JP2007136441A - Ultrapure water production apparatus - Google Patents

Ultrapure water production apparatus Download PDF

Info

Publication number
JP2007136441A
JP2007136441A JP2006002897A JP2006002897A JP2007136441A JP 2007136441 A JP2007136441 A JP 2007136441A JP 2006002897 A JP2006002897 A JP 2006002897A JP 2006002897 A JP2006002897 A JP 2006002897A JP 2007136441 A JP2007136441 A JP 2007136441A
Authority
JP
Japan
Prior art keywords
ultrapure water
group
chelate
water production
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006002897A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawada
博之 河田
Michio Butsugan
道男 佛願
Tetsuya Aoyama
哲也 青山
Osamu Higashida
修 東田
Kazumi Ozawa
和美 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006002897A priority Critical patent/JP2007136441A/en
Publication of JP2007136441A publication Critical patent/JP2007136441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrapure water production apparatus where heavy metal ions with low concentration hard to be removed by the conventional ultrapure water production apparatus are effectively removed, thus high purity ultrapure water can be obtained. <P>SOLUTION: The ultrapure water production apparatus is at least provided with: a primary pure water production device; and a primary pure water treatment device using a chelate resin as a resin for trapping ions. The chelate resin is preferably the one in which a chelate group and an amino group are bonded into a resin carrier. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、従来の超純水製造装置では除去困難な低濃度の重金属イオンや多価金属イオンを効果的に除去することにより、高純度超純水を得ることが可能な超純水製造装置に関する。   The present invention provides an ultrapure water production apparatus capable of obtaining high-purity ultrapure water by effectively removing low-concentration heavy metal ions and polyvalent metal ions that are difficult to remove with conventional ultrapure water production apparatuses. About.

市水、地下水、工業用水等の原水から超純水を製造する超純水製造装置は、一般的に、濾過等により大きい固形分を除去する前処理装置、前処理された原水をイオン交換樹脂等で処理する一次純水製造装置、及び該一次純水製造装置により製造された一次純水をさらに処理し、金属イオン濃度を超純水レベルにするための一次純水処理装置を少なくとも備える。そして、この一次純水処理装置は、主に混床式イオン交換装置及び限外濾過膜分離装置で構成されている。   Ultrapure water production equipment that produces ultrapure water from raw water such as city water, groundwater, industrial water, etc. is generally a pretreatment device that removes larger solids by filtration, ion exchange resin And a primary pure water treatment device for further treating the primary pure water produced by the primary pure water production device and setting the metal ion concentration to an ultrapure water level. The primary pure water treatment apparatus is mainly composed of a mixed bed ion exchange apparatus and an ultrafiltration membrane separation apparatus.

また、被処理水に含まれる金属イオンを除去するためのイオン捕捉用樹脂として、2つ以上の官能基を有し、キレート結合により金属イオンを吸着、捕捉するキレート樹脂が広く用いられている。このようなキレート樹脂としては、キレート結合にあずかる官能基の組み合わせが(N、O)の場合を例にとると、例えば、クロロメチル化したスチレンとジビニルベンゼンとの共重合体を処理して得られるイミノジ酢酸型やイミノジプロピオン酸型のキレート樹脂が挙げられる。
特開2005−21883号 特開2003−71280号 特開2002−173665号
Further, as an ion capturing resin for removing metal ions contained in water to be treated, chelate resins having two or more functional groups and adsorbing and capturing metal ions by chelate bonds are widely used. Such a chelate resin is obtained by treating a copolymer of chloromethylated styrene and divinylbenzene, for example, when the combination of functional groups involved in the chelate bond is (N, O). Examples thereof include iminodiacetic acid type and iminodipropionic acid type chelate resins.
Japanese Patent Laid-Open No. 2005-21883 Japanese Patent Application Laid-Open No. 2003-71280 JP 2002-173665 A

しかし、一次純水処理装置に用いるイオン捕捉用樹脂として、従来のキレート樹脂を用いた場合には、一次純水に含まれる低濃度の重金属イオンや多価金属イオンを効果的に除去し、その濃度を0.1ppb未満とすることは極めて困難である。   However, when a conventional chelate resin is used as the ion-trapping resin used in the primary pure water treatment apparatus, it effectively removes low-concentration heavy metal ions and polyvalent metal ions contained in the primary pure water. It is extremely difficult to make the concentration less than 0.1 ppb.

上記を鑑みて、本発明は、従来では除去困難であった低濃度の重金属イオンや多価金属イオンを効果的に除去することが可能な超純水製造装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide an ultrapure water production apparatus capable of effectively removing low-concentration heavy metal ions and polyvalent metal ions that have been difficult to remove in the past.

本発明は、下記(1)〜(9)に記載の事項をその特徴とする。   The present invention is characterized by the following items (1) to (9).

(1)一次純水製造装置と、前記一次純水製造装置により製造された一次純水をキレート樹脂により処理する一次純水処理装置と、を少なくとも備える超純水製造装置であって、得られる超純水中の重金属イオンの濃度が0.1ppb未満である超純水製造装置。   (1) An ultrapure water production apparatus comprising at least a primary pure water production apparatus and a primary pure water treatment apparatus for treating primary pure water produced by the primary pure water production apparatus with a chelate resin. An ultrapure water production apparatus in which the concentration of heavy metal ions in ultrapure water is less than 0.1 ppb.

(2)前記キレート樹脂が、樹脂担体にキレート基とアミノ基が結合したキレート樹脂である上記(1)に記載の超純水製造装置。   (2) The ultrapure water production apparatus according to (1), wherein the chelate resin is a chelate resin in which a chelate group and an amino group are bonded to a resin carrier.

(3)前記アミノ基が、下記一般式(1)

Figure 2007136441
(3) The amino group is represented by the following general formula (1)
Figure 2007136441

(式中、R、R、Rは各々独立に、水素原子、アミノ基、アルキル基、アルキルアルコール基である。はアミノ基の電価を示す)
で示される構造である上記(2)に記載の超純水製造装置。
(In the formula, R 1 , R 2 and R 3 are each independently a hydrogen atom, an amino group, an alkyl group or an alkyl alcohol group. + Indicates the valence of the amino group)
The ultrapure water production apparatus according to the above (2), which has a structure represented by

(4)前記アミノ基が、−N(CH又は−N(CHである上記(2)又は(3)記載の超純水製造装置。 (4) The ultrapure water production apparatus according to the above (2) or (3), wherein the amino group is —N (CH 3 ) 2 or —N + (CH 3 ) 3 .

(5)前記キレート基が、イミノジ酢酸基である上記(2)〜(4)のいずれかに記載の超純水製造装置。   (5) The ultrapure water production apparatus according to any one of (2) to (4), wherein the chelate group is an iminodiacetic acid group.

(6)前記樹脂担体が、架橋重合体である上記(2)〜(5)のいずれかに記載の超純水製造装置。   (6) The ultrapure water production apparatus according to any one of (2) to (5), wherein the resin carrier is a crosslinked polymer.

(7)前記樹脂担体中、架橋剤が10〜90重量%含まれている上記(2)〜(6)のいずれかに記載の超純水製造装置。   (7) The ultrapure water production apparatus according to any one of (2) to (6), wherein the resin carrier contains 10 to 90% by weight of a crosslinking agent.

(8)前記樹脂担体に導入、結合した前記アミノ基量が、前記キレート基に対し、0.1〜1.0当量(モル)の範囲である上記(2)〜(7)のいずれかに記載の超純水製造装置。   (8) The amount of the amino group introduced and bonded to the resin carrier is in the range of 0.1 to 1.0 equivalent (mole) with respect to the chelate group. The ultrapure water production apparatus described.

(9)イオン捕捉用樹脂として、樹脂担体にキレート基とアミノ基が結合したキレート樹脂を用いてなる一次純水処理装置。   (9) A primary pure water treatment apparatus using a chelate resin in which a chelate group and an amino group are bonded to a resin carrier as an ion trapping resin.

本発明の超純水製造装置によれば、従来、除去困難であった低濃度の重金属イオンや多価金属イオンを効果的に除去することができるため、それら金属イオンの濃度が0.1ppb未満の高純度超純水を提供することが可能となる。   According to the apparatus for producing ultrapure water of the present invention, it is possible to effectively remove low-concentration heavy metal ions and polyvalent metal ions that have been difficult to remove conventionally, so the concentration of these metal ions is less than 0.1 ppb. It is possible to provide high purity ultrapure water.

本発明の超純水製造装置は、被処理原水を処理して一次純水を製造する一次純水製造装置と、当該一次純水製造装置により製造された一次純水に含まれる微量の重金属イオンを捕捉するためのイオン捕捉用樹脂としてキレート樹脂を用いてなる一次純水処理装置と、を少なくとも備え、得られる超純水に含まれる重金属イオン濃度が1ppb未満であることをその特徴とするものである。図1には、前処理装置、一次純水製造装置および一次純水処理装置を備えた本発明の超純水製造装置の一実施形態の概略を示す。なお、本発明の超純水製造装置に用いる前処理装置、一次純水製造装置及び一次純水処理装置等の構造は公知の構造でよく、特に制限されない。また、本発明の超純水製造装置は公知の超純水製造装置に用いられている他の構成を備えていてもよい。   The ultrapure water production apparatus of the present invention includes a primary pure water production apparatus that produces primary pure water by treating raw water to be treated, and a trace amount of heavy metal ions contained in the primary pure water produced by the primary pure water production apparatus. A primary pure water treatment apparatus using a chelate resin as an ion-trapping resin for trapping water, characterized in that the heavy metal ion concentration contained in the obtained ultrapure water is less than 1 ppb It is. In FIG. 1, the outline of one Embodiment of the ultrapure water manufacturing apparatus of this invention provided with the pre-processing apparatus, the primary pure water manufacturing apparatus, and the primary pure water processing apparatus is shown. The structures of the pretreatment apparatus, the primary pure water production apparatus, the primary pure water treatment apparatus, etc. used in the ultrapure water production apparatus of the present invention may be known structures and are not particularly limited. Moreover, the ultrapure water manufacturing apparatus of this invention may be provided with the other structure used for the well-known ultrapure water manufacturing apparatus.

本発明で用いる上記キレート樹脂としては、樹脂担体にキレート基とアミノ基が結合したものであることが好ましい。   The chelate resin used in the present invention is preferably one in which a chelate group and an amino group are bonded to a resin carrier.

上記キレート基としては、キレート結合にあずかる官能基の組み合わせが(N、O)のものであれば特に制限はない。具体的には、例えば、イミノジ酢酸基、ニトリロトリ酢酸基、エチレンジアミンテトラ酢酸基、1,3−プロパンジアミンテトラ酢酸基、ジエチレントリアミンペンタ酢酸基等の公知のキレート基を挙げることができる。以下、参考までに、イミノジ酢酸基、ニトリロトリ酢酸基、エチレンジアミンテトラ酢酸基、ジエチレントリアミンペンタ酢酸基の構造を下記一般式(2)に示す。

Figure 2007136441
The chelate group is not particularly limited as long as the combination of functional groups involved in the chelate bond is (N, O). Specific examples include known chelating groups such as iminodiacetic acid group, nitrilotriacetic acid group, ethylenediaminetetraacetic acid group, 1,3-propanediaminetetraacetic acid group, diethylenetriaminepentaacetic acid group. Hereinafter, for reference, the structures of an iminodiacetic acid group, a nitrilotriacetic acid group, an ethylenediaminetetraacetic acid group, and a diethylenetriaminepentaacetic acid group are shown in the following general formula (2).
Figure 2007136441

また、樹脂担体に結合後のキレート基中に、窒素原子に水素原子が結合した1級や2級のアミンが存在すると、試料中のクロルやエポキシ含有の有機物等と反応し、金属の選択性や再現性が低下する恐れがあるため、キレート基中の全ての窒素が炭素原子と結合していることが望ましい。   In addition, when a primary or secondary amine in which a hydrogen atom is bonded to a nitrogen atom is present in the chelate group after binding to the resin carrier, it reacts with chloro or epoxy-containing organic substances in the sample, and metal selectivity. It is desirable that all the nitrogen atoms in the chelate group are bonded to the carbon atom.

また、上記アミノ基としては、特に限定されないが、下記一般式(1)

Figure 2007136441
The amino group is not particularly limited, but the following general formula (1)
Figure 2007136441

(式中、R、R、Rは各々独立に、水素原子、アミノ基、アルキル基、アルキルアルコール基である。はアミノ基の電価を示す)
で示されるアミノ基であることが好ましく、上記一般式(1)中の置換基(R、R、R)となりうるアルキル基及びアルキルアルコール基の炭素数は3以下であることがより好ましい。
(In the formula, R 1 , R 2 and R 3 are each independently a hydrogen atom, an amino group, an alkyl group or an alkyl alcohol group. + Indicates the valence of the amino group)
The alkyl group and the alkyl alcohol group that can be the substituents (R 1 , R 2 , R 3 ) in the general formula (1) are preferably 3 or less. preferable.

上記アミノ基として、具体的には、例えば、−N、−N(CH、−N(CH(C)、−N(COH)、−HN−NH、−N(CH、−HN(C)等を挙げることができ、好ましくは、−N(CH、−N(CH(C)、−N(CH等の、樹脂担体に結合後、窒素原子に水素原子が結合した1級や2級のアミンが残らないものである。上記キレート基と同様、1級や2級のアミンが残っていると、試料中のクロルやエポキシ含有の有機物等と反応し、選択性や再現性が損ねられる場合がある。 As the amino group, specifically, for example, -N + H 3, -N + (CH 3) 3, -N + (CH 3) 2 (C 2 H 5), - N (C 2 H 5 OH ) 2 , —HN + —NH 2 , —N (CH 3 ) 2 , —HN (C 2 H 5 ) and the like, preferably —N + (CH 3 ) 3 , —N + (CH 3 ) 2 (C 2 H 5 ), —N (CH 3 ) 2, etc., which do not leave a primary or secondary amine in which a hydrogen atom is bonded to a nitrogen atom after binding to a resin carrier. As in the case of the chelate group, if primary or secondary amine remains, it may react with chloro or epoxy-containing organic matter in the sample and the selectivity and reproducibility may be impaired.

また、上記樹脂担体としては、キレート樹脂として公知の樹脂担体であれば、特に制限はないが、例えば、多孔性ポリスチレンの誘導体、多孔性ポリエステルその誘導体、多孔性ポリビニルアルコールの誘導体等が挙げられる。上記キレート基やアミノ基の導入の容易性を考慮すると、ハロゲン基含有のポリクロロメチルスチレン、エポキシ基含有のポリグリシジルメタクリレート等の重合体であることが好ましい。このような樹脂担体の合成方法は、特に制限されないが、例えば、クロロメチルスチレンやグリシジルメタクリレート等の原料モノマーを特開昭53−1087号公報に記載の方法に準じて水性懸濁重合させる方法などが挙げられる。   The resin carrier is not particularly limited as long as it is a known resin carrier as a chelate resin, and examples thereof include porous polystyrene derivatives, porous polyester derivatives thereof, and porous polyvinyl alcohol derivatives. Considering the ease of introduction of the chelate group or amino group, it is preferably a polymer such as a halogen group-containing polychloromethylstyrene or an epoxy group-containing polyglycidyl methacrylate. The method for synthesizing such a resin carrier is not particularly limited. For example, a method of subjecting raw material monomers such as chloromethylstyrene and glycidyl methacrylate to aqueous suspension polymerization according to the method described in JP-A No. 53-1087, etc. Is mentioned.

また、上記樹脂担体は、その強度を維持するために架橋重合体であることが望ましい。架橋剤としては、エチレングリコールジメタクリレート、ペンタエリスリトールトリメタクリレート等を用いることができ、樹脂担体中に10〜90重量%含まれることが好ましく、15〜80重量%含まれることがより好ましい。架橋剤の含有量が10重量%未満であると、担体の強度が不十分となる場合があり、また、廃液等で膨潤し操作が困難となる傾向がある。一方、架橋剤の含有量が、90重量%を超えるとアミノ基の導入量が減少し、重金属の捕捉効率が低下する傾向にある。なお、本発明のキレート樹脂の特性を損なわない範囲で、他の成分のモノマーを添加してもよい。   The resin carrier is preferably a crosslinked polymer in order to maintain its strength. As the crosslinking agent, ethylene glycol dimethacrylate, pentaerythritol trimethacrylate or the like can be used, and it is preferably contained in the resin carrier in an amount of 10 to 90% by weight, more preferably 15 to 80% by weight. When the content of the cross-linking agent is less than 10% by weight, the strength of the carrier may be insufficient, and it tends to be difficult to operate due to swelling with a waste liquid or the like. On the other hand, when the content of the crosslinking agent exceeds 90% by weight, the amount of amino groups introduced decreases, and the capture efficiency of heavy metals tends to decrease. In addition, you may add the monomer of another component in the range which does not impair the characteristic of the chelate resin of this invention.

キレート基とアミノ基の樹脂担体への導入は、例えば、樹脂担体上のクロル基やグリシジル基に対して化学的に反応させることが、キレート樹脂の安定性上好ましい。また、キレート基とアミノ基の導入順序は特に問わないが、一般的にキレート基は構造が複雑なため樹脂担体に反応しにくいものが多いので、キレート基導入後、残った反応点を利用しアミノ基を反応させる方が望ましい。   For the introduction of the chelate group and the amino group into the resin carrier, for example, it is preferable to chemically react with a chloro group or a glycidyl group on the resin carrier in view of the stability of the chelate resin. The order of introduction of the chelate group and amino group is not particularly limited, but in general there are many chelate groups that are difficult to react with the resin carrier due to their complicated structure. It is desirable to react an amino group.

また、樹脂担体に導入され、結合したアミノ基量は、キレート基に対し、0.1〜1.0当量(モル)の範囲であることが好ましい。1.0当量(モル比)を超えると、Cu、Mn、Fe等の重金属もイオン排除され易くなり、金属捕捉能が低下する傾向にあり、0.1当量(モル)未満ではアルカリ(土類)金属も捕捉され易くなり、金属選択性が低下する傾向にある。なお、キレート基およびアミノ基導入後、樹脂担体上の反応点であるエポキシ基やクロロ基等が残った場合は、必要に応じて、酸やアルカリで加水分解を行なってもよい。   Moreover, it is preferable that the amount of amino groups introduced and bonded to the resin carrier is in the range of 0.1 to 1.0 equivalent (mole) with respect to the chelate group. If it exceeds 1.0 equivalent (molar ratio), heavy metals such as Cu, Mn, and Fe are likely to be ion-excluded, and the metal scavenging ability tends to decrease. ) Metals are also easily captured, and the metal selectivity tends to decrease. In addition, when an epoxy group or a chloro group that is a reaction point on the resin carrier remains after introduction of the chelate group and amino group, hydrolysis may be performed with an acid or an alkali as necessary.

本発明に用いるキレート樹脂は、上記のように、アミノ基がキレート基と共に樹脂担体に導入されているため、酸性下の試料中、アミノ基が+イオンとして働き、Na、K、Ca等のアルカリ(土類)金属をイオン排除効果によりキレート基に吸着させず、Cu、Mn、Fe等の、キレート結合が比較的強い重金属イオンやAl等の多価金属イオンを効果的にかつ選択的に吸着することが可能である。さらには、アミノ基の導入により、吸着したイオンの脱着が容易になる。   In the chelate resin used in the present invention, as described above, since the amino group is introduced into the resin carrier together with the chelate group, the amino group acts as a + ion in an acidic sample, and an alkali such as Na, K, or Ca is used. (Earth) Metals are not adsorbed to the chelate group by the ion exclusion effect, and heavy metal ions such as Cu, Mn, Fe, etc., which have relatively strong chelate bonds, and polyvalent metal ions such as Al are effectively and selectively adsorbed. Is possible. Furthermore, the introduction of amino groups facilitates desorption of adsorbed ions.

以下、実施例により本発明を具体的に説明するが、本発明はこれに制限されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(実施例1)
(a)樹脂担体の製造
グリシジルメタクリレート100g、テトラメチロールメタントリメタクリレート100g、酢酸ブチル180g、イソアミルアルコール120g及びアゾビスイソブチロニトリル0.7gの混合物にイオン交換水1000ml及び1%ポリビニルアルコール水溶液200mlを加え、攪拌しながら水酸化ナトリウム水溶液を用いてpH7〜8に調整した。その後、70℃で6時間重合反応を行った。反応物を冷却した後、生成した共重合体粒子を濾取し、メタノール及び水で順次洗浄した。次いで、得られた共重合体粒子を一日風乾し、さらに80℃の真空乾燥機に入れて6時間乾燥した。その後、乾燥した共重合体粒子を分級することで、平均粒径40〜50μmの多孔性架橋重合体粒子(樹脂担体)30gを得た。
Example 1
(A) Production of resin carrier 100 ml of glycidyl methacrylate, 100 g of tetramethylolmethane trimethacrylate, 180 g of butyl acetate, 120 g of isoamyl alcohol and 0.7 g of azobisisobutyronitrile were mixed with 1000 ml of ion-exchanged water and 200 ml of 1% polyvinyl alcohol aqueous solution. In addition, the pH was adjusted to 7-8 using an aqueous sodium hydroxide solution while stirring. Thereafter, a polymerization reaction was carried out at 70 ° C. for 6 hours. After cooling the reaction product, the produced copolymer particles were collected by filtration and washed successively with methanol and water. Next, the obtained copolymer particles were air-dried for one day and further put in a vacuum dryer at 80 ° C. and dried for 6 hours. Thereafter, the dried copolymer particles were classified to obtain 30 g of porous crosslinked polymer particles (resin carrier) having an average particle size of 40 to 50 μm.

(b)キレート基の導入
上記(a)で作製した樹脂担体10gとイミノジ酢酸ナトリウム10gを15%水酸化ナトリウム水溶液100mlに入れ、60℃で5時間反応させた。反応物を濾過しイオン交換水で洗浄し、キレート基導入樹脂担体を得た。
(B) Introduction of chelate group 10 g of the resin carrier prepared in (a) and 10 g of sodium iminodiacetate were placed in 100 ml of a 15% aqueous sodium hydroxide solution and reacted at 60 ° C. for 5 hours. The reaction product was filtered and washed with ion exchange water to obtain a chelate group-introduced resin carrier.

(c)アミノ基の導入
上記(b)で得たキレート基導入樹脂担体を30%トリメチルアミン100mlに全量入れ、30℃で5時間反応させ、反応物を濾過しイオン交換水、メタノールで洗浄し、キレート樹脂を得た。なお、導入したアミノ基量は、キレート基に対し、0.5モル当量であった。
(C) Introduction of amino group The chelate group-introduced resin carrier obtained in (b) above was put in 100 ml of 30% trimethylamine, reacted at 30 ° C. for 5 hours, the reaction product was filtered, washed with ion-exchanged water and methanol, A chelating resin was obtained. The amount of amino group introduced was 0.5 molar equivalent relative to the chelate group.

(d)評価
両端にフィルターを有する密閉式のカラムに上記で得たキレート樹脂200gを充填したものを一次純水処理装置とし、これを、超純水製造装置Pure Line WL21P(ヤマト科学製、一次純水製造装置および一次純水処理装置を備える)の一次純水処理装置に代えてセットした後、当該超純水製造装置に水道水を通水し、一次純水及び当該一次純水を処理して得られた超純水をサンプリングした。ついで、サンプリングした一次純水及び超純水に含まれる鉄イオン、銅イオン及びアルミニウムイオンを、ICP−MS分析装置を用いて定量した。結果を表1に示す。
(D) Evaluation A sealed column having filters at both ends filled with 200 g of the chelate resin obtained above is used as a primary pure water treatment apparatus, and this is used as an ultrapure water production apparatus Pure Line WL21P (manufactured by Yamato Kagaku, primary After setting instead of a primary pure water treatment device (with a pure water production device and a primary pure water treatment device), tap water is passed through the ultrapure water production device to treat the primary pure water and the primary pure water. The ultrapure water obtained was sampled. Next, iron ions, copper ions, and aluminum ions contained in the sampled primary pure water and ultrapure water were quantified using an ICP-MS analyzer. The results are shown in Table 1.

(比較例1)
超純水製造装置Pure Line WL21Pに水道水を通水して超純水を製造した以外は、実施例1と同様にして、超純水に含まれる鉄イオン、銅イオン及びアルミニウムイオンを定量した。結果を表1に示す。

Figure 2007136441
(Comparative Example 1)
Iron ions, copper ions and aluminum ions contained in the ultrapure water were quantified in the same manner as in Example 1 except that tap water was passed through the ultrapure water production apparatus Pure Line WL21P to produce ultrapure water. . The results are shown in Table 1.
Figure 2007136441

表1から、実施例1の超純水製造装置は、従来の超純水製造装置では除去困難な低濃度の重金属イオンを効果的に除去し、高純度の超純水を製造することが可能であることが分かる。   From Table 1, the ultrapure water production apparatus of Example 1 can effectively remove low-concentration heavy metal ions that are difficult to remove by the conventional ultrapure water production apparatus, and can produce high purity ultrapure water. It turns out that it is.

本発明の超純水製造装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the ultrapure water manufacturing apparatus of this invention.

Claims (9)

一次純水製造装置と、前記一次純水製造装置により製造された一次純水をキレート樹脂により処理する一次純水処理装置と、を少なくとも備える超純水製造装置であって、得られる超純水中の重金属イオンの濃度が0.1ppb未満である超純水製造装置。   An ultrapure water production apparatus comprising at least a primary pure water production apparatus and a primary pure water treatment apparatus for treating primary pure water produced by the primary pure water production apparatus with a chelate resin, the ultrapure water obtained An ultrapure water production apparatus in which the concentration of heavy metal ions therein is less than 0.1 ppb. 前記キレート樹脂が、樹脂担体にキレート基とアミノ基が結合したキレート樹脂である請求項1に記載の超純水製造装置。   The ultrapure water production apparatus according to claim 1, wherein the chelate resin is a chelate resin in which a chelate group and an amino group are bonded to a resin carrier. 前記アミノ基が、下記一般式(1)
Figure 2007136441
(式中、R、R、Rは各々独立に、水素原子、アミノ基、アルキル基、アルキルアルコール基である。はアミノ基の電価を示す)
で示される構造である請求項2に記載の超純水製造装置。
The amino group is represented by the following general formula (1)
Figure 2007136441
(In the formula, R 1 , R 2 and R 3 are each independently a hydrogen atom, an amino group, an alkyl group or an alkyl alcohol group. + Indicates the valence of the amino group)
The ultrapure water production apparatus according to claim 2, which has a structure represented by:
前記アミノ基が、−N(CH又は−N(CHである請求項2又は3記載の超純水製造装置。 The amino group is, -N (CH 3) 2 or -N + (CH 3) ultrapure water production apparatus according to claim 2 or 3 wherein the 3. 前記キレート基が、イミノジ酢酸基である請求項2〜4のいずれかに記載の超純水製造装置。   The ultrapure water production apparatus according to any one of claims 2 to 4, wherein the chelate group is an iminodiacetic acid group. 前記樹脂担体が、架橋重合体である請求項2〜5のいずれかに記載の超純水製造装置。   The apparatus for producing ultrapure water according to any one of claims 2 to 5, wherein the resin carrier is a crosslinked polymer. 前記樹脂担体中、架橋剤が10〜90重量%含まれている請求項2〜6のいずれかに記載の超純水製造装置。   The apparatus for producing ultrapure water according to any one of claims 2 to 6, wherein the resin carrier contains 10 to 90% by weight of a crosslinking agent. 前記樹脂担体に導入、結合した前記アミノ基量が、前記キレート基に対し、0.1〜1.0当量(モル)の範囲である請求項2〜7のいずれかに記載の超純水製造装置。   The ultrapure water production according to any one of claims 2 to 7, wherein the amount of the amino group introduced and bonded to the resin carrier is in the range of 0.1 to 1.0 equivalent (mol) with respect to the chelate group. apparatus. イオン捕捉用樹脂として、樹脂担体にキレート基とアミノ基が結合したキレート樹脂を用いてなる一次純水処理装置。

A primary pure water treatment apparatus using a chelate resin in which a chelate group and an amino group are bonded to a resin carrier as an ion-trapping resin.

JP2006002897A 2005-10-19 2006-01-10 Ultrapure water production apparatus Pending JP2007136441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002897A JP2007136441A (en) 2005-10-19 2006-01-10 Ultrapure water production apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005304310 2005-10-19
JP2006002897A JP2007136441A (en) 2005-10-19 2006-01-10 Ultrapure water production apparatus

Publications (1)

Publication Number Publication Date
JP2007136441A true JP2007136441A (en) 2007-06-07

Family

ID=38199928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002897A Pending JP2007136441A (en) 2005-10-19 2006-01-10 Ultrapure water production apparatus

Country Status (1)

Country Link
JP (1) JP2007136441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293194A (en) * 2013-05-09 2013-09-11 闻路红 Pure water detection device and pure water detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197403A (en) * 1986-02-24 1987-09-01 Tokyo Organ Chem Ind Ltd Production of chelating multidentate ligand resin
JPH0889954A (en) * 1994-09-21 1996-04-09 Asahi Chem Ind Co Ltd Point-of-use module system
JPH11260787A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Cleaning method of silicon object surface
JP2004154713A (en) * 2002-11-07 2004-06-03 Japan Organo Co Ltd Ultrapure water manufacturing apparatus
JP2005118734A (en) * 2003-10-20 2005-05-12 Japan Organo Co Ltd Ultrapure water making apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197403A (en) * 1986-02-24 1987-09-01 Tokyo Organ Chem Ind Ltd Production of chelating multidentate ligand resin
JPH0889954A (en) * 1994-09-21 1996-04-09 Asahi Chem Ind Co Ltd Point-of-use module system
JPH11260787A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Cleaning method of silicon object surface
JP2004154713A (en) * 2002-11-07 2004-06-03 Japan Organo Co Ltd Ultrapure water manufacturing apparatus
JP2005118734A (en) * 2003-10-20 2005-05-12 Japan Organo Co Ltd Ultrapure water making apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293194A (en) * 2013-05-09 2013-09-11 闻路红 Pure water detection device and pure water detection method

Similar Documents

Publication Publication Date Title
Roosen et al. Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials
US10023937B2 (en) Adsorbent for rare earth element and method for recovering rare earth element
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
WO2016047700A1 (en) Rare earth element adsorption separation material
JP6843127B2 (en) How to regenerate acrylic resin
JP5603394B2 (en) Method for treating waste liquid containing cesium
JP5796867B2 (en) Chelating resin
EP2785650A1 (en) Melamine Aldehyde Polymers
JP2014020916A (en) METHOD FOR PROCESSING RADIOACTIVE Cs CONTAMINATED WATER
WO2010143383A1 (en) Phosphorus-adsorbing material and phosphorus recovery system
CN110624518A (en) Ppy complex and preparation method and application thereof
MXPA02004285A (en) Process for the preparation of hetero-dispersed chelating resins.
CN104587969B (en) Copper ion is had the preparation method of the carbon back adsorbing material of selective absorption
JP2007136441A (en) Ultrapure water production apparatus
JP5017801B2 (en) Chelating resin
CN103721689A (en) Magnetic meso-porous silicon, preparation method of magnetic meso-porous silicon, magnetic meso-porous silicon adsorbent, preparation method and application of magnetic meso-porous silicon adsorbent
JP4605432B2 (en) Chelate resin and process for producing the same
CN107922217B (en) Method for purifying water
JP2017035671A (en) Rare-earth metal adsorbent, rare-earth metal adsorbing device, and production method of rare-earth metal adsorbent
WO2010095222A1 (en) Zirconium-loaded particulate adsorbent and method for producing the same
Zhou et al. Adsorption of U (VI) from aqueous solution by a novel chelating adsorbent functionalized with amine groups: equilibrium, kinetic, and thermodynamic studies
CN112266442B (en) High-selectivity americium-enriched material and method
JP2011240287A (en) Solid chelating agent and method of manufacturing the same, and method for separation of cobalt, manganese and nickel employing the agent
CN112777672A (en) Functional silicon dioxide modified defluorination material and preparation and application thereof
JP2007000752A (en) High-speed arsenic adsorbing material and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207