JP2007134205A - Fuel cell system and its scavenging method - Google Patents

Fuel cell system and its scavenging method Download PDF

Info

Publication number
JP2007134205A
JP2007134205A JP2005327089A JP2005327089A JP2007134205A JP 2007134205 A JP2007134205 A JP 2007134205A JP 2005327089 A JP2005327089 A JP 2005327089A JP 2005327089 A JP2005327089 A JP 2005327089A JP 2007134205 A JP2007134205 A JP 2007134205A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
scavenging
outside air
internal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005327089A
Other languages
Japanese (ja)
Other versions
JP4554494B2 (en
Inventor
Koichiro Miyata
幸一郎 宮田
Kazuhiro Wake
千大 和氣
Junpei Ogawa
純平 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005327089A priority Critical patent/JP4554494B2/en
Publication of JP2007134205A publication Critical patent/JP2007134205A/en
Application granted granted Critical
Publication of JP4554494B2 publication Critical patent/JP4554494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of improving a life and enhancing the marketability of a fuel cell by curtailing burdens on an electrolyte film and the generation of noise caused by frequent scavenging treatment. <P>SOLUTION: After the fuel cell 1 generating power by the reaction of reactive gas stops power generation, the state of the fuel cell is monitored at preset intervals, and at that time, the inside of a flow channel of the reactive gas is scavenged by scavenging gas when the fuel cell is determined to be in a given state needing the scavenging. The first monitoring interval immediately after the stop of the power generation of the fuel cell 1 is decided in accordance with a temperature in the fuel cell 1 at the stop of the power generation and an ambient temperature at which the fuel cell 1 is placed, and a second monitoring interval and onward is renewed according to an ambient temperature after the previous monitoring interval. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、燃料電池の発電停止後に電池内部の残留水を掃気ガスによって掃気する機能を備えた燃料電池システムとそのシステムにおける掃気方法に関するものである。   The present invention relates to a fuel cell system having a function of scavenging residual water inside a battery after the power generation of the fuel cell is stopped, and a scavenging method in the system.

近年、燃料電池を駆動電源とする車両が開発されている。このような燃料電池車両に用いられる燃料電池としては、アノードとカソードの間に電解質膜を介装した単位セルを所定数積層した構造のものが知られている。この燃料電池では、アノードに水素を、カソードに酸素(酸素を含む空気)を夫々導入し、このとき電解質膜を通した水素と酸素の電気化学反応によって電力を発生するようになっている。なお、このとき、電気化学反応では、電力の発生とともに反応水(以下、「生成水」と呼ぶ。)が生成されるが、その生成水の一部は、アノードとカソードの間の電解質膜を通してアノード側にも逆拡散することが知られている。   In recent years, vehicles using a fuel cell as a driving power source have been developed. As a fuel cell used in such a fuel cell vehicle, a structure in which a predetermined number of unit cells each having an electrolyte membrane interposed between an anode and a cathode are stacked is known. In this fuel cell, hydrogen is introduced into the anode and oxygen (air containing oxygen) is introduced into the cathode, and at this time, electric power is generated by an electrochemical reaction between hydrogen and oxygen passing through the electrolyte membrane. At this time, in the electrochemical reaction, reaction water (hereinafter referred to as “product water”) is generated with the generation of electric power, and a part of the generated water passes through the electrolyte membrane between the anode and the cathode. It is known that reverse diffusion also occurs on the anode side.

ところで、このような燃料電池においては、発電を停止する際に、反応ガス流路内から前述の生成水や加湿水等の残留水を除去することが重要となる。即ち、燃料電池が発電を停止した後に外気温が低下すると、内部の残留水が凍結して燃料電池の再始動性が低下する可能性が考えられる。   By the way, in such a fuel cell, when power generation is stopped, it is important to remove residual water such as the aforementioned generated water and humidified water from the reaction gas flow path. That is, if the outside air temperature decreases after the fuel cell stops generating power, the residual water inside may freeze and the restartability of the fuel cell may decrease.

これに対し、燃料電池の停止時に、反応ガス流路内に掃気ガスを導入することによって、電池内部の残留水を除去する技術が案出されている(例えば、特許文献1参照)。
特開2003−203665号公報
On the other hand, a technique has been devised to remove residual water inside the battery by introducing a scavenging gas into the reaction gas flow path when the fuel cell is stopped (see, for example, Patent Document 1).
JP 2003-203665 A

しかしながら、燃料電池が発電を停止してから短時間で再始動する場合や、夏場等の外気温が高いとき等では、燃料電池の温度がさほど低下しないため、燃料電池の停止時に必ずしも反応ガス流路内の掃気を必要としない場合かある。
上記の従来の燃料電池システムにおいては、このような状況下においても掃気処理を発電停止直後に毎回行うため、掃気処理を行う頻度が多く、このことが電解質膜の製品寿命に悪影響を与え、さらには毎回の掃気音の発生が商品性の低下に繋がることが懸念される。
However, when the fuel cell is restarted in a short time after stopping power generation, or when the outside air temperature is high such as in summer, the temperature of the fuel cell does not decrease so much. May not require scavenging in the road.
In the above conventional fuel cell system, even under such circumstances, the scavenging process is performed every time immediately after the power generation is stopped, so the scavenging process is frequently performed, which adversely affects the product life of the electrolyte membrane. There is a concern that the occurrence of scavenging sound every time leads to a decline in merchantability.

そこでこの発明は、頻繁な掃気処理による電解質膜の負担と騒音の発生を少なくして、燃料電池の寿命の向上と商品性の向上を図ることのできる燃料電池システム、及び、そのシステムの掃気方法を提供しようとするものである。   Therefore, the present invention provides a fuel cell system capable of reducing the burden on the electrolyte membrane and the generation of noise due to frequent scavenging treatment, improving the life of the fuel cell and improving the merchantability, and a scavenging method for the system. Is to provide.

上記の課題を解決するための手段として、請求項1に記載の発明は、反応ガスが反応して発電を行う燃料電池(例えば、後述の実施形態における燃料電池1)と、この燃料電池の反応ガス流路内を掃気ガスによって掃気する掃気手段(例えば、後述の実施形態におけるエアコンプレッサ5、開閉弁10、パージ弁17,18)と、前記燃料電池の停止時に燃料電池の内部温度を検出する電池内温度検出手段(例えば、後述の実施形態における内部温度センサ13)と、を備え、前記燃料電池が発電を停止した後に、設定インターバルをおいて燃料電池の状態を監視し、その際に燃料電池が掃気を必要とする所定状態と判断されたときに前記掃気手段による掃気を行う燃料電池システムおいて、前記燃料電池のおかれた外気の温度を検出する外気温検出手段(例えば、後述の実施形態における外気温センサ14)と、前記燃料電池の内部温度と外気の温度に基づいて燃料電池の内部温度の変化速度を推定し、そこで推定した内部温度の変化速度から燃料電池の内部温度が設定温度幅変化するまでの経過時間を推定して、その推定経過時間を前記設定インターバルとする監視インターバル決定手段(例えば、後述の実施形態におけるコントローラ12)と、を設けるようにした。
これにより、燃料電池の発電停止時には、電池内温度検出手段と外気温検出手段が燃料電池内部の温度と外気の温度を夫々検出し、監視インターバル決定手段が、これらの検出値を受けて燃料電池の内部と外部の温度差に応じた監視インターバルを決定する。監視インターバル時間の経過後、燃料電池が掃気を必要とする所定状態であればそこで掃気を行い、燃料電池が掃気を必要とする所定状態になっていない場合には、少なくとも外気温検出手段から外気温の検出値を受け、監視インターバル決定手段が次の監視インターバルを決定して更新する。
As means for solving the above-mentioned problems, the invention according to claim 1 is directed to a fuel cell (for example, a fuel cell 1 in an embodiment described later) in which a reaction gas reacts to generate power, and a reaction of the fuel cell A scavenging means (for example, an air compressor 5, an on-off valve 10, and purge valves 17 and 18 in embodiments described later) for scavenging the gas flow path with the scavenging gas, and detecting the internal temperature of the fuel cell when the fuel cell is stopped. Battery temperature detecting means (for example, an internal temperature sensor 13 in an embodiment described later), and after the fuel cell stops generating power, the fuel cell state is monitored at a set interval, and the fuel is In a fuel cell system that performs scavenging by the scavenging means when it is determined that the battery is in a predetermined state that requires scavenging, an external temperature that detects the temperature of the outside air placed in the fuel cell is detected. A change rate of the internal temperature of the fuel cell is estimated based on a temperature detection means (for example, an outside air temperature sensor 14 in an embodiment described later) and the internal temperature of the fuel cell and the temperature of the external air, and the change in the internal temperature estimated there A monitoring interval determining means (for example, a controller 12 in an embodiment described later) that estimates an elapsed time from the speed until the internal temperature of the fuel cell changes by a set temperature range and uses the estimated elapsed time as the set interval. I made it.
Thus, when power generation of the fuel cell is stopped, the temperature detecting means inside the cell and the outside air temperature detecting means detect the temperature inside the fuel cell and the temperature of the outside air, respectively, and the monitoring interval determining means receives these detected values and the fuel cell The monitoring interval is determined according to the temperature difference between the inside and outside. After the monitoring interval time has passed, if the fuel cell is in a predetermined state that requires scavenging, scavenging is performed there. If the fuel cell is not in the predetermined state that requires scavenging, at least the outside air temperature detecting means is removed. Upon receiving the detected temperature value, the monitoring interval determining means determines and updates the next monitoring interval.

また、請求項2に記載の発明は、請求項1に記載の燃料電池システムおいて、燃料電池の発電停止直後の最初の監視インターバルは、前記監視インターバル決定手段が、発電停止時における前記電池内温度検出手段と外気温検出手段の検出値に基づいて決定し、前記2回目以降の監視インターバルは、前記監視インターバル決定手段が、前回の監視インターバルの後の外気温検出手段の検出値と、前回以前の電池内温度検出手段の検出値からの推測値に基づいて決定するようにした。
電池内部温度の変化傾向は時間経過に対して大きく変化しないため、監視インターバル決定手段が前回以前の電池内温度検出手段の検出値からの推測値を用いても大きな誤差は生じにくい。したがって、発電停止後に燃料電池の状態を監視するときに、電池内温度検出手段の起動回数を減らすことができる。
The invention according to claim 2 is the fuel cell system according to claim 1, wherein the first monitoring interval immediately after the power generation of the fuel cell is stopped is determined by the monitoring interval determining means when the power generation is stopped. The second and subsequent monitoring intervals are determined based on the detected values of the temperature detecting means and the outside air temperature detecting means, and the monitoring interval determining means determines the detected value of the outside air temperature detecting means after the previous monitoring interval, The determination is made based on the estimated value from the detection value of the previous battery temperature detection means.
Since the change tendency of the battery internal temperature does not change greatly with the passage of time, even if the monitoring interval determination means uses an estimated value from the detection value of the battery temperature detection means before the previous time, a large error hardly occurs. Therefore, when the state of the fuel cell is monitored after power generation is stopped, the number of activations of the in-cell temperature detecting means can be reduced.

また、請求項3に記載の発明は、請求項1または2に記載の燃料電池システムおいて、前記燃料電池のおかれた外気の温度以外の環境変化を検出する環境変化検出手段を設け、前記監視インターバル決定手段は、前記環境変化検出手段の検出値を基にして監視インターバルを補正するようにした。
これにより、監視インターバル決定手段は、外気の温度だけでなく、風速や天候等の他の環境変化を反映して監視インターバルを決定することとなる。
The invention according to claim 3 is the fuel cell system according to claim 1 or 2, further comprising environment change detection means for detecting an environment change other than the temperature of the outside air where the fuel cell is placed, The monitoring interval determining means corrects the monitoring interval based on the detection value of the environment change detecting means.
Thereby, the monitoring interval determining means determines the monitoring interval reflecting not only the temperature of the outside air but also other environmental changes such as wind speed and weather.

また、請求項4に記載の発明は、反応ガスの反応によって発電を行う燃料電池が発電を停止した後、設定インターバルをおいて燃料電池の状態を監視し、その際に燃料電池が掃気を必要とする所定状態と判断されたときに、掃気ガスによって反応ガスの流路内を掃気する燃料電池システムの掃気方法において、発電停止時における燃料電池内の温度と、燃料電池がおかれている外気の温度に応じて燃料電池の内部温度の変化速度を推定し、そこで推定した内部温度の変化速度から燃料電池の内部温度が設定温度幅変化するまでの経過時間を推定して、その推定経過時間を前記設定インターバルとするようにした。   In the invention according to claim 4, the fuel cell that generates power by reaction of the reaction gas stops the power generation, and then monitors the state of the fuel cell at a set interval. At that time, the fuel cell needs to scavenge In the scavenging method of the fuel cell system in which the scavenging gas scavenges the reaction gas flow path when the predetermined state is determined, the temperature inside the fuel cell when power generation is stopped and the outside air in which the fuel cell is placed The change rate of the internal temperature of the fuel cell is estimated according to the temperature of the fuel cell, and the elapsed time until the internal temperature of the fuel cell changes by the set temperature range is estimated from the change rate of the internal temperature estimated there. Is set to the set interval.

この発明は、燃料電池の発電停止時の電池内温度と外気温を基に電池内温度の変化速度を推定し、そこで推定した内部温度の変化速度から燃料電池の内部温度が設定温度幅変化するまでの経過時間を推定して、その推定経過時間を監視インターバルとするため、常に外気温変化に則した適切なインターバルでもって燃料電池の状態を監視することができ、これにより、反応ガス流路内の不要な掃気を低減することができるうえ、燃料電池の状態の監視頻度も少なくすることができる。
したがって、この発明によれば、掃気頻度の減少により、燃料電池の寿命向上と商品性の向上を図ることができる。また、発電停止後の燃料電池の監視頻度を可及的に少なくすることができることから、燃料電池の監視システムによる電力消費を少なくすることができる。
According to the present invention, the rate of change of the temperature inside the battery is estimated based on the temperature inside the battery when the power generation of the fuel cell is stopped and the outside temperature, and the internal temperature of the fuel cell changes by the set temperature range from the rate of change of the estimated internal temperature. Since the estimated elapsed time is estimated as the monitoring interval, the state of the fuel cell can always be monitored at an appropriate interval in accordance with changes in the outside air temperature. Unnecessary scavenging can be reduced, and the frequency of monitoring the state of the fuel cell can be reduced.
Therefore, according to the present invention, the life of the fuel cell can be improved and the merchantability can be improved by reducing the scavenging frequency. In addition, since the monitoring frequency of the fuel cell after power generation is stopped can be reduced as much as possible, the power consumption by the fuel cell monitoring system can be reduced.

特に、請求項2に記載の発明によれば、発電停止後に燃料電池の状態を監視するときに、電池内温度検出手段の起動回数を減らすことができ、環境温度の変化に合わせてインターバルを決定できるため、燃料電池の監視システムの電力消費を必要最小限とすることができる。   In particular, according to the second aspect of the present invention, when the state of the fuel cell is monitored after the power generation is stopped, the number of activations of the battery temperature detecting means can be reduced, and the interval is determined according to a change in the environmental temperature. Therefore, the power consumption of the fuel cell monitoring system can be minimized.

また、請求項3に記載の発明によれば、外気の温度だけでなく、その他の環境変化を反映して監視インターバルを決定するため、より周囲の環境に適した最適なインターバルで燃料電池の状態を監視することができる。   According to the third aspect of the present invention, since the monitoring interval is determined by reflecting not only the temperature of the outside air but also other environmental changes, the state of the fuel cell is optimized at an optimum interval more suitable for the surrounding environment. Can be monitored.

以下、この発明の一実施形態を、図面を参照して説明する。
図1は、この発明にかかる燃料電池システムを示すブロック図である。この実施形態の燃料電池システムは燃料電池車両に搭載され、車両のイグニッションスイッチ15のON,OFF操作に応じて発電と発電停止が行われるようになっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a fuel cell system according to the present invention. The fuel cell system of this embodiment is mounted on a fuel cell vehicle, and power generation and power generation stop are performed in accordance with ON / OFF operation of the ignition switch 15 of the vehicle.

図1において、1は、燃料電池であり、この燃料電池1は、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜をアノードとカソードで両側から挟み込んで形成された複数のセルが層状に重合された基本構成とされている。   In FIG. 1, reference numeral 1 denotes a fuel cell. This fuel cell 1 is composed of a plurality of cells formed by sandwiching a solid polymer electrolyte membrane made of, for example, a solid polymer ion exchange membrane between an anode and a cathode from both sides. It is considered as a polymerized basic composition.

燃料電池1のアノードには、水素の供給通路3と排出通路7が接続され、供給通路3の上流側には、遮断弁4を介して水素タンク等の水素供給源2が接続されている。一方、燃料電池1のカソードには、空気(酸素を含む)の供給通路6と排出通路8が接続され、供給通路6には、圧縮空気を供給するためのエアコンプレッサ5が接続されている。   A hydrogen supply passage 3 and a discharge passage 7 are connected to the anode of the fuel cell 1, and a hydrogen supply source 2 such as a hydrogen tank is connected to the upstream side of the supply passage 3 via a shutoff valve 4. On the other hand, an air (including oxygen) supply passage 6 and a discharge passage 8 are connected to the cathode of the fuel cell 1, and an air compressor 5 for supplying compressed air is connected to the supply passage 6.

燃料電池1のアノードとカソードには、水素供給源2とエアコンプレッサ5から水素ガスと空気(酸素)が夫々供給され、このとき、アノードでの触媒反応によって発生した水素イオンが電解質膜を通過してカソードまで移動し、カソードで酸素と電気化学反応を起こして電力を発生する。この発電の際には、カソードにおいて生成水が作られる。ここで作られた生成水の一部は、電解質膜を通した逆拡散によってアノード側に浸入する。   Hydrogen gas and air (oxygen) are respectively supplied from the hydrogen supply source 2 and the air compressor 5 to the anode and cathode of the fuel cell 1, and at this time, hydrogen ions generated by the catalytic reaction at the anode pass through the electrolyte membrane. It moves to the cathode and generates electricity by causing an electrochemical reaction with oxygen at the cathode. During this power generation, produced water is produced at the cathode. Part of the generated water produced here enters the anode side by back diffusion through the electrolyte membrane.

水素と空気の供給通路3,6は合流通路9を介して相互に接続され、この合流通路9に設けられた開閉弁10によって供給通路6から3側への圧縮空気の流通と遮断が切り換えられるようになっている。開閉弁10は、燃料電池1の通常の発電時には閉じられており、発電停止の後に反応ガス流路の掃気を行う場合に開き、アノード側の流路を圧縮空気によって掃気し得るようになっている。   The supply passages 3 and 6 for hydrogen and air are connected to each other through a junction passage 9, and the on-off valve 10 provided in the junction passage 9 switches between the flow and shut-off of compressed air from the supply passage 6 to the third side. It is like that. The on-off valve 10 is closed during normal power generation of the fuel cell 1 and is opened when scavenging the reaction gas flow path after stopping the power generation, so that the anode-side flow path can be scavenged with compressed air. Yes.

また、排出通路7,8には夫々パージ弁17,18が設けられ、これらのパージ弁17,18を夫々開くことにより、反応済みのオフガスである水素やエア、残留水等をシステム外部に排出するようになっている。なお、排出通路7から排出された水素は、図示しない希釈ボックスに一旦導入され、そこで所定濃度以下に希釈された後にシステムの外部に排出される。   In addition, purge valves 17 and 18 are provided in the discharge passages 7 and 8, respectively. By opening these purge valves 17 and 18, respectively, hydrogen, air, residual water, etc., which have been reacted off-gas, are discharged to the outside of the system. It is supposed to be. The hydrogen discharged from the discharge passage 7 is once introduced into a dilution box (not shown), where it is diluted to a predetermined concentration or less and then discharged outside the system.

ところで、この燃料電池システムには、エアコンプレッサ5や遮断弁4、開閉弁10、パージ弁17,18等の各種の機器の制御を行うためのコントローラ(ECU)12が設けられている。このコントローラ12には、イグニッションスイッチ15とタイマー16が接続され、これらからイグニッションのON、OFF信号と、タイマーセット時間に応じたON信号が夫々入力されるようになっている。また、コントローラ12には、燃料電池1の内部の温度を検出する内部温度センサ(電池内温度検出手段)13と、燃料電池1の置かれている外気の温度を検出する外気温センサ(外気温検出手段)14が接続され、これらのセンサ13,14から電池の内外の温度信号が夫々入力されるようになっている。   By the way, this fuel cell system is provided with a controller (ECU) 12 for controlling various devices such as the air compressor 5, the shut-off valve 4, the on-off valve 10, and the purge valves 17 and 18. An ignition switch 15 and a timer 16 are connected to the controller 12, and an ignition ON / OFF signal and an ON signal corresponding to the timer set time are input thereto. The controller 12 includes an internal temperature sensor (in-cell temperature detection means) 13 for detecting the temperature inside the fuel cell 1 and an outside air temperature sensor (outside air temperature) for detecting the temperature of the outside air where the fuel cell 1 is placed. Detection means) 14 is connected, and temperature signals inside and outside the battery are input from these sensors 13 and 14, respectively.

なお、この実施形態の場合、発電停止時に燃料電池1内の残留水を掃気する掃気手段は、エアコンプレッサ5、開閉弁10、パージ弁17,18等によって構成されている。   In the case of this embodiment, the scavenging means for scavenging residual water in the fuel cell 1 when power generation is stopped includes the air compressor 5, the on-off valve 10, the purge valves 17, 18 and the like.

この燃料電池システムは、前述のように車両のイグニッションスイッチ15のOFF操作によって発電を停止するが、この発電停止の後には、燃料電池1の内部温度等に応じて反応ガス流路(燃料電池1内の流路、及び、供給通路3,6、排出通路7,8等)から残留水を排出するための掃気を所定のタイミングで行う。この掃気は、例えば、燃料電池1内の温度が設定温度よりも低下したときに行うが、燃料電池1の発電停止直後は、通常、燃料電池1内の温度が高温になっているため、燃料電池1の発電が停止してある程度の時間が経過してから行われることとなる。   As described above, this fuel cell system stops power generation by turning off the ignition switch 15 of the vehicle. After the power generation is stopped, the reaction gas flow path (fuel cell 1) depends on the internal temperature of the fuel cell 1 and the like. Scavenging for discharging residual water from the internal flow paths, supply passages 3 and 6, discharge passages 7 and 8, and the like) is performed at a predetermined timing. This scavenging is performed, for example, when the temperature in the fuel cell 1 falls below a set temperature. However, immediately after the fuel cell 1 stops generating power, the temperature in the fuel cell 1 is normally high. It is performed after a certain amount of time has elapsed since the power generation of the battery 1 is stopped.

また、この燃料電池システムにおいては、燃料電池1の発電停止後に常に決まった時間の後に掃気を行うのでなく、燃料電池1の温度環境を設定インターバルをおいて監視して、監視時に燃料電池1の内部温度が設定温度以下に低下している場合に掃気を行う。さらに、燃料電池1の温度環境の監視のインターバル(「監視インターバル」と呼ぶ。)は、これも一定ではなく、外気温度の変化を考慮して柔軟に設定変更されるようになっている。   Further, in this fuel cell system, scavenging is not always performed after a fixed time after power generation of the fuel cell 1 is stopped, but the temperature environment of the fuel cell 1 is monitored at a set interval, and the fuel cell 1 is monitored at the time of monitoring. Scavenging is performed when the internal temperature falls below the set temperature. Further, the temperature environment monitoring interval (referred to as “monitoring interval”) of the fuel cell 1 is not constant, and is flexibly changed in consideration of changes in the outside air temperature.

監視インターバルは、コントローラ12で構成される監視インターバル決定手段によって決定される。
コントローラ12では、燃料電池1の発電停止時に内部温度センサ13と外気温センサ14から検出信号が入力されると、これらの検出信号に基づいて燃料電池1の内部温度の変化速度を演算によって求め(内部温度の変化を推定。)、そこで求めた内部温度の変化速度から燃料電池1の内部温度が設定温度幅低下するまでの経過時間をさらに演算によって求め(経過時間を推定。)、その時間を発電停止直後の監視インターバルとする。即ち、例えば、図3(A)に示すように発電停止直後の燃料電池1の内部温度Tiと外気温Toが検出された場合には、コントローラ12においては、これらの温度差ΔTsys_env1(つまり、Ti−To)を基にして、燃料電池1の内部温度が設定温度幅ΔTsys1だけ低下するまでの時間Time_ECU1を演算によって求める。なお、ここで決定した監視インターバルの時間Time_ECU1はタイマー16にセットされ、コントローラ12はこの後に停止して、タイマーにセットされた監視インターバルの時間Time_ECU1が経過したところで再起動される。
The monitoring interval is determined by a monitoring interval determination unit configured by the controller 12.
When the controller 12 receives detection signals from the internal temperature sensor 13 and the outside air temperature sensor 14 when power generation of the fuel cell 1 is stopped, the controller 12 obtains the change rate of the internal temperature of the fuel cell 1 by calculation based on these detection signals ( Estimate the change in the internal temperature.) From the rate of change of the internal temperature obtained there, the elapsed time until the internal temperature of the fuel cell 1 decreases by the set temperature range is further obtained by calculation (estimated elapsed time). The monitoring interval immediately after power generation is stopped. That is, for example, as shown in FIG. 3A, when the internal temperature Ti 1 and the outside air temperature To 1 of the fuel cell 1 immediately after the stop of power generation are detected, the controller 12 determines the temperature difference ΔTsys_env1 (that is, , Ti 1 -To 1 ), a time Time_ECU1 until the internal temperature of the fuel cell 1 decreases by the set temperature range ΔTsys1 is obtained by calculation. The monitoring interval time Time_ECU1 determined here is set in the timer 16, and the controller 12 stops thereafter, and is restarted when the monitoring interval time Time_ECU1 set in the timer has elapsed.

また、再起動されたコントローラ12は、前回推定した現在の燃料電池1の内部温度が掃気を必要する温度(閾値温度)以下でなければ、そのまま掃気のための制御を行わずに2回目の監視インターバルの決定を行う。このときは外気温センサ14のみが起動して外気温の検出を行い、コントローラ12は、この外気温センサ14の検出信号と、前回推定した現在の燃料電池1の内部温度(発電停止直後の内部温度センサ13の検出値と温度変化速度からの推定値)に基づいて以降の内部温度の変化速度を演算し、その変化速度から燃料電池1の内部温度がさらに設定温度幅ΔTsysv2低下するまでの経過時間Time_ECU2を演算によって求め、その値を2回目の監視インターバルとして監視インターバルを更新する。
3回目以降の監視インターバルはこの2回目の監視インターバルと同様にして決定する。
Further, the restarted controller 12 performs the second monitoring without performing control for scavenging as long as the current estimated internal temperature of the fuel cell 1 is not below the temperature (threshold temperature) that requires scavenging. Make an interval decision. At this time, only the outside air temperature sensor 14 is activated to detect the outside air temperature, and the controller 12 detects the detection signal of the outside air temperature sensor 14 and the current internal temperature of the fuel cell 1 estimated last time (inside immediately after the power generation is stopped). The subsequent change rate of the internal temperature is calculated based on the detected value of the temperature sensor 13 and the estimated value from the temperature change rate), and the elapsed time from the change rate until the internal temperature of the fuel cell 1 further decreases by the set temperature range ΔTsysv2 The time Time_ECU2 is obtained by calculation, and the monitoring interval is updated with the value as the second monitoring interval.
The third and subsequent monitoring intervals are determined in the same manner as the second monitoring interval.

以下、燃料電池1の発電停止後における具体的な処理について、図2のフローチャートに沿って説明する。
まず、イグニッションスイッチ15のOFF操作(発電停止)によって処理が開始されると、ステップS101において、イグニッションスイッチ15のOFF後の初回の処理であるかどうかの判定を行い、初回の処理の場合にはステップS102に進み、2回目以降の処理の場合にはステップS103へと進む。
Hereinafter, specific processing after the fuel cell 1 stops generating power will be described with reference to the flowchart of FIG.
First, when the process is started by turning off the ignition switch 15 (power generation stop), in step S101, it is determined whether or not the process is the first process after the ignition switch 15 is turned off. Proceeding to step S102, in the case of the second and subsequent processing, the process proceeds to step S103.

ステップS102においては、内部温度センサ13と外気温センサ14による燃料電池1の内部温度と外気温の検出を行い、つづくステップS104において、監視インターバルTime_ECU1の決定を行う。この監視インターバルTime_ECU1は、前述した通り、センサ13,14の検出値を基にして燃料電池1の内部温度の変化速度を求め、さらにその結果から内部温度が設定温度幅ΔTsys1低下するまでの経過時間Time_ECU1として求める。   In step S102, the internal temperature and external temperature of the fuel cell 1 are detected by the internal temperature sensor 13 and the external air temperature sensor 14, and in step S104, the monitoring interval Time_ECU1 is determined. As described above, the monitoring interval Time_ECU1 calculates the change rate of the internal temperature of the fuel cell 1 based on the detection values of the sensors 13 and 14, and from this result, the elapsed time until the internal temperature decreases by the set temperature range ΔTsys1. Calculate as Time_ECU1.

次のステップS105においては、燃料電池1の現在の内部温度と温度変化速度を基にして次回起動時(Time_ECU1経過後)の内部温度の推定値Temp2を決定する。さらに次のステップS106においては、タイマー16に監視インターバル時間Time_ECU1をセットし、この後にステップS113に進み、コントローラ12の起動を停止する(電源OFF)とともにタイマー16をスタートさせる。ステップS114においては、タイマーにセットされた監視インターバルの時間Time_ECU1の経過を待ち、時間Time_ECU1が経過すると、ステップS115に進み、コントローラ12を再起動して最初の処理にリターンする。   In the next step S105, an estimated value Temp2 of the internal temperature at the next start-up (after Time_ECU1 has elapsed) is determined based on the current internal temperature of the fuel cell 1 and the temperature change rate. In the next step S106, the monitoring interval time Time_ECU1 is set in the timer 16, and then the process proceeds to step S113 to stop the activation of the controller 12 (power off) and start the timer 16. In step S114, it waits for the elapse of the time interval Time_ECU1 of the monitoring interval set in the timer. When the time time time_ECU1 elapses, the process proceeds to step S115 to restart the controller 12 and return to the first process.

こうしてステップS101にリターンすると、この場合、2回目の処理であることから、ステップS101からS103へと進み、ステップS103において、外気温センサ14によって外気温の検出を行うとともに、タイマー16をリセットする。   When the process returns to step S101 in this way, since this is the second process, the process proceeds from step S101 to S103. In step S103, the outside air temperature sensor 14 detects the outside air temperature, and the timer 16 is reset.

つづくステップS107においては、前回の処理で求めた燃料電池1の内部温度の推定値Temp2が掃気を必要する閾値温度TEMPよりも大きいかどうかを判定し、閾値温度TEMPよりも大きい場合にはステップS108に進み、閾値温度TEMP以下の場合にはステップS109に進んで掃気を行い、次のステップS110でコントローラ12を停止して総ての処理を完了する。   In the subsequent step S107, it is determined whether or not the estimated value Temp2 of the internal temperature of the fuel cell 1 obtained in the previous process is larger than a threshold temperature TEMP that requires scavenging. If it is larger than the threshold temperature TEMP, step S108 is performed. If the temperature is equal to or lower than the threshold temperature TEMP, the process proceeds to step S109 to perform scavenging, and the controller 12 is stopped in the next step S110 to complete all the processes.

一方、ステップS107で、内部温度の推定値Temp2が閾値温度TEMPよりも大きいと判定して、ステップS108に進んだ場合には、外気温の新たな検出値と前回処理時の内部温度の推定値Temp2を基にして次の監視インターバルTime_ECU2を決定する。この監視インターバルTime_ECU2の決定に際しては、前述の通り、現在の外気温の検出値と内部温度の推定値Temp2を基にして燃料電池1の内部温度の変化速度を求め、その結果から内部温度が設定温度幅ΔTsys_env2低下するまでの経過時間Time_ECU2(監視インターバルTime_ECU2)を求める。   On the other hand, if it is determined in step S107 that the estimated value Temp2 of the internal temperature is larger than the threshold temperature TEMP and the process proceeds to step S108, a new detected value of the outside air temperature and an estimated value of the internal temperature at the previous processing are obtained. The next monitoring interval Time_ECU2 is determined based on Temp2. In determining the monitoring interval Time_ECU2, as described above, the change rate of the internal temperature of the fuel cell 1 is obtained based on the current detected value of the outside air temperature and the estimated value Temp2 of the internal temperature, and the internal temperature is set from the result. The elapsed time Time_ECU2 (monitoring interval Time_ECU2) until the temperature width ΔTsys_env2 is reduced is obtained.

つづくステップS111においては、燃料電池1の現在の内部温度の推定値Temp2とステップS107で求めた温度変化速度を基にし、次回起動時(Time_ECU2経過後)の内部温度の推定値Temp3を決定する。   In subsequent step S111, based on the estimated value Temp2 of the current internal temperature of the fuel cell 1 and the temperature change rate obtained in step S107, an estimated value Temp3 of the internal temperature at the next start-up (after Time_ECU2 has elapsed) is determined.

次のステップS112においては、タイマー16に新たに決定した監視インターバルの時間Time_ECU2をセットし、この後にステップS113へと進む。ステップS113に進んで後には、前述と同様の処理が行われる。   In the next step S112, the newly determined monitoring interval time Time_ECU2 is set in the timer 16, and thereafter, the process proceeds to step S113. After proceeding to step S113, the same processing as described above is performed.

以上のようにこの燃料電池システムは、基本的に燃料電池1の発電停止直後に毎回掃気を行うのでなく、燃料電池1の内部温度が閾値温度以下に低下したところで反応ガス流路の掃気を行うため、不必要な掃気を無くし、掃気頻度を大幅に削減することができる。したがって、この燃料電池システムにおいては、掃気頻度の減少により、燃料電池1の電解質膜にかかる負担を少なくして電池寿命の向上を図ることができるうえ、掃気騒音の減少によって車両として商品性を高めることができる。   As described above, this fuel cell system basically does not perform scavenging every time immediately after the power generation of the fuel cell 1 is stopped, but scavenges the reaction gas flow path when the internal temperature of the fuel cell 1 falls below the threshold temperature. Therefore, unnecessary scavenging can be eliminated and the scavenging frequency can be greatly reduced. Therefore, in this fuel cell system, the burden on the electrolyte membrane of the fuel cell 1 can be reduced by reducing the scavenging frequency, and the battery life can be improved, and the merchantability of the vehicle can be improved by reducing the scavenging noise. be able to.

また、この燃料電池システムは、発電停止後の燃料電池1の監視インターバルを、外気温に依存する燃料電池1の内部温度の変化速度を考慮して決定しているため、常に適切なインターバルでもって燃料電池の状態を監視することができる。このため、不要な掃気を無くすことができるだけでなく、燃料電池の監視頻度も低減することができる。   Further, in this fuel cell system, the monitoring interval of the fuel cell 1 after power generation is stopped is determined in consideration of the change rate of the internal temperature of the fuel cell 1 depending on the outside air temperature. The state of the fuel cell can be monitored. For this reason, not only unnecessary scavenging can be eliminated, but also the monitoring frequency of the fuel cell can be reduced.

図3(A),(B)は、燃料電池1の内部温度と外気温の温度差が大きい場合と小さい場合の、内部温度の変化状態と、監視インターバル(コントローラの起動状態)を示すものである。この図からは、燃料電池1の内部温度の変化速度が内部温度と外気温の温度差に応じて変化することと、燃料電池システムの監視インターバルが、燃料電池1の内部温度の変化速度に応じて適切な時間に変更されることが分かる。   3A and 3B show the change state of the internal temperature and the monitoring interval (starting state of the controller) when the temperature difference between the internal temperature and the outside air temperature of the fuel cell 1 is large and small. is there. From this figure, the change rate of the internal temperature of the fuel cell 1 changes according to the temperature difference between the internal temperature and the outside air temperature, and the monitoring interval of the fuel cell system corresponds to the change rate of the internal temperature of the fuel cell 1. It can be seen that the time is changed to an appropriate time.

さらにこの燃料電池システムにおいては、インターバル経過後のコントローラ12の再起動の度に外気温を再検出し、次回の監視インターバルを適切な時間に更新するため、より外気温変化に則した適切な燃料電池1の状態監視を行うことができる。したがって、外気温の変化が速い場合にあっても、外気温変化に即した監視インターバルの変更によって掃気タイミングの遅れや監視頻度の無意味な増大を確実に抑制することができる。   Further, in this fuel cell system, since the outside air temperature is re-detected every time the controller 12 is restarted after the interval elapses, and the next monitoring interval is updated to an appropriate time, an appropriate fuel according to a change in the outside air temperature can be obtained. The state of the battery 1 can be monitored. Therefore, even when the outside air temperature changes rapidly, the scavenging timing delay and the meaningless increase in the monitoring frequency can be reliably suppressed by changing the monitoring interval in accordance with the outside air temperature change.

そして、この燃料電池システムは、以上のように燃料電池の監視頻度(コントローラ12の起動頻度)をより少なく抑えることができるため、コントローラ12やセンサ13,14による電力消費を極めて低く抑えることができる。   Since the fuel cell system can suppress the monitoring frequency of the fuel cell (starting frequency of the controller 12) as described above, power consumption by the controller 12 and the sensors 13 and 14 can be suppressed extremely low. .

特に、この実施形態のシステムにおいては、インターバル後に再度監視インターバルを決定するときに、殆どの場合、内部温度センサ13を起動させずに前回処理時の内部温度の推定値を用いて演算を行うようにしているため、内部温度センサ13の起動による電力消費を低減することができる。   In particular, in the system of this embodiment, when determining the monitoring interval again after the interval, in most cases, the internal temperature sensor 13 is not activated and the calculation is performed using the estimated value of the internal temperature at the previous processing. Therefore, power consumption due to activation of the internal temperature sensor 13 can be reduced.

図4(A)は、この実施形態の燃料電池システムにおける電池の内部温度と外気温、コントローラの起動状態、蓄電残量の各様子を示すものであり、図4(B)は、燃料電池の状態監視を常に一定インターバルで行った場合のコントローラの起動状態と蓄電残量の様子を示すものである。なお、図4(B)の場合の監視インターバルは、使用地域で最も気温の低下する状況を考慮して設定したものである。
この図から明らかなように、この燃料電池システムの場合、外気温と燃料電池1の内部温度の変化速度を考慮して監視インターバル(コントローラ12の起動タイミング)を適切に変更し得るため、比較例のような不要なコントローラ12の起動が無くなる。このため、この燃料電池システムにおいては、比較例に対して蓄電残量の低下ペースが遅くなることから、発電停止後における監視可能な時間を大幅に延長することができる。
FIG. 4 (A) shows each state of the internal temperature and external temperature of the battery, the activation state of the controller, and the remaining amount of electricity stored in the fuel cell system of this embodiment, and FIG. 4 (B) shows the state of the fuel cell. The state of the controller starting state and the amount of remaining power when the state monitoring is always performed at a constant interval is shown. In addition, the monitoring interval in the case of FIG. 4 (B) is set in consideration of the situation where the temperature falls most in the use region.
As is clear from this figure, in this fuel cell system, the monitoring interval (starting timing of the controller 12) can be appropriately changed in consideration of the change rate of the outside air temperature and the internal temperature of the fuel cell 1. Such unnecessary activation of the controller 12 is eliminated. For this reason, in this fuel cell system, the rate of decrease in the remaining amount of electricity stored becomes slower than that in the comparative example, so that the time that can be monitored after power generation is stopped can be greatly extended.

なお、この発明は上記の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。上記の実施形態は、監視インターバルを決定するにあたって、外部の変化要因として外気温の変化のみを反映させるようにしているが、例えば、周囲の風速を検出する風速計や気象データの受信装置等の他の外部環境を検出する手段を設け、この検出手段から受け取る検出データを基にして監視インターバルを補正することも可能である。このような構成を採用した場合、周囲の環境変化により則した最適な監視インターバルによって燃料電池の状態監視を行うことができる。
また、監視インターバルの決定に関係する内部温度の変化幅(ΔTsys1やΔTsys2)は、外気温や、燃料電池1の内部温度と外気温の差等に応じて変更するようにしても良い。
The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention. In the above embodiment, when determining the monitoring interval, only the change in the outside air temperature is reflected as an external change factor. For example, an anemometer that detects the surrounding wind speed, a weather data receiving device, and the like. It is also possible to provide other means for detecting the external environment and correct the monitoring interval based on the detection data received from the detection means. When such a configuration is adopted, it is possible to monitor the state of the fuel cell at an optimal monitoring interval in accordance with changes in the surrounding environment.
Further, the change width (ΔTsys1 or ΔTsys2) of the internal temperature related to the determination of the monitoring interval may be changed according to the outside air temperature, the difference between the inside temperature of the fuel cell 1 and the outside air temperature, or the like.

この発明の一実施形態の燃料電池システムの全体構成図。1 is an overall configuration diagram of a fuel cell system according to an embodiment of the present invention. 同実施形態の燃料電池システムの掃気処理を示すフローチャート。The flowchart which shows the scavenging process of the fuel cell system of the embodiment. 同実施形態の燃料電池システムにおける燃料電池の内外の温度差とコントローラの起動の様子を示すタイミングチャートであり、(A)は、燃料電池の内外の温度差が大きい場合のタイミングチャート、(B)は、燃料電池の内外の温度差が小さい場合のタイミングチャート。4 is a timing chart showing the temperature difference between the inside and outside of the fuel cell and the activation of the controller in the fuel cell system of the embodiment, wherein (A) is a timing chart when the temperature difference between inside and outside of the fuel cell is large, and (B). These are timing charts when the temperature difference between the inside and outside of the fuel cell is small. 同実施形態の電池内部温度、外気温、コントローラの起動状態、バッテリの蓄電残量の様子を示すタイミングチャート(A)と、比較例のコントローラの起動状態、蓄電残量の様子を示すタイミングチャート(B)を併せて記載した図。The timing chart (A) showing the battery internal temperature, the outside air temperature, the controller starting state, and the remaining battery charge level of the embodiment, and the timing chart (A) showing the controller starting state and the remaining battery charge state of the comparative example ( The figure which described B) together.

符号の説明Explanation of symbols

1…燃料電池
5…エアコンプレッサ
10…開閉弁(掃気手段)
12…コントローラ(監視インターバル決定手段)
13…内部温度センサ(電池内温検出手段)
14…外気温センサ(外気温検出手段)
17,18…パージ弁(掃気手段)

DESCRIPTION OF SYMBOLS 1 ... Fuel cell 5 ... Air compressor 10 ... On-off valve (scavenging means)
12 ... Controller (monitoring interval determining means)
13. Internal temperature sensor (battery temperature detection means)
14 ... Outside air temperature sensor (outside air temperature detecting means)
17, 18 ... Purge valve (scavenging means)

Claims (4)

反応ガスが反応して発電を行う燃料電池と、
この燃料電池の反応ガス流路内を掃気ガスによって掃気する掃気手段と、
前記燃料電池の停止時に燃料電池の内部温度を検出する電池内温度検出手段と、
を備え、
前記燃料電池が発電を停止した後に、設定インターバルをおいて燃料電池の状態を監視し、その際に燃料電池が掃気を必要とする所定状態と判断されたときに前記掃気手段による掃気を行う燃料電池システムおいて、
前記燃料電池のおかれた外気の温度を検出する外気温検出手段と、
前記燃料電池の内部温度と外気の温度に基づいて燃料電池の内部温度の変化速度を推定し、そこで推定した内部温度の変化速度から燃料電池の内部温度が設定温度幅変化するまでの経過時間を推定して、その推定経過時間を前記設定インターバルとする監視インターバル決定手段と、を設けたことを特徴とする燃料電池システム。
A fuel cell in which a reaction gas reacts to generate electricity;
Scavenging means for scavenging the reaction gas flow path of the fuel cell with scavenging gas;
In-cell temperature detection means for detecting the internal temperature of the fuel cell when the fuel cell is stopped;
With
After the fuel cell stops generating electricity, the fuel cell state is monitored at a set interval, and when the fuel cell is determined to be in a predetermined state that requires scavenging, the scavenging means performs scavenging In the battery system,
An outside air temperature detecting means for detecting the temperature of the outside air in which the fuel cell is placed;
The rate of change of the internal temperature of the fuel cell is estimated based on the internal temperature of the fuel cell and the temperature of the outside air, and the elapsed time from the estimated rate of change of the internal temperature to the change of the internal temperature of the fuel cell by the set temperature range is calculated. A fuel cell system comprising: a monitoring interval determining unit that estimates and uses the estimated elapsed time as the set interval.
燃料電池の発電停止直後の最初の監視インターバルは、前記監視インターバル決定手段が、発電停止時における前記電池内温度検出手段と外気温検出手段の検出値に基づいて決定し、
前記2回目以降の監視インターバルは、前記監視インターバル決定手段が、前回の監視インターバルの後の外気温検出手段の検出値と、前回以前の電池内温度検出手段の検出値からの推測値に基づいて決定することを特徴とする請求項1に記載の燃料電池システム。
The first monitoring interval immediately after stopping the power generation of the fuel cell is determined by the monitoring interval determining means based on the detection values of the temperature detecting means inside the battery and the outside air temperature detecting means when the power generation is stopped,
The second and subsequent monitoring intervals are based on the estimated value from the detected value of the outside air temperature detecting means after the previous monitoring interval and the detected value of the battery temperature detecting means before the previous time. The fuel cell system according to claim 1, wherein the fuel cell system is determined.
前記燃料電池のおかれた外気の温度以外の環境変化を検出する環境変化検出手段を設け、
前記監視インターバル決定手段は、前記環境変化検出手段の検出値を基にして監視インターバルを補正することを特徴とする請求項1または2に記載の燃料電池システム。
An environmental change detecting means for detecting an environmental change other than the temperature of the outside air in which the fuel cell is placed;
The fuel cell system according to claim 1, wherein the monitoring interval determination unit corrects the monitoring interval based on a detection value of the environment change detection unit.
反応ガスの反応によって発電を行う燃料電池が発電を停止した後、設定インターバルをおいて燃料電池の状態を監視し、その際に燃料電池が掃気を必要とする所定状態と判断されたときに、掃気ガスによって反応ガスの流路内を掃気する燃料電池システムの掃気方法において、
発電停止時における燃料電池内の温度と、燃料電池がおかれている外気の温度に応じて燃料電池の内部温度の変化速度を推定し、そこで推定した内部温度の変化速度から燃料電池の内部温度が設定温度幅変化するまでの経過時間を推定して、その推定経過時間を前記設定インターバルとすることを特徴とする燃料電池システムの掃気方法。

After the fuel cell that generates power by reaction of the reaction gas stops power generation, the state of the fuel cell is monitored at a set interval, and when it is determined that the fuel cell is in a predetermined state that requires scavenging, In a scavenging method of a fuel cell system in which the inside of a reaction gas channel is scavenged by a scavenging gas,
The rate of change of the internal temperature of the fuel cell is estimated according to the temperature inside the fuel cell when power generation is stopped and the temperature of the outside air where the fuel cell is placed, and the internal temperature of the fuel cell is estimated from the rate of change of the estimated internal temperature. A scavenging method for a fuel cell system, wherein an elapsed time until the temperature changes by a set temperature range is estimated, and the estimated elapsed time is set as the set interval.

JP2005327089A 2005-11-11 2005-11-11 Fuel cell system and scavenging method for the system Expired - Fee Related JP4554494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327089A JP4554494B2 (en) 2005-11-11 2005-11-11 Fuel cell system and scavenging method for the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327089A JP4554494B2 (en) 2005-11-11 2005-11-11 Fuel cell system and scavenging method for the system

Publications (2)

Publication Number Publication Date
JP2007134205A true JP2007134205A (en) 2007-05-31
JP4554494B2 JP4554494B2 (en) 2010-09-29

Family

ID=38155693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327089A Expired - Fee Related JP4554494B2 (en) 2005-11-11 2005-11-11 Fuel cell system and scavenging method for the system

Country Status (1)

Country Link
JP (1) JP4554494B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198630A (en) * 2010-03-19 2011-10-06 Honda Motor Co Ltd Fuel cell system
JP2013125627A (en) * 2011-12-14 2013-06-24 Panasonic Corp Fuel cell power generation system
JP2013211163A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Fuel cell system and control method thereof
KR20180009004A (en) * 2016-07-15 2018-01-25 현대자동차주식회사 Control method for removing water in fuel cell
JP2019046679A (en) * 2017-09-04 2019-03-22 トヨタ自動車株式会社 External power supply system
JP2019091600A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Fuel cell system
CN113497810A (en) * 2020-04-02 2021-10-12 北京亿华通科技股份有限公司 Fuel cell purging control system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203665A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Fuel cell system
JP2003331893A (en) * 2002-05-14 2003-11-21 Nissan Motor Co Ltd Fuel cell system
JP2004004013A (en) * 2002-04-04 2004-01-08 Daimler Chrysler Ag Device with monitoring unit and its operation method
JP2005158503A (en) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd Fuel cell and operation stopping method of fuel cell
JP2005158298A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Operation method of fuel cell power generation system, and fuel cell power generation system
JP2005190684A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Fuel cell
JP2005310552A (en) * 2004-04-21 2005-11-04 Honda Motor Co Ltd Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203665A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Fuel cell system
JP2004004013A (en) * 2002-04-04 2004-01-08 Daimler Chrysler Ag Device with monitoring unit and its operation method
JP2003331893A (en) * 2002-05-14 2003-11-21 Nissan Motor Co Ltd Fuel cell system
JP2005158298A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Operation method of fuel cell power generation system, and fuel cell power generation system
JP2005158503A (en) * 2003-11-26 2005-06-16 Nissan Motor Co Ltd Fuel cell and operation stopping method of fuel cell
JP2005190684A (en) * 2003-12-24 2005-07-14 Toyota Motor Corp Fuel cell
JP2005310552A (en) * 2004-04-21 2005-11-04 Honda Motor Co Ltd Fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198630A (en) * 2010-03-19 2011-10-06 Honda Motor Co Ltd Fuel cell system
JP2013125627A (en) * 2011-12-14 2013-06-24 Panasonic Corp Fuel cell power generation system
JP2013211163A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Fuel cell system and control method thereof
KR20180009004A (en) * 2016-07-15 2018-01-25 현대자동차주식회사 Control method for removing water in fuel cell
JP2019046679A (en) * 2017-09-04 2019-03-22 トヨタ自動車株式会社 External power supply system
JP2019091600A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Fuel cell system
CN113497810A (en) * 2020-04-02 2021-10-12 北京亿华通科技股份有限公司 Fuel cell purging control system and method
CN113497810B (en) * 2020-04-02 2024-04-16 北京亿华通科技股份有限公司 Fuel cell purging control system and method

Also Published As

Publication number Publication date
JP4554494B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4028544B2 (en) Fuel cell system and fuel gas path failure detection method in the system
JP4554494B2 (en) Fuel cell system and scavenging method for the system
US7687169B2 (en) Stop method for fuel cell system
US9306229B2 (en) Fuel cell system
US7989112B2 (en) Fuel cell system and purging method therefor
JP4804507B2 (en) Fuel cell system and control method thereof
JP2007103172A (en) Fuel cell system and its gas discharge method
JP2009037951A (en) Fuel cell system, and operation method thereof
JP2008140734A (en) Fuel cell system
US20060141310A1 (en) Fuel cell system and method of controlling the same
JP2009129793A (en) Fuel cell system, and control method thereof
US8895166B2 (en) Fuel cell system and activation method of fuel cell
JP2007165103A (en) Fuel cell system, its operation method, and movable body
US8268496B2 (en) Fuel cell system and control method thereof
JP4498707B2 (en) Operation method of fuel cell system and fuel cell operation device
JP4982977B2 (en) Fuel cell system
JP5304863B2 (en) Fuel cell system
JP2010108756A (en) Fuel cell system and purge control method of fuel cell system
JP2009187794A (en) Fuel cell system and method of controlling the same
JP2004179054A (en) Power generation shutdown method of fuel cell system
JP2007026843A (en) Fuel cell powered vehicle and its control method
JP5154846B2 (en) Fuel cell system and its performance recovery method
JP2009076261A (en) Fuel cell system and its starting method
JP2010118289A (en) Fuel cell system
JP4796358B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees