JP2007137296A - High speed railway rolling stock - Google Patents

High speed railway rolling stock Download PDF

Info

Publication number
JP2007137296A
JP2007137296A JP2005335147A JP2005335147A JP2007137296A JP 2007137296 A JP2007137296 A JP 2007137296A JP 2005335147 A JP2005335147 A JP 2005335147A JP 2005335147 A JP2005335147 A JP 2005335147A JP 2007137296 A JP2007137296 A JP 2007137296A
Authority
JP
Japan
Prior art keywords
shape
head
cab
tunnel
canopy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005335147A
Other languages
Japanese (ja)
Other versions
JP4456557B2 (en
Inventor
Tetsuo Sato
哲郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2005335147A priority Critical patent/JP4456557B2/en
Publication of JP2007137296A publication Critical patent/JP2007137296A/en
Application granted granted Critical
Publication of JP4456557B2 publication Critical patent/JP4456557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high speed railway rolling stock furnished with a head part shape devised to reduce micro pressure wave by specification of a position in the cross direction of a car body of a driver's cabin canopy. <P>SOLUTION: This high speed railway rolling stock is constituted by forming a projected part by the driver's cabin canopy constituting a driver's cabin space on a rolling stock body upper surface 43 of the head part shape 4 up to a part immediately before a general part to be the maximum cross-section area from a head end, the driver's cabin canopy 45 of the travelling head part is arranged inclined to the side of a tunnel wall surface near the body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高速走行する新幹線等の高速鉄道車両に関し、特にトンネルの突入によって発生する微気圧波を低減させるのに好適な高速鉄道車両に関する。   The present invention relates to a high-speed rail vehicle such as a Shinkansen that travels at a high speed, and more particularly to a high-speed rail vehicle that is suitable for reducing micro-pressure waves generated due to entry of a tunnel.

移動の高速化が望まれる現代では、鉄道車両に対しても時速270km/h或いはそれ以上の高速性能が要求されるようになっている。その一方で、民家などの間を抜けて通るような我が国の鉄道事情では、騒音や振動に対する環境への影響を考慮することが高速化と同様に重要な課題でもある。そうした環境対策の一課題としてトンネル微気圧波(以下、単に「微気圧波」という)によるトンネル出口での騒音などがある。高速鉄道車両がトンネルに突入する場合、先頭車両がピストンのように作用し、トンネル内の狭い空間に存在する空気が圧縮されて圧縮波が発生する。微気圧波は、この圧縮波がトンネル内をほぼ音速で伝わっていきトンネル出口に達した際外部に放出される、そのトンネル出口で圧縮波の圧力の時間についての偏導関数(以下、「圧力勾配」という。圧力の時間についての偏導関数は圧力の空間についての偏導関数と比例関係にある)に比例するパルス状の圧力波である。   In today's world where high-speed movement is desired, high-speed performance of 270 km / h or more is required for railway vehicles. On the other hand, considering the impact of the environment on noise and vibration in the Japanese railway situation that passes between private houses, it is as important as speeding up. One such environmental measure is noise at the tunnel exit caused by tunnel micro-pressure waves (hereinafter simply referred to as “micro-pressure waves”). When a high-speed railway vehicle enters the tunnel, the leading vehicle acts like a piston, compressing air existing in a narrow space in the tunnel and generating a compression wave. The micro-pressure wave is transmitted to the tunnel at almost the speed of sound through the tunnel and is released to the outside when it reaches the tunnel exit. The partial derivative (hereinafter referred to as “pressure”) It is referred to as a “gradient.” The pressure derivative is a pulsed pressure wave proportional to the time derivative of pressure, which is proportional to the partial derivative of the pressure space.

こうしたトンネルから放射される微気圧波は、トンネル出口周辺の建物に対して騒音や振動を及ぼすため環境対策問題の一つとして挙げられている。特に、微気圧波を引き起こす圧縮波は、その圧力勾配が車両速度の3乗に比例して大きくなるため、鉄道車両の高速化を進める上において微気圧波の低減、即ち圧縮波を小さく抑えることは極めて重要な課題となっていた。近年、こうした微気圧波の低減を目的とした先頭部形状を備えた高速鉄道車両について幾つかの提案がなされてきている。その一例が特開平11−321640号公報に記載されたものである。同公報に開示された高速鉄道車両は、圧力勾配分布の極大部を前後に明確に分け、それぞれの圧縮波がトンネル出口で集合した微気圧波にならないようにしたものである。しかし、その具体的な構成は先頭部の寸法が25mもの長さになってしまい、その分だけ客室が大幅に減少してしまい旅客鉄道車両としては現実的でなかった。そこで本出願人は、特開2002−308092号公報によって開示された高速鉄道車両を提案している。   Microscopic waves radiated from such tunnels are cited as one of the environmental countermeasure problems because they cause noise and vibration to buildings around the tunnel exit. In particular, since the pressure gradient of the compression wave that causes the micro-pressure wave increases in proportion to the cube of the vehicle speed, the reduction of the micro-pressure wave, that is, the suppression of the compression wave, is reduced when the speed of the railway vehicle is increased. Was an extremely important issue. In recent years, several proposals have been made on high-speed railway vehicles having a leading portion shape for the purpose of reducing such micro-pressure waves. One example is described in JP-A-11-321640. The high-speed railway vehicle disclosed in this publication clearly divides the maximum portion of the pressure gradient distribution into the front and the back so that each compression wave does not become a micro-pressure wave gathered at the tunnel exit. However, the specific configuration is not practical as a passenger railway vehicle because the size of the head portion is as long as 25 m, and the number of guest rooms is greatly reduced by that amount. Therefore, the present applicant has proposed a high-speed railway vehicle disclosed in Japanese Patent Laid-Open No. 2002-308092.

その他、特開2005−14621号公報には、前記公報の高速鉄道車両がトンネル側の微気圧波対策として設けられる緩衝工がないトンネルでの微気圧波低減性能と、緩衝工があるトンネルでの微気圧波低減性能とが両立しなかったため、緩衝工がないトンネルでの微気圧波低減性能と、緩衝工があるトンネルでの微気圧波低減性能との両立を図り、衝撃音を低減することを目的とした高速先頭車両が提案されている。
すなわち、先頭部分の先端に横断面積増加率が大きい前側横断面積増加領域を備え、それに連続して横断面積が単調増加する中間横断面積増加領域が設けられ、一般部の直前では後側横断面積増加領域が運転室に対応する構成となって続いている。そして、この後側横断面積増加領域に対応する部分に運転室が設けられ、車両中心より若干左側寄りに配設された運転席が、車体中心に配置された運転室キャノピによって覆われている。
特開平11−321640号公報(第4−6頁、図6、図8) 特開2002−308092号公報(第3−5頁、図1−図5) 特開2005−14621号公報(第5頁、図1)
In addition, in Japanese Patent Application Laid-Open No. 2005-14621, the high-speed railway vehicle of the above publication has a micro-pressure wave reducing performance in a tunnel without a buffer work provided as a countermeasure for a micro-pressure wave on the tunnel side, and a tunnel with a buffer work. Since the micro-pressure wave reduction performance was not compatible, both the micro-pressure wave reduction performance in the tunnel without the buffer work and the micro-pressure wave reduction performance in the tunnel with the buffer work should be achieved to reduce the impact sound. High-speed leading vehicles have been proposed for this purpose.
That is, the front cross-sectional area increase region with a large cross-sectional area increase rate is provided at the tip of the head part, followed by an intermediate cross-sectional area increase region in which the cross-sectional area monotonously increases, and the rear cross-sectional area increase immediately before the general part. The area continues with a configuration corresponding to the cab. A driver's cab is provided in a portion corresponding to the rear cross-sectional area increasing region, and a driver's seat disposed slightly to the left of the vehicle center is covered with a driver's cab canopy disposed in the center of the vehicle body.
JP 11-321640 A (page 4-6, FIGS. 6 and 8) JP 2002-308092 (page 3-5, FIGS. 1-5) Japanese Patent Laying-Open No. 2005-14621 (5th page, FIG. 1)

ところで、700系の新幹線車両では、先端からの後方一般部までの長さが約10m(正確には9.2m)であるのに対し、前記特許文献1の高速鉄道車両では、先頭部形状の寸法が25mもの長さになってしまい、客室確保の点から好ましいものではなかった。この点、特許文献2の高速鉄道車両は、所定の長さに設定した先頭部を断面積変化率に基づいて圧力勾配分布が最適化する形状になるようにしたものである。そのため、微気圧波を低減させながらも、車体先頭部の長さを従来のものと同じレベルで構成することができる。   By the way, in the 700 series Shinkansen vehicle, the length from the tip to the general rear portion is about 10 m (exactly 9.2 m), whereas in the high-speed railway vehicle of Patent Document 1, the shape of the head portion is The dimension was as long as 25 m, which was not preferable from the viewpoint of securing guest rooms. In this regard, the high-speed railway vehicle of Patent Document 2 is such that the head portion set to a predetermined length has a shape that optimizes the pressure gradient distribution based on the cross-sectional area change rate. Therefore, it is possible to configure the length of the front portion of the vehicle body at the same level as the conventional one while reducing the micro-pressure wave.

そうした特許文献2の高速鉄道車両は、最適横断面積分布を求める解析を簡単にするため軸対称モデルを用いた解析が行われている。つまり、トンネル形状は横断面積を一致させた円筒形状にし、車両も横断面積を一致させた円柱状のものが突入する場合を想定して行っている。従って、従来の高速鉄道車両は、その先頭部形状を軸対象の検討に基づいて設計するようしたものであって、特許文献3も含め、車両を輪切りにしたときの断面積の関数形状について論じるのが主要な骨子であった。   Such a high-speed railway vehicle of Patent Document 2 is analyzed using an axisymmetric model in order to simplify the analysis for obtaining the optimum cross-sectional area distribution. That is, the tunnel shape is a cylindrical shape with the same cross-sectional area, and the vehicle is assumed to enter a columnar shape with the same cross-sectional area. Therefore, the conventional high-speed railcar is designed based on the examination of the axis shape of the head part, and including the patent document 3, the function shape of the cross-sectional area when the vehicle is cut is discussed. The main point was.

しかしながら、現実的には軸対象ということはありえないから、トンネル微気圧波対策として、軸対象的な発想を超えるより現実に近い状態での先頭部形状の特定が望まれている。特に、トンネルの多くは複線トンネルであって高速鉄道車両は左側線路を走行するため、通常は車体左側に壁が近く、車体右側はトンネル内の空間が大きく広がるような状態になる。従って、先頭部形状を特定するには、そうした走行条件を考慮して行うことが必要になる。   However, in reality, it cannot be an axial object, and as a countermeasure for tunnel micro-pressure waves, it is desired to specify the head shape in a state closer to reality than the axial object idea. In particular, many of the tunnels are double-track tunnels, and high-speed railway vehicles travel on the left track, so the wall is usually close to the left side of the vehicle body and the space inside the tunnel is greatly expanded on the right side of the vehicle body. Therefore, in order to specify the head shape, it is necessary to consider such traveling conditions.

そこで本発明は、かかる課題を解決すべく、運転室キャノピの車体幅方向の位置の特定により微気圧波を低減させるようにした先頭部形状を備えた高速鉄道車両を提供することを目的とする。   Accordingly, an object of the present invention is to provide a high-speed railway vehicle having a top portion shape that reduces micro-pressure waves by specifying the position of the cab canopy in the vehicle body width direction in order to solve such a problem. .

本発明に係る高速鉄道車両は、先端から最大横断面積となる一般部直前までの先頭部形状が、車体上面に運転室空間を構成する運転室キャノピによる突設部が形成されたものであって、走行先頭部の運転室キャノピが、車体に近いトンネル壁面側に片寄って配置されたものであることを特徴とする。
また、本発明に係る高速鉄道車両は、前記運転室キャノピ前面の車体上面からせり上がった窓部が、前記先頭部形状の長手方向のほぼ中央に位置するものであることが好ましい。
また、本発明に係る高速鉄道車両は、前記先頭部形状の先端部が、揚力を発生させるべく上下両方向にせばめられて幅方向に長い扁平形状のノーズが形成されたものであることが好ましい。
また、本発明に係る高速鉄道車両は、前記先頭部形状の側面部が、前記運転室キャノピが位置する部分の幅寸法が小さくなり、一般部直前の後方部分は当該一般部とほぼ同じ幅寸法で形成されたものであることが好ましい。
In the high-speed railway vehicle according to the present invention, the shape of the head part from the front end to the front of the general part that is the maximum cross-sectional area is formed on the upper surface of the vehicle body by a protruding part by a cab canopy that constitutes the cab space The driving cab canopy at the head of the traveling is arranged so as to be offset toward the tunnel wall surface near the vehicle body.
In the high-speed railway vehicle according to the present invention, it is preferable that the window portion rising from the upper surface of the vehicle body on the front surface of the cab canopy is located substantially at the center in the longitudinal direction of the top portion shape.
In the high-speed railway vehicle according to the present invention, it is preferable that the leading end of the top portion is fitted in both the upper and lower directions to generate lift, and a flat nose that is long in the width direction is formed.
Further, in the high-speed railway vehicle according to the present invention, the side portion of the top portion has a smaller width dimension at the portion where the cab canopy is located, and the rear portion immediately before the general portion has substantially the same width dimension as the general portion. It is preferable that it is formed by.

高速鉄道車両において微気圧波を低減させる先頭部形状は、例えば前記特許文献2に記載されているように、圧力勾配分布が先端部分と一般部直前の後方部分によって極大部ができるよう断面積変化率が大きく形成され、その中間部分は圧力勾配分布に窪みができるように断面積変化率が小さく形成されるようにすることが好ましいが、先頭部形状の後方部分は、設計上の制約が多いため断面積変化率が十分にコントロールできない。本発明は、運転室キャノピを車体に近いトンネル壁面側に片寄って配置することにより、そうした点を補って圧力勾配の値を小さくして微気圧波を低減させることができる。   For example, as described in Patent Document 2, the head shape that reduces micro-pressure waves in a high-speed railway vehicle changes the cross-sectional area so that the pressure gradient distribution can be maximized by the tip portion and the rear portion immediately before the general portion. It is preferable that the rate of change is large, and the middle part is formed so that the rate of change in the cross-sectional area is small so that a depression is formed in the pressure gradient distribution, but the rear part of the top part has many design restrictions. Therefore, the cross-sectional area change rate cannot be controlled sufficiently. In the present invention, by arranging the cab canopy toward the tunnel wall surface near the vehicle body, it is possible to compensate for such a point and reduce the pressure gradient value to reduce the micro-pressure wave.

次に、本発明に係る高速鉄道車両について、その一実施形態を図面を参照しながら以下に説明する。
図6は、前記特許文献2に記載された、あるパターン1〜4の異なる先頭部形状によって生じる圧縮波の圧力勾配分布(時速270km/h走行時について)を示した図である。同図は、車両先頭部がトンネルに突入する際に生じる圧縮波の圧力勾配分布を示したものであり、具体的にはトンネル内の所定箇所で観測した圧縮波の圧力変化を時間で微分したものである。縦軸には圧力勾配をとり、横軸には時間をとっている。ここで、vは車両速度であり、Lは車両の先頭部長さである。そして、観測点における時刻の原点0は、トンネル入口に車両先頭部が突入した瞬間に発生した音波がその観測点に到達した時刻をとっている。なお、観測点はトンネル入口からの距離xに依存しているため、音速をsで表せばこの線図はx/sだけ時刻の原点がずれている。
Next, an embodiment of the high-speed railway vehicle according to the present invention will be described below with reference to the drawings.
FIG. 6 is a diagram showing the pressure gradient distribution (when traveling at a speed of 270 km / h) of a compression wave generated by different head shapes of certain patterns 1 to 4 described in Patent Document 2. This figure shows the pressure gradient distribution of the compression wave that occurs when the vehicle head enters the tunnel. Specifically, the pressure change of the compression wave observed at a predetermined location in the tunnel is differentiated by time. Is. The vertical axis represents the pressure gradient, and the horizontal axis represents time. Here, v is the vehicle speed, and L is the head portion length of the vehicle. The origin 0 of the time at the observation point is the time when the sound wave generated at the moment when the vehicle head enters the tunnel entrance reaches the observation point. Since the observation point depends on the distance x from the tunnel entrance, if the sound speed is represented by s, the origin of the time is shifted by x / s in this diagram.

微気圧波は、圧縮波による圧力勾配に比例するため、微気圧波を低減させるには圧力勾配の最大値を低下させればよい。即ち、図6に示すように各パターンに現れている圧力勾配分布の極大部A,Bを下げればよいことになる。その際、単純に車両先頭部を長くすれば車両先頭部の通過時間(図6のL/v)が長くなるため、それに伴って極大部A,Bを低下させることができる。これは、圧力勾配分布が、最大横断面積(一般部横断面積)が同じであれば、同じ条件で走行させた場合に生じる圧力変化(0〜L/vの範囲で囲まれる圧力勾配分布の面積)が一定であるため、車両先頭部が長くなれば時間幅が広くなって圧力勾配全体が低下するからである。   Since the micro-pressure wave is proportional to the pressure gradient caused by the compression wave, the maximum value of the pressure gradient may be reduced to reduce the micro-pressure wave. That is, as shown in FIG. 6, the maximum portions A and B of the pressure gradient distribution appearing in each pattern may be lowered. At this time, if the vehicle head portion is simply lengthened, the passing time (L / v in FIG. 6) of the vehicle head portion becomes longer, and accordingly, the maximum portions A and B can be lowered. This is because if the pressure gradient distribution has the same maximum cross-sectional area (general part cross-sectional area), the pressure change that occurs when traveling under the same conditions (the area of the pressure gradient distribution surrounded by a range of 0 to L / v) ) Is constant, the longer the vehicle head, the wider the time width and the lower the pressure gradient as a whole.

一方、トンネル突入時に発生する圧力進行波の全波高は列車の横断面積を小さくすれば低減可能であるため、車両先頭部長さを不変とした場合には、圧力全波高を低下させることにより、それに比例して圧力勾配も小さくすることができる。しかし、一般部の横断面積を小さくしてしまったのでは、乗客の居住性を損なうことになる。従って、こうした断面積の縮小や車両先頭部長さの拡張といった点から圧力勾配分布の低下を図るのは、設計上トレードオフが生じるため好ましい方法ではない。   On the other hand, since the total wave height of the pressure traveling wave generated when entering the tunnel can be reduced by reducing the cross-sectional area of the train, if the vehicle head length is unchanged, the total pressure wave height can be reduced by The pressure gradient can also be reduced proportionally. However, if the cross-sectional area of the general part is reduced, passenger comfort is impaired. Therefore, it is not a preferable method to reduce the pressure gradient distribution from the viewpoint of reducing the cross-sectional area and extending the length of the vehicle head, because a trade-off occurs in design.

そこで、本実施形態では、次のようにしてトンネル出口から放射される微気圧波を低減させるのに好適な先頭部形状を備える高速鉄道車両を提供することとした。
先ず、微気圧波を低減させるようにした基準となる先頭部形状を任意に作成した。図1がその基準となる高速鉄道車両の第1先頭部形状を示した図である。図1(a)〜(c)は、第1先頭部形状の平面図、側面図および正面図を示した図であり、いずれも所定間隔の断面における外形線を重ねて示したものである。そして、この第1先頭部形状1を基準にして、車両先頭部の長さと一般部の横断面積を固定した状態で圧力勾配の最大値が低下する好適な車両先頭部形状の特定を行うこととした。
Therefore, in the present embodiment, a high-speed railway vehicle having a head shape suitable for reducing micro-pressure waves radiated from the tunnel exit as follows is provided.
First, the reference | standard head part shape which made it reduce a micro atmospheric pressure wave was created arbitrarily. FIG. 1 is a diagram showing a first head portion shape of a high-speed rail vehicle as a reference. 1A to 1C are views showing a plan view, a side view, and a front view of the first head portion shape, all of which are shown by overlapping outlines in a cross section at a predetermined interval. Then, using the first head shape 1 as a reference, specifying a suitable vehicle head shape that reduces the maximum value of the pressure gradient in a state where the length of the vehicle head and the cross-sectional area of the general part are fixed, did.

ここで図5は、第1先頭部形状1および、後述する他の先頭部形状の高速鉄道車両がトンネルに突入した時の圧縮波の圧力勾配分布を比較して示した図である。このグラフは、3次元の高速鉄道車両について、速度270km/hで対向車の軌道がある複線トンネルに突入した場合に生じる圧力波について圧縮性流体解析を行って数値的に求めたものである。そして、第1先頭部形状1の最大値に相当する値((∂p/∂t)max=約8.5kPa/sec)を100%として縦軸に示し、横軸には、圧力波源相当位置(圧力波源相当位置とは、トンネル内を前方に進行する圧力波形を同一に保ったまま時間を遡り圧力波上の各々の位置がトンネル入口面を仮想的に出発する時刻に車両の先端がトンネル入口面からどれだけトンネル内部にあるかを示すものである。)を示している。   Here, FIG. 5 is a diagram comparing the pressure gradient distribution of the compression wave when a high-speed rail car having the first head shape 1 and another head shape described later enters the tunnel. This graph is a numerical value obtained by performing a compressive fluid analysis on a pressure wave generated when a three-dimensional high-speed railway vehicle enters a double track tunnel with a trajectory of an oncoming vehicle at a speed of 270 km / h. The vertical axis indicates the value corresponding to the maximum value of the first head shape 1 ((∂p / = t) max = about 8.5 kPa / sec) as 100%, and the horizontal axis indicates the position corresponding to the pressure wave source ( The pressure wave source equivalent position refers to the time when the pressure wave traveling forward in the tunnel is kept the same, and the tip of the vehicle is at the tunnel entrance at the time when each position on the pressure wave virtually leaves the tunnel entrance surface. It shows how much it is inside the tunnel from the surface.)

ところで、特許文献2では、先頭部長さを長くすることなく、一般部の横断面積を確保しながら微気圧波を低減させる先頭部形状を有する高速鉄道車両が提案されている。
すなわち、微気圧波の強さ(パワー)は図6に示すような圧力勾配の2乗に比例するため、高い値を示す極大部A,Bを抑えることが有効である。そして、圧力勾配分布曲線によって囲まれる面積が一定になることから、圧力勾配の極大部A,Bの値が等しくなり、且つその間の窪みC部分の最小値が極大部A,Bの値により近づくようにした圧力勾配分布を示すような断面積変化率を特定して先頭部形状を作成することが記載されている。
By the way, Patent Document 2 proposes a high-speed railway vehicle having a head portion shape that reduces the micro-pressure wave while ensuring the cross-sectional area of the general portion without increasing the head portion length.
That is, since the intensity (power) of the micro-pressure wave is proportional to the square of the pressure gradient as shown in FIG. 6, it is effective to suppress the maximum portions A and B that show high values. Since the area surrounded by the pressure gradient distribution curve is constant, the values of the maximum portions A and B of the pressure gradient are equal, and the minimum value of the depression C portion therebetween is closer to the values of the maximum portions A and B. It is described that the top part shape is created by specifying the cross-sectional area change rate indicating the pressure gradient distribution.

図1に示した第1先頭部形状1は、微気圧波が低減するようにこうした特許文献2の手法に基づき、圧力勾配分布の特性から断面積変化率を数値解析して作成したものである。すなわち、当該圧力勾配分布に極大部A,Bの形状をつくる断面積変化率の大きい部分が当該車両先頭部の先端部分と一般部直前の後方部分とにあり、その先端部分から後方部分にかけて断面積が徐々に僅かずつ大きくなるように断面積変化率を小さくした中間部分が形成されている。言い換えれば、先端部分と一般部直前の後方部分が、車両先頭部のトンネル突入によって発生する圧縮波の圧力勾配分布に極大部Aと極大部Bとができるよう断面積変化率が大きく形成され、その先端部分から後方部分の間の中間部分では、断面積が徐々に僅かずつ大きくなるように断面積変化率が小さく形成されている。   The first head shape 1 shown in FIG. 1 is created by numerically analyzing the cross-sectional area change rate from the characteristics of the pressure gradient distribution based on the method of Patent Document 2 so that the micro-pressure wave is reduced. . That is, a portion with a large cross-sectional area change rate that forms the shapes of the maximum portions A and B in the pressure gradient distribution is located at the front end portion of the vehicle front portion and the rear portion immediately before the general portion, and is cut from the front end portion to the rear portion. An intermediate portion is formed in which the rate of change in cross-sectional area is reduced so that the area gradually increases gradually. In other words, the cross-sectional area change rate is formed so that the tip portion and the rear portion immediately before the general portion can have the maximum portion A and the maximum portion B in the pressure gradient distribution of the compression wave generated by the tunnel entry at the vehicle front portion, In the intermediate portion between the front end portion and the rear portion, the cross-sectional area change rate is formed small so that the cross-sectional area gradually increases.

この第1先頭部形状1は、水平な車体下ライン12からノーズ11の最先端部にかけて前方にせり上がり、車体上面13では後方の一般部にかけて緩やかに上昇した傾斜を有している。更に、図1(a)(c)によって第1先頭部形状1を幅方向に見た場合、ノーズ11の最先端部より高い位置では、一般部までほぼ一定間隔の幅寸法で形成され、ノーズ11の最先端部より低い位置やノーズ11の先端部分では内側や先端方向に幅寸法を小さくして湾曲した形状になっている。   The first top shape 1 rises forward from the horizontal lower body line 12 to the most distal portion of the nose 11, and has a slope that gently rises toward the rear general portion on the upper surface 13 of the vehicle body. Further, when the first head portion shape 1 is viewed in the width direction according to FIGS. 1 (a) and 1 (c), at a position higher than the most distal end portion of the nose 11, the nose 11 is formed with a substantially uniform width dimension up to the general portion. 11 and a tip portion of the nose 11 that are lower than the most distal portion of the nose 11 have a curved shape with a smaller width dimension toward the inside and the tip.

こうしてノーズ11を高くして構成されているのは、車両の接近によって発生するトンネル内の圧力変化がより早い時点で起きるようにするためである。つまり先頭部形状のノーズを高くするとノーズ部分に揚力が発生し、この揚力を発生させる空気の渦が車両先頭部を見かけ上前方に伸ばしたように作用して、高速鉄道車両がトンネルに突入するより前方の位置からトンネル内の圧力を高めると考えられるからである。この場合、走行する高速鉄道車両の先端部分において排除する空気の体積は変わらないが、ノーズ部分が力を受けるその反作用によって前方の空気を移動させると考えられる。   The reason why the nose 11 is increased in this way is to make the pressure change in the tunnel caused by the approach of the vehicle occur at an earlier time. In other words, when the nose of the head shape is raised, lift is generated in the nose portion, and the high-speed rail car enters the tunnel by acting as if the vortex of the air that generates this lift appears to extend forward. This is because it is considered that the pressure in the tunnel is increased from a more forward position. In this case, the volume of air to be excluded at the tip portion of the traveling high-speed railway vehicle is not changed, but it is considered that the air in front is moved by the reaction that the nose portion receives force.

前述したように圧力勾配分布は最大横断面積(一般部横断面積)が同じであれば、同じ条件で走行させた場合に生じる圧力変化は一定であるため、車両先頭部が見かけ上長くなったようにトンネル内の圧力を変化させることで圧力勾配分布の時間幅(その時間に対応した車両の移動距離(図5及び図6におけるグラフの横軸))が広くなって圧力勾配全体が低下することになる。そこで、ノーズ11を上げた第1先頭部形状1は、図5のグラフG1のような圧力勾配分布を示した。具体的には、極大部A,Bはほぼ等しい値を示しているが、その間の窪みCの値が小さくなっている。   As mentioned above, if the pressure gradient distribution has the same maximum cross-sectional area (general part cross-sectional area), the pressure change that occurs when traveling under the same conditions is constant, so the vehicle head seems to be longer. By changing the pressure in the tunnel, the time width of the pressure gradient distribution (the travel distance of the vehicle corresponding to that time (horizontal axis of the graphs in FIGS. 5 and 6)) becomes wider and the entire pressure gradient decreases. become. Therefore, the first leading edge shape 1 with the nose 11 raised shows a pressure gradient distribution as shown by the graph G1 in FIG. Specifically, the local maxima A and B show substantially the same value, but the value of the depression C between them is small.

そして、この第1先頭部形状1をベースにして、圧力勾配分布が前述したように極大部A,Bの値がほぼ等しく、更にその間の窪みCにおける最小値との差が小さくなる形状、つまり台形形状を目指して3次元的な変形を加えて検討を行った。ここでは、高速鉄道車両の先頭部形状が3次元的にどのような特徴を持った形状であることが圧力勾配の低減に好ましいかを、特に運転室のスペースを考慮して確認した。そのため、以下に示す各先頭部形状は、ベースとなる第1先頭部形状1と断面積分布(横断面積A(X)の関数形)を一致させ、先端から一般部までの所定位置における断面積が全て同一(車両先端から同じ距離X位置で輪切りにしたものであれば、その断面積が同じ)になることを条件とした。   Then, based on the first head portion shape 1, the pressure gradient distribution is a shape in which the values of the maximum portions A and B are substantially equal as described above, and the difference from the minimum value in the depression C therebetween is small, that is, Aiming at a trapezoidal shape, three-dimensional deformation was added and examined. Here, it was confirmed in consideration of the space in the driver's cab that the shape of the leading portion of the high-speed railway vehicle is preferable for reducing the pressure gradient. Therefore, each head shape shown below has the same cross-sectional area distribution (function shape of the cross-sectional area A (X)) as the first head shape 1 as a base, and the cross-sectional area at a predetermined position from the tip to the general part. Are all the same (the cross-sectional area is the same if the wheel is cut at the same distance X position from the front end of the vehicle).

第1先頭部形状1は、車体上面13が緩やかな傾斜面であるため、内部に運転席や各種機器を装備した運転室を設けることが不可能であるため現実的ではない。そこで、以下に示す先頭部形状は、先頭部の外形形状として表れる運転室キャノピを車体上面13に加えた先頭部形状になっている。なお、運転室キャノピとは、運転室を覆う窓部分だけでなく車体上面に形成される凸状部分全体のことをいう。
図2は、第1先頭部形状を変形させた高速鉄道車両の第2先頭部形状2を示した図であり、(a)〜(c)はそれぞれ平面、側面および正面を示し、いずれも所定間隔の断面における外形線を重ねて示している。
The first head shape 1 is not realistic because the top surface 13 of the vehicle body is a gently inclined surface, and thus it is impossible to provide a driver's seat or a driver's cab equipped with various devices inside. Therefore, the following head portion shape is a head portion shape in which a cab canopy that appears as the outer shape of the head portion is added to the upper surface 13 of the vehicle body. The driver's cab canopy refers not only to the window portion covering the driver's cab, but also to the entire convex portion formed on the upper surface of the vehicle body.
FIG. 2 is a diagram showing a second head part shape 2 of a high-speed railcar in which the first head part shape is deformed, and (a) to (c) respectively show a plane, a side surface, and a front surface, all of which are predetermined. The outlines in the cross section of the interval are shown superimposed.

この第2先頭部形状2は、車体上面23に運転室キャノピ25を設け、しかも運転室キャノピ25を車体幅方向の中央に配置するようにして第1先頭部形状1に変形を加えたものである。すなわち、第1先頭部形状1と同じように水平な車体下ライン22から最先端部にかけて前方にせり上がり、横に長い扁平形状をしたノーズ21が同じ高さで形成されている。しかし、第2先頭部形状2では、ノーズ21から後方の一般部にかけて緩やかに上昇する車体上面23に運転室キャノピ25が設けられている。第1先頭部形状1と同じ断面積分布が条件であるため、運転室キャノピ25が上方に突き出して設けられた分、側面部26が幅方向に窪んだ形状になって形成される。   The second head portion shape 2 is obtained by modifying the first head portion shape 1 by providing a cab canopy 25 on the upper surface 23 of the vehicle body and disposing the cab canopy 25 in the center of the vehicle body width direction. is there. That is, as in the first head portion shape 1, a nose 21 that rises forward from the horizontal vehicle body lower line 22 to the most distal portion and has a horizontally long flat shape is formed at the same height. However, in the second head portion shape 2, the cab canopy 25 is provided on the upper surface 23 of the vehicle body that gently rises from the nose 21 to the rear general portion. Since the same cross-sectional area distribution as that of the first head portion shape 1 is a condition, the side surface portion 26 is formed in a shape that is recessed in the width direction as much as the cab canopy 25 protrudes upward.

次に図3は、第1先頭部形状を変形させた高速鉄道車両の第3先頭部形状3を示した図であり、(a)〜(c)はそれぞれ平面、側面および正面を示し、いずれも所定間隔の断面における外形線を重ねて示している。
この第3先頭部形状3は、車体上面33に運転室キャノピ35を設け、しかも運転室キャノピ35を車体幅方向の右側に片寄らせて配置し、第1先頭部形状1に変形を加えたものである。新幹線等は複線トンネルを通常左走行するため、この第3先頭部形状3はトンネルの中心側に運転室キャノピ35を片寄って配置させたものである。
Next, FIG. 3 is a diagram showing a third top part shape 3 of the high-speed railcar in which the first top part shape is deformed, and (a) to (c) show a plane, a side surface, and a front surface, respectively. Is also shown by superimposing outlines in cross sections of a predetermined interval.
The third head shape 3 is provided with a cab canopy 35 provided on the upper surface 33 of the vehicle body, and the cab canopy 35 is shifted to the right side in the vehicle body width direction, and the first head shape 1 is modified. It is. Since the Shinkansen or the like normally travels to the left in a double-track tunnel, the third head portion shape 3 is formed by offsetting the cab canopy 35 on the center side of the tunnel.

全体の形状は、第1先頭部形状1と同じように水平な車体下ライン32から最先端部にかけて前方にせり上がり、横に長い扁平形状をしたノーズ31が同じ高さで形成されている。そして、ノーズ31から後方の一般部にかけて緩やかに上昇する車体上面33に運転室キャノピ35が設けられている。第3先頭部形状3も第1先頭部形状1と同じ断面積分布が条件であるため、運転室キャノピ35が上方に突き出して設けられた分、側面部36,37が幅方向に窪んだ形状になって形成される。運転室キャノピ35が右側に片寄って配置されているため、側面部36,37も左右非対称である。   The overall shape is the same as the first head portion shape 1, and a nose 31 having a horizontally long flat shape is formed at the same height from the horizontal lower body line 32 to the most distal portion. A cab canopy 35 is provided on the upper surface 33 of the vehicle body that gently rises from the nose 31 to the rear general part. Since the third head shape 3 also has the same cross-sectional area distribution as that of the first head shape 1, the side surface portions 36 and 37 are recessed in the width direction as the cab canopy 35 protrudes upward. Formed. Since the cab canopy 35 is arranged to be shifted to the right side, the side portions 36 and 37 are also asymmetrical to the left and right.

更に図4は、第1先頭部形状1を変形させた高速鉄道車両の第4先頭部形状4を示した図であり、(a)〜(c)はそれぞれ平面、側面および正面を示し、いずれも所定間隔の断面における外形線を重ねて示している。
この第4先頭部形状4は、車体上面43に運転室キャノピ45を設け、しかも運転室キャノピ45を車体幅方向の左側に片寄らせて配置し、第1先頭部形状1に変形を加えたものである。すなわち、新幹線等は複線トンネルを通常左走行するため、この第4先頭部形状4はトンネルの壁面側に運転室キャノピ45を片寄って配置させたものである。
Further, FIG. 4 is a view showing a fourth head part shape 4 of the high-speed railcar in which the first head part shape 1 is deformed, and (a) to (c) respectively show a plane, a side surface, and a front surface. Is also shown by superimposing outlines in cross sections of a predetermined interval.
The fourth head portion shape 4 is provided with a cab canopy 45 provided on the upper surface 43 of the vehicle body, and the cab canopy 45 is arranged to be shifted to the left side in the vehicle body width direction and the first head portion shape 1 is modified. It is. That is, since the Shinkansen or the like normally travels left in a double-track tunnel, the fourth head portion shape 4 is formed by offsetting the cab canopy 45 on the wall surface side of the tunnel.

全体の形状は、第1先頭部形状1と同じように水平な車体下ライン42から最先端部にかけて前方にせり上がり、横に長い扁平形状をしたノーズ41が同じ高さで形成されている。そして、ノーズ41から後方の一般部にかけて緩やかに上昇する車体上面43に運転室キャノピ45が設けられている。第4先頭部形状4も第1先頭部形状1と同じ断面積分布が条件であるため、運転室キャノピ45が上方に突き出して設けられた分、側面部46,47が幅方向に窪んだ形状になって形成される。運転室キャノピ45が左側に片寄って配置されているため、側面部46,47も左右非対称である。   The overall shape is the same as the first head portion shape 1, and a nose 41 having a horizontally long flat shape is formed at the same height from the horizontal vehicle body lower line 42 to the forefront portion. A cab canopy 45 is provided on the upper surface 43 of the vehicle body that gently rises from the nose 41 to the rear general part. Since the fourth head part shape 4 also has the same cross-sectional area distribution as the first head part shape 1, the side face portions 46 and 47 are recessed in the width direction by the amount that the cab canopy 45 protrudes upward. Formed. Since the cab canopy 45 is arranged on the left side, the side portions 46 and 47 are also asymmetrical.

図5に示された圧力勾配分布は、第1乃至第4先頭部形状1,2,3,4をそれぞれ備えた高速鉄道車両が、複線トンネルの走行方向左側を走行して突入した場合の結果を示すものである。第1先頭部形状1(G1)と比較した第2先頭部形状2(G2)、第3先頭部形状3(G3)および第4先頭部形状4(G4)は、断面積変化率の大きいノーズ11,21,31,41がほぼ同様に構成されているため、圧力勾配分布にできる極大部Aの値もほぼ同じである。これに対して一般部直前の先頭部後方部分によってできる圧力勾配分布の極大部Bは、その値が大きく異なることになった。具体的には、第2先頭部形状2(G2)及び第3先頭部形状3(G3)では値が大きくなり、第4先頭部形状4(G4)では逆に小さくなった。その一方で、極大部A,B間の窪みCでは、第4先頭部形状4(G4)の値が大きくなり、第2先頭部形状2(G2)及び第3先頭部形状3(G3)の値が小さくなった。   The pressure gradient distribution shown in FIG. 5 is the result when a high-speed railway vehicle having the first to fourth head shapes 1, 2, 3, and 4 respectively travels on the left side in the traveling direction of the double-track tunnel and enters. Is shown. The second head shape 2 (G2), the third head shape 3 (G3), and the fourth head shape 4 (G4) compared with the first head shape 1 (G1) have a large cross-sectional area change rate. Since 11, 21, 31, and 41 are configured in substantially the same manner, the value of the maximum portion A that can be obtained in the pressure gradient distribution is also substantially the same. On the other hand, the value of the maximum portion B of the pressure gradient distribution formed by the rear portion of the head portion immediately before the general portion is greatly different. Specifically, the value increased in the second head shape 2 (G2) and the third head shape 3 (G3), and decreased in the fourth head shape 4 (G4). On the other hand, in the dent C between the maximum portions A and B, the value of the fourth head shape 4 (G4) is increased, and the second head shape 2 (G2) and the third head shape 3 (G3) are increased. The value became smaller.

第2先頭部形状2(G2)及び第3先頭部形状3(G3)は極大部Bの最大値が突出して大きくなっているが、微気圧波の強さ(パワー)は圧力勾配の2乗に比例して大きくなるため好ましい結果ではない。これに対して第4先頭部形状4(G4)は、極大部Aの最大値が他よりも僅かに大きくなっているが、その値よりも極大部Bと窪みCとの値がほぼ同じ大きさになって極大部Aの最大値よりも小さくなっている。
本実施形態は、運転室キャノピの車体幅方向の位置について検討したものであり、極大部Bの値が下がったことは、配置変更による効果が現れたものと考えられる。なお、極大部Aの値は先端部分の形状が影響して現れるものであるが、これについては第1先頭部形状1そのままであるため更に改善する余地はあり、現状よりも更に微気圧波の低下が期待できる。
In the second head shape 2 (G2) and the third head shape 3 (G3), the maximum value of the maximum portion B protrudes and becomes large, but the intensity (power) of the micro-pressure wave is the square of the pressure gradient. This is not a desirable result because it increases in proportion to. On the other hand, in the fourth head portion shape 4 (G4), the maximum value of the maximum portion A is slightly larger than the others, but the values of the maximum portion B and the depression C are substantially the same as those values. It is smaller than the maximum value of the local maximum A.
In the present embodiment, the position of the driver's cab canopy in the vehicle width direction is examined, and the decrease in the value of the maximum portion B is considered to be an effect of the arrangement change. Note that the value of the maximum portion A appears due to the shape of the tip portion, but there is room for further improvement since this is the first head portion shape 1 as it is, and there is a further improvement in the pressure wave of the micro pressure wave. A decrease can be expected.

次に、第4先頭部形状4が他の第2、第3先頭部形状2,3に比べて極大部Bの値が低下した点について考察する。第1先頭部形状1は、前記特許文献2の手法によって特定されたものであり、先端部分と一般部直前の後方部分は極大部Aと極大部Bとができるよう断面積変化率が大きく形成され、窪みCをつくるその中間部分は断面積変化率が小さく形成されている。   Next, the point that the value of the maximum portion B is lower in the fourth head portion shape 4 than in the other second and third head portion shapes 2 and 3 will be considered. The first head portion shape 1 is specified by the method of Patent Document 2, and the tip portion and the rear portion immediately before the general portion are formed with a large cross-sectional area change rate so that the maximum portion A and the maximum portion B can be formed. The intermediate portion that forms the recess C is formed with a small cross-sectional area change rate.

ところで、先頭部形状を設計する場合、極大部Aが発生する先端部分は制約が少ないため自由に設計することが可能であるが、極大部Bが発生する一般部直前は入口ドアや運転室キャノピなどが配置されるため、大きく形状を変化させることができない。そのため、先頭部形状の後方部分を急激に膨らませるような形状にしてしまうと、車体を幅方向にみた場合、入口ドアがホームから遠くなって乗降がし難いものとなってしまう。従って、先頭部形状の後方部分は、入口ドアを構成するため一般部とほぼ同じ横幅をもっている。そこで、車体を上下方向に急激な変化を与えようとすれば、運転室の天井が極端に低くなってしまうなど、現実的ではなかった。よって、このように一般部直前に当たる先頭部形状の後方部分は断面積変化率が大きくなるようにするには設計上の制約が大きかった。   By the way, when designing the top portion shape, the tip portion where the maximum portion A is generated can be freely designed because there are few restrictions. However, immediately before the general portion where the maximum portion B is generated, the entrance door and the cab canopy can be designed. Etc., the shape cannot be changed greatly. For this reason, if the rear part of the front part shape is inflated rapidly, the entrance door is far from the platform and is difficult to get on and off when the vehicle body is viewed in the width direction. Therefore, the rear portion of the top shape has substantially the same width as the general portion in order to constitute the entrance door. Therefore, if the vehicle body is subjected to an abrupt change in the vertical direction, the cab ceiling becomes extremely low, which is not realistic. Therefore, the design portion of the rear portion of the leading portion, which hits immediately before the general portion, has a large design restriction in order to increase the cross-sectional area change rate.

そこで、より現実的な先頭部形状を考えると、一般部直前の断面積を大きく変化させることができないため、どうしても極大部Bの値が大きくなってしまう。図5に示された第2先頭部形状2(G2)と第3先頭部形状3(G3)の極大部Bの値は、そうした後方部分の影響が現れたものである。しかし、第4先頭部形状4(G4)の場合には、運転室キャノピ45の位置をトンネル壁側に近づけたことによって極大部Bの値が抑えられ、窪みCとの値がその極大部Bとほぼ同じ大きさになり、ともに極大部Aの最大値よりも小さくなる結果が得られた。これは高速鉄道車両が複線トンネルの左側を走行するため、車体左側に配置された運転席キャノピ45が、こうした圧力勾配分布の結果に影響を及ぼしていると推測できる。   Therefore, when considering a more realistic head portion shape, the value of the maximum portion B inevitably increases because the cross-sectional area immediately before the general portion cannot be changed greatly. The value of the maximum portion B of the second head portion shape 2 (G2) and the third head portion shape 3 (G3) shown in FIG. 5 is an effect of such a rear portion. However, in the case of the fourth head portion shape 4 (G4), the value of the maximum portion B is suppressed by bringing the position of the cab canopy 45 closer to the tunnel wall side, and the value of the depression C is the maximum portion B. As a result, the result was smaller than the maximum value of the local maximum A. This is because the high-speed railway vehicle travels on the left side of the double track tunnel, and it can be assumed that the driver seat canopy 45 arranged on the left side of the vehicle body affects the result of such pressure gradient distribution.

例えば図7に示すように高速鉄道車両5の先頭部分がトンネル内に突入する場合、運転室キャノピ55による空気を圧縮した圧縮波Pが同心円状に伝播する。そして、本実施形態の各先頭部形状2,3,4では、運転室キャノピ25,35,45がトンネル壁面Tから異なる距離に位置しているため、その圧縮波Pが圧力勾配に与える影響が異なっていると考えられる。図8は、そうした運転室キャノピ単独から発生する圧縮波が圧力勾配分布に与える寄与分を抽出して概念的に示した図である。   For example, as shown in FIG. 7, when the leading portion of the high-speed railway vehicle 5 enters the tunnel, the compression wave P obtained by compressing the air by the cab canopy 55 propagates concentrically. And in each head part shape 2, 3, and 4 of this embodiment, since the cab canopy 25,35,45 is located in the different distance from the tunnel wall surface T, the influence which the compression wave P exerts on a pressure gradient has the influence. It is considered different. FIG. 8 is a diagram conceptually showing the contribution of the compression wave generated from such a cab canopy alone to the pressure gradient distribution.

運転室キャノピ部で断面積が拡大することによる圧縮波は、運転室キャノピ部の車両先端からの距離に対応した位置の圧力勾配を上昇させる。そして、先頭部形状2,3,4は、運転室キャノピ25,35,45部分の横断面積がいずれも同一である。そのため図8の曲線と横軸とで囲まれた部分の面積は同一になるが、トンネル壁面Tからの距離の違いにより、そのことによる影響が前後方向への広がり方に差異を生じさせている。すなわち、トンネル壁面Tから最も遠い第3先頭部形状3の運転室キャノピ35(g3)の場合には、圧力勾配分布が前後方向(横軸方向)に広がって最大値が小さくなる一方、トンネルの壁面に近い第4先頭部形状4の運転室キャノピ45(g4)では圧力勾配分布が集中して最大値が大きくなり、運転室キャノピ25が中央に位置する第2先頭部形状2(g2)は圧力勾配も中間的な値となる。   The compression wave due to the cross-sectional area expanding in the cab canopy portion increases the pressure gradient at a position corresponding to the distance from the vehicle front end of the cab canopy portion. And the head part shapes 2, 3, and 4 have the same cross-sectional area of the cab canopies 25, 35, and 45. Therefore, the area surrounded by the curve and the horizontal axis in FIG. 8 is the same, but due to the difference in distance from the tunnel wall surface T, the effect of this causes a difference in the way of spreading in the front-rear direction. . That is, in the case of the cab canopy 35 (g3) of the third head portion shape 3 farthest from the tunnel wall surface T, the pressure gradient distribution spreads in the front-rear direction (horizontal axis direction) and the maximum value becomes smaller. In the cab canopy 45 (g4) of the fourth head shape 4 close to the wall surface, the pressure gradient distribution is concentrated and the maximum value becomes large, and the second head shape 2 (g2) in which the cab canopy 25 is located in the center is The pressure gradient is also an intermediate value.

そして、運転室キャノピ前面のせり上がった窓部25a,35a,45a(図2〜図4参照)が先頭部形状の長手方向中央に位置するため、ここで発生する圧力勾配は図5に示す圧力勾配分布の中で窪みC部分に影響を与えていると考えられる。しかし、第3先頭部形状3は、運転室キャノピ35がトンネル壁面から遠いため、図8に示すように圧力勾配分布が全体的に広がり、図5に示す窪みC部分の値を押し上げるに至っていない。第2先頭部形状2においても同様である。その一方で、第4先頭部形状4では、運転室キャノピ45がトンネル壁面から近いため、図8に示すように圧力勾配分布が集中して図5に示す窪みC部分の値を押し上げることになった。   Since the raised windows 25a, 35a, 45a (see FIGS. 2 to 4) on the front surface of the cab canopy are located at the center in the longitudinal direction of the head shape, the pressure gradient generated here is the pressure shown in FIG. It is considered that the depression C is affected in the gradient distribution. However, in the third head shape 3, the cab canopy 35 is far from the tunnel wall surface, so that the pressure gradient distribution spreads as a whole as shown in FIG. 8, and the value of the depression C portion shown in FIG. . The same applies to the second head portion shape 2. On the other hand, in the 4th head part shape 4, since the cab canopy 45 is near from a tunnel wall surface, pressure gradient distribution concentrates as shown in FIG. 8, and the value of the hollow C part shown in FIG. 5 is pushed up. It was.

このように、第2、第3先頭部形状2,3の如く運転室キャノピ25,35をトンネル壁面Tから離して設けた場合、先頭部形状の長手方向のほぼ中央における断面積増加による圧力波形への寄与は長手方向に拡散し、設計上クリティカルな先頭部後半での圧力勾配が高められて極大部Bの値が大きくなってしまった。しかし、これに対して第4先頭部形状4は、運転室キャノピ45による押し上げ効果が大きいため窪みCの値が大きくなった。そして、圧力勾配分布曲線によって囲まれる面積が一定になることから、逆に極大部Bの値を下げる効果が得られた。よって、運転室キャノピを設けた先頭部形状では、第4先頭部形状4のように、運転室キャノピ45をトンネル壁面に近づけることが先頭部形状後方部分の設計上の制約を補って圧力勾配分布を下げることに有効であることが分かった。   In this way, when the cab canopies 25 and 35 are provided away from the tunnel wall surface T as in the second and third head portion shapes 2 and 3, the pressure waveform due to an increase in the cross-sectional area at substantially the center in the longitudinal direction of the head portion shape. The contribution to is diffused in the longitudinal direction, and the pressure gradient in the latter half of the leading portion, which is critical in design, is increased, and the value of the maximum portion B is increased. On the other hand, since the fourth head portion shape 4 has a large push-up effect by the cab canopy 45, the value of the recess C is large. And since the area surrounded by the pressure gradient distribution curve becomes constant, the effect of lowering the value of the maximum portion B was obtained. Therefore, in the head part shape provided with the cab canopy, as in the fourth head part shape 4, it is possible to bring the cab canopy 45 closer to the tunnel wall surface to compensate for the design restriction of the rear part of the head part shape, and the pressure gradient distribution It was found to be effective in lowering

以上、本発明に係る高速鉄道車両の一実施形態について説明したが、本発明はこれに限定されることなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、運転室キャノピなどの形状は図示した以外の形状であってもよい。特に、先頭部形状の先端は設計の自由度が大きいため、前記実施形態のノーズ形状以外にもより有効な形状が考えられる。
As mentioned above, although one Embodiment of the high-speed rail vehicle which concerns on this invention was described, this invention is not limited to this, A various change is possible in the range which does not deviate from the meaning.
For example, the shape of the cab canopy or the like may be a shape other than illustrated. In particular, since the leading end of the top portion has a high degree of design freedom, a more effective shape is conceivable other than the nose shape of the embodiment.

第1先頭部形状の平面図、側面図および正面図を示した図であり、いずれも所定間隔の断面における外形線を重ねて示したものである。It is the figure which showed the top view, side view, and front view of a 1st head part shape, and all have shown the outline in the cross section of a predetermined space | interval overlaid. 第2先頭部形状の平面図、側面図および正面図を示した図であり、いずれも所定間隔の断面における外形線を重ねて示したものである。It is the figure which showed the top view, side view, and front view of a 2nd head part shape, and all have shown the outline in the cross section of a predetermined space | interval overlaid. 第3先頭部形状の平面図、側面図および正面図を示した図であり、いずれも所定間隔の断面における外形線を重ねて示したものである。It is the figure which showed the top view, side view, and front view of a 3rd head part shape, and all have shown the outline in the cross section of a predetermined space | interval overlaid. 第4先頭部形状の平面図、側面図および正面図を示した図であり、いずれも所定間隔の断面における外形線を重ねて示したものである。It is the figure which showed the top view, side view, and front view of a 4th head part shape, and all have shown the outline in the cross section of a predetermined space | interval overlaid. 第1先頭部形状乃至第4先頭部形状の高速鉄道車両がトンネルに突入した時の圧縮波の圧力勾配分布を比較して示した図である。It is the figure which compared and showed the pressure gradient distribution of the compression wave when the high-speed rail vehicle of the 1st head part shape thru | or the 4th head part shape rushes into a tunnel. 特許文献2に記載された、あるパターン1〜4の異なる先頭部形状によって生じる圧縮波の圧力勾配分布を示した図である。It is the figure which showed the pressure gradient distribution of the compression wave produced by the different head part shape of a certain patterns 1-4 described in patent document 2. FIG. 高速鉄道車両の先頭部分がトンネル内に突入する場合の運転室キャノピによる圧縮波を概念的に示した図である。It is the figure which showed notionally the compression wave by the cab canopy in case the head part of a high-speed rail vehicle rushes into a tunnel. 運転室キャノピの圧縮波が発生させる圧力勾配分布を概念的に示した図である。It is the figure which showed notionally the pressure gradient distribution which the compression wave of a cab canopy generate | occur | produces.

符号の説明Explanation of symbols

4 第4先頭部形状
41 ノーズ
42 車体下ライン
43 車体上面
45 運転室キャノピ
46,47 側面部
4 Fourth head portion shape 41 Nose 42 Vehicle body lower line 43 Vehicle body upper surface 45 Driver's cab canopy 46, 47 Side surface portion

Claims (4)

先端から最大横断面積となる一般部直前までの先頭部形状が、車体上面に運転室空間を構成する運転室キャノピによる突設部が形成された高速鉄道車両において、
走行先頭部の運転室キャノピが、車体に近いトンネル壁面側に片寄って配置されたものであることを特徴とする高速鉄道車両。
In the high-speed railcar in which the leading part shape from the tip to the front of the general part that is the maximum cross-sectional area is formed with a protruding part by a cab canopy that forms the cab space on the upper surface of the vehicle body,
A high-speed railway vehicle characterized in that a driver's cab canopy at the top of the traveling is arranged on the side of the tunnel wall near the vehicle body.
請求項1に記載する高速鉄道車両において、
前記運転室キャノピ前面の車体上面からせり上がった窓部が、前記先頭部形状の長手方向のほぼ中央に位置するものであることを特徴とする高速鉄道車両。
In the high-speed railway vehicle according to claim 1,
A high-speed railway vehicle characterized in that a window portion that rises from the upper surface of the vehicle body in front of the cab canopy is located approximately at the center in the longitudinal direction of the top portion shape.
請求項1又は請求項2に記載する高速鉄道車両において、
前記先頭部形状の先端部は、揚力を発生させるべく上下両方向にせばめられて幅方向に長い扁平形状のノーズが形成されたものであることを特徴とする高速鉄道車両。
In the high-speed railway vehicle according to claim 1 or claim 2,
The high-speed railcar is characterized in that the leading end of the top portion is fitted in both the upper and lower directions so as to generate lift, and has a flat nose that is long in the width direction.
請求項3に記載する高速鉄道車両において、
前記先頭部形状の側面部は、前記運転室キャノピが位置する部分の幅寸法が小さくなり、一般部直前の後方部分は当該一般部とほぼ同じ幅寸法で形成されたものであることを特徴とする高速鉄道車両。
In the high-speed rail vehicle according to claim 3,
The width of the portion where the cab canopy is located in the side surface portion of the head portion shape is small, and the rear portion immediately before the general portion is formed with substantially the same width dimension as the general portion. High-speed rail vehicle.
JP2005335147A 2005-11-21 2005-11-21 High speed train Expired - Fee Related JP4456557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335147A JP4456557B2 (en) 2005-11-21 2005-11-21 High speed train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335147A JP4456557B2 (en) 2005-11-21 2005-11-21 High speed train

Publications (2)

Publication Number Publication Date
JP2007137296A true JP2007137296A (en) 2007-06-07
JP4456557B2 JP4456557B2 (en) 2010-04-28

Family

ID=38200670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335147A Expired - Fee Related JP4456557B2 (en) 2005-11-21 2005-11-21 High speed train

Country Status (1)

Country Link
JP (1) JP4456557B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056896A (en) * 2007-08-30 2009-03-19 Nippon Sharyo Seizo Kaisha Ltd Method for determining pressure wave form regarding top shape of high speed railway vehicle
EP2213544A1 (en) * 2009-02-03 2010-08-04 Eduardo Romo Urroz Trains with frontals trumpet shaped and aerodynamically connected heads
JP2010215124A (en) * 2009-03-17 2010-09-30 Railway Technical Res Inst Method for forming train head portion for reducing fine barometric wave considering three-dimensional effect
CN105307917A (en) * 2013-06-20 2016-02-03 庞巴迪运输有限公司 High-speed rail vehicle provided with a streamlined nose
JP6142065B1 (en) * 2016-10-11 2017-06-07 一夫 有▲吉▼ Noise and side wind pressure prevention device when traveling on high-speed railway vehicles
JP6343083B1 (en) * 2017-09-14 2018-06-13 一夫 有▲吉▼ High-speed railway vehicle with reduced wind resistance and noise, and increased speed

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056896A (en) * 2007-08-30 2009-03-19 Nippon Sharyo Seizo Kaisha Ltd Method for determining pressure wave form regarding top shape of high speed railway vehicle
EP2213544A1 (en) * 2009-02-03 2010-08-04 Eduardo Romo Urroz Trains with frontals trumpet shaped and aerodynamically connected heads
JP2010215124A (en) * 2009-03-17 2010-09-30 Railway Technical Res Inst Method for forming train head portion for reducing fine barometric wave considering three-dimensional effect
CN105307917A (en) * 2013-06-20 2016-02-03 庞巴迪运输有限公司 High-speed rail vehicle provided with a streamlined nose
CN105307917B (en) * 2013-06-20 2017-09-08 庞巴迪运输有限公司 It is provided with the high-speed rail transportation instrument of streamlined head
JP6142065B1 (en) * 2016-10-11 2017-06-07 一夫 有▲吉▼ Noise and side wind pressure prevention device when traveling on high-speed railway vehicles
JP2018062330A (en) * 2016-10-11 2018-04-19 一夫 有▲吉▼ Device for preventing noise and side wind when high speed railway vehicle is travelling
JP6343083B1 (en) * 2017-09-14 2018-06-13 一夫 有▲吉▼ High-speed railway vehicle with reduced wind resistance and noise, and increased speed
JP2019051918A (en) * 2017-09-14 2019-04-04 一夫 有▲吉▼ Accelerated rapid transit railway vehicle reducing resistance of head wind and noise

Also Published As

Publication number Publication date
JP4456557B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4456557B2 (en) High speed train
JP4478633B2 (en) High speed train
JP3822368B2 (en) A shock absorber that reduces low-frequency sound generated at the entrance and exit of the tunnel
JP4371837B2 (en) Body structure of the leading railway
EP3010774B1 (en) High-speed rail vehicle provided with a streamlined nose
JPH11301472A (en) Car body structure for railway head vehicle
JP2003063386A (en) Top part shape of rapid-transit railway rolling stock
JP4051364B2 (en) High speed train
JP4076734B2 (en) High speed train
JP2009196446A (en) Railroad head car
JP4201756B2 (en) Body structure of the leading railway
KR100393685B1 (en) Railway vehicle
JP6615598B2 (en) High speed train
JP5284149B2 (en) Formation method of train head for reducing micro-pressure wave considering 3D effect
JP7033827B2 (en) Head structure of moving body
JP4357522B2 (en) Train train for high speed running
JPH11321640A (en) Body form of head rolling stock
JP5833217B1 (en) Railway vehicle
JP2005335512A (en) Organized train for traveling at high speed
JP3913162B2 (en) Train train for high speed running
JP6912396B2 (en) Railroad vehicle
CN208602472U (en) Empty iron train and empty iron series system for empty iron series system
JP5823224B2 (en) Air fence forming device using train wind of railway
JP2007118750A (en) Method and device for reducing traveling wind under floor of railroad vehicle
JP2005014621A (en) Body structure for railroad head car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees