and oil-repellent glass substrate, is composed of a water-repellent and oil-repellent layer (4) that is formed on the glass substrate (1) and has unevenness, of which the water-repellent and oil-repellent layer (4) comprises at least silica-containing underlayers (2, 3) and a film which contains at least fluorine on the underlayers (2, 3) and is formed with a plurality molecules and furthermore has the above unevenness because the above the plurality molecules have different molecular lengths. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、撥水撥油性ガラス基体に関するものである。さらに詳しくは、ガラス基体表面にアンダーコート層を設け、その上に撥水撥油性被膜を設ける発明に関する。   The present invention relates to a water / oil repellent glass substrate. More specifically, the present invention relates to an invention in which an undercoat layer is provided on the surface of a glass substrate and a water / oil repellent coating is provided thereon.

従来より、建物や電化製品、乗り物、産業機器、鏡、眼鏡レンズ等には、耐熱性、耐候性、耐摩耗性で且つ防汚機能を有する超薄膜コーティングが要求されている。   Conventionally, buildings, electrical appliances, vehicles, industrial equipment, mirrors, spectacle lenses, and the like have been required to have an ultra-thin coating having heat resistance, weather resistance, wear resistance, and antifouling function.

このような撥水撥油防汚を目的としたコーティング膜の製造方法として、現在、フロロカーボン系ポリマーを焼き付ける方法が知られている。   As a method for producing a coating film for the purpose of such water and oil repellent and antifouling, a method of baking a fluorocarbon polymer is currently known.

この方法では、基体の表面をサンドブラシ、ワイヤブラシや化学エッチング等で荒し、さらにプライマー等を塗布した後、さらにポリ4フッ化エチレン等のフロロカーボン系微粉末をエタノール等に懸濁させた塗料を塗布し、乾燥後400℃程度で1時間程度ベーキング(焼き付け処理)をおこない、基体表面にフロロカーボン系ポリマーを焼き付ける方法が一般的であった(特許文献1)。
特開平2−311332号公報3頁左上欄2行目
In this method, the surface of the substrate is roughened with a sand brush, a wire brush, chemical etching, or the like, and further applied with a primer, and then a paint in which a fluorocarbon fine powder such as polytetrafluoroethylene is suspended in ethanol or the like. A method of applying and drying, followed by baking (baking treatment) at about 400 ° C. for about 1 hour, and baking a fluorocarbon polymer on the surface of the substrate has been common (Patent Document 1).
Japanese Patent Laid-Open No. 2-311332, page 3, upper left column, second line

しかしながら、この方法では製造が容易である反面、ポリマーと基体は単にアンカー効果でのみ接着されているに過ぎないため、基体との密着性に限界があり、耐久性に劣っていた。また、コーティング膜表面は400℃の高温ベーキングをおこなうため表面が平坦化されて良好な撥水撥油面が得られなかった。従って、電化製品や自動車、産業機器等の撥水撥油性のコーティング膜を必要とする機器の製造方法としては不十分であった。   However, this method is easy to manufacture, but the polymer and the substrate are merely bonded only by the anchor effect, so that the adhesion with the substrate is limited and the durability is poor. Further, since the coating film surface was subjected to high temperature baking at 400 ° C., the surface was flattened and a good water / oil repellent surface could not be obtained. Therefore, it has been inadequate as a method for manufacturing a device that requires a water- and oil-repellent coating film such as an electric appliance, an automobile, and an industrial device.

以上述べてきた従来法の欠点に鑑み、本発明の目的は、基体と密着性よく且つピンホール無く、しかも表面の撥水撥油性が優れたフッ素系コーティング膜を形成した撥水撥油性ガラス基体を提供し、建物や電化製品、乗り物、産業機器等の撥水撥油性に優れた耐熱性、耐候性、耐摩耗性コーティングを必要とする機器の性能を向上させることにある。   In view of the drawbacks of the conventional methods described above, the object of the present invention is to provide a water- and oil-repellent glass substrate having a fluorine-based coating film with good adhesion to the substrate, no pinholes, and excellent surface water and oil repellency. It is to improve the performance of buildings, electrical appliances, vehicles, industrial equipment and the like that require excellent water and oil repellency, heat resistance, weather resistance, and wear resistance coating.

前記目的を達成するため、本発明の撥水撥油性ガラス基体は、ガラス基体上に形成された凸凹を有する撥水撥油性被膜であって、前記撥水撥油性被膜は少なくともシリカを含む下地層と、前記下地層上に少なくともフッ素を含み複数の分子より形成され、前記複数の分子が異なる分子長を持つことにより凸凹を有する膜よりなることを特徴とする。   In order to achieve the above object, the water / oil repellent glass substrate of the present invention is a water / oil repellent coating film having irregularities formed on a glass substrate, wherein the water / oil repellent coating film comprises at least silica. Further, the film is formed of a plurality of molecules including at least fluorine on the underlayer, and the plurality of molecules have different molecular lengths, thereby forming a film having irregularities.

本発明の方法を用いれば、ガラス基体に撥水撥油性膜の優れたフロロカーボン系単分子膜を基体と化学結合した状態で高密度にピンホール無く形成できる。従って、耐久性が極めて高く撥水撥油性の優れた高性能フロロカーボン系被膜を提供できる効果がある。   By using the method of the present invention, a fluorocarbon monomolecular film having an excellent water- and oil-repellent film can be formed on a glass substrate at a high density without pinholes in a state of being chemically bonded to the substrate. Therefore, there is an effect that it is possible to provide a high-performance fluorocarbon-based film having extremely high durability and excellent water and oil repellency.

本発明においては、撥水撥油性膜の原料として、ペルフルオロアルキル アルキル シランである、一般式CF3−(CF2)n−R−SiXpCl3-p(nは0または整数、Rはアルキル基、エ チレン基、アセチレン基、またはSi、酸素原子を含む置換基、XはHまたはアルキレン基、シクロアルキル基、アリル基またはこれらの誘導体から選ばれる置換基、pは0,1または2)、またはCF3−(CF2n−R−SiYq(OA)3-q(nは0または整数、Rはアルキレン基、エチレン基、アセチレン基、またはSi、酸素原子を含む置換基、XはHまたはアルキル基、シクロアルキル基、アリル基またはこれらの誘導体から選ばれる置換基、OAはアルコキシ基(ただし、AはHまたはアルキル基)、qは0,1または2)で示される化合物を用いると、防汚性を向上する上で好ましい。 In the present invention, the raw material of the water / oil repellent film is a perfluoroalkyl alkyl silane, the general formula CF 3- (CF 2 ) n —R—SiX p Cl 3-p (n is 0 or integer, R is alkyl) Group, an ethylene group, an acetylene group, or a substituent containing Si or an oxygen atom, X is a substituent selected from H or an alkylene group, a cycloalkyl group, an allyl group or a derivative thereof, and p is 0, 1 or 2) Or CF 3 — (CF 2 ) n —R—SiY q (OA) 3-q (n is 0 or an integer, R is an alkylene group, ethylene group, acetylene group, or Si, a substituent containing an oxygen atom, X Is a substituent selected from H or an alkyl group, a cycloalkyl group, an allyl group or derivatives thereof, OA is an alkoxy group (where A is H or an alkyl group), q is 0, 1 or 2) With compound preferable for improving the stain resistance.

また前記ガラス基体においては、ペルフルオロアルキル アルキル シランで処理されている撥水撥油性被膜が、ポリマー状または単分子膜状であることが好ましい。   In the glass substrate, the water / oil repellent coating treated with perfluoroalkyl alkyl silane is preferably in the form of a polymer or a monomolecular film.

ここで、ペルフルオロアルキル アルキル シランが、下記の化合物から選ばれる少なくとも一つであることが好ましい。
(1) CF3(CF25(CH22SiCl3
(2) CF3(CF27(CH22SiCl3
(3) CF3CH2O(CH215SiCl3
(4) CF3(CH22Si(CH32(CH215SiCl3
(5) F(CF24(CH22Si(CH32(CH29SiCl3
(6) CF3COO(CH215SiCl3
(7) CF3(CF25(CH22SiCl3
(8) F(CF28(CH22Si(CH32(CH29SiCl3
(9) F(CF28(CH22Si(CH32(CH26SiCl3
(10) CF3CH2O(CH215Si(OCH33
(11) CF3(CF27(CH22Si(OC253
(12) CF3(CH22Si(CH32(CH215Si(OCH33
(13) F(CF28(CH22Si(CH32(CH29Si(OCH33
(14) CF3COO(CH215Si(OC253
さらに、シリカ下地層により基体の表面が粗面化されていると好都合である。
Here, the perfluoroalkyl alkyl silane is preferably at least one selected from the following compounds.
(1) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(2) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(3) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(4) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(5) F (CF 2 ) 4 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(6) CF 3 COO (CH 2 ) 15 SiCl 3
(7) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(8) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(9) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 6 SiCl 3
(10) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(11) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(12) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(13) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(14) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
Furthermore, it is advantageous if the surface of the substrate is roughened by a silica underlayer.

さらにまた、シリカ下地層の表面の粗面化の程度が、サブミクロン乃至ミクロンオーダの凸凹であると撥水撥油機能を向上させる上で好ましい。   Furthermore, it is preferable that the degree of roughening of the surface of the silica underlayer is unevenness in the order of submicron to micron in order to improve the water / oil repellency function.

また、シリカ下地層とペルフルオロアルキル アルキル シランとが、脱塩化水素反応又は脱アルコール反応により処理されていると耐久性を向上する上で好ましい。   Moreover, when the silica underlayer and the perfluoroalkyl alkyl silane are treated by a dehydrochlorination reaction or a dealcoholization reaction, it is preferable to improve durability.

また、シリカ下地層が、ガラス基材表面にシリケートグラスを塗布し、さらに加熱処理またはプラズマアッシング処理することにより形成されていると耐久性を向上する上で好ましい。   Further, it is preferable that the silica underlayer is formed by applying silicate glass on the surface of the glass substrate and further performing heat treatment or plasma ashing treatment to improve durability.

さらに、シリカ下地層が、ガラス基材表面にSiCl4、SiHCl3、SiH2Cl2、Cl−(SiCl2O)n−SiCl3(nは整数)から選ばれる少なくとも一つの化合物を接触させ、脱塩化水素反応および加水分解反応させることにより形成されていると透明性が優れた撥水撥油膜を得る上で好ましい。 Furthermore, the silica underlayer contacts at least one compound selected from SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Cl— (SiCl 2 O) n —SiCl 3 (n is an integer) on the glass substrate surface, It is preferable to obtain a water / oil repellent film having excellent transparency when it is formed by dehydrochlorination reaction and hydrolysis reaction.

一方、前記方法においては、ガラス基体の表面に形成したシリカ下地層と、ペルフルオロアルキル アルキルシランとを接触後、脱塩化水素反応又は脱アルコール反応させる工程を含めることが耐久性向上のため好ましい。   On the other hand, in the method, it is preferable for improving durability to include a step of dehydrochlorination reaction or dealcoholization reaction after contacting the silica underlayer formed on the surface of the glass substrate with the perfluoroalkylalkylsilane.

また、ペルフルオロアルキル アルキル シランとして、一般式CF3−(CF2)n−R−SiXpCl3-p(nは0または整数、Rはアルキレン基、エチレン基 、アセチレン基、またはSi、酸素原子を含む置換基、XはHまたはアルキル基、シクロアルキル基、アリル基またはこれらの誘導体から選ばれる置換基、pは0,1または2)、またはCF3−(CF2)n−R−SiYq(OA)3-q(nは0または整数、Rはアルキレン基、エチレン基、アセチレン基、またはSi、酸素原子を含む置換基、OAはアルコキシ基(ただし、AはHまたはアルキル基)、qは0,1または2)で示される化合物を用いる方が短時間で処理できるので好ましい。 Further, as the perfluoroalkyl alkyl silanes of the general formula CF 3 - (CF 2) n -R-SiX p Cl 3 - p (n is 0 or an integer, R represents an alkylene group, an ethylene group, an acetylene group or Si, an oxygen atom, , X is H or a substituent selected from an alkyl group, a cycloalkyl group, an allyl group, or derivatives thereof, p is 0, 1 or 2), or CF 3 — (CF 2 ) n —R—SiY q (OA) 3 - q (n is 0 or an integer, R is an alkylene group, ethylene group, acetylene group, or Si, a substituent containing an oxygen atom, OA is an alkoxy group (where A is H or an alkyl group), q is preferably a compound represented by 0, 1 or 2) because it can be processed in a short time.

ここで、ペルフルオロアルキル アルキル シランが、下記の化合物から選ばれる少なくとも一つであることが好ましい。
(1) CF3(CF25(CH22SiCl3
(2) CF3(CF27(CH22SiCl3
(3) CF3CH2O(CH215SiCl3
(4) CF3(CH22Si(CH32(CH215SiCl3
(5) F(CF24(CH22Si(CH32(CH29SiCl3
(6) CF3COO(CH215SiCl3
(7) CF3(CF25(CH22SiCl3
(8) F(CF28(CH22Si(CH32(CH29SiCl3
(9) F(CF28(CH22Si(CH32(CH26SiCl3
(10) CF3CH2O(CH215Si(OCH33
(11) CF3(CF27(CH22Si(OC253
(12) CF3(CH22Si(CH32(CH215Si(OCH33
(13) F(CF28(CH22Si(CH32(CH29Si(OCH33
(14) CF3COO(CH215Si(OC253
さらに、シリカ下地層形成時にシリケートグラスに微粒子を混合しておき、基体の非濡れ性表面を粗面化する防汚性を向上する上で好都合である。
Here, the perfluoroalkyl alkyl silane is preferably at least one selected from the following compounds.
(1) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(2) CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3
(3) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(4) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(5) F (CF 2 ) 4 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(6) CF 3 COO (CH 2 ) 15 SiCl 3
(7) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(8) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(9) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 6 SiCl 3
(10) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(11) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(12) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(13) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(14) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
Furthermore, it is advantageous to improve the antifouling property of roughening the non-wetting surface of the substrate by mixing fine particles with the silicate glass when forming the silica underlayer.

さらに、ガラス基材表面にシリケートグラスを塗布し、さらに加熱処理またはプラズマアッシング処理することによりシリカ下地層を形成すると下地層形成が簡単になる。   Furthermore, when the silica base layer is formed by applying silicate glass on the surface of the glass substrate and further performing heat treatment or plasma ashing, the base layer can be easily formed.

また、ガラス基材表面にSiCl4、SiHCl3、SiH2Cl2、Cl−(SiCl2O)n−SiCl3(nは整数)から選ばれる少なくとも一つの化合物 を接触させ、脱塩化水素反応および加水分解反応させることにより形成すると透明度に優れたシリカ下地層を形成する上で好都合である。 Further, at least one compound selected from SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and Cl— (SiCl 2 O) n —SiCl 3 (n is an integer) is brought into contact with the glass substrate surface, and dehydrochlorination reaction and Forming by hydrolysis reaction is convenient for forming a silica underlayer excellent in transparency.

次に本発明の第1番目の実施形態は、基体表面にシリカ下地層を形成する工程と、フロロカーボン基及びクロロシラン基を含む物質を混合した非水系の溶媒を塗布する工程、またはフロロカーボン基及びアルコキシシラン基を含む物質を混合した溶媒を塗布する工程と加熱処理を行う工程を含む。   Next, the first embodiment of the present invention includes a step of forming a silica underlayer on the substrate surface, a step of applying a non-aqueous solvent in which a substance containing a fluorocarbon group and a chlorosilane group is mixed, or a fluorocarbon group and an alkoxy group. It includes a step of applying a solvent mixed with a substance containing a silane group and a step of performing a heat treatment.

次に本発明の第2番目の実施形態は、基体の表面に凸凹を作成する工程と、クロロシリル基を複数個含む物質を混ぜた非水系溶媒に接触させて前記基体表面の水酸基と前記クロロシリル基を複数個含む物質のクロロシリル基とを反応させて前記物質を前記基体表面に析出させる工程と、非水系有機溶媒を用い前記基体上に残った余分なクロロシリル基を物質を洗浄除去した後、水と反応させて、前記基体上にシラノール基を複数個含む物質より成るシリカ単分子膜(この膜をシリカ下地層ともいう)を形成する工程と、一端にクロルシラン基(SiCln3-n基、n=1、2、3、Xは官能基)を有し他の一端に直鎖状フッ化炭素基を含むクロロシラン系界面活性剤を基体表面に化学吸着し単分子吸着膜を累積する工程とを含む。 Next, in the second embodiment of the present invention, a step of creating irregularities on the surface of the substrate, and a contact with a non-aqueous solvent mixed with a substance containing a plurality of chlorosilyl groups, the hydroxyl groups on the substrate surface and the chlorosilyl groups are contacted. Reacting with the chlorosilyl group of a substance containing a plurality of substances, and precipitating the substance on the surface of the substrate, washing away and removing excess chlorosilyl groups remaining on the substrate using a non-aqueous organic solvent, And a step of forming a silica monomolecular film made of a substance containing a plurality of silanol groups on the substrate (this film is also referred to as a silica underlayer), and a chlorosilane group (SiCl n X 3-n group) at one end. , N = 1, 2, 3, and X are functional groups), and a chlorosilane-based surfactant containing a linear fluorocarbon group at the other end is chemically adsorbed on the substrate surface to accumulate a monomolecular adsorption film. Including.

前記本発明の第1または2番目の実施形態においては、基体表面に凸凹なシリカリカ下地層を形成する工程において、微粒子及びシリケートグラスを混合し基体表面に塗布した後、基体諸とも加熱ベーキングを行なう方法、電解エッチング法、化学エッチング法、サンドブラスト法、スパッタリング法、またはラビング法から選ばれる少なくとも一種の方法を用いる。   In the first or second embodiment of the present invention, in the step of forming the irregular silica silica base layer on the substrate surface, the fine particles and the silicate glass are mixed and applied to the substrate surface, and then the substrates are heated and baked. At least one method selected from a method, an electrolytic etching method, a chemical etching method, a sand blast method, a sputtering method, or a rubbing method is used.

また前記本発明の第1または2番目の実施形態においては、基体表面にシリカ下地層(以下、シリカ単分子膜も含めてシリカ下地層という)を形成する工程と、一端にクロルシラン基(SiCln3-n基、n=1、2、3、Xは官能基)を有するフロロカーボン系直鎖分子からなるフロロシラン系界面活性剤を用いて基体上に化学吸着膜を形成する工程とを含む。 In the first or second embodiment of the present invention, a step of forming a silica underlayer (hereinafter also referred to as a silica underlayer including a silica monomolecular film) on the surface of a substrate, and a chlorosilane group (SiCl n at one end) And a step of forming a chemisorbed film on a substrate using a fluorosilane-based surfactant composed of a fluorocarbon-based linear molecule having X 3-n group, n = 1, 2, 3, and X is a functional group.

また前記本発明の第1または2番目の実施形態においては、フロロカーボン基及びクロロシラン基を含む物質として、CF3-(CF2n-R-SiXpCl3-p(ペルフルオロアルキル アルキル シラン系のペルフルオロアルキル アルキル クロロシラン;nは0または整数、Rはアルキレン基、エチレン基、アセチレン基、またはSi、酸素原子を含む置換基、XはHまたはアルキル基、シクロアルキル基、アリル基またはこれらの誘導体から選ばれる置換基、pは0,1または2)を用いる。 In the first or second embodiment of the present invention, as the substance containing a fluorocarbon group and a chlorosilane group, CF 3 — (CF 2 ) n —R—SiX p Cl 3-p (perfluoroalkyl alkyl silane type) is used. Perfluoroalkyl alkyl chlorosilane; n is 0 or an integer, R is an alkylene group, ethylene group, acetylene group, or Si, a substituent containing an oxygen atom, X is H or an alkyl group, a cycloalkyl group, an allyl group, or a derivative thereof The substituent selected, p is 0, 1 or 2).

また前記本発明の第1または2番目の実施形態においては、フロロカーボン基及びアルコキシシラン基を含む物質として、CF3-(CF2n-R-SiYq(OA)3-p(ペルフルオロアルキル アルキルシラン系のペルフルオロアルキル アルキル アルコキシシラン;nは0または整数、Rはアルキレン基、エチレン基、アセチレン基、またはSi、酸素原子を含む置換基、XはHまたはアルキル基、シクロアルキル基、アリル基またはこれらの誘導体から選ばれる置換基、OAはアルコキシ基(ただし、AはHまたはアルキル基)、qは0,1または2)を用いる。 In the first or second embodiment of the present invention, CF 3- (CF 2 ) n -R-SiY q (OA) 3-p (perfluoroalkyl alkyl) is used as the substance containing a fluorocarbon group and an alkoxysilane group. Silane-based perfluoroalkyl alkyl alkoxysilane; n is 0 or integer, R is an alkylene group, ethylene group, acetylene group, or Si, a substituent containing an oxygen atom, X is H or an alkyl group, a cycloalkyl group, an allyl group or Substituents selected from these derivatives, OA is an alkoxy group (where A is H or an alkyl group), and q is 0, 1 or 2).

前記本発明の実施形態によれば、シリカ下地層が形成された基体の表面に、少なくともシロキサン結合を介してフッ素を含む化学吸着単分子膜が形成されているので、基体と密着性よく且つピンホール無く、しかも撥水撥油性(非濡れ性)、耐熱性、耐候性、耐摩耗性等が優れたフッ素系コーティング膜とすることができる。   According to the embodiment of the present invention, the chemisorption monomolecular film containing fluorine is formed on the surface of the substrate on which the silica underlayer is formed at least via a siloxane bond. There can be obtained a fluorine-based coating film having no holes and having excellent water and oil repellency (non-wetting properties), heat resistance, weather resistance, wear resistance, and the like.

また、本発明においては、予めフロロカーボン系コーティング膜形成用基体表面に、ガラス微粒子及びシリケートグラスを混合塗布後ベーキングして表面がサブミクロン乃至ミクロンオーダで凸凹のガラス状シリカ下地層を作成したり、基体そのものをエッチングやサンドブラスト処理して粗面加工する工程を含めることにより、後工程で作成されたフロロカーボン系コーティング膜の表面に微細な凸凹を形成できる作用がある。従って、表面に任意の凸凹のあるきわめて撥水撥油性の優れたフロロカーボン系コーティング膜(以下、フロロカーボン系ポリマー膜ともいう。)を形成できる。   In the present invention, a glassy silica underlayer having a surface of submicron to micron order and having an uneven surface is prepared by mixing and coating glass fine particles and silicate glass on the surface of the substrate for forming a fluorocarbon coating film in advance. By including a step of roughing the substrate itself by etching or sandblasting, there is an effect that fine irregularities can be formed on the surface of the fluorocarbon-based coating film created in the subsequent step. Therefore, it is possible to form a fluorocarbon-based coating film (hereinafter also referred to as a fluorocarbon-based polymer film) having an arbitrary unevenness on the surface and excellent in water and oil repellency.

なお、このときフロロカーボン基を有するポリマーは−O−を介して基体と化学結合されているため、極めて密着性が優れている。   At this time, since the polymer having a fluorocarbon group is chemically bonded to the substrate via -O-, the adhesion is extremely excellent.

また微粒子を塗布する方法においては、表面の凸凹の荒さは、シリケートグラスに添加する微粒子の直径と添加量で制御できる。   In the method of applying fine particles, the roughness of the surface roughness can be controlled by the diameter and amount of fine particles added to the silicate glass.

さらにまた、表面に凸凹を作成する工程の後、クロロシリル基を複数個含む物質を混ぜた非水系溶媒に接触させて前記基体表面の水酸基と前記クロロシリル基を複数個含む物質のクロロシリル基とを反応させて前記物質を前記基体表面に析出させる工程と、非水系有機溶媒を用い前記基体上に残った余分なクロロシリル基を複数個含む物質を洗浄除去した後水と反応させる工程を挿入し、前記基体上にシラノール基を複数個含む純粋なシリカ単分子膜を形成する工程と、一端にクロルシラン基(SiCln3-n基、n=1、2、3、Xは官能基)を有し他の一端に直鎖状フッ化炭素基を含むクロロシラン系界面活性剤を基体表面に化学吸着し単分子吸着膜を累積する工程を行なえば、より分子吸着密度の大きなフッ化炭素系(フロロカーボン系)化学吸着単分子膜を作製できる作用がある。 Furthermore, after the step of creating irregularities on the surface, the substrate surface is contacted with a non-aqueous solvent mixed with a substance containing a plurality of chlorosilyl groups to react the hydroxyl group on the substrate surface with the chlorosilyl group of the substance containing a plurality of chlorosilyl groups. Inserting the step of precipitating the substance on the surface of the substrate and the step of reacting with water after washing and removing the substance containing a plurality of excess chlorosilyl groups remaining on the substrate using a non-aqueous organic solvent, A process for forming a pure silica monomolecular film containing a plurality of silanol groups on a substrate and a chlorosilane group (SiCl n X 3-n group, n = 1, 2, 3, X is a functional group) at one end If the process of accumulating a monomolecular adsorption film by chemisorbing a chlorosilane-based surfactant containing a linear fluorocarbon group at the other end to the substrate surface is performed, a fluorocarbon system (fluorocarbon with a higher molecular adsorption density) System) Has the effect of producing a chemisorbed monolayer.

また、フロロカーボン基及びクロロシラン基を含む物質としては、CF3−(CF2n-R-SiXpCl3-p、さらにフロロカーボン基及びアルコキシシラン基を含む物質としては、CF3-(CF2n-R−SiYq(OA)3-pを用いることが可能である(ここで、n、R、p、qは、前記と同じである。)。 Further, as a substance containing a fluorocarbon group and a chlorosilane group, CF 3 — (CF 2 ) n —R—SiX p Cl 3−p is used, and as a substance containing a fluorocarbon group and an alkoxysilane group, CF 3 — (CF 2 ) n -R-SiY q (OA ) can be used 3-p (where, n, R, p, q are the same as defined above.).

さらに、形成されたフロロカーボン系ポリマー膜の硬度を調節するためには、フロロカーボン基及びクロロシラン基を含む物質を混ぜた非水系の溶媒の場合は、前記物質の架橋剤としてSiXsCl4-s(XはHまたはアルキル基などの置換基、sは0または1または2)を添加して用い、フロロカーボン基及びアルコキシシラン基を含む物質を混ぜた溶媒の場合は、架橋剤としてSiYt(OA)4-t(Yはアルキル基などの置換基、OAはアルコキシ基、(ただし、AはHまたはアルキル基)tは0または1または2)を用いることで、作成されたフロロカーボン系ポリマー膜内の3次元架橋密度が調整でき、表面に形成された非濡れ性フロロカーボン系ポリマー膜の硬度を制御できる作用がある。 Furthermore, in order to adjust the hardness of the formed fluorocarbon polymer film, in the case of a non-aqueous solvent mixed with a substance containing a fluorocarbon group and a chlorosilane group, SiX s Cl 4-s ( X is a substituent such as H or an alkyl group, s is 0, 1 or 2) added, and in the case of a solvent mixed with a substance containing a fluorocarbon group and an alkoxysilane group, SiY t (OA) is used as a crosslinking agent. 4-t (Y is a substituent such as an alkyl group, OA is an alkoxy group, where A is H or an alkyl group, and t is 0, 1 or 2). The three-dimensional crosslinking density can be adjusted, and the hardness of the non-wetting fluorocarbon polymer film formed on the surface can be controlled.

本発明が適用できる基体としては、ガラス、セラミック、金属、プラスチック等様々なものがあるが、ガラス基体に適用するのが最も好ましい。以下一例を挙げて説明する。なお、以下の実施例においては、単に%としているのは、重量%を意味する。   There are various substrates to which the present invention can be applied, such as glass, ceramic, metal, plastic, etc., and it is most preferable to apply to a glass substrate. An example will be described below. In the following examples, “%” simply means “% by weight”.

(実施例1)
たとえば、図1に示すように、親水性基体1(ガラス)の表面に直径が1乃至20ミクロン(好ましくは10ミクロン程度)のシリカ微粒子2(例えば、旭硝子社製のミクロシェヤアーゲルDF10−60Aまたは120A等)及びシリケートグラス(例えば、信越化学工業社製のハードコーティング剤KP−1100Aまたは1100Bや東京応化工業社製のSi−80000等がある。これらのコーティング剤は、コーティング後加熱処理することでシリカ被膜になる。)を1:1程度の組成で混合しキャスト法で塗布した後、温度:500℃、30分加熱処理したりプラズマアッシング(300W、20分程度)を行うと、表面にミクロンオーダの凸凹のあるガラス状のシリカ下地層(以下シリカ下地層ともいう)3が形成できた(図2)。次に、フロロカーボン基及びクロロシラン基を含む物質を混合した非水系の溶媒(例えば、CF3-(CF2n-R-SiXpCl3-p(n、R、X、pは前記したとおり)を数パーセントの濃度でノルマルヘキサデカン90%、クロロホルム10%の溶媒に溶解したもの)を塗布し、水分を含む雰囲気中で、温度:200℃、30分程度ベーキングを行うと、ガラス状のシリカ下地層3の表面は−OH基が露出しているため、フッ素を含むクロロシラン系界面活性剤のクロロシリル基と−OH基が脱塩酸反応して表面に、…Si(O−)3の結合が生成され、表面にミクロンオーダの凸凹のあるガラス状のシリカ下地層表面にフッ素を含むシロキサンフロロカーボン系ポリマー膜4が化学結合した状態で凸凹に形成された(図2)。
Example 1
For example, as shown in FIG. 1, silica particles 2 having a diameter of 1 to 20 microns (preferably about 10 microns) on the surface of a hydrophilic substrate 1 (glass) (for example, micro-shaar gel DF10- manufactured by Asahi Glass Co., Ltd.). 60A or 120A) and silicate glass (for example, hard coating agent KP-1100A or 1100B manufactured by Shin-Etsu Chemical Co., Ltd., Si-80000 manufactured by Tokyo Ohka Kogyo Co., Ltd., etc.) These coating agents are heat-treated after coating. After mixing with a composition of about 1: 1 and applying by a casting method, the surface is subjected to heat treatment at a temperature of 500 ° C. for 30 minutes or plasma ashing (300 W, about 20 minutes). A glassy silica underlayer 3 (hereinafter also referred to as a silica underlayer) 3 having micron-order irregularities was formed (see FIG. ). Next, a non-aqueous solvent mixed with a substance containing a fluorocarbon group and a chlorosilane group (for example, CF 3- (CF 2 ) n -R-SiX p Cl 3-p (n, R, X, p are as described above) ) Is dissolved in a solvent of 90% normal hexadecane and 10% chloroform in a concentration of several percent), and is baked in an atmosphere containing moisture at a temperature of 200 ° C. for about 30 minutes. Since the -OH group is exposed on the surface of the underlayer 3, the chlorosilyl group and -OH group of the chlorosilane-based surfactant containing fluorine undergo a dehydrochlorination reaction, and the bond of Si (O-) 3 is formed on the surface. The resulting siloxane fluorocarbon polymer film 4 containing fluorine was formed uneven on the surface of a glassy silica underlayer having a micron order unevenness on the surface (FIG. 2).

例えば、ガラス基体表面に、微粒子として直径が約10ミクロンのDF10−60A、シリケートグラスとしてKP−1100Aを用いディップコートし350℃で熱処理(ベーキング)すると、表面に10ミクロン(μm)程度の凸凹のあるガラス状のシリカ下地層が得られた。さらにその後、CF3CH2O(CH215SiCl3を用い、1重量%程度の濃度で溶かした80%n−ヘキサデカン、12%四塩化炭素、8%クロロホルム溶液を調整し、前記表面にSiOH結合を数多く持つポリシロキサン塗膜の形成された基体表面に塗布し、水分を含む雰囲気中で、温度:200℃、30分程度ベーキングを行なうと、CF3CH2O(CH215Si(O−)3の結合が生成され、10ミクロン程度の凸凹を持つ1〜5ミクロン厚さのシロキサンフロロカーボン系ポリマー膜(フロロカーボン系コーティング膜ともいう)4が製造できた(図2)。なお、この塗膜は碁番目試験を行なっても殆ど剥離することがなかった。 For example, when the surface of a glass substrate is dip coated with DF10-60A having a diameter of about 10 microns as fine particles and KP-1100A as a silicate glass and heat-treated (baked) at 350 ° C., the surface has irregularities of about 10 microns (μm). A glassy silica underlayer was obtained. Then, using CF 3 CH 2 O (CH 2 ) 15 SiCl 3 , 80% n-hexadecane, 12% carbon tetrachloride, 8% chloroform solution dissolved at a concentration of about 1% by weight was prepared. When applied to the surface of a substrate on which a polysiloxane coating film having many SiOH bonds is formed and baked for about 30 minutes at a temperature of 200 ° C. in an atmosphere containing moisture, CF 3 CH 2 O (CH 2 ) 15 Si A bond of (O-) 3 was generated, and a siloxane fluorocarbon polymer film (also referred to as a fluorocarbon coating film) 4 having a thickness of 1 to 5 microns having irregularities of about 10 microns could be produced (FIG. 2). In addition, even if this coating film performed the 1st test, it hardly peeled.

このときまた、フロロカーボン基及びクロロシラン基を含む物質を混合した非水系の溶媒中に前記物質の架橋剤としてSiXsCl4-s(XはHまたはアルキル基などの置換基、sは0または1または2)を添加(例えば、SiCl4を3重量パーセント)しておけば、CF3CH2O(CH215Si(O−)3の結合が−Si(O−)3の結合を介して3次元的に架橋されて、SiCl4を添加してない場合に比べ約2倍の硬度のフロロカーボン系コーティング膜が製造できた。 At this time, SiX s Cl 4 - s (X is a substituent such as H or an alkyl group, s is 0 or 1 as a crosslinking agent of the substance in a non-aqueous solvent in which a substance containing a fluorocarbon group and a chlorosilane group is mixed. Or 2) is added (for example, 3 weight percent of SiCl 4 ), the bond of CF 3 CH 2 O (CH 2 ) 15 Si (O—) 3 passes through the bond of —Si (O—) 3. Thus, a fluorocarbon-based coating film that was three-dimensionally crosslinked and about twice as hard as the case where no SiCl 4 was added could be produced.

ちなみに、このようにして作成された表面に10ミクロン(μm)程度の凹凸があるフロロカーボン系コーティング膜の水滴5に対する濡れ角度は約130〜140度であった(図3)。   Incidentally, the wetting angle of the fluorocarbon-based coating film having irregularities of about 10 microns (μm) on the surface thus prepared was about 130 to 140 degrees (FIG. 3).

(実施例2)
実施例1と同様に、図1に示したように基体上に表面が凸凹なガラス状のシリカ下地層を形成した後、フロロカーボン基及びアルコキシシラン基を含む物質を混合したアルコール溶媒(例えば、CF3-(CF2n-R−SiYq(OA)3-q(nは0または整数、Rはアルキレン基、エチレン基、アセチレン基、Siまたは酸素原子を含む置換基、YはHまたはアルキル基などの置換基、OAはアルコキシ基(ただし、AはHまたはアルキル基)、qは0または1または2)を数パーセントの濃度でメタノールに溶解したもの)を塗布し、温度:200℃、30分程度ベーキングを行うとガラス状のシリカ下地層3は表面に−OH基が露出しているため、フッ素を含むアルコキシシラン系界面活性剤のアルコキシ基と−OH基が脱アルコール反応して表面に−Si(O−)3の結合が生成され、凸凹なガラス状のシリカ下地層表面にフッ素を含むシロキサンフロロカーボン系ポリマー膜が実施例1と同様に形成された。
(Example 2)
In the same manner as in Example 1, after forming a glassy silica underlayer having an uneven surface on a substrate as shown in FIG. 1, an alcohol solvent (for example, CF) mixed with a substance containing a fluorocarbon group and an alkoxysilane group is used. 3 - (CF 2) n -R -SiY q (OA) 3-q (n is 0 or an integer, R represents an alkylene group, an ethylene group, an acetylene group, a substituted group containing a Si or oxygen atom, Y is H or alkyl A substituent such as a group, OA is an alkoxy group (where A is H or an alkyl group, q is 0, 1 or 2) dissolved in methanol at a concentration of several percent), temperature: 200 ° C., When baking is performed for about 30 minutes, the glassy silica underlayer 3 has —OH groups exposed on the surface, so that the alkoxy groups and —OH groups of the alkoxysilane surfactant containing fluorine are dealcoholized. By reacting, a bond of —Si (O—) 3 was generated on the surface, and a siloxane fluorocarbon-based polymer film containing fluorine was formed on the surface of the uneven glassy silica underlayer in the same manner as in Example 1.

例えば、CF3CH2O(CH215Si(OCH33を用い、1%程度の濃度で溶かしたエタノール溶液を調整し、前記表面にSiOH結合を数多く持つポリシロキサン塗膜(この膜も、シリカ下地膜である)の形成された基体表面に塗布し、200℃、30分程度ベーキングを行なうと、CF3CH2O(CH215Si(O−)3の結合が生成され、10ミクロン程度の凸凹のある1〜5ミクロン厚さのフロロカーボン系ポリマー膜4が製造できた(図2)。なお、この塗膜は碁番目試験を行なっても殆ど剥離することがなかった。 For example, CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3 is used to prepare an ethanol solution dissolved at a concentration of about 1%, and a polysiloxane coating film having many SiOH bonds on the surface (this film) Is applied to the surface of the substrate on which the silica base film is formed, and baking is carried out at 200 ° C. for about 30 minutes, CF 3 CH 2 O (CH 2 ) 15 Si (O—) 3 bonds are formed. A fluorocarbon polymer film 4 having a thickness of 1 to 5 microns with irregularities of about 10 microns could be produced (FIG. 2). In addition, even if this coating film performed the 1st test, it hardly peeled.

また、このときフロロカーボン基及びアルコキシシラン基を含む物質を混合した溶媒中に前記物質の架橋剤としてSiYt(OA)4-t(Yはアルキル基などの置換基、OAはアルコキシ基、(ただし、AはHまたはアルキル基)tは0または1または2)を添加(例えば、Si(OCH34を5重量パーセント)しておけば、CF3CH2O(CH215Si(O−)3の結合が、−Si(O−)3の結合を介して3次元的に架橋されて、Si(OCH34を添加してない場合に比べ約2〜2.5倍の硬度のフロロカーボン系ポリマー膜が製造できた。 At this time, SiY t (OA) 4 -t (Y is a substituent such as an alkyl group, OA is an alkoxy group, as a crosslinking agent for the substance in a solvent in which a substance containing a fluorocarbon group and an alkoxysilane group is mixed. , A is H or an alkyl group) t is 0, 1 or 2) (for example, 5 weight percent of Si (OCH 3 ) 4 ), and CF 3 CH 2 O (CH 2 ) 15 Si (O -) The bond of 3 is three-dimensionally cross-linked through the bond of -Si (O-) 3 and has a hardness of about 2 to 2.5 times as compared with the case where Si (OCH 3 ) 4 is not added. A fluorocarbon polymer film was produced.

ちなみに、このようにして作成された表面に10ミクロン程度の凹凸があるフロロカーボン系ポリマー膜に水滴5を滴下した場合、水滴は突起部でのみフロロカーボン系ポリマー膜と接触するので、図3に示した如く極めて撥水性が高く、水に対する濡れ角度は約135〜140度であった。   Incidentally, when the water droplet 5 is dropped on the fluorocarbon polymer film having the unevenness of about 10 microns on the surface prepared in this manner, the water droplet comes into contact with the fluorocarbon polymer film only at the protrusions, so that it is shown in FIG. The water repellency was extremely high, and the wetting angle with respect to water was about 135 to 140 degrees.

このときまた、フロロカーボン基及びアルコキシシラン基を含む物質を混合した溶媒中に前記物質の架橋剤としてSi(OC374を10重量パーセント添加しておいた場合、約4倍の硬度のフロロカーボン系ポリマー膜が製造できた。また、同様のコーティングをフロロカーボン系ポリマー(ポリ4フッ化エチレン)の微粒子をさらに20%分散添加したフロロカーボン基及びアルコキシシラン基を含む物質を混合した非水系の溶媒を用いて行った場合、硬度は従来並となったが従来に比べて極めて密着性が優れた撥水撥油性の高いフロロカーボン系ポリマー膜が製造できた。 At this time, when 10 weight percent of Si (OC 3 H 7 ) 4 is added as a cross-linking agent for the substance in a solvent containing a substance containing a fluorocarbon group and an alkoxysilane group, the hardness is about 4 times. A fluorocarbon polymer film could be produced. Also, when the same coating is performed using a non-aqueous solvent in which a substance containing a fluorocarbon group and an alkoxysilane group in which fine particles of a fluorocarbon polymer (polytetrafluoroethylene) are further added and dispersed by 20% is used, the hardness is A fluorocarbon polymer film having excellent water and oil repellency and excellent adhesion compared to the prior art can be produced.

さらにまた、上記実施例では試薬としてCF3CH2O(CH215Si(OCH33、CF3(CF27(CH22Si(OC253を用いたが、アルキル鎖部分にエチレン基やアセチレン基を付加したり組み込んでおけば、塗膜形成後5メガラド程度の電子線照射で架橋できるのでさらに10倍程度の硬度の塗膜も容易に得られる。 Furthermore, in the above examples, CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3 and CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3 were used as reagents. If an ethylene group or an acetylene group is added to or incorporated in the alkyl chain portion, it can be cross-linked by irradiation with an electron beam of about 5 megarads after forming the coating film, so that a coating film having a hardness of about 10 times can be easily obtained.

またフロロカーボン系界面活性剤として上記のもの以外にも、CF3(CH22Si(CH32(CH215Si(OCH33、F(CF28(CH22Si(CH32(CH29Si(OCH33、CF3COO(CH215Si(OC253等が利用できる。 In addition to the above-mentioned fluorocarbon surfactants, CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3 , F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3) 2 (CH 2) 9 Si (OCH 3) 3, CF 3 COO (CH 2) 15 Si (OC 2 H 5) 3 and the like can be used.

(実施例3)
実施例1と同様に、図1に示したようにガラス基体上に表面が凸凹なガラス状のシリカ下地層を形成した後、フロロカーボン基及びクロロシラン基を含む物質を混合した非水系の溶媒、例えば、CF3(CF27(CH22SiCl3を用い、1%程度の濃度で溶かした80%n−ヘキサデカン、12%四塩化炭素、8%クロロホルム溶液を調整し、前記表面にSiOH結合を数多く持つ単分子膜の形成された基材を30分程度浸漬すると、基体表面にCF3(CF27(CH22Si(O−)3の結合が生成され、フッ素を含む撥水撥油膜4(化学吸着単分子 膜)がガラス状のシリカ下地層と化学結合した状態で凸凹に形成できた(図4)。なお、この撥水撥油膜4’(単分子膜)は碁番目試験を行なっても全く剥離することがなかった。また、この場合、フロロカーボン基は配向した状態で表面に形成されるため、表面エネルギーが極めて低く、水に対する濡れ角度は135〜145度であった。
(Example 3)
As in Example 1, after forming a glassy silica underlayer having an uneven surface on a glass substrate as shown in FIG. 1, a non-aqueous solvent in which a substance containing a fluorocarbon group and a chlorosilane group is mixed, for example, , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , 80% n-hexadecane, 12% carbon tetrachloride, 8% chloroform solution dissolved at a concentration of about 1% was prepared, and SiOH was formed on the surface. When a substrate on which a monomolecular film having a large number of bonds is formed is immersed for about 30 minutes, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (O—) 3 bonds are generated on the substrate surface and contain fluorine. The water / oil repellent film 4 (chemically adsorbed monomolecular film) could be formed unevenly in a state of being chemically bonded to the glassy silica underlayer (FIG. 4). The water / oil repellent film 4 ′ (monomolecular film) did not peel at all even after the first test. In this case, since the fluorocarbon group is formed on the surface in an oriented state, the surface energy is extremely low, and the wetting angle with respect to water is 135 to 145 degrees.

さらにまた、上記実施例では、フロロカーボン系界面活性剤としてCF3(CF27(CH22SiCl3を用いたが、アルキル鎖部分にエチレン基やアセチレン基を付加したり組み込んでおけば、単分子膜形成後5メガラド程度の電子線照射で架橋できるのでさらに硬度を向上させることも可能である。 Furthermore, in the above embodiment, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was used as the fluorocarbon surfactant. However, an ethylene group or an acetylene group may be added to or incorporated in the alkyl chain portion. Further, since it can be crosslinked by irradiation with an electron beam of about 5 megarads after the formation of the monomolecular film, it is possible to further improve the hardness.

なお、フロロカーボン系界面活性剤として上記のもの以外にもCF3CH2O(CH215SiCl3、CF3(CH22Si(CH32(CH215SiCl3、F(CF28(CH22Si(CH32(CH29SiCl3、CF3COO(CH215SiCl3等が利用できる。 In addition to the above-mentioned fluorocarbon surfactants, CF 3 CH 2 O (CH 2 ) 15 SiCl 3 , CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3 , F ( CF 2) 8 (CH 2) 2 Si (CH 3) 2 (CH 2) 9 SiCl 3, CF 3 COO (CH 2) 15 SiCl 3 and the like can be used.

(実施例4)
まず、加工の終了したガラス板を用意し、有機溶媒で洗浄した後、表面をサンドブラスト法を用いて粗面処理して表面にサブミクロン(0.1乃至1.0)オーダーの凸凹、例えば0.4乃至0.9ミクロン程度凸凹を形成する。なお、この方法以外にフッ酸を用いた化学エッチング法やサンドペーパーによるラビング法が利用できる。次に、フッ化炭素基及びクロロシラン基を含む物質を混合した非水系の溶媒、例えば、CF3(CF27(CH22SiCl3を用い、1%程度の濃度で溶かした80%n−ヘキサデカン(トルエン、キシレン、ジシクロヘキシルでもよい)、12%四塩化炭素、8%クロロホルム溶液を調整し、前記ガラス板を2時間程度浸漬すると、ガラス板の表面は自然酸化膜が形成されており、その酸化膜表面には水酸基が多数含まれているので、フッ化炭素基及びクロロシラン基を含む物質のSiCl基と前記水酸基が反応し脱塩酸反応が生じガラス表面全面に亘り、CF3(CF27(CH22Si(O−)3の結合が生成され、フッ素を含む単分子膜ガガラス板の表面と化学結合した状態で約15オングストロームの膜厚で形成できた。なお、単分子膜はきわめて強固に化学結合しているので全く剥離することがなかった。なお、ガラス板の材質が、アクリル樹脂やポリカーボネート樹脂等のプラスチックの場合には、粗面化処理後、表面をプラズマ処理(300W、10分程度)して表面を酸化し親水性とすること、および吸着液をフレオン溶剤に換えることで同様の技術を用いることが可能であつた。
Example 4
First, a finished glass plate is prepared, washed with an organic solvent, and then the surface is roughened using a sand blasting method, so that the surface has irregularities of submicron (0.1 to 1.0) order, for example, 0 Form irregularities about 4 to 0.9 microns. In addition to this method, a chemical etching method using hydrofluoric acid or a rubbing method using sandpaper can be used. Next, a non-aqueous solvent mixed with a substance containing a fluorocarbon group and a chlorosilane group, for example, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3, is used to dissolve at a concentration of about 1%. When n-hexadecane (which may be toluene, xylene, dicyclohexyl), 12% carbon tetrachloride, 8% chloroform solution is prepared and the glass plate is immersed for about 2 hours, a natural oxide film is formed on the surface of the glass plate. Since the surface of the oxide film contains many hydroxyl groups, the SiCl group of the substance containing a fluorocarbon group and a chlorosilane group reacts with the hydroxyl group to cause a dehydrochlorination reaction, and CF 3 (CF 2 ) A bond of 7 (CH 2 ) 2 Si (O—) 3 was generated and could be formed with a film thickness of about 15 Å in a state of being chemically bonded to the surface of the monolayer film containing fluorine. Note that the monomolecular film was extremely strongly chemically bonded and therefore did not peel at all. In addition, when the material of the glass plate is plastic such as acrylic resin or polycarbonate resin, the surface is plasma-treated (300 W, about 10 minutes) after the roughening treatment to oxidize the surface to be hydrophilic. It was possible to use the same technique by replacing the adsorbent with Freon solvent.

このガラス板を用い実使用を試みたが、処理しないものに比べ汚物の付着を大幅に低減できた、また、たとえ付着した場合にもブラシでこする程度で簡単に除去できた。このとき、傷は全く付かなかった。また、油脂分汚れでも除去は水洗のみで可能であった。水に対する濡れ性は蓮の葉並みであり、濡れ角度は155度であった。   Although an actual use was attempted using this glass plate, the adhesion of filth could be greatly reduced compared to the case where it was not treated, and even if it adhered, it could be easily removed by rubbing with a brush. At this time, there were no scratches. Moreover, removal of oil and fat was possible only by washing with water. The wettability with water was similar to that of a lotus leaf, and the wetting angle was 155 degrees.

(実施例5)
親水性ではあるが水酸基を含む割合が少ないアルミ板6の場合、表面を電解エッチングして表面に0.5乃至0.8ミクロン程度凸凹を形成する。
(Example 5)
In the case of the aluminum plate 6 which is hydrophilic but contains a small amount of hydroxyl groups, the surface is electrolytically etched to form irregularities on the surface by about 0.5 to 0.8 microns.

なおこの方法以外にフッ酸を用いた化学エッチング法や真空中でのプラズマによるスパッタリング法、サンドペーパーによるラビング法などが利用できる。また金属ならすべて同じように使用可能であるが、材質が、アクリル樹脂やポリカーボネート樹脂等のプラスチックの場合には、表面を荒した後、200W、10分程度プラズマ処理して表面を酸化し親水性とすることで、同様の技術を用いることが可能となる。   In addition to this method, a chemical etching method using hydrofluoric acid, a sputtering method using plasma in a vacuum, a rubbing method using sandpaper, and the like can be used. Also, all metals can be used in the same way. However, if the material is plastic such as acrylic resin or polycarbonate resin, the surface is roughened and then plasma treated for 200 minutes for 10 minutes to oxidize the surface and make it hydrophilic. By doing so, the same technique can be used.

次に、クロロシリル基を複数個含む物質(例えば、SiCl4、またはSiHCl3、SiH2Cl2、Cl−(SiCl2O)n−SiCl3(nは整数)、特に、SiCl4を用いれば、分子が小さく水酸基に対する活性も大きいので、アルミ板表面を均一に親水化する効果が大きい)を混合した非水系溶媒、例えばクロロホルム溶媒に1重量パーセント溶解した溶液に30分間程度浸漬すると、アルミ板表面には親水性の−OH基が多少とも存在するので表面で脱塩酸反応が生じクロロシリル基を複数個含む物質のクロロシラン単分子膜が形成される。 Next, if a substance containing a plurality of chlorosilyl groups (for example, SiCl 4 , or SiHCl 3 , SiH 2 Cl 2 , Cl— (SiCl 2 O) n —SiCl 3 (n is an integer), particularly SiCl 4 is used, The surface of the aluminum plate is immersed for about 30 minutes in a solution of 1% by weight dissolved in a non-aqueous solvent mixed with, for example, a chloroform solvent, because the molecule is small and the activity against hydroxyl groups is large, so that the surface of the aluminum plate is highly hydrophilic. Since there are some hydrophilic -OH groups, dehydrochlorination reaction occurs on the surface, and a chlorosilane monomolecular film containing a plurality of chlorosilyl groups is formed.

例えば、クロロシリル基を複数個含む物質としてSiCl4を用いれば、アルミ板表面には少量の親水性の−OH基が露出されているので、表面で脱塩酸反応が生じCl3SiO− や Cl2Si(O−)2の様に分子が−SiO−結合を介して表面に固定される。 For example, if SiCl 4 is used as a substance containing a plurality of chlorosilyl groups, a small amount of hydrophilic —OH groups are exposed on the surface of the aluminum plate, so that a dehydrochlorination reaction occurs on the surface and Cl 3 SiO— or Cl 2 Molecules are fixed to the surface via —SiO— bonds like Si (O—) 2 .

その後、非水系の溶媒例えばクロロホルムで洗浄して、さらに水で洗浄すると、アルミ板と反応していないSiCl4分子は除去され、アルミ板表面に(OH)3SiO− や (OH)2Si(O−)2等のシロキサン単分子膜7(純粋なシリカ下地層)が得られた。 Thereafter, when the substrate is washed with a non-aqueous solvent such as chloroform and further washed with water, SiCl 4 molecules that have not reacted with the aluminum plate are removed, and (OH) 3 SiO— or (OH) 2 Si ( A siloxane monomolecular film 7 (pure silica underlayer) such as O-) 2 was obtained.

なお、このときできた単分子膜はアルミ板とは−SiO−の化学結合を介して完全に結合されているので剥がれることが全く無い。また、得られた単分子膜は表面にSiOH(シラノール)結合を数多く持つ。当初の水酸基の約3倍程度の数が生成される。   Note that the monomolecular film formed at this time is completely separated from the aluminum plate through a chemical bond of -SiO-, and therefore does not peel off at all. Moreover, the obtained monomolecular film has many SiOH (silanol) bonds on the surface. About three times as many as the original hydroxyl groups are generated.

そこでさらに、フッ化炭素基及びクロロシラン基を含む物質を混合した非水系の溶媒、例えば、CF3(CF27(CH22SiCl3を用い、1%程度の濃度で溶かした80%n−ヘキサデカン、12%四塩化炭素、8%クロロホルム溶液を調整し、前記表面にSiOH結合を数多く持つシリカ単分子膜の形成されたアルミ板を1時間程度浸漬すると、アルミ板表面にCF3(CF27(CH22Si(O−)3の結合が生成され、フッ素を含むポリマー膜4が下層のシロキサン単分子膜と化学結合した状態でアルミ板表面全面に亘り約15nmの膜厚で形成できた(図5)。なお、このポリマー膜は剥離試験を行なっても全く剥離することがなかった。また、水に対する濡れ角度は約155度であった。 Therefore, a non-aqueous solvent in which a substance containing a fluorocarbon group and a chlorosilane group is mixed, for example, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is used, and 80% dissolved at a concentration of about 1%. A solution of n-hexadecane, 12% carbon tetrachloride and 8% chloroform was prepared, and when an aluminum plate on which a silica monomolecular film having many SiOH bonds was formed on the surface was immersed for about 1 hour, CF 3 ( CF 2 ) 7 (CH 2 ) 2 Si (O—) 3 bond is formed, and the fluorine-containing polymer film 4 is chemically bonded to the lower siloxane monomolecular film, and the film has a thickness of about 15 nm over the entire surface of the aluminum plate. It was formed with a thickness (FIG. 5). The polymer film did not peel at all even when a peel test was performed. The wetting angle with respect to water was about 155 degrees.

さらにまた、上記実施例では、フッ化炭素系界面活性剤としてCF3(CF27(CH22SiCl3を用いたが、フッ化炭素系界面活性剤として上記のもの以外にもCF3CH2O(CH215SiCl3、CF3(CH22Si(CH32(CH215SiCl3、F(CF24(CH22Si(CH32(CH29SiCl3、CF3COO(CH215SiCl3、CF3(CF25(CH22SiCl3等が利用できる。 Furthermore, in the above examples, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was used as the fluorocarbon surfactant. 3 CH 2 O (CH 2 ) 15 SiCl 3 , CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3 , F (CF 2 ) 4 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3 , CF 3 COO (CH 2 ) 15 SiCl 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3 and the like can be used.

なお、実施例5において、アルミ板の代わりにガラス板を用い、フッ化炭素基及びクロロシラン基を含む物質を化学吸着する際、防曇効果を付与するため親水性のままで残したい面(例えば内面)に有機溶媒不溶性の親水性被膜(例えば、ポバール(ポリビニルアルコール)やプルランの水溶液を塗布し数ミクロン厚さのとする)を形成しておくことで、吸着終了後前記親水性被膜を水洗除去して、表面が撥水撥油防汚性単分子膜で、内面が親水性の水酸基を有する単分子膜(シロキサンより成るシリカ膜)の透光ガラスが得られた。このガラスで防曇効果を確かめたが、親水性のままで残したガラス面は、水に対してきわめて濡れ易く全く曇ることがなかった。   In Example 5, when a glass plate is used instead of an aluminum plate and a substance containing a fluorocarbon group and a chlorosilane group is chemically adsorbed, a surface that is desired to remain hydrophilic to provide an antifogging effect (for example, An organic solvent-insoluble hydrophilic film (for example, an aqueous solution of poval (polyvinyl alcohol) or pullulan is applied to form a thickness of several microns) is formed on the inner surface), and the hydrophilic film is washed with water after adsorption is completed. After removal, a light-transmitting glass having a monomolecular film (silica film made of siloxane) having a water-repellent, oil-repellent and anti-fouling monomolecular film and an inner surface having a hydrophilic hydroxyl group was obtained. The antifogging effect was confirmed with this glass. However, the glass surface which remained hydrophilic was very wettable with water and did not fog at all.

また、吸着用試薬の分子の長さを変えたもの2種を混合して(例えば、F(CF28(CH22Si(CH32(CH29SiCl3と、F(CF28(CH22Si(CH32(CH26SiCl3、あるいは、CF3(CF27(CH22SiCl3と、CF3(CF25(CH22SiCl3の組合せで、組成を3:1〜1:3とする)吸着すれば、部材表面を分子レベルで凸凹にする事が可能であり、撥水撥油性がさらに良くなる。 Further, two kinds of adsorption reagents having different molecular lengths are mixed (for example, F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3 and F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 6 SiCl 3 or CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 and CF 3 (CF 2 ) 5 ( If it is adsorbed with a combination of CH 2 ) 2 SiCl 3 and a composition of 3: 1 to 1: 3, the surface of the member can be made uneven at the molecular level, and the water and oil repellency is further improved.

本発明の実施例1の撥水撥油性被膜の製造工程を説明するための工程断面概念図である。It is a process cross-sectional conceptual diagram for demonstrating the manufacturing process of the water / oil repellent film of Example 1 of this invention. 本発明の実施例1の撥水撥油性被膜の製造工程を説明するための工程断面概念図である。It is a process cross-sectional conceptual diagram for demonstrating the manufacturing process of the water / oil repellent film of Example 1 of this invention. 本発明の実施例1の撥水撥油性被膜上に水滴を滴下した場合の断面概念図である。It is a cross-sectional conceptual diagram at the time of dripping a water drop on the water / oil repellent film of Example 1 of this invention. 本発明の実施例3においての単分子膜状撥水撥油性被膜の製造工程を説明するために分子レベルまで拡大した撥水撥油性被膜の断面概念図である。It is a cross-sectional conceptual diagram of the water / oil repellent coating expanded to the molecular level in order to explain the production process of the monomolecular film-like water / oil repellent coating in Example 3 of the present invention. 実施例5において、図2におけるA部分を分子レベルまで拡大した撥水撥油性被膜断面概念図である。In Example 5, it is a water-oil / oil-repellent film cross-sectional conceptual diagram which expanded the A part in FIG. 2 to the molecular level.

符号の説明Explanation of symbols

1 ガラス基体
2 微粒子
3 シリケートガラス膜
4 ポリマー膜状撥水撥油膜
4’ 単分子膜状撥水撥油膜
5 水滴
6 アルミ板
7 シロキサン単分子膜
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Fine particle 3 Silicate glass film 4 Polymer film-like water / oil-repellent film 4 ′ Monomolecular film-like water / oil-repellent film 5 Water droplet 6 Aluminum plate 7 Siloxane monomolecular film

Claims (6)

ガラス基体上に形成された凸凹を有する撥水撥油性被膜であって、
前記撥水撥油性被膜は少なくともシリカを含む下地層と、
前記下地層上に少なくともフッ素を含み複数の分子より形成され、前記複数の分子が異なる分子長を持つことにより凸凹を有する膜よりなる撥水撥油性被膜。
A water- and oil-repellent film having irregularities formed on a glass substrate,
The water- and oil-repellent coating is an underlayer containing at least silica;
A water / oil repellent coating comprising a film having irregularities formed by a plurality of molecules including at least fluorine on the underlayer, wherein the plurality of molecules have different molecular lengths.
前記少なくともフッ素を含み複数の分子より形成される膜は、前記下地層とシロキサン結合により結合されている請求項1に記載の撥水撥油性被膜。   The water / oil repellent coating according to claim 1, wherein the film including at least fluorine and formed of a plurality of molecules is bonded to the underlayer by a siloxane bond. 前記少なくともフッ素を含み複数の分子より形成される膜は、ポリマー膜である請求項1に記載の撥水撥油性被膜。   The water / oil repellent coating according to claim 1, wherein the film including at least fluorine and formed of a plurality of molecules is a polymer film. 前記下地層はシリカ及びシリケートグラスを含み、表面上に凸凹を有する請求項1〜3のいずれか1項に記載の撥水撥油性被膜。   The water / oil repellent coating according to any one of claims 1 to 3, wherein the underlayer includes silica and silicate glass and has irregularities on the surface. 前記少なくともフッ素を含み複数の分子より形成される膜は、以下のいずれかの吸着試薬より形成される請求項1又は2に記載の撥水撥油性被膜。
(1)CF3CH2O(CH215SiCl3
(2)CF3COO(CH215SiCl3
(3)CF3CH2O(CH215Si(OCH33
(4)CF3(CF27(CH22Si(OC253
(5)CF3(CH22Si(CH32(CH215Si(OCH33
(6)F(CF28(CH22Si(CH32(CH29Si(OCH33
(7)CF3COO(CH215Si(OC253
The water / oil repellent coating according to claim 1 or 2, wherein the film formed of a plurality of molecules including at least fluorine is formed of any of the following adsorption reagents.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 COO (CH 2 ) 15 SiCl 3
(3) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3
(5) CF 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(6) F (CF 2 ) 8 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(7) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
前記少なくともフッ素を含み複数の分子より形成される膜は、単分子又は単分子累積膜である請求項1又は2に記載の撥水撥油性被膜。   The water / oil repellent coating according to claim 1, wherein the film including at least fluorine and formed of a plurality of molecules is a single molecule or a monomolecular cumulative film.
JP2007054363A 1991-01-23 2007-03-05 Water-repellent and oil-repellent glass substrate Withdrawn JP2007137767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054363A JP2007137767A (en) 1991-01-23 2007-03-05 Water-repellent and oil-repellent glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3024024A JPH04239633A (en) 1991-01-23 1991-01-23 Water and repelling film and manufacture thereof
JP2007054363A JP2007137767A (en) 1991-01-23 2007-03-05 Water-repellent and oil-repellent glass substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003132146A Division JP2004002187A (en) 1991-01-23 2003-05-09 Water repellent and oil repellent coating film

Publications (1)

Publication Number Publication Date
JP2007137767A true JP2007137767A (en) 2007-06-07

Family

ID=38201083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054363A Withdrawn JP2007137767A (en) 1991-01-23 2007-03-05 Water-repellent and oil-repellent glass substrate

Country Status (1)

Country Link
JP (1) JP2007137767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084119A1 (en) * 2007-12-27 2009-07-09 Kazufumi Ogawa Solar energy utilizing apparatus and method of manufacturing the same
WO2014038616A1 (en) * 2012-09-05 2014-03-13 デクセリアルズ株式会社 Antifouling body, display device, input device, and electronic device
CN104583354A (en) * 2012-08-31 2015-04-29 迪睿合电子材料有限公司 Antifouling body, display device, input device, electronic equipment and antifouling article
WO2017110200A1 (en) * 2015-12-25 2017-06-29 株式会社デンソー Water-repellent base material and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084119A1 (en) * 2007-12-27 2009-07-09 Kazufumi Ogawa Solar energy utilizing apparatus and method of manufacturing the same
CN104583354A (en) * 2012-08-31 2015-04-29 迪睿合电子材料有限公司 Antifouling body, display device, input device, electronic equipment and antifouling article
WO2014038616A1 (en) * 2012-09-05 2014-03-13 デクセリアルズ株式会社 Antifouling body, display device, input device, and electronic device
JP2014052432A (en) * 2012-09-05 2014-03-20 Dexerials Corp Antifouling body, display device, input device, and electric device
CN104583814A (en) * 2012-09-05 2015-04-29 迪睿合电子材料有限公司 Antifouling body, display device, input device, and electronic device
WO2017110200A1 (en) * 2015-12-25 2017-06-29 株式会社デンソー Water-repellent base material and method for manufacturing same
JP2017115219A (en) * 2015-12-25 2017-06-29 株式会社デンソー Water-repellent substrate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2809889B2 (en) Water- and oil-repellent coating and method for producing the same
EP0511548B1 (en) Chemically adsorbed film and method of manufacturing the same
JP3588364B2 (en) Surface treated substrate and surface treatment method for substrate
JP2506234B2 (en) Method for manufacturing translucent substrate
US6503567B2 (en) Transparent substrate and method of manufacturing the same
JPH04239633A (en) Water and repelling film and manufacture thereof
JP3165672B2 (en) Article having water / oil repellent coating and method for producing the same
JP2622316B2 (en) Water / oil repellent film and method for producing the same
EP0511657A2 (en) Hydrophilic chemically adsorbed film and method of manufacturing the same
JP2007137767A (en) Water-repellent and oil-repellent glass substrate
US6521334B1 (en) Transparent substrate and method of manufacturing the same
JP2004002187A (en) Water repellent and oil repellent coating film
JP3150133B2 (en) Article having a water-repellent and oil-repellent surface and a hydrophilic surface and method for producing the same
JP3017965B2 (en) Article having a water- and oil-repellent coating and method for forming the same
JP2500150B2 (en) Water / oil repellent coating film and method for producing the same
JP3444524B2 (en) Article and glass article having water- and oil-repellent coating
JPH0786146B2 (en) Water- and oil-repellent antifouling coating and method for producing the same
JP3870253B2 (en) Inorganic-organic hybrid thin film and method for producing the same
JP2001214156A (en) Article having water- and oil-repellent coated film and its preparation process
JP2807451B2 (en) Method for producing translucent substrate
JP2577203B2 (en) Method for producing antifouling glass
JP2690876B2 (en) Translucent substrate
JPH06200074A (en) Polymer composition
JP2007210197A (en) Resin substrate and its manufacturing method
JP4967361B2 (en) Resin substrate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071024