JP2007127004A - State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine - Google Patents

State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine Download PDF

Info

Publication number
JP2007127004A
JP2007127004A JP2005318869A JP2005318869A JP2007127004A JP 2007127004 A JP2007127004 A JP 2007127004A JP 2005318869 A JP2005318869 A JP 2005318869A JP 2005318869 A JP2005318869 A JP 2005318869A JP 2007127004 A JP2007127004 A JP 2007127004A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
ignition
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005318869A
Other languages
Japanese (ja)
Inventor
Shinji Kojima
晋爾 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2005318869A priority Critical patent/JP2007127004A/en
Publication of JP2007127004A publication Critical patent/JP2007127004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately estimate the state quantity of an internal combustion engine. <P>SOLUTION: An in-cylinder temperature correction part 62 sets a temporary in-cylinder temperature T<SB>IVC</SB>when an intake valve is closed and corrects the temporary in-cylinder temperature T<SB>IVC</SB>. An NOx concentration estimating part 64 estimates an NOx concentration ζ<SB>0</SB>in exhaust gases by using an NOx concentration estimation model according to the histories of the temporary in-cylinder temperature T<SB>IVC</SB>when the intake valve is closed and the detected pressure p of in-cylinder gases. The in-cylinder temperature correction part 62 so corrects the temporary in-cylinder temperature T<SB>IVC</SB>when the intake valve is closed that the absolute value of the deviation Δζ between the estimated concentration ζ<SB>0</SB>of NOx and the detected concentration ζ is reduced. An in-cylinder temperature estimation part 52 estimates the temporary in-cylinder temperature T<SB>IVC</SB>when the absolute value of the deviation Δζ between the estimated concentration ζ<SB>0</SB>of NOx and the detected concentration ζ is equal to or less than a set amount as an estimated in-cylinder temperature when the intake valve is closed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定装置、内燃機関の制御装置、及び内燃機関の状態量推定方法に関する。   The present invention relates to an internal combustion engine state quantity estimation device, an internal combustion engine control device, and an internal combustion engine state quantity estimation method that estimate a state quantity of an internal combustion engine that burns an air-fuel mixture in a cylinder.

内燃機関の筒内温度を熱電対等の温度センサにより測定することは、温度センサの耐熱性・耐久性と応答性が不十分であることや、内燃機関に装着することが容易でないために、実用することが困難である。そのため、内燃機関の吸気弁が閉じたときの筒内温度が不明であり、熱発生、エミッション生成、ノックの発生等の燃焼時の挙動を推定することが困難である。内燃機関の燃焼時の挙動を推定するためには、温度センサを用いることなく内燃機関の筒内温度を推定できることが要求される。   Measuring the in-cylinder temperature of an internal combustion engine with a temperature sensor such as a thermocouple is practical because the temperature sensor's heat resistance, durability, and responsiveness are insufficient, and it is not easy to install in an internal combustion engine. Difficult to do. Therefore, the in-cylinder temperature when the intake valve of the internal combustion engine is closed is unknown, and it is difficult to estimate the behavior during combustion such as heat generation, emission generation, knock generation, and the like. In order to estimate the behavior of an internal combustion engine during combustion, it is required that the in-cylinder temperature of the internal combustion engine can be estimated without using a temperature sensor.

内燃機関の筒内ガス状態量を推定する装置としては、下記特許文献1に示すものが開示されている。特許文献1においては、各種物理モデルを組み合わせたシミュレーション結果と筒内相対圧力センサ出力との比較に基づいて、筒内ガス状態量を逆算している。   As an apparatus for estimating an in-cylinder gas state quantity of an internal combustion engine, an apparatus shown in Patent Document 1 below is disclosed. In Patent Document 1, the in-cylinder gas state quantity is calculated backward based on a comparison between a simulation result obtained by combining various physical models and an in-cylinder relative pressure sensor output.

また、ノックの発生を抑止する内燃機関の制御装置としては、下記特許文献2に示すものが開示されている。特許文献2においては、既燃部と未燃部との燃焼室2領域サイクルシミュレーションに自着火モデルを組み合わせて自着火発生時期と自着火による発熱量を予測し、トレースノック点火時期を予測することによって内燃機関の燃焼制御を行っている。   Moreover, what is shown to the following patent document 2 is disclosed as a control apparatus of the internal combustion engine which suppresses generation | occurrence | production of a knock. In Patent Document 2, a self-ignition model and a calorific value due to self-ignition are predicted by combining an auto-ignition model with a combustion chamber two-region cycle simulation of a burned part and an unburned part, and a trace knock ignition timing is predicted. Thus, combustion control of the internal combustion engine is performed.

特開2004−108348号公報JP 2004-108348 A 特開2004−332584号公報JP 2004-332584 A

特許文献1においては、シミュレーションに用いられる各種物理モデルに仮定が多く含まれるため、逆算された筒内ガス状態量の精度を確保することが困難である。特に、筒内ガスからの燃焼室壁面への熱伝達量を推定するモデルには一般性が欠けており、異なる内燃機関ごとに定数適合を行う必要があるため、推定精度を確保することが困難である。   In Patent Literature 1, since various assumptions are included in various physical models used for simulation, it is difficult to ensure the accuracy of the in-cylinder gas state quantity calculated backward. In particular, the model that estimates the amount of heat transfer from the in-cylinder gas to the combustion chamber wall lacks generality, and it is necessary to perform constant adaptation for each different internal combustion engine, making it difficult to ensure estimation accuracy. It is.

また、特許文献2においては、自着火発生時期と自着火による発熱量を予測する際に、熱発生パターンや燃焼室壁面からの伝熱量を仮定する必要がある。自着火発生時期と自着火による発熱量の予測精度を確保することが困難であり、ノックの発生を抑止する燃焼制御を精度よく行うことが困難である。   Further, in Patent Document 2, it is necessary to assume a heat generation pattern and a heat transfer amount from the combustion chamber wall surface when predicting a self-ignition occurrence time and a heat generation amount due to self-ignition. It is difficult to ensure the prediction timing of the self-ignition occurrence time and the amount of heat generated by the self-ignition, and it is difficult to accurately perform the combustion control for suppressing the occurrence of knock.

本発明は、内燃機関の状態量を容易かつ精度よく推定することができる内燃機関の状態量推定装置及び状態量推定方法を提供することを目的とする。また、本発明は、内燃機関の燃焼制御を精度よく行うことができる内燃機関の制御装置を提供することを目的とする。   An object of the present invention is to provide an internal combustion engine state quantity estimation device and a state quantity estimation method capable of easily and accurately estimating a state quantity of an internal combustion engine. Another object of the present invention is to provide a control device for an internal combustion engine that can accurately control the combustion of the internal combustion engine.

本発明に係る内燃機関の状態量推定装置、内燃機関の制御装置、及び内燃機関の状態量推定方法は、上述した目的を達成するために以下の手段を採った。   The internal combustion engine state quantity estimation device, internal combustion engine control apparatus, and internal combustion engine state quantity estimation method according to the present invention employ the following means in order to achieve the above-described object.

本発明に係る内燃機関の状態量推定装置は、筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定装置であって、内燃機関の筒内圧力を取得する筒内圧力取得部と、内燃機関の排気ガスにおける所定成分の濃度を検出する排気濃度検出部と、筒内圧力取得部による取得筒内圧力と排気濃度検出部による所定成分の検出濃度とに基づいて内燃機関の筒内温度を推定する筒内温度推定部と、を備えることを要旨とする。   An internal combustion engine state quantity estimation apparatus according to the present invention is an internal combustion engine state quantity estimation apparatus that estimates an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder, and is a cylinder that acquires an in-cylinder pressure of the internal combustion engine. Based on the internal pressure acquisition unit, the exhaust concentration detection unit that detects the concentration of the predetermined component in the exhaust gas of the internal combustion engine, the acquired in-cylinder pressure by the in-cylinder pressure acquisition unit, and the detected concentration of the predetermined component by the exhaust concentration detection unit And a cylinder temperature estimating unit that estimates the cylinder temperature of the internal combustion engine.

本発明によれば、内燃機関の排気ガスにおける所定成分の濃度の筒内温度依存性を利用して、内燃機関の筒内圧力と排気ガスの所定成分の検出濃度とに基づいて内燃機関の筒内温度を推定することができる。したがって、内燃機関の状態量を容易かつ精度よく推定することができる。   According to the present invention, the cylinder of the internal combustion engine is determined based on the in-cylinder pressure of the internal combustion engine and the detected concentration of the predetermined component of the exhaust gas by utilizing the in-cylinder temperature dependence of the concentration of the predetermined component in the exhaust gas of the internal combustion engine. The internal temperature can be estimated. Therefore, the state quantity of the internal combustion engine can be estimated easily and accurately.

本発明の一態様では、筒内温度推定部は、内燃機関の仮筒内温度を設定するとともに該仮筒内温度を補正する筒内温度補正部と、筒内温度補正部による仮筒内温度と筒内圧力取得部による取得筒内圧力とに基づいて内燃機関の排気ガスにおける所定成分の濃度を推定する排気濃度推定部と、を有し、筒内温度補正部は、排気濃度推定部による所定成分の推定濃度と排気濃度検出部による所定成分の検出濃度との偏差の絶対値が減少するよう仮筒内温度を補正し、筒内温度推定部は、排気濃度推定部による所定成分の推定濃度と排気濃度検出部による所定成分の検出濃度との偏差の絶対値が設定量以下であるときの仮筒内温度を基に内燃機関の筒内温度を推定することが好適である。こうすれば、内燃機関の仮筒内温度及び筒内圧力を基に算出した排気ガスの所定成分の推定濃度を排気ガスの所定成分の検出濃度と比較して、それらの偏差の絶対値が減少するように仮筒内温度を補正することで、内燃機関の筒内温度を容易かつ精度よく推定することができる。この態様では、排気濃度推定部は、内燃機関の筒内圧力及び筒内温度に対して前記所定成分の濃度を関連付ける排気濃度推定モデルを用いて、該所定成分の濃度を推定することが好適である。こうすれば、排気濃度推定モデルを用いて排気ガスの所定成分の推定濃度を容易かつ精度よく算出することができる。また、この態様では、筒内温度補正部は、内燃機関の吸気弁閉時の仮筒内温度を設定するとともに該仮筒内温度を補正することが好適である。こうすれば、吸気弁閉時の筒内温度を容易かつ精度よく推定することができる。   In one aspect of the present invention, the in-cylinder temperature estimating unit sets the temporary in-cylinder temperature of the internal combustion engine and corrects the temporary in-cylinder temperature, and the temporary in-cylinder temperature by the in-cylinder temperature correcting unit. And an exhaust concentration estimating unit that estimates the concentration of a predetermined component in the exhaust gas of the internal combustion engine based on the in-cylinder pressure acquired by the in-cylinder pressure acquiring unit, and the in-cylinder temperature correcting unit is provided by the exhaust concentration estimating unit The temporary in-cylinder temperature is corrected so that the absolute value of the deviation between the estimated concentration of the predetermined component and the detected concentration of the predetermined component by the exhaust concentration detection unit is reduced, and the in-cylinder temperature estimation unit estimates the predetermined component by the exhaust concentration estimation unit. It is preferable to estimate the in-cylinder temperature of the internal combustion engine based on the temporary in-cylinder temperature when the absolute value of the deviation between the concentration and the detected concentration of the predetermined component by the exhaust concentration detection unit is equal to or less than the set amount. In this way, the estimated concentration of the predetermined component of the exhaust gas calculated based on the temperature in the temporary cylinder and the pressure in the cylinder of the internal combustion engine is compared with the detected concentration of the predetermined component of the exhaust gas, and the absolute value of the deviation decreases. In this way, by correcting the temporary in-cylinder temperature, the in-cylinder temperature of the internal combustion engine can be estimated easily and accurately. In this aspect, it is preferable that the exhaust concentration estimation unit estimates the concentration of the predetermined component using an exhaust concentration estimation model that relates the concentration of the predetermined component to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine. is there. In this way, the estimated concentration of the predetermined component of the exhaust gas can be easily and accurately calculated using the exhaust concentration estimation model. In this aspect, it is preferable that the in-cylinder temperature correction unit sets the temporary in-cylinder temperature when the intake valve of the internal combustion engine is closed and corrects the temporary in-cylinder temperature. In this way, the in-cylinder temperature when the intake valve is closed can be estimated easily and accurately.

本発明の一態様では、前記所定成分の濃度は、窒素酸化物の濃度であることが好適である。こうすれば、内燃機関の排気ガスにおける窒素酸化物濃度の筒内温度依存性を利用して、内燃機関の筒内温度を容易かつ精度よく推定することができる。   In one embodiment of the present invention, it is preferable that the concentration of the predetermined component is a concentration of nitrogen oxides. In this way, the in-cylinder temperature of the internal combustion engine can be estimated easily and accurately using the in-cylinder temperature dependence of the nitrogen oxide concentration in the exhaust gas of the internal combustion engine.

また、本発明に係る内燃機関の状態量推定装置は、筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定装置であって、内燃機関の筒内圧力を取得する筒内圧力取得部と、内燃機関のノックまたは自着火の開始時期を検出する自着火時期検出部と、筒内圧力取得部による取得筒内圧力と自着火時期検出部によるノックまたは自着火の検出開始時期とに基づいて内燃機関の筒内温度を推定する筒内温度推定部と、を備えることを要旨とする。   An internal combustion engine state quantity estimation apparatus according to the present invention is an internal combustion engine state quantity estimation apparatus for estimating an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder, and acquires an in-cylinder pressure of the internal combustion engine. The in-cylinder pressure acquisition unit, the self-ignition timing detection unit that detects the start timing of knocking or self-ignition of the internal combustion engine, and the in-cylinder pressure acquisition unit that acquires the in-cylinder pressure and the self-ignition timing detection unit. The gist of the present invention is to include an in-cylinder temperature estimation unit that estimates the in-cylinder temperature of the internal combustion engine based on the detection start timing.

本発明によれば、内燃機関のノックまたは自着火の開始時期の筒内温度依存性を利用して、内燃機関の筒内圧力とノックまたは自着火の検出開始時期とに基づいて内燃機関の筒内温度を推定することができる。したがって、内燃機関の状態量を容易かつ精度よく推定することができる。   According to the present invention, the cylinder temperature of the internal combustion engine is determined based on the in-cylinder pressure of the internal combustion engine and the detection start timing of the knock or self-ignition using the in-cylinder temperature dependence of the start timing of knock or self-ignition of the internal combustion engine. The internal temperature can be estimated. Therefore, the state quantity of the internal combustion engine can be estimated easily and accurately.

本発明の一態様では、筒内温度推定部は、内燃機関の仮筒内温度を設定するとともに該仮筒内温度を補正する筒内温度補正部と、筒内温度補正部による仮筒内温度と筒内圧力取得部による取得筒内圧力とに基づいて内燃機関のノックまたは自着火の開始時期を推定する自着火時期推定部と、を有し、筒内温度補正部は、自着火時期推定部によるノックまたは自着火の推定開始時期と自着火時期検出部によるノックまたは自着火の検出開始時期との偏差の絶対値が減少するよう仮筒内温度を補正し、筒内温度推定部は、自着火時期推定部によるノックまたは自着火の推定開始時期と自着火時期検出部によるノックまたは自着火の検出開始時期との偏差の絶対値が設定量以下であるときの仮筒内温度を基に内燃機関の筒内温度を推定することが好適である。こうすれば、内燃機関の仮筒内温度及び筒内圧力を基に算出したノックまたは自着火の推定開始時期をノックまたは自着火の検出開始時期と比較して、それらの偏差の絶対値が減少するように仮筒内温度を補正することで、内燃機関の筒内温度を容易かつ精度よく推定することができる。この態様では、自着火時期推定部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、ノックまたは自着火の開始時期を推定することが好適である。こうすれば、自着火時期推定モデルを用いてノックまたは自着火の推定開始時期を容易かつ精度よく算出することができる。また、この態様では、筒内温度補正部は、内燃機関の吸気弁閉時の仮筒内温度を設定するとともに該仮筒内温度を補正することが好適である。こうすれば、吸気弁閉時の筒内温度を容易かつ精度よく推定することができる。   In one aspect of the present invention, the in-cylinder temperature estimating unit sets the temporary in-cylinder temperature of the internal combustion engine and corrects the temporary in-cylinder temperature, and the temporary in-cylinder temperature by the in-cylinder temperature correcting unit. And a self-ignition timing estimation unit for estimating the start timing of knocking or self-ignition of the internal combustion engine based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit, and the in-cylinder temperature correction unit estimates the self-ignition timing The in-cylinder temperature estimator corrects the temporary in-cylinder temperature so that the absolute value of the deviation between the knock or self-ignition estimation start time by the part and the knock or self-ignition detection start time by the self-ignition time detection part decreases. Based on the in-cylinder temperature when the absolute value of the deviation between the knocking or self-ignition estimation start time by the self-ignition timing estimation unit and the knock or self-ignition detection start time by the self-ignition timing detection unit is less than the set amount It is preferable to estimate the in-cylinder temperature of an internal combustion engine. It is. By doing this, the estimated start timing of knock or self-ignition calculated based on the in-cylinder temperature and the in-cylinder pressure of the internal combustion engine is compared with the detection start timing of knock or self-ignition, and the absolute value of the deviation is reduced. In this way, by correcting the temporary in-cylinder temperature, the in-cylinder temperature of the internal combustion engine can be estimated easily and accurately. In this aspect, the self-ignition timing estimation unit uses the self-ignition timing estimation model that associates the start timing of knock or self-ignition to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine to determine the start timing of knock or self-ignition. It is preferable to estimate. In this way, it is possible to easily and accurately calculate the estimated start timing of knock or self-ignition using the self-ignition timing estimation model. In this aspect, it is preferable that the in-cylinder temperature correction unit sets the temporary in-cylinder temperature when the intake valve of the internal combustion engine is closed and corrects the temporary in-cylinder temperature. In this way, the in-cylinder temperature when the intake valve is closed can be estimated easily and accurately.

本発明の一態様では、筒内圧力取得部による取得筒内圧力と筒内温度推定部による推定筒内温度とに基づいて内燃機関の筒内混合気量を推定する筒内混合気量推定部を備えることが好適である。こうすれば、内燃機関の筒内混合気量を容易かつ精度よく推定することができる。この態様では、内燃機関の燃料噴射量を取得する燃料噴射量取得部と、内燃機関の空燃比を検出する空燃比検出部と、燃料噴射量取得部による取得燃料噴射量と空燃比検出部による検出空燃比とに基づいて内燃機関の筒内新気量を推定する筒内新気量推定部と、を備えることが好適である。こうすれば、内燃機関の筒内新気量を容易かつ精度よく推定することができる。さらに、筒内混合気量推定部による推定筒内混合気量と筒内新気量推定部による推定筒内新気量とに基づいて内燃機関の筒内残留ガス量または筒内残留ガス割合を推定する筒内残留ガス推定部を備えることが好適である。こうすれば、内燃機関の筒内残留ガス量または筒内残留ガス割合を容易かつ精度よく推定することができる。   In one aspect of the present invention, an in-cylinder mixture amount estimation unit that estimates an in-cylinder mixture amount of an internal combustion engine based on an in-cylinder pressure acquired by an in-cylinder pressure acquisition unit and an estimated in-cylinder temperature by an in-cylinder temperature estimation unit Is preferably provided. In this way, the in-cylinder mixture amount of the internal combustion engine can be estimated easily and accurately. In this aspect, the fuel injection amount acquisition unit that acquires the fuel injection amount of the internal combustion engine, the air-fuel ratio detection unit that detects the air-fuel ratio of the internal combustion engine, the fuel injection amount acquired by the fuel injection amount acquisition unit, and the air-fuel ratio detection unit It is preferable to include an in-cylinder fresh air amount estimation unit that estimates the in-cylinder fresh air amount of the internal combustion engine based on the detected air-fuel ratio. In this way, the amount of fresh air in the cylinder of the internal combustion engine can be estimated easily and accurately. Further, the in-cylinder residual gas amount or the in-cylinder residual gas ratio of the internal combustion engine is calculated based on the estimated in-cylinder mixture amount by the in-cylinder mixture amount estimation unit and the estimated in-cylinder fresh air amount by the in-cylinder fresh air amount estimation unit. It is preferable to provide an in-cylinder residual gas estimation unit for estimation. In this way, the in-cylinder residual gas amount or the in-cylinder residual gas ratio of the internal combustion engine can be estimated easily and accurately.

また、本発明に係る内燃機関の制御装置は、本発明に係る内燃機関の状態量推定装置を備え、筒内で混合気を点火させて燃焼させる内燃機関の点火時期を制御する内燃機関の制御装置であって、内燃機関のノックまたは自着火を検出する自着火検出部と、自着火検出部によりノックまたは自着火が検出された場合に点火時期を遅角させる点火時期制御部と、を備え、点火時期制御部は、筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいて点火時期を遅角させる場合の筒内圧力及び筒内温度を予測する遅角時状態量予測部と、遅角時状態量予測部で予測された筒内圧力及び筒内温度に基づいて点火時期を遅角させる場合のノックまたは自着火の発生を予測する遅角時自着火予測部と、を有し、遅角時自着火予測部によるノックまたは自着火の発生の予測結果を基に点火時期の遅角量を決定することを要旨とする。   The control device for an internal combustion engine according to the present invention includes the state quantity estimation device for an internal combustion engine according to the present invention, and controls the ignition timing of the internal combustion engine that ignites and burns the air-fuel mixture in the cylinder. A self-ignition detection unit that detects knock or self-ignition of an internal combustion engine, and an ignition timing control unit that retards the ignition timing when knock or self-ignition is detected by the self-ignition detection unit The ignition timing control unit is configured such that the cylinder pressure when the knock or self-ignition acquired by the cylinder pressure acquisition unit is detected and the cylinder when the knock or self-ignition estimated by the cylinder temperature estimation unit is detected. In-cylinder pressure and in-cylinder predicted by the retarded angle state quantity predicting unit, and in-cylinder pressure and in-cylinder predicted by the retarded angle state quantity predicting unit when the ignition timing is retarded based on the inside temperature No delay when retarding ignition timing based on temperature A retarded angle auto-ignition prediction unit that predicts the occurrence of ignition or self-ignition, and determines the retard amount of the ignition timing based on the prediction result of the occurrence of knock or auto-ignition by the retarded angle auto-ignition prediction unit The gist is to do.

本発明によれば、ノックまたは自着火が検出された場合の筒内圧力及び筒内温度を基に点火時期を遅角させる場合の筒内圧力及び筒内温度を予測し、この予測した点火時期を遅角させる場合の筒内圧力及び筒内温度を基に点火時期を遅角させる場合のノックまたは自着火の発生を予測する。そして、点火時期を遅角させる場合のノックまたは自着火の発生の予測結果を基に点火時期の遅角量を決定することで、必要最小限の点火時期の遅角量で内燃機関のノックの発生を抑止することができる。したがって、内燃機関のノックの発生を抑止する制御を精度よく行うことができ、内燃機関の燃焼制御を精度よく行うことができる。   According to the present invention, the in-cylinder pressure and the in-cylinder temperature when the ignition timing is retarded are predicted based on the in-cylinder pressure and the in-cylinder temperature when knocking or self-ignition is detected. The occurrence of knocking or self-ignition when the ignition timing is retarded is predicted based on the in-cylinder pressure and the in-cylinder temperature when retarding. Then, by determining the amount of retardation of the ignition timing based on the prediction result of the occurrence of knocking or self-ignition when retarding the ignition timing, the knocking amount of the internal combustion engine can be reduced with the minimum amount of retardation of the ignition timing. Occurrence can be suppressed. Therefore, it is possible to accurately control the occurrence of knocking in the internal combustion engine, and to accurately control the combustion of the internal combustion engine.

本発明の一態様では、遅角時状態量予測部は、筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいてノックまたは自着火が検出された場合の質量燃焼割合を推定し、該推定した質量燃焼割合に基づいて点火時期を遅角させる場合の筒内圧力及び筒内温度を予測することが好適である。こうすれば、ノックまたは自着火が検出された場合の質量燃焼割合を基に点火時期を遅角させる場合の筒内圧力及び筒内温度を容易かつ精度よく予測することができ、点火時期を遅角させる場合のノックまたは自着火の発生を容易かつ精度よく予測することができる。   In one aspect of the present invention, the retarded state quantity predicting unit includes a knock acquired by the in-cylinder pressure acquiring unit or a knock estimated by the in-cylinder pressure and in-cylinder temperature estimating unit when self-ignition is detected or A cylinder for estimating the mass combustion ratio when knocking or self-ignition is detected based on the in-cylinder temperature when self-ignition is detected, and retarding the ignition timing based on the estimated mass combustion ratio It is preferable to predict the internal pressure and the in-cylinder temperature. In this way, it is possible to easily and accurately predict the in-cylinder pressure and the in-cylinder temperature when retarding the ignition timing based on the mass combustion ratio when knocking or self-ignition is detected, and delay the ignition timing. It is possible to easily and accurately predict the occurrence of knocking or self-ignition when cornering.

本発明の一態様では、遅角時自着火予測部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、点火時期を遅角させる場合のノックまたは自着火の発生を予測することが好適である。こうすれば、自着火時期推定モデルを用いて点火時期を遅角させる場合のノックまたは自着火の発生を容易かつ精度よく予測することができる。   In one aspect of the present invention, the retarded-time self-ignition prediction unit uses an auto-ignition timing estimation model that associates the start timing of knock or auto-ignition with respect to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine, to determine the ignition timing. It is preferable to predict the occurrence of knocking or self-ignition when retarding. By so doing, it is possible to easily and accurately predict the occurrence of knocking or self-ignition when the ignition timing is retarded using the self-ignition timing estimation model.

また、本発明に係る内燃機関の制御装置は、本発明に係る内燃機関の状態量推定装置と、筒内で混合気を燃焼させる可変圧縮比型内燃機関の圧縮比を制御する圧縮比制御部と、を備える内燃機関の制御装置であって、圧縮比制御部は、筒内圧力取得部で取得された筒内圧力と筒内温度推定部で推定された筒内温度とに基づいて圧縮比を変化させる場合の筒内圧力及び筒内温度を予測する圧縮比変化時状態量予測部と、圧縮比変化時状態量予測部で予測された筒内圧力及び筒内温度に基づいて圧縮比を変化させる場合のノックまたは自着火の発生を予測する圧縮比変化時自着火予測部と、を有し、圧縮比変化時自着火予測部によるノックまたは自着火の発生の予測結果を基に圧縮比の変化量を決定することを要旨とする。   An internal combustion engine control apparatus according to the present invention includes an internal combustion engine state quantity estimation apparatus according to the present invention and a compression ratio control unit that controls a compression ratio of a variable compression ratio internal combustion engine that burns an air-fuel mixture in a cylinder. The compression ratio control unit is configured to compress the compression ratio based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit and the in-cylinder temperature estimated by the in-cylinder temperature estimation unit. The compression ratio change state quantity prediction unit for predicting the in-cylinder pressure and the in-cylinder temperature when changing the compression ratio, and the compression ratio based on the in-cylinder pressure and the in-cylinder temperature predicted by the compression ratio change state quantity prediction unit. A compression ratio change self-ignition prediction unit that predicts the occurrence of knock or self-ignition when changing, and the compression ratio based on the prediction result of the occurrence of knock or self-ignition by the self-ignition prediction unit when the compression ratio changes The gist is to determine the amount of change.

本発明によれば、内燃機関の筒内圧力及び筒内温度を基に圧縮比を変化させる場合の筒内圧力及び筒内温度を予測し、この予測した圧縮比を変化させる場合の筒内圧力及び筒内温度を基に圧縮比を変化させる場合のノックまたは自着火の発生を予測する。そして、圧縮比を変化させる場合のノックまたは自着火の発生の予測結果を基に圧縮比の変化量を決定することで、必要最小限の圧縮比の変化量で火花点火機関のノックの発生を抑止する制御や圧縮自着火機関の自着火時期の制御を精度よく行うことができる。したがって、内燃機関の燃焼制御を精度よく行うことができる。   According to the present invention, the in-cylinder pressure and the in-cylinder temperature when the compression ratio is changed based on the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine are predicted, and the in-cylinder pressure when the predicted compression ratio is changed. In addition, the occurrence of knocking or self-ignition when the compression ratio is changed based on the in-cylinder temperature is predicted. Then, by determining the amount of change in the compression ratio based on the prediction result of the occurrence of knocking or self-ignition when the compression ratio is changed, the occurrence of knocking in the spark ignition engine with the minimum amount of change in the compression ratio is determined. It is possible to accurately control the suppression and the self-ignition timing of the compression self-ignition engine. Therefore, the combustion control of the internal combustion engine can be performed with high accuracy.

本発明の一態様では、圧縮比変化時自着火予測部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、圧縮比を変化させる場合のノックまたは自着火の発生を予測することが好適である。こうすれば、自着火時期推定モデルを用いて圧縮比を変化させる場合のノックまたは自着火の発生を容易かつ精度よく予測することができる。   In one aspect of the present invention, the compression ratio change self-ignition prediction unit uses a self-ignition timing estimation model that associates the start timing of knocking or self-ignition with respect to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine. It is preferable to predict the occurrence of knocking or self-ignition when changing. By so doing, it is possible to easily and accurately predict the occurrence of knocking or self-ignition when the compression ratio is changed using the self-ignition timing estimation model.

本発明の一態様では、可変圧縮比型内燃機関は、筒内で混合気を点火させて燃焼させる火花点火機関であり、内燃機関のノックまたは自着火を検出する自着火検出部をさらに備え、圧縮比制御部は、自着火検出部によりノックまたは自着火が検出された場合に圧縮比を低減させ、圧縮比変化時状態量予測部は、筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいて圧縮比を低減させる場合の筒内圧力及び筒内温度を予測し、圧縮比変化時自着火予測部は、圧縮比変化時状態量予測部で予測された筒内圧力及び筒内温度に基づいて圧縮比を低減させる場合のノックまたは自着火の発生を予測し、圧縮比制御部は、圧縮比変化時自着火予測部によるノックまたは自着火の発生の予測結果を基に圧縮比の低減量を決定することが好適である。こうすれば、必要最小限の圧縮比の低減量で火花点火機関のノックの発生を抑止する制御を精度よく行うことができる。この態様では、圧縮比変化時状態量予測部は、筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいてノックまたは自着火が検出された場合の質量燃焼割合を推定し、該推定した質量燃焼割合に基づいて圧縮比を低減させる場合の筒内圧力及び筒内温度を予測することが好適である。こうすれば、ノックまたは自着火が検出された場合の質量燃焼割合を基に圧縮比を低減させる場合の筒内圧力及び筒内温度を容易かつ精度よく予測することができ、圧縮比を低減させる場合のノックまたは自着火の発生を容易かつ精度よく予測することができる。   In one aspect of the present invention, the variable compression ratio internal combustion engine is a spark ignition engine that ignites and burns an air-fuel mixture in a cylinder, and further includes a self-ignition detection unit that detects knock or self-ignition of the internal combustion engine, The compression ratio control unit reduces the compression ratio when knocking or self-ignition is detected by the self-ignition detecting unit, and the state quantity predicting unit at the time of changing the compression ratio is knocked or self-ignited acquired by the in-cylinder pressure acquiring unit. The in-cylinder pressure and the in-cylinder temperature when the compression ratio is reduced based on the in-cylinder pressure when the in-cylinder is detected and the in-cylinder temperature when the knock or self-ignition estimated by the in-cylinder temperature estimation unit is detected The compression ratio change self-ignition prediction unit determines whether knock or self-ignition occurs when the compression ratio is reduced based on the in-cylinder pressure and the in-cylinder temperature predicted by the compression ratio change state quantity prediction unit. The compression ratio control unit predicts when the compression ratio changes. It is preferable to determine the amount of reduction in the compression ratio based on the prediction result of the knock or auto-ignition of the generator by the ignition prediction unit. In this way, it is possible to accurately perform control for suppressing the occurrence of knocking in the spark ignition engine with a minimum amount of reduction in the compression ratio. In this aspect, the state quantity prediction unit at the time of compression ratio change is the knock or self-ignition estimated by the in-cylinder pressure and in-cylinder temperature estimation unit when the knock or self-ignition acquired by the in-cylinder pressure acquisition unit is detected. The in-cylinder pressure when reducing the compression ratio based on the estimated mass combustion ratio is estimated based on the in-cylinder temperature when the engine is detected and knocking or self-ignition is detected. It is preferable to predict the in-cylinder temperature. In this way, it is possible to easily and accurately predict the in-cylinder pressure and the in-cylinder temperature when reducing the compression ratio based on the mass combustion ratio when knocking or self-ignition is detected, thereby reducing the compression ratio. The occurrence of knocking or self-ignition can be easily and accurately predicted.

本発明の一態様では、可変圧縮比型内燃機関は、筒内で混合気を圧縮することで自着火させて燃焼させる圧縮自着火機関であることが好適である。こうすれば、圧縮自着火機関の自着火時期の制御を精度よく行うことができる。   In one aspect of the present invention, it is preferable that the variable compression ratio internal combustion engine is a compression self-ignition engine that self-ignites and burns by compressing an air-fuel mixture in a cylinder. In this way, it is possible to accurately control the self-ignition timing of the compression self-ignition engine.

また、本発明に係る内燃機関の状態量推定方法は、筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定方法であって、内燃機関の筒内圧力を取得する筒内圧力取得ステップと、内燃機関の排気ガスにおける所定成分の濃度を検出する排気濃度検出ステップと、筒内圧力取得ステップによる取得筒内圧力と排気濃度検出ステップによる所定成分の検出濃度とに基づいて内燃機関の筒内温度を推定する筒内温度推定ステップと、を含むことを要旨とする。   An internal combustion engine state quantity estimation method according to the present invention is an internal combustion engine state quantity estimation method for estimating an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder, and acquires an in-cylinder pressure of the internal combustion engine. An in-cylinder pressure acquisition step, an exhaust concentration detection step for detecting the concentration of a predetermined component in the exhaust gas of the internal combustion engine, an acquired in-cylinder pressure in the in-cylinder pressure acquisition step, and a detected concentration of the predetermined component in the exhaust concentration detection step And an in-cylinder temperature estimating step for estimating the in-cylinder temperature of the internal combustion engine based on the above.

また、本発明に係る内燃機関の状態量推定方法は、筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定方法であって、内燃機関の筒内圧力を取得する筒内圧力取得ステップと、内燃機関のノックまたは自着火の開始時期を検出する自着火時期検出ステップと、筒内圧力取得ステップによる取得筒内圧力と自着火時期検出ステップによるノックまたは自着火の検出開始時期とに基づいて内燃機関の筒内温度を推定する筒内温度推定ステップと、を含むことを要旨とする。   An internal combustion engine state quantity estimation method according to the present invention is an internal combustion engine state quantity estimation method for estimating an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder, and acquires an in-cylinder pressure of the internal combustion engine. In-cylinder pressure acquisition step, internal combustion engine knock or self-ignition start timing detection step, in-cylinder pressure acquisition step acquired in-cylinder pressure and self-ignition timing detection step knock or self-ignition And an in-cylinder temperature estimation step for estimating the in-cylinder temperature of the internal combustion engine based on the detection start timing.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

「全体構成」
図1は、本発明の実施形態に係る内燃機関の状態量推定装置を備える内燃機関の制御装置の構成の概略を示す図である。内燃機関(エンジン)10は、ピストン−クランク機構を用いた周知の構成で実現可能であり、火花点火機関として構成されている。吸気行程では、吸気弁が開いており吸気ガスが筒内に吸入される。圧縮行程では、吸気弁が閉じており筒内の吸気ガスがピストンにより圧縮される。そして、筒内の吸気ガス(混合気)が点火プラグにより点火されることで燃焼する。膨張行程では、燃焼後の筒内ガスが膨張することでクランク軸に動力を発生させる。排気行程では、排気弁が開いており燃焼後の筒内ガスが排気ガスとして排出される。ただし、後述するように、内燃機関10を、筒内で混合気を圧縮することで自着火させて燃焼させる圧縮自着火機関により構成することもできる。
"overall structure"
FIG. 1 is a diagram schematically illustrating the configuration of a control device for an internal combustion engine including an internal combustion engine state quantity estimation device according to an embodiment of the present invention. The internal combustion engine (engine) 10 can be realized with a known configuration using a piston-crank mechanism, and is configured as a spark ignition engine. In the intake stroke, the intake valve is open and intake gas is drawn into the cylinder. In the compression stroke, the intake valve is closed and the intake gas in the cylinder is compressed by the piston. Then, the intake gas (air mixture) in the cylinder is burned by being ignited by a spark plug. In the expansion stroke, in-cylinder gas after combustion expands to generate power in the crankshaft. In the exhaust stroke, the exhaust valve is open, and the in-cylinder gas after combustion is discharged as exhaust gas. However, as will be described later, the internal combustion engine 10 can also be configured by a compression self-ignition engine that self-ignites and burns by compressing the air-fuel mixture in the cylinder.

本実施形態では、内燃機関10の各種状態量(筒内ガス状態量)を推定するために、クランク角センサ12、筒内圧力センサ14、NOxセンサ16、空燃比(A/F)センサ18、及びノックセンサ20が設けられている。クランク角センサ12は、内燃機関10のクランク角度θを検出する。筒内圧力センサ14は、内燃機関10の筒内圧力(筒内ガス圧力)pを検出する。NOxセンサ16は、内燃機関10の排気ガス(筒内で燃焼により発生し且つ排気弁開時に筒内より排出されるガス)中に含まれるNOx(窒素酸化物)の濃度ζを検出する。空燃比(A/F)センサ18は、内燃機関10の筒内ガス(混合気)の空燃比A/Fを検出する。ノックセンサ20は、内燃機関10の筒内ガス(混合気)の燃焼時におけるノックまたは自着火の発生及びその開始時期を検出する。ただし、ノックセンサ20の代わりに筒内圧力センサ14を用いて内燃機関10のノックまたは自着火の発生及びその開始時期を検出することも可能である。   In the present embodiment, in order to estimate various state quantities (in-cylinder gas state quantities) of the internal combustion engine 10, a crank angle sensor 12, an in-cylinder pressure sensor 14, a NOx sensor 16, an air-fuel ratio (A / F) sensor 18, And a knock sensor 20 is provided. The crank angle sensor 12 detects the crank angle θ of the internal combustion engine 10. The in-cylinder pressure sensor 14 detects the in-cylinder pressure (in-cylinder gas pressure) p of the internal combustion engine 10. The NOx sensor 16 detects the concentration ζ of NOx (nitrogen oxide) contained in the exhaust gas of the internal combustion engine 10 (gas generated by combustion in the cylinder and exhausted from the cylinder when the exhaust valve is opened). The air-fuel ratio (A / F) sensor 18 detects the air-fuel ratio A / F of the in-cylinder gas (air mixture) of the internal combustion engine 10. The knock sensor 20 detects the occurrence of knocking or self-ignition during the combustion of the in-cylinder gas (air mixture) of the internal combustion engine 10 and its start timing. However, it is also possible to detect the occurrence of knocking or self-ignition of the internal combustion engine 10 and its start timing using the in-cylinder pressure sensor 14 instead of the knock sensor 20.

電子制御装置42は、CPUを中心としたマイクロプロセッサとして構成されており、処理プログラムを記憶したROMと、一時的にデータを記憶するRAMと、入出力ポートと、を備える。この電子制御装置42には、クランク角センサ12で検出されたクランク角度θを示す信号、筒内圧力センサ14で検出された筒内ガス圧力pを示す信号、NOxセンサ16で検出されたNOx濃度ζを示す信号、空燃比センサ18で検出された空燃比A/Fを示す信号、及びノックセンサ20で検出されたノックまたは自着火の発生状態を示す信号等が入力ポートを介して入力されている。一方、電子制御装置42からは、内燃機関10の燃料噴射量(燃料噴射弁の開弁時間)を制御するための燃料噴射制御信号、及び内燃機関10の点火時期を制御するための点火時期制御信号等が出力ポートを介して出力されている。   The electronic control unit 42 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port. The electronic control unit 42 includes a signal indicating the crank angle θ detected by the crank angle sensor 12, a signal indicating the cylinder gas pressure p detected by the cylinder pressure sensor 14, and the NOx concentration detected by the NOx sensor 16. A signal indicating ζ, a signal indicating the air-fuel ratio A / F detected by the air-fuel ratio sensor 18, a signal indicating the occurrence of knocking or self-ignition detected by the knock sensor 20, and the like are input through the input port. Yes. On the other hand, from the electronic control unit 42, a fuel injection control signal for controlling the fuel injection amount (fuel injection valve opening time) of the internal combustion engine 10 and an ignition timing control for controlling the ignition timing of the internal combustion engine 10. A signal or the like is output via the output port.

電子制御装置42は、例えば図1に示す機能ブロック図により構成することができる。電子制御装置42は、以下に説明する筒内温度推定部52、筒内混合気量推定部54、筒内新気量推定部56、筒内残留ガス推定部58、及び点火時期制御部60を備えている。   The electronic control unit 42 can be configured by, for example, the functional block diagram shown in FIG. The electronic control unit 42 includes an in-cylinder temperature estimation unit 52, an in-cylinder mixture amount estimation unit 54, an in-cylinder fresh air amount estimation unit 56, an in-cylinder residual gas estimation unit 58, and an ignition timing control unit 60, which will be described below. I have.

筒内温度推定部52は、内燃機関10の筒内温度(筒内ガス温度)Tを推定する。ここでの筒内ガス温度Tを推定する方法の詳細については後述する。筒内混合気量推定部54は、クランク角センサ12による検出クランク角度θ、筒内圧力センサ14による筒内ガスの検出圧力p、及び筒内温度推定部52による筒内ガスの推定温度Tに基づいて、内燃機関10の筒内混合気量Nを推定する。ここでの筒内混合気量N(モル数)については、吸気弁閉時から排気弁開時までにおける同一タイミングで検出または推定されたクランク角度θと筒内ガス圧力pと筒内ガス温度Tを用いて、以下の(1)式で算出することができる。ただし、(1)式において、Rは普遍ガス定数である。vは内燃機関10の燃焼室容積であり、クランク角度θから算出することができる。   The in-cylinder temperature estimation unit 52 estimates the in-cylinder temperature (in-cylinder gas temperature) T of the internal combustion engine 10. Details of the method for estimating the in-cylinder gas temperature T will be described later. The in-cylinder mixture estimation unit 54 determines the detected crank angle θ by the crank angle sensor 12, the detected pressure p of the in-cylinder gas by the in-cylinder pressure sensor 14, and the estimated in-cylinder temperature T by the in-cylinder temperature estimation unit 52. Based on this, the cylinder air-fuel mixture amount N of the internal combustion engine 10 is estimated. The in-cylinder mixture amount N (number of moles) here is detected or estimated at the same timing from when the intake valve is closed to when the exhaust valve is opened, the crank angle θ, the cylinder gas pressure p, and the cylinder gas temperature T. Can be calculated by the following equation (1). However, in Formula (1), R is a universal gas constant. v is the combustion chamber volume of the internal combustion engine 10 and can be calculated from the crank angle θ.

N=p×v/(R×T) (1)   N = p × v / (R × T) (1)

筒内新気量推定部56は、燃料噴射量及び空燃比センサ18による検出空燃比A/Fに基づいて、内燃機関10の筒内新気量(空気量+燃料量)Nfを推定する。ここでの筒内新気量Nf(モル数)については、以下の(2)式で算出することができる。ただし、(2)式において、Mfは燃料蒸気の平均分子量、Maは空気の平均分子量である。Gfは燃料噴射量(質量)であり、電子制御装置42において例えば燃料噴射制御信号(燃料噴射弁の開弁時間)から算出(取得)することができる。   The in-cylinder fresh air amount estimation unit 56 estimates the in-cylinder fresh air amount (air amount + fuel amount) Nf of the internal combustion engine 10 based on the fuel injection amount and the air-fuel ratio A / F detected by the air-fuel ratio sensor 18. The in-cylinder fresh air amount Nf (number of moles) here can be calculated by the following equation (2). However, in Formula (2), Mf is the average molecular weight of fuel vapor, Ma is the average molecular weight of air. Gf is the fuel injection amount (mass), and can be calculated (obtained) from the fuel injection control signal (opening time of the fuel injection valve) in the electronic control unit 42, for example.

Nf=Gf/Mf+Gf×(A/F)/Ma (2)   Nf = Gf / Mf + Gf × (A / F) / Ma (2)

筒内残留ガス推定部58は、筒内混合気量推定部54による筒内混合気の推定量N及び筒内新気量推定部56による筒内新気の推定量Nfに基づいて、内燃機関10の筒内残留ガス割合Nr/Nを推定する。ここでの筒内残留ガス割合Nr/Nについては、以下の(3)式で算出することができる。また、筒内残留ガス推定部58は、筒内混合気の推定量N及び筒内新気の推定量Nfに基づいて、内燃機関10の筒内残留ガス量Nrを推定することもできる。その場合の筒内残留ガス量Nr(モル数)は、以下の(4)式で表される。   The in-cylinder residual gas estimation unit 58 is based on the estimated amount N of in-cylinder mixture by the in-cylinder mixture estimation unit 54 and the estimated amount Nf of in-cylinder fresh air by the in-cylinder fresh air amount estimation unit 56. A cylinder residual gas ratio Nr / N of 10 is estimated. The in-cylinder residual gas ratio Nr / N here can be calculated by the following equation (3). The in-cylinder residual gas estimation unit 58 can also estimate the in-cylinder residual gas amount Nr of the internal combustion engine 10 based on the in-cylinder mixture estimated amount N and the in-cylinder fresh air estimated amount Nf. In this case, the in-cylinder residual gas amount Nr (number of moles) is expressed by the following equation (4).

Nr/N=1−Nf/N (3)
Nr=N−Nf (4)
Nr / N = 1−Nf / N (3)
Nr = N−Nf (4)

点火時期制御部60は、点火時期制御信号により内燃機関10の点火時期を制御する。ここでの点火時期制御部60は、ノックセンサ20(あるいは筒内圧力センサ14)からの信号に基づきノック(自着火)が発生したと判定した場合は、点火時期を遅角させることでノック(自着火)の発生を抑止する。ここでの点火時期制御の詳細については後述する。   The ignition timing control unit 60 controls the ignition timing of the internal combustion engine 10 with an ignition timing control signal. When the ignition timing control unit 60 determines that knock (self-ignition) has occurred based on a signal from the knock sensor 20 (or in-cylinder pressure sensor 14), the ignition timing control unit 60 retards the ignition timing to retard the knock ( Suppress the occurrence of self-ignition). Details of the ignition timing control here will be described later.

「筒内温度推定部の構成」
次に、筒内温度推定部52のより具体的な構成例について図2を用いて説明する。筒内温度推定部52は、筒内圧力センサ14による筒内ガスの検出圧力pの履歴及びNOxセンサ16によるNOxの検出濃度ζに基づいて内燃機関10の筒内温度(筒内ガス温度)Tを推定する。そして、筒内温度推定部52は、図2に示すように、以下に説明する筒内温度補正部62、NOx濃度推定部64、及びNOx濃度比較部66を備えている。
“Configuration of in-cylinder temperature estimation unit”
Next, a more specific configuration example of the in-cylinder temperature estimation unit 52 will be described with reference to FIG. The in-cylinder temperature estimation unit 52 determines the in-cylinder temperature (in-cylinder gas temperature) T of the internal combustion engine 10 based on the history of the detected pressure p of the in-cylinder gas by the in-cylinder pressure sensor 14 and the detected concentration ζ of NOx by the NOx sensor 16. Is estimated. The in-cylinder temperature estimation unit 52 includes an in-cylinder temperature correction unit 62, a NOx concentration estimation unit 64, and a NOx concentration comparison unit 66 described below, as shown in FIG.

筒内温度補正部62は、内燃機関10の仮筒内温度を設定してNOx濃度推定部64へ出力するとともにこの仮筒内温度を補正する。ここでは、内燃機関10の吸気弁閉時(吸気弁が閉じたとき)の仮筒内温度TIVCが設定されるとともにこの仮筒内温度TIVCが補正される。NOx濃度推定部64は、筒内温度補正部62による吸気弁閉時の仮筒内温度TIVC及び筒内圧力センサ14による筒内ガスの検出圧力pの履歴に基づいて、内燃機関10の排気ガス(筒内で燃焼により発生し且つ排気弁開時に筒内より排出されるガス)中に含まれるNOxの濃度ζ0を推定する。ここでは、内燃機関10の筒内圧力p及び筒内温度Tに対してNOxの濃度ζを関連付けるNOx濃度推定モデルを用いて、NOx濃度ζ0が推定される。このNOx濃度推定モデルの詳細については後述する。 The in-cylinder temperature correction unit 62 sets the temporary in-cylinder temperature of the internal combustion engine 10 and outputs it to the NOx concentration estimation unit 64 and corrects the temporary in-cylinder temperature. Here, the temporary in-cylinder temperature T IVC when the intake valve of the internal combustion engine 10 is closed (when the intake valve is closed) is set, and the temporary in-cylinder temperature T IVC is corrected. The NOx concentration estimator 64 determines the exhaust of the internal combustion engine 10 based on the temporary in-cylinder temperature T IVC when the intake valve is closed by the in-cylinder temperature corrector 62 and the history of the detected pressure p of the in-cylinder gas by the in-cylinder pressure sensor 14. The concentration ζ 0 of NOx contained in the gas (gas generated by combustion in the cylinder and discharged from the cylinder when the exhaust valve is opened) is estimated. Here, the NOx concentration ζ 0 is estimated using a NOx concentration estimation model that associates the NOx concentration ζ with the in-cylinder pressure p and the in-cylinder temperature T of the internal combustion engine 10. Details of the NOx concentration estimation model will be described later.

NOx濃度比較部66は、NOx濃度推定部64によるNOxの推定濃度ζ0とNOxセンサ16によるNOxの検出濃度ζとを比較し、それらの偏差Δζを筒内温度補正部62へ出力する。筒内温度補正部62は、NOx濃度推定部64によるNOxの推定濃度ζ0とNOxセンサ16によるNOxの検出濃度ζとの偏差Δζの絶対値が減少するように、NOx濃度推定部64へ出力する吸気弁閉時の仮筒内温度TIVCを補正し、且つNOx推定濃度ζ0とNOx検出濃度ζとの偏差Δζの絶対値が設定量以下になるまで仮筒内温度TIVCの補正を繰り返して行う。例えば筒内温度補正部62は、NOxの検出濃度ζの方がNOxの推定濃度ζ0より高い場合は仮筒内温度TIVCを高く補正し、NOxの検出濃度ζの方がNOxの推定濃度ζ0より低い場合は仮筒内温度TIVCを低く補正する。ここでは以下の(5)、(6)式に従って吸気弁閉時の仮筒内温度TIVCを補正することができる。 The NOx concentration comparing unit 66 compares the estimated NOx concentration ζ 0 by the NOx concentration estimating unit 64 with the detected NOx concentration ζ by the NOx sensor 16, and outputs the deviation Δζ to the in-cylinder temperature correcting unit 62. The in-cylinder temperature correction unit 62 outputs the NOx concentration estimation unit 64 to the NOx concentration estimation unit 64 so that the absolute value of the deviation Δζ between the NOx estimated concentration ζ 0 by the NOx concentration estimation unit 64 and the NOx detection concentration ζ by the NOx sensor 16 decreases. the provisional in-cylinder temperature T IVC of the intake valve closing timing is corrected to, and NOx estimated concentration zeta 0 and the NOx concentration detected zeta the absolute value correction of the provisional in-cylinder temperature T IVC until below the set amount of deviation Δζ of Repeat. For example, the in-cylinder temperature correction unit 62 corrects the temporary in-cylinder temperature TIVC to be higher when the detected NOx concentration ζ is higher than the estimated NOx concentration ζ 0 , and the detected NOx concentration ζ is higher than the estimated NOx concentration. If it is lower than ζ 0, the temporary cylinder internal temperature T IVC is corrected to be low. Here below is (5), it is possible to correct the provisional in-cylinder temperature T IVC of the intake valve closing timing in accordance with (6).

Figure 2007127004
Figure 2007127004

ただし、(5)、(6)式において、TIVC newは補正後の吸気弁閉時の筒内混合気温度の値、TIVC oldは補正前の吸気弁閉時の筒内混合気温度の値、ΔTIVCは補正量、ΔζはNOxの推定濃度ζ0とNOxの検出濃度ζとの偏差である。また、∂ζ/∂TIVCは、吸気弁閉時の筒内混合気温度に対するNOx濃度の感度であり、実験的または解析的に求めることができる。図3に、吸気弁閉時の筒内混合気温度に対するNOx濃度の感度の一例を示す。ただし、図3において、A/Fは空燃比、KLはエンジン負荷である。 In the equations (5) and (6), T IVC new is the value of the in-cylinder mixture temperature when the intake valve is closed after correction, and T IVC old is the in-cylinder mixture temperature when the intake valve is closed before correction. The value, ΔT IVC is the correction amount, and Δζ is the deviation between the estimated NOx concentration ζ 0 and the detected NOx concentration ζ. Further, ∂ζ / ∂T IVC is the sensitivity of the NOx concentration to the in-cylinder mixture temperature when the intake valve is closed, and can be obtained experimentally or analytically. FIG. 3 shows an example of the sensitivity of the NOx concentration with respect to the in-cylinder mixture temperature when the intake valve is closed. In FIG. 3, A / F is the air-fuel ratio, and KL is the engine load.

そして、筒内温度推定部52は、NOx濃度推定部64によるNOxの推定濃度ζ0とNOxセンサ16によるNOxの検出濃度ζとの偏差Δζの絶対値が設定量以下であるときの仮筒内温度TIVCを、吸気弁閉時(吸気弁が閉じたとき)の推定筒内温度とする。 Then, the in-cylinder temperature estimation unit 52 determines whether the absolute value of the deviation Δζ between the NOx estimated concentration ζ 0 by the NOx concentration estimating unit 64 and the NOx detected concentration ζ by the NOx sensor 16 is equal to or less than the set amount. The temperature T IVC is the estimated in-cylinder temperature when the intake valve is closed (when the intake valve is closed).

次に、NOx濃度推定部64においてNOx濃度ζ0の推定に用いられるNOx濃度推定モデルの一例について説明する。 Next, an example of a NOx concentration estimation model used in the NOx concentration estimation unit 64 for estimating the NOx concentration ζ 0 will be described.

本実施形態では、以下の3反応1〜3によってNOの生成と消滅が記述される、いわゆる拡大Zeldovich機構が用いられる。   In this embodiment, a so-called extended Zeldovich mechanism is used, in which NO generation and elimination are described by the following three reactions 1 to 3.

Figure 2007127004
Figure 2007127004

このモデルでは、いわゆるpromptNOや燃料中に含まれるN及びN2O機構を無視し、且つNOxをNOのみから成ると考え、以下の常微分方程式を用いてNOx濃度の計算を行う。 In this model, so-called promptNO and N and N 2 O mechanisms contained in the fuel are ignored, and NOx is considered to be composed only of NO, and the NOx concentration is calculated using the following ordinary differential equation.

Figure 2007127004
Figure 2007127004

ただし、(7)〜(10)式において、[NO]は、NOのモル濃度(mol/cm3)、つまりNOx濃度ζ0を表す。また、[X]は化学種Xのモル濃度(mol/cm3)、R1〜R3はそれぞれ各反応1〜3の速度(mol/s/cm3)、k1〜k3はそれぞれ各反応1〜3の速度定数、添字eは化学平衡値を表す。 However, in the equations (7) to (10), [NO] represents the molar concentration of NO (mol / cm 3 ), that is, the NOx concentration ζ 0 . [X] is the molar concentration (mol / cm 3 ) of chemical species X, R 1 to R 3 are the rates of each reaction 1 to 3 (mol / s / cm 3 ), and k 1 to k 3 are each The rate constants of Reactions 1 to 3, the subscript e represents the chemical equilibrium value.

各化学種の平衡値[X]eについては、既知の一般的な化学平衡計算手法を用いて、筒内圧力pと既燃部の各元素(本実施形態ではH,O,C,N)の原子数を与えて計算することができる。既燃部の各元素の原子数は、質量燃焼割合xを用いた以下の(11)〜(14)式で表される。 For the equilibrium value [X] e of each chemical species, the in-cylinder pressure p and each element of the burned part (H, O, C, N in this embodiment) are used by using a known general chemical equilibrium calculation method. Can be calculated by giving the number of atoms. The number of atoms of each element in the burned part is expressed by the following formulas (11) to (14) using the mass combustion ratio x.

Figure 2007127004
Figure 2007127004

ただし、(11)〜(14)式において、NHは既燃部に含まれる水素原子の数、NH,IVCは吸気弁閉時の混合気に含まれる水素原子の数、NOは既燃部に含まれる酸素原子の数、NO,IVCは吸気弁閉時の混合気に含まれる酸素原子の数、NCは既燃部に含まれる炭素原子の数、NC,IVCは吸気弁閉時の混合気に含まれる炭素原子の数、NNは既燃部に含まれる窒素原子の数、NN,IVCは吸気弁閉時の混合気に含まれる窒素原子の数である。ここで、空燃比A/Fから未燃混合気の組成を決定することができ、この未燃混合気の組成と未燃混合気の全モル数から未燃混合気に含まれる各原子のモル数を決定することができる。そのため、筒内残留ガスを考慮する場合は、空燃比A/F、筒内新気量Nf、及び筒内残留ガス割合Nr/Nから、吸気弁閉時の混合気に含まれる各原子のモル数を決定することができる。 In the equations (11) to (14), N H is the number of hydrogen atoms contained in the burned part, N H and IVC are the number of hydrogen atoms contained in the air-fuel mixture when the intake valve is closed, and N O is the existing number. The number of oxygen atoms contained in the combustion part, N O, IVC is the number of oxygen atoms contained in the air-fuel mixture when the intake valve is closed, N C is the number of carbon atoms contained in the burned part, and N C, IVC is the intake air The number of carbon atoms contained in the air-fuel mixture when the valve is closed, N N is the number of nitrogen atoms contained in the burned portion, and N N and IVC are the number of nitrogen atoms contained in the air-fuel mixture when the intake valve is closed. Here, the composition of the unburned mixture can be determined from the air-fuel ratio A / F, and the moles of each atom contained in the unburned mixture from the composition of the unburned mixture and the total number of moles of the unburned mixture. The number can be determined. Therefore, when considering the in-cylinder residual gas, the moles of each atom contained in the air-fuel mixture when the intake valve is closed are calculated from the air-fuel ratio A / F, the in-cylinder fresh air amount Nf, and the in-cylinder residual gas ratio Nr / N. The number can be determined.

質量燃焼割合xは、以下の(15)〜(25)式で表される。   The mass combustion ratio x is expressed by the following formulas (15) to (25).

Figure 2007127004
Figure 2007127004
Figure 2007127004
Figure 2007127004

ただし、(15)〜(25)式において、YRは筒内混合気の質量、γPは燃焼生成物の比熱比、γCは未燃混合気の比熱比、γRは燃焼反応物の比熱比、vSは燃焼室容積(クランク角度θから算出)、vSiは点火時期における燃焼室容積、pは筒内圧力、pSiは点火時期における筒内圧力、paは大気圧、qwは燃焼室壁面からの熱損失、ρSiは点火時の筒内混合気密度、Qは燃焼による熱発生量、Mjは化学種jの分子量、Xu,jは燃焼前の既燃部に含まれる化学種jのモル数、Xb,jは既燃部に含まれる化学種jのモル数である。また、αC=1−1/γC、αR=1−1/γRである。 However, in the equations (15) to (25), Y R is the mass of the in-cylinder mixture, γ P is the specific heat ratio of the combustion products, γ C is the specific heat ratio of the unburned mixture, and γ R is the combustion reactant. specific heat ratio, v S is (calculated from the crank angle theta) combustion chamber volume, v Si combustion chamber volume at the ignition timing, p is the cylinder pressure, p Si-cylinder pressure at the ignition timing, p a is the atmospheric pressure, q w is the heat loss from the combustion chamber wall, ρ Si is the in-cylinder mixture density at the time of ignition, Q is the amount of heat generated by combustion, M j is the molecular weight of chemical species j, X u, j is the burned part before combustion The number of moles of the chemical species j contained in X, X b, j is the number of moles of the chemical species j contained in the burned part. Further, α C = 1-1 / γ C and α R = 1-1 / γ R.

燃焼室壁面からの熱損失qwについては、以下のようにして算出することができる。まず(15)式で熱損失を0とおいた以下の(26)式から、その左辺xpの最大値xpmaxを算出する。次に、以下の(27)、(28)式を用いて熱損失qwを算出する。 The heat loss q w from the combustion chamber wall surface can be calculated as follows. First, the maximum value x pmax of the left side x p is calculated from the following equation (26) where the heat loss is set to 0 in equation (15). Next, the following (27), to calculate the heat loss q w using (28).

Figure 2007127004
Figure 2007127004

燃焼による熱発生量Qは、以下の(29)式で表される。   The heat generation amount Q due to combustion is expressed by the following equation (29).

Figure 2007127004
Figure 2007127004

ただし、(29)式において、mは既燃部及び燃焼前の混合気に含まれる化学種の総数、Mjは化学種jの分子量、uj(T)は化学種jの比内部エネルギー(筒内温度Tの関数)、Tuは燃焼前の既燃部の温度、Tbは既燃部の温度、Xu,jは燃焼前の既燃部に含まれる化学種jのモル数、Xb,jは既燃部に含まれる化学種jのモル数、puは燃焼前の既燃部の圧力、vuは燃焼前の既燃部の比体積、γuは燃焼前の既燃部の比熱比、pbは既燃部の圧力、vbは既燃部の比体積、γbは既燃部の比熱比である。 However, in the equation (29), m is the total number of chemical species contained in the burned part and the mixture before combustion, M j is the molecular weight of chemical species j, and u j (T) is the specific internal energy of chemical species j ( A function of the in-cylinder temperature T), T u is the temperature of the burned part before combustion, T b is the temperature of the burned part, X u, j is the number of moles of the chemical species j contained in the burned part before combustion, X b, j is the number of moles of chemical species j contained in the burned part, p u is the pressure of the burned part before combustion, v u is the specific volume of the burned part before combustion, and γ u is the burned part before burning. The specific heat ratio of the burned part, p b is the pressure of the burned part, v b is the specific volume of the burned part, and γ b is the specific heat ratio of the burned part.

また、点火時期前または点火時期の筒内混合気温度Tは、以下の(30)式で表される。   Further, the in-cylinder mixture temperature T before or at the ignition timing is expressed by the following equation (30).

Figure 2007127004
Figure 2007127004

ただし、(30)式において、TIVCは吸気弁閉時の筒内混合気温度、vIVCは吸気弁閉時の燃焼室容積、vは点火時期前または点火時期の燃焼室容積である。κはポリトロープ指数であり、筒内圧力pと燃焼室容積vの履歴から算出することができる。 In the equation (30), T IVC is the in-cylinder mixture temperature when the intake valve is closed, v IVC is the combustion chamber volume when the intake valve is closed, and v is the combustion chamber volume before or at the ignition timing. κ is a polytropic index, which can be calculated from the history of in-cylinder pressure p and combustion chamber volume v.

そして、点火時期後の未燃部温度Tは、以下の(31)式で表される。   And the unburned part temperature T after ignition timing is represented by the following (31) Formula.

Figure 2007127004
Figure 2007127004

ただし、(31)式において、Tignは点火時期における筒内混合気温度、pignは点火時期における筒内圧力(=pSi)、pは点火時期後の筒内圧力、γは点火時期後の未燃部の比熱比である。 In the equation (31), T ign is the in-cylinder mixture temperature at the ignition timing, p ign is the in-cylinder pressure at the ignition timing (= p Si ), p is the in-cylinder pressure after the ignition timing, and γ is after the ignition timing. The specific heat ratio of the unburned part.

そして、点火時期後の既燃部温度Tについては、筒内圧力pと吸気弁閉時の筒内混合気温度TIVCを基に、以上の(11)〜(31)式及び状態方程式を連立させた上で、既知の一般的な化学平衡計算を行うことで算出することができる。例えば点火時期後の仮既燃部温度T0を設定して質量燃焼割合xを(15)〜(29)式及び状態方程式を用いて算出し、筒内圧力pと質量燃焼割合xを基に化学平衡計算を行って点火時期後の既燃部温度Tを算出する。そして、設定した仮既燃部温度T0と化学平衡計算により算出された既燃部温度Tとの偏差の絶対値が減少するように仮既燃部温度T0を補正しながら、化学平衡計算による既燃部温度Tの算出を繰り返して行う。そして、設定した仮既燃部温度T0と化学平衡計算により算出される既燃部温度Tとの偏差の絶対値が設定量以下であるときの仮既燃部温度T0を、点火時期後の既燃部温度Tとすることができる。ただし、最初に質量燃焼割合xを算出する際には、(29)式において既燃部の化学種のモル数が必要である。このときは、混合気が完全燃焼した場合のモル数を与えて、質量燃焼割合xを算出する。あるいは、質量燃焼割合x=1を仮定した上で、化学平衡計算を実施して既燃部の化学種のモル数を決定する。点火時期後の既燃部温度Tが求まれば、(7)〜(29)式と状態方程式と既知の一般的な化学平衡計算手法を用いて、NOのモル濃度[NO](mol/cm3)、つまりNOx推定濃度ζ0を算出することができる。以上のように、NOx濃度推定部64は、混合気の燃焼時の筒内圧力pの履歴と吸気弁閉時の筒内混合気温度TIVCを基に、(7)〜(31)式と状態方程式と既知の一般的な化学平衡計算手法を用いて、NOx推定濃度ζ0を算出することができる。 For the burned part temperature T after the ignition timing, the above equations (11) to (31) and the state equation are simultaneous based on the in-cylinder pressure p and the in-cylinder mixture temperature T IVC when the intake valve is closed. Then, it can be calculated by performing a known general chemical equilibrium calculation. For example, the temporary burned part temperature T 0 after the ignition timing is set, the mass combustion ratio x is calculated using the equations (15) to (29) and the state equation, and based on the in-cylinder pressure p and the mass combustion ratio x A chemical equilibrium calculation is performed to calculate the burned part temperature T after the ignition timing. Then, while correcting the Karisunde燃部temperature T 0 as the absolute value decreases the deviation between the previously燃部temperature T calculated by the temporary already燃部temperature T 0 and the chemical equilibrium calculation set, chemical equilibrium calculations The burned part temperature T is repeatedly calculated. Then, the temporary already燃部temperature T 0 when the absolute value of the deviation between the previously燃部temperature T calculated by the temporary already燃部temperature T 0 and the chemical equilibrium calculation set is less than a set amount, ignition timing The burned part temperature T can be obtained. However, when calculating the mass combustion ratio x for the first time, the number of moles of the chemical species in the burned part is required in the equation (29). At this time, the mass combustion ratio x is calculated by giving the number of moles when the air-fuel mixture burns completely. Alternatively, assuming the mass combustion ratio x = 1, the chemical equilibrium calculation is performed to determine the number of moles of the chemical species in the burned part. If the burned part temperature T after the ignition timing is obtained, the molar concentration of NO [NO] (mol / cm) using the equations (7) to (29), the equation of state, and a known general chemical equilibrium calculation method. 3 ) That is, the NOx estimated concentration ζ 0 can be calculated. As described above, the NOx concentration estimator 64 uses the expressions (7) to (31) based on the history of the in-cylinder pressure p when the mixture is burned and the in-cylinder mixture temperature T IVC when the intake valve is closed. The NOx estimated concentration ζ 0 can be calculated using the equation of state and a known general chemical equilibrium calculation method.

そして、筒内温度推定部52は、NOx推定濃度ζ0とNOx検出濃度ζとの偏差Δζの絶対値が設定量以下であるときの仮筒内温度(吸気弁閉時の推定筒内温度)TIVCを基に、吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度、点火時期後の筒内未燃部温度、及び点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度を推定することができる。吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度については、前述の(30)式を用いて算出することができる。点火時期後の筒内未燃部温度については、前述の(31)式を用いて算出することができる。点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度については、前述したように、(11)〜(31)式及び状態方程式を連立させた上で、既知の一般的な化学平衡計算を行うことで算出することができる。 Then, the in-cylinder temperature estimation unit 52 provides a temporary in-cylinder temperature (estimated in-cylinder temperature when the intake valve is closed) when the absolute value of the deviation Δζ between the NOx estimated concentration ζ 0 and the NOx detected concentration ζ is equal to or less than the set amount. Based on TIVC , the in-cylinder temperature at any time (crank angle) from the intake valve closing timing to the ignition timing, the in-cylinder unburned part temperature after the ignition timing, and the exhaust valve opening timing after the ignition timing The in-cylinder burned part temperature at an arbitrary time (crank angle) can be estimated. The in-cylinder temperature at an arbitrary time (crank angle) from the intake valve closing timing to the ignition timing can be calculated using the above-described equation (30). The in-cylinder unburned portion temperature after the ignition timing can be calculated using the above-described equation (31). Regarding the in-cylinder burned part temperature at any time (crank angle) from the ignition timing to the exhaust valve opening timing, as described above, after combining the equations (11) to (31) and the state equation, It can be calculated by performing a known general chemical equilibrium calculation.

内燃機関10から排出されるNOx濃度は、筒内でNOxが生成される化学反応機構が筒内温度(既燃混合気温度)Tに極めて敏感であるため、本実施形態では、検出したNOx濃度ζを基に筒内温度(未燃混合気温度及び既燃混合気温度)Tを推定することが可能である。より具体的には、少なくとも混合気の燃焼時における筒内圧力pの履歴と設定した吸気弁閉時の筒内ガス温度TIVCとを基にNOx推定濃度ζ0を算出し、この算出したNOx推定濃度ζ0をNOx検出濃度ζと比較する。そして、NOx推定濃度ζ0とNOx検出濃度ζとの偏差Δζの絶対値が設定量以下になるように吸気弁閉時の筒内ガス温度TIVCを補正することで、吸気弁閉時の筒内ガス温度TIVCを推定することができる。そして、この推定した吸気弁閉時の筒内ガス温度TIVCを基に、吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度、点火時期後の筒内未燃部温度、及び点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度を推定することができる。このように、本実施形態によれば、NOx濃度ζの筒内ガス温度Tに対する依存性を利用して、筒内ガス温度Tを容易かつ精度よく推定することができる。 The NOx concentration discharged from the internal combustion engine 10 is detected in this embodiment because the chemical reaction mechanism in which NOx is generated in the cylinder is extremely sensitive to the in-cylinder temperature (burnt mixture temperature) T. The in-cylinder temperature (unburned mixture temperature and burned mixture temperature) T can be estimated based on ζ. More specifically, the estimated NOx concentration ζ 0 is calculated based on at least the history of the in-cylinder pressure p during combustion of the air-fuel mixture and the set in-cylinder gas temperature T IVC when the intake valve is closed, and this calculated NOx The estimated concentration ζ 0 is compared with the NOx detection concentration ζ. Then, by correcting the in-cylinder gas temperature T IVC of the intake valve closing timing so that the absolute value of the deviation Δζ the NOx estimated concentration zeta 0 and the NOx concentration detected zeta is below the set amount, the intake valve closing timing of the cylinder The internal gas temperature T IVC can be estimated. Then, based on in-cylinder gas temperature T IVC of the estimated intake valve closing timing, cylinder temperature, cylinder unburned ignition timing at an arbitrary time to reach the ignition timing after the intake valve closing timing (crank angle) The in-cylinder burned part temperature at an arbitrary time (crank angle) from the ignition temperature to the exhaust valve opening timing after the ignition timing can be estimated. Thus, according to the present embodiment, the in-cylinder gas temperature T can be estimated easily and accurately using the dependency of the NOx concentration ζ on the in-cylinder gas temperature T.

「筒内温度推定部の他の構成」
次に、筒内温度推定部52の他の構成例について図4を用いて説明する。この構成例では、筒内温度推定部52は、筒内圧力センサ14による筒内ガスの検出圧力pの履歴及びノックセンサ20(あるいは筒内圧力センサ14)によるノックまたは自着火の検出開始時期θに基づいて内燃機関10の筒内温度(筒内ガス温度)Tを推定する。そして、筒内温度推定部52は、図4に示すように、以下に説明する筒内温度補正部62、自着火時期推定部74、及び自着火時期比較部76を備えている。
“Other configuration of in-cylinder temperature estimation unit”
Next, another configuration example of the in-cylinder temperature estimation unit 52 will be described with reference to FIG. In this configuration example, the in-cylinder temperature estimation unit 52 detects the history of the detected pressure p of the in-cylinder gas by the in-cylinder pressure sensor 14 and the detection start timing θ of knock or self-ignition by the knock sensor 20 (or the in-cylinder pressure sensor 14). Based on the above, the in-cylinder temperature (in-cylinder gas temperature) T of the internal combustion engine 10 is estimated. As shown in FIG. 4, the in-cylinder temperature estimation unit 52 includes an in-cylinder temperature correction unit 62, a self-ignition timing estimation unit 74, and a self-ignition timing comparison unit 76 described below.

筒内温度補正部62は、内燃機関10の仮筒内温度を設定して自着火時期推定部74へ出力するとともにこの仮筒内温度を補正する。ここでは、内燃機関10の吸気弁閉時(吸気弁が閉じたとき)の仮筒内温度TIVCが設定されるとともにこの仮筒内温度TIVCが補正される。自着火時期推定部74は、筒内温度補正部62による吸気弁閉時の仮筒内温度TIVC及び筒内圧力センサ14による筒内ガスの検出圧力pの履歴に基づいて、内燃機関10の自着火の開始時期θ0を推定する。ここでは、内燃機関10の筒内圧力p及び筒内温度Tに対して自着火の開始時期θを関連付ける自着火時期推定モデルを用いて、自着火の開始時期θ0が推定される。この自着火時期推定モデルの詳細については後述する。 The in-cylinder temperature correction unit 62 sets the temporary in-cylinder temperature of the internal combustion engine 10 and outputs it to the self-ignition timing estimation unit 74 and corrects the temporary in-cylinder temperature. Here, the temporary in-cylinder temperature T IVC when the intake valve of the internal combustion engine 10 is closed (when the intake valve is closed) is set, and the temporary in-cylinder temperature T IVC is corrected. The self-ignition timing estimation unit 74 is based on the temporary in-cylinder temperature T IVC when the intake valve is closed by the in-cylinder temperature correction unit 62 and the history of the detected pressure p of the in-cylinder gas by the in-cylinder pressure sensor 14. Estimate the start time θ 0 of self-ignition. Here, the self-ignition start timing θ 0 is estimated using a self-ignition timing estimation model that associates the self-ignition start timing θ with the in-cylinder pressure p and the in-cylinder temperature T of the internal combustion engine 10. Details of the self-ignition timing estimation model will be described later.

自着火時期比較部76は、自着火時期推定部74による自着火の推定開始時期θ0とノックセンサ20(あるいは筒内圧力センサ14)による自着火の検出開始時期θとを比較し、それらの偏差Δθを筒内温度補正部62へ出力する。筒内温度補正部62は、自着火時期推定部74による自着火の推定開始時期θ0とノックセンサ20(あるいは筒内圧力センサ14)による自着火の検出開始時期θとの偏差Δθの絶対値が減少するように、自着火時期推定部74へ出力する吸気弁閉時の仮筒内温度TIVCを補正し、且つ自着火の推定開始時期θ0と検出開始時期θとの偏差Δθの絶対値が設定量以下になるまで仮筒内温度TIVCの補正を繰り返して行う。例えば自着火の検出開始時期θの方が推定開始時期θ0より早い場合は仮筒内温度TIVCを高く補正し、自着火の検出開始時期θの方が推定開始時期θ0より遅い場合は仮筒内温度TIVCを低く補正する。ただし、逆の場合もあり得るため、偏差Δθの絶対値が減少するように仮筒内温度TIVCを補正する方向を決定する。また、ここでは、前述の(6)式でζ及びΔζをθ及びΔθにそれぞれ置き換えた式に従って吸気弁閉時の仮筒内温度TIVCを補正することができる。 The self-ignition timing comparison unit 76 compares the self-ignition estimation start timing θ 0 by the self-ignition timing estimation unit 74 with the self-ignition detection start timing θ by the knock sensor 20 (or in-cylinder pressure sensor 14), and compares them. Deviation Δθ is output to in-cylinder temperature correction unit 62. The in-cylinder temperature correction unit 62 calculates the absolute value of the deviation Δθ between the self-ignition estimation start timing θ 0 by the self-ignition timing estimation unit 74 and the self-ignition detection start timing θ by the knock sensor 20 (or the in-cylinder pressure sensor 14). so they decrease the own outputs to the ignition timing estimating unit 74 corrects the provisional in-cylinder temperature T IVC of the intake valve closing timing, and the absolute deviation Δθ of the self-ignition of the estimated starting time theta 0 and the detection start timing theta The temporary in-cylinder temperature TIVC is repeatedly corrected until the value becomes the set amount or less. For example, if the self-ignition detection start timing θ is earlier than the estimated start timing θ 0 , the temporary in-cylinder temperature T IVC is corrected to be higher, and if the self-ignition detection start timing θ is later than the estimated start timing θ 0 Temporary in-cylinder temperature T IVC is corrected to be low. However, since the reverse case is also possible, the direction in which the temporary in-cylinder temperature TIVC is corrected is determined so that the absolute value of the deviation Δθ decreases. Here, the provisional in-cylinder temperature T IVC when the intake valve is closed can be corrected according to the equations in which ζ and Δζ are replaced with θ and Δθ in the above-described equation (6), respectively.

そして、筒内温度推定部52は、自着火時期推定部74による自着火の推定開始時期θ0とノックセンサ20(あるいは筒内圧力センサ14)による自着火の検出開始時期θとの偏差Δθの絶対値が設定量以下であるときの仮筒内温度TIVCを、吸気弁閉時(吸気弁が閉じたとき)の推定筒内温度とする。 The in-cylinder temperature estimation unit 52 then calculates a deviation Δθ between the self-ignition estimation start timing θ 0 by the self-ignition timing estimation unit 74 and the self-ignition detection start timing θ by the knock sensor 20 (or the in-cylinder pressure sensor 14). The temporary in-cylinder temperature T IVC when the absolute value is equal to or less than the set amount is the estimated in-cylinder temperature when the intake valve is closed (when the intake valve is closed).

次に、自着火時期推定部74において自着火の開始時期θ0の推定に用いられる自着火時期推定モデルの例について説明する。 Next, an example of the self-ignition timing estimation model used in the self-ignition timing estimation unit 74 for estimating the self-ignition start time θ 0 will be described.

本実施形態では、自着火時期推定部74は、Livengood-Wu積分式を用いて自着火の開始時期θ0を推定することができる。Livengood-Wu積分式は、以下の(32)、(33)式で表され、自着火時期推定部74は、例えば(32)式の積分値Wuが1となる時刻(クランク角度)を自着火開始時期θ0と判定することができる。 In the present embodiment, the self-ignition timing estimation unit 74 can estimate the self-ignition start time θ 0 using the Livengood-Wu integral formula. The Livengood-Wu integral formula is expressed by the following formulas (32) and (33), and the self-ignition timing estimation unit 74 auto-ignites the time (crank angle) when the integral value Wu of formula (32) becomes 1, for example. The start time θ 0 can be determined.

Figure 2007127004
Figure 2007127004

ただし、(32)、(33)式において、tは時刻、Tは筒内温度、pは筒内圧力、φは筒内混合気の当量比(空燃比A/Fから算出)である。積分開始時刻0は、自着火に関わる反応が進行していないとみなせる時刻、例えば吸気弁閉時期とすることができる。点火時期前または点火時期の筒内温度(混合気温度)Tについては、前述の(30)式を用いて算出することができ、点火時期後の筒内温度(未燃部温度)Tについては、前述の(31)式を用いて算出することができる。   In the equations (32) and (33), t is time, T is the in-cylinder temperature, p is the in-cylinder pressure, and φ is the equivalent ratio of the in-cylinder mixture (calculated from the air-fuel ratio A / F). The integration start time 0 can be a time at which it can be considered that a reaction related to self-ignition is not progressing, for example, the intake valve closing timing. The in-cylinder temperature (mixture temperature) T before or at the ignition timing can be calculated using the above-described equation (30). The in-cylinder temperature (unburned part temperature) T after the ignition timing is , And can be calculated using the aforementioned equation (31).

(33)式の関数fは、例えば以下の(34)式で表すことができる。   The function f in the equation (33) can be expressed by the following equation (34), for example.

Figure 2007127004
Figure 2007127004

(34)式において、通常、A,α,β,Eは定数とするが、積分区間または変数T,p,φの値に応じて変化させることもできる。また、関数fとして他の形も採り得ることができる。さらに、関数fの変数としてT,p,φ以外のものを挙げることもでき、例えば残留ガス割合Nr/Nを用いることもできる。   In the equation (34), A, α, β, and E are usually constants, but can be changed according to the integration interval or the values of the variables T, p, and φ. Also, other forms can be used as the function f. Furthermore, the variable of the function f can include other than T, p, and φ. For example, the residual gas ratio Nr / N can be used.

また、本実施形態では、自着火時期推定部74は、未燃部で起きる化学反応を模擬するモデルを用いることによっても、自着火の開始時期θ0を推定することができる。ここでの未燃部で起きる化学反応を模擬するモデルは、以下の(35)式で表される。 In the present embodiment, the self-ignition timing estimation unit 74 can also estimate the self-ignition start time θ 0 by using a model that simulates a chemical reaction occurring in the unburned part. A model for simulating a chemical reaction occurring in the unburned portion here is expressed by the following equation (35).

Figure 2007127004
Figure 2007127004

ただし、(35)式において、Xjは化学種jのモル数、Vは未燃部の体積、tは時刻、brjは反応rの生成物jの量論係数、arjは反応rの反応物jの量論係数、kfrは反応rの正方向反応速度定数(筒内未燃部温度Tの関数とすることが可能)、kbrは反応rの逆方向反応速度定数(筒内未燃部温度Tの関数とすることが可能)である。Cjは化学種jのモル濃度であり、以下の(36)、(37)式で表される。 Where X j is the number of moles of chemical species j, V is the volume of the unburned part, t is the time, b rj is the stoichiometric coefficient of product j of reaction r, and a rj is the reaction r The stoichiometric coefficient of reactant j, k fr is the forward reaction rate constant of reaction r (can be a function of in-cylinder unburned zone temperature T), and k br is the reverse reaction rate constant of reaction r (in-cylinder It can be a function of the unburned zone temperature T). C j is the molar concentration of the chemical species j and is represented by the following formulas (36) and (37).

Figure 2007127004
Figure 2007127004

ただし、(36)、(37)式において、Xjは化学種jの未燃部におけるモル数、Vは未燃部の体積、Nは未燃部のモル数、Rは普遍ガス定数、Tは未燃部の温度、pは未燃部の圧力である。 However, in the equations (36) and (37), X j is the number of moles of the chemical species j in the unburned part, V is the volume of the unburned part, N is the number of moles of the unburned part, R is the universal gas constant, T Is the temperature of the unburned part, and p is the pressure of the unburned part.

(35)〜(37)式と以下の(38)式と状態方程式とを連立させて各時刻(クランク角度)の未燃部組成を算出することができる。なお、筒内残留ガスを考慮する場合は、吸気弁閉時の混合気組成(初期組成)については、空燃比A/F、筒内新気量Nf、筒内残留ガス割合Nr/N、及び残留ガス組成から決定することができ、残留ガス組成については、実験的または解析的に予め求めた経験値を与えることで決定することができる。あるいは、後述する(39)、(40)式を用いて算出可能な前サイクルの排気弁開時の筒内既燃部組成を与えることによっても残留ガス組成を決定することができる。   The unburned part composition at each time (crank angle) can be calculated by simultaneously combining the expressions (35) to (37), the following expression (38), and the state equation. When considering the in-cylinder residual gas, the air-fuel ratio A / F, the in-cylinder fresh air amount Nf, the in-cylinder residual gas ratio Nr / N, and the air-fuel mixture composition (initial composition) when the intake valve is closed The residual gas composition can be determined, and the residual gas composition can be determined by giving experimental values obtained experimentally or analytically in advance. Alternatively, the residual gas composition can also be determined by giving the in-cylinder burned part composition when the exhaust valve is opened in the previous cycle, which can be calculated using equations (39) and (40) described later.

Figure 2007127004
Figure 2007127004

ただし、(38)式において、mは未燃部の混合気に含まれる化学種の総数、Mjは化学種jの分子量、hj(T)は化学種jの比エンタルピー(筒内温度Tの関数)、Toldは計算における1サンプル時間刻み前の未燃部の温度、Tnewは計算における1サンプル時間刻み後の未燃部の温度、Xold,jは計算における1サンプル時間刻み前の未燃部に含まれる化学種jのモル数、Xnew,jは計算における1サンプル時間刻み後の未燃部に含まれる化学種jのモル数、voldは計算における1サンプル時間刻み前の未燃部の比体積、vnewは計算における1サンプル時間刻み後の未燃部の比体積、poldは計算における1サンプル時間刻み前の未燃部の圧力、pnewは計算における1サンプル時間刻み後の未燃部の圧力である。 In Equation (38), m is the total number of chemical species included in the mixture in the unburned part, M j is the molecular weight of chemical species j, and h j (T) is the specific enthalpy (in-cylinder temperature T of chemical species j). ), T old is the temperature of the unburned part before one sample time step in the calculation, T new is the temperature of the unburned part after one sample time step in the calculation, and X old, j is one sample time step before the calculation. The number of moles of the chemical species j contained in the unburned part of X, X new, j is the number of moles of the chemical species j contained in the unburned part after one sample time increment in the calculation, and v old is before the one sample time increment in the calculation. Specific volume of unburned part, v new is the specific volume of unburned part after one sample time in calculation, p old is the pressure of unburned part before one sample time in calculation, p new is one sample in calculation This is the pressure of the unburned part after time.

そして、この算出した各時刻(クランク角度)の未燃部組成を基に前述の(29)式を用いて未燃部の熱発生量Qを算出することができる。自着火時期推定部74は、例えばこの算出した未燃部の熱発生量Qがある閾値を超えた時刻(クランク角度)を自着火開始時期θ0と判定することができる。 Based on the calculated unburned part composition at each time (crank angle), the heat generation amount Q of the unburned part can be calculated using the above-described equation (29). The self-ignition timing estimation unit 74 can determine, for example, a time (crank angle) at which the calculated heat generation amount Q of the unburned part exceeds a certain threshold (crank angle) as the self-ignition start time θ 0 .

また、(35)〜(38)式と状態方程式を連立させて各時刻(クランク角度)の未燃部組成を算出する際には、各時刻(クランク角度)の筒内温度Tも算出することができる。自着火時期推定部74は、この算出した筒内温度Tがある閾値を超えた時刻(クランク角度)を自着火開始時期θ0と判定することもできる。また、自着火時期推定部74は、(35)式を用いて算出されたある化学種の濃度、例えばOHラジカルの濃度がある閾値を超えた時刻(クランク角度)を自着火開始時期θ0と判定することもできる。 Further, when calculating the unburned part composition at each time (crank angle) by combining the equations (35) to (38) and the equation of state, also calculate the in-cylinder temperature T at each time (crank angle). Can do. The self-ignition timing estimation unit 74 can also determine the time (crank angle) when the calculated in-cylinder temperature T exceeds a certain threshold as the self-ignition start time θ 0 . In addition, the self-ignition timing estimation unit 74 uses the time (crank angle) when the concentration of a certain chemical species calculated by using the equation (35), for example, the concentration of OH radicals exceeds a certain threshold value as the self-ignition start time θ 0 . It can also be determined.

そして、筒内温度推定部52は、自着火の推定開始時期θ0と検出開始時期θとの偏差Δθの絶対値が設定量以下であるときの仮筒内温度(吸気弁閉時の推定筒内温度)TIVCを基に、吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度、点火時期後の筒内未燃部温度、及び点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度を推定することができる。吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度については、前述の(30)式を用いて算出することができる。点火時期後の筒内未燃部温度については、前述の(31)式を用いて算出することができる。点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度については、前述したように、(11)〜(31)式及び状態方程式を連立させた上で、既知の一般的な化学平衡計算を行うことで算出することができる。 Then, the in-cylinder temperature estimation unit 52 determines the temporary in-cylinder temperature when the absolute value of the deviation Δθ between the self-ignition estimation start timing θ 0 and the detection start timing θ is equal to or less than the set amount (the estimated cylinder when the intake valve is closed) Internal temperature) Based on TIVC , the in-cylinder temperature at any time (crank angle) from the intake valve closing timing to the ignition timing, the in-cylinder unburned part temperature after the ignition timing, and the exhaust valve opening after the ignition timing The in-cylinder burned part temperature at any time (crank angle) up to the time can be estimated. The in-cylinder temperature at an arbitrary time (crank angle) from the intake valve closing timing to the ignition timing can be calculated using the above-described equation (30). The in-cylinder unburned portion temperature after the ignition timing can be calculated using the above-described equation (31). Regarding the in-cylinder burned part temperature at any time (crank angle) from the ignition timing to the exhaust valve opening timing, as described above, after combining the equations (11) to (31) and the state equation, It can be calculated by performing a known general chemical equilibrium calculation.

以上の説明では、自着火の開始時期の代わりにノックの開始時期を用いて筒内温度Tを推定することもできる。ノックの開始時期を用いる場合も自着火の開始時期を用いる場合と同様に考えることができ、以上の説明で自着火の開始時期をノックの開始時期に置き換えた場合を考えればよい。   In the above description, the in-cylinder temperature T can be estimated using the knock start time instead of the self-ignition start time. The case of using the knock start time can be considered in the same manner as the case of using the self-ignition start time, and the case where the self-ignition start time is replaced with the knock start time in the above description may be considered.

内燃機関10のノックの原因は筒内未燃部の自着火であるが、自着火の開始時期(ノックの開始時期)は筒内温度T(未燃混合気の温度履歴)に極めて敏感であるため、本実施形態では、検出した自着火の開始時期(ノックの開始時期)θを基に筒内温度(未燃混合気温度)Tを推定することが可能である。より具体的には、少なくとも点火時期後における筒内圧力pの履歴と設定した吸気弁閉時の筒内ガス温度TIVCとを基に自着火の推定開始時期(ノックの推定開始時期)θ0を算出し、この算出した自着火の推定開始時期(ノックの推定開始時期)θ0を自着火の検出開始時期(ノックの検出開始時期)θと比較する。そして、自着火の推定開始時期(ノックの推定開始時期)θ0と自着火の検出開始時期(ノックの検出開始時期)θとの偏差Δθの絶対値が設定量以下になるように吸気弁閉時の筒内ガス温度TIVCを補正することで、吸気弁閉時の筒内ガス温度TIVCを推定することができる。そして、この推定した吸気弁閉時の筒内ガス温度TIVCを基に、吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度、点火時期後の筒内未燃部温度、及び点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度を推定することができる。このように、本実施形態によれば、自着火の開始時期(ノックの開始時期)θの筒内ガス温度Tに対する依存性を利用して、筒内ガス温度Tを容易かつ精度よく推定することができる。 The cause of knocking in the internal combustion engine 10 is self-ignition of the in-cylinder unburned portion, but the start time of self-ignition (starting time of knock) is extremely sensitive to the in-cylinder temperature T (temperature history of the unburned mixture). Therefore, in this embodiment, it is possible to estimate the in-cylinder temperature (unburned mixture temperature) T based on the detected self-ignition start timing (knock start timing) θ. More specifically, based on at least the history of the in-cylinder pressure p after the ignition timing and the set in-cylinder gas temperature T IVC when the intake valve is closed, the auto-ignition estimation start timing (knock estimation start timing) θ 0 And the calculated self-ignition estimation start timing (knock estimation start timing) θ 0 is compared with the self-ignition detection start timing (knock detection start timing) θ. Then, the intake valve is closed so that the absolute value of the deviation Δθ between the self-ignition estimation start timing (knock estimation start timing) θ 0 and the self-ignition detection start timing (knock detection start timing) θ is equal to or less than the set amount. by correcting the in-cylinder gas temperature T IVC of time, it is possible to estimate the in-cylinder gas temperature T IVC of intake valve closing. Then, based on in-cylinder gas temperature T IVC of the estimated intake valve closing timing, cylinder temperature, cylinder unburned ignition timing at an arbitrary time to reach the ignition timing after the intake valve closing timing (crank angle) The in-cylinder burned part temperature at an arbitrary time (crank angle) from the ignition temperature to the exhaust valve opening timing after the ignition timing can be estimated. Thus, according to the present embodiment, the in-cylinder gas temperature T can be estimated easily and accurately using the dependency of the self-ignition start time (knock start time) θ on the in-cylinder gas temperature T. Can do.

なお、特許文献1の方法では、各種物理モデルを組み合わせたシミュレーションを行う必要があるため、処理が煩雑であり、計算時間も長くなる。一方、本実施形態による筒内温度Tの推定方法は、特許文献1の方法と比較して、処理が簡便であり、計算時間も短縮することができる。また、特許文献2では、燃焼予測計算に用いる温度や圧力の初期値を求める手段が不明であるが、本実施形態による筒内温度Tの推定方法では、筒内温度Tの推定の際に用いる温度や圧力の初期値を与える方法が明確である。   In the method of Patent Document 1, since it is necessary to perform a simulation combining various physical models, the processing is complicated and the calculation time is long. On the other hand, the method for estimating the in-cylinder temperature T according to the present embodiment is simpler in processing and shorter in calculation time than the method of Patent Document 1. Further, in Patent Document 2, the means for obtaining the initial values of the temperature and pressure used for the combustion prediction calculation is unknown, but in the method for estimating the in-cylinder temperature T according to the present embodiment, it is used when the in-cylinder temperature T is estimated. It is clear how to give initial values for temperature and pressure.

そして、本実施形態では、推定した筒内温度Tを基に、筒内混合気量Nを容易かつ精度よく推定することができる。さらに、推定した筒内混合気量Nを基に、筒内残留ガス割合Nr/N(あるいは筒内残留ガス量Nr)を容易かつ精度よく推定することができる。   In this embodiment, the in-cylinder mixture amount N can be estimated easily and accurately based on the estimated in-cylinder temperature T. Further, the cylinder residual gas ratio Nr / N (or cylinder residual gas amount Nr) can be estimated easily and accurately based on the estimated cylinder air-fuel mixture amount N.

そして、本実施形態では、電子制御装置42は、筒内温度推定部52で推定された筒内温度Tを基に、熱発生、ノックの発生、エミッション生成等の燃焼時の挙動を各種計算モデルを用いて予測することもでき、エンジンシステム全体の挙動を予測することが可能となる。また、エンジン試験結果と予測結果を突き合わせることで、各種計算モデルに含まれる定数の値を決定することや、各種計算モデルの開発も可能となる。さらに、各種計算モデルを用いたエンジン制御が可能となる。すなわち、各種計算モデルを制御ロジックに組み込んで利用したり、予測結果を制御マップ化してエンジン制御に利用することが可能となる。このように、本実施形態では、エンジン制御に必要な各種計算モデルの開発及び定数適合が極めて容易になるとともに、それらの各種計算モデルを利用することで、従来、制御マップの作成に必要とされた試験の省略が可能となり、いわゆるエンジン適合に関わる大幅な工数削減と期間短縮を実現することができる。また、本実施形態に係る装置を車載することで、エンジン制御に必要な各種状態量を推定することができる。   In the present embodiment, the electronic control unit 42 calculates various behaviors during combustion such as heat generation, knock generation, and emission generation based on the in-cylinder temperature T estimated by the in-cylinder temperature estimation unit 52. It is also possible to predict using this, and it becomes possible to predict the behavior of the entire engine system. In addition, by matching engine test results with prediction results, it is possible to determine the values of constants included in various calculation models and to develop various calculation models. Furthermore, engine control using various calculation models becomes possible. That is, various calculation models can be used by being incorporated in the control logic, or the prediction results can be used as a control map for engine control. As described above, in this embodiment, development of various calculation models necessary for engine control and constant adaptation are extremely easy, and conventionally, these calculation models are used to create a control map. Test can be omitted, and the man-hours and the time required for so-called engine adaptation can be greatly reduced. Moreover, various state quantities required for engine control can be estimated by mounting the apparatus according to the present embodiment on the vehicle.

なお、熱発生については、前述したように、(29)式を用いて予測することが可能である。ノック(自着火)の開始時期については、前述したように、(32)〜(34)式(Livengood-Wu積分式)を用いて予測することも可能であるし、(35)〜(38)式及び状態方程式を用いて予測することも可能である。NOx濃度については、前述したように、(7)〜(31)式と状態方程式と既知の一般的な化学平衡計算手法を用いて予測することが可能である。   As described above, the heat generation can be predicted using the equation (29). As described above, the start timing of knock (self-ignition) can be predicted using the equations (32) to (34) (Livengood-Wu integral equation), and (35) to (38). It is also possible to make predictions using equations and equations of state. As described above, the NOx concentration can be predicted using the equations (7) to (31), the equation of state, and a known general chemical equilibrium calculation method.

また、CO濃度については、既燃部の全モル数XM及びCO分子のモル数XCOを変化させる反応のみを考慮して、以下の(39)、(40)式を用いてXM及びXCOの時間変化を算出することで予測が可能である。 As for CO concentrations, taking into account only the reaction that changes the number of moles X CO of total moles X M and CO molecules already燃部, X M and using the following (39), (40) below it is possible to predict by calculating the time variation of the X CO.

Figure 2007127004
Figure 2007127004

ただし、(39)、(40)式の右辺に現れる化学種jのモル濃度Cjは、(39)、(40)式の拘束のもとで既燃部のGibbsの自由エネルギーが最小となるように決定される。なお、tは時刻、Vは既燃部の体積、brM,jは反応rMの生成物jの量論係数、arM,jは反応rMの反応物jの量論係数、kfrMは反応rMの正方向反応速度定数(筒内温度Tの関数とすることが可能)、kbrMは反応rMの逆方向反応速度定数(筒内温度Tの関数とすることが可能)、brCO,jは反応rCOの生成物jの量論係数、arCO,jは反応rCOの反応物jの量論係数、kfrCOは反応rCOの正方向反応速度定数(筒内温度Tの関数とすることが可能)、kbrCOは反応rCOの逆方向反応速度定数(筒内温度Tの関数とすることが可能)である。また、反応rMは既燃部の全モル数XMを変化させる反応、反応rCOは既燃部のCO分子のモル数XCOを変化させる反応である。 However, the molar concentration C j of the chemical species j appearing on the right side of the equations (39) and (40) minimizes the Gibbs free energy of the burned part under the constraints of the equations (39) and (40). To be determined. Where t is the time, V is the volume of the burned part , b rM, j is the stoichiometric coefficient of product j of reaction rM, a rM, j is the stoichiometric coefficient of reactant j of reaction rM, and k frM is the reaction rM forward reaction rate constant (can be a function of in-cylinder temperature T), k brM is reverse reaction rate constant of reaction rM (can be a function of in-cylinder temperature T), b rCO, j Is the stoichiometric coefficient of the product j of the reaction rCO, a rCO, j is the stoichiometric coefficient of the reactant j of the reaction rCO, k frCO is the forward reaction rate constant of the reaction rCO (which can be a function of the in-cylinder temperature T) K brCO is the reverse reaction rate constant of the reaction rCO (can be a function of the in-cylinder temperature T). Reaction rM is a reaction that changes the total number of moles X M of the burned part, and reaction rCO is a reaction that changes the number of moles X CO of the CO molecules in the burned part.

また、THC(Total HydroCarbon)濃度については、燃焼室壁面に沿って形成される消炎層とピストンクレビス内に残る燃料(炭化水素)量を評価することで予測が可能である。燃焼室壁面に沿って形成される消炎層に残る燃料(炭化水素)量Xfuel,quenchについては、以下の(41)、(42)式を用いて評価可能である。 The THC (Total HydroCarbon) concentration can be predicted by evaluating the amount of fuel (hydrocarbon) remaining in the flame extinguishing layer and piston clevis formed along the wall surface of the combustion chamber. The amount of fuel (hydrocarbon) X fuel, quench remaining in the extinguishing layer formed along the wall surface of the combustion chamber can be evaluated using the following equations (41) and (42).

Figure 2007127004
Figure 2007127004

ただし、(41)、(42)式において、Sは燃焼室内部の表面積(ピストンクレビス部を除く)、dは消炎層の厚み、Cfuelは消炎層内の燃料濃度、PeはPeclet数、κuは未燃混合気の熱伝導率、slは未燃混合気の層流燃焼速度、Tevoは排気弁開時の既燃部温度、Twは燃焼室壁面の温度、ubは既燃部の比内部エネルギー、uuは消炎層の比内部エネルギー、ρuは消炎層の密度である。 However, in the formulas (41) and (42), S is the surface area inside the combustion chamber (excluding the piston clevis part), d is the thickness of the extinguishing layer, C fuel is the fuel concentration in the extinguishing layer, Pe is the number of Peclet, κ u is the thermal conductivity of the unburned mixture gas, s l is laminar burning velocity of the unburned air-fuel mixture, T evo is already燃部temperature during opening the exhaust valve, T w is the temperature of the combustion chamber wall surface, u b is already The specific internal energy of the burning part, u u is the specific internal energy of the extinguishing layer, and ρ u is the density of the extinguishing layer.

ピストンクレビス内に残る燃料(炭化水素)量Xfuel,creviceについては、以下の(43)式を用いて評価可能である。 The amount of fuel (hydrocarbon) X fuel, crevice remaining in the piston clevis can be evaluated using the following equation (43).

fuel,crevice=Vcrev×Cfuel (43) X fuel, crevice = V crev × C fuel (43)

ただし、(43)式において、Vcrevはピストンクレビスの容積、Cfuelはクレビス内の燃料濃度である。 In the equation (43), V crev is the volume of the piston clevis, and C fuel is the fuel concentration in the clevis.

なお、ピストンクレビスから流出する未燃混合気の筒内における酸化については、以下の(44)式を用いて評価可能である。   The oxidation of the unburned mixture flowing out from the piston clevis in the cylinder can be evaluated using the following equation (44).

Figure 2007127004
Figure 2007127004

ただし、(44)式において、[THC]は既燃部のTHC濃度、Tbは既燃部の温度、[O2]は既燃部の酸素分子濃度である。 However, in the equation (44), [THC] is the THC concentration of the burned part, T b is the temperature of the burned part, and [O 2 ] is the oxygen molecule concentration of the burned part.

また、排気浄化触媒の排気浄化率や暖機性能については、以下の(45)〜(48)式を用いて予測することが可能である。   Further, the exhaust purification rate and warm-up performance of the exhaust purification catalyst can be predicted using the following equations (45) to (48).

Figure 2007127004
Figure 2007127004

ただし、(45)〜(48)式において、ρgは排気浄化触媒を流れるガスの密度、vgは排気浄化触媒を流れるガスの速度、Cpgは排気浄化触媒を流れるガスの定圧比熱、Tgは排気浄化触媒を流れるガスの温度、zは排気浄化触媒を流れるガスの速度に平行な座標、Sgeoは排気浄化触媒の単位体積当たりの幾何学的表面積、hzは座標zに垂直な方向の熱伝達率、Twは排気浄化触媒の温度、σは排気浄化触媒の開口率、ρwは排気浄化触媒の密度、Cpwは排気浄化触媒の比熱、λwrは排気浄化触媒の半径方向の実効的な熱伝導率、rは排気浄化触媒の半径方向、λwzは排気浄化触媒の軸方向(ガス流れ方向)の実効的な熱伝導率、Qchemは化学反応による熱発生量、Cgiは排気浄化触媒を流れるガスに含まれる化学種iの濃度、hD,iは化学種iの拡散係数、Cwiは触媒表面ないし触媒細孔表面の化学種iの濃度、Scatは排気浄化触媒の単位体積当たりの触媒表面積、Riは化学種iの単位表面積当たりの生成速度、Mは排気浄化触媒を流れるガスの平均分子量、xgiは排気浄化触媒を流れるガスに含まれる化学種iのモル分率、xwiは触媒表面ないし触媒細孔表面の化学種iのモル分率である。 However, (45) to (48) below, [rho g is the density of the gas flowing through the exhaust purification catalyst, v g is the velocity of the gas flowing through the exhaust purification catalyst, C p, g is the specific heat at constant pressure of the gas flowing through the exhaust gas purifying catalyst , T g is the temperature of the gas flowing through the exhaust purification catalyst, z is a coordinate parallel to the velocity of the gas flowing through the exhaust purification catalyst, S geo is the geometric surface area per unit volume of the exhaust purification catalyst, and h z is the coordinate z Heat transfer coefficient in the vertical direction, T w is the temperature of the exhaust purification catalyst, σ is the opening ratio of the exhaust purification catalyst, ρ w is the density of the exhaust purification catalyst, C p , w are the specific heat of the exhaust purification catalyst, λ w , r Is the effective thermal conductivity in the radial direction of the exhaust purification catalyst, r is the radial direction of the exhaust purification catalyst, λ w , z is the effective thermal conductivity in the axial direction (gas flow direction) of the exhaust purification catalyst, Q chem heat production by chemical reactions, C g, i are dark species i contained in the gas flowing through the exhaust gas purifying catalyst , H D, i is the diffusion coefficient of species i, C w, i is the concentration of the chemical species i on the catalyst surface or the catalyst pore surfaces, S cat catalyst surface area per unit volume of the exhaust gas purifying catalyst, R i is the chemical Production rate per unit surface area of species i, M is the average molecular weight of the gas flowing through the exhaust purification catalyst, x g , i is the molar fraction of chemical species i contained in the gas flowing through the exhaust purification catalyst, x w , i is the catalyst The mole fraction of the chemical species i on the surface or the surface of the catalyst pores.

「点火時期制御」
次に、点火時期制御部60で行われる点火時期制御の詳細について説明する。
"Ignition timing control"
Next, details of the ignition timing control performed by the ignition timing control unit 60 will be described.

前述したように、点火時期制御部60は、ノックセンサ20(あるいは筒内圧力センサ14)によりノック(自着火)が検出された場合に、点火時期を遅角させることでノック(自着火)の発生を抑止する。以下、ノック(自着火)が検出された場合に点火時期の遅角量を決定する処理を、図5のフローチャートに従って説明する。   As described above, when the knock sensor 20 (or in-cylinder pressure sensor 14) detects a knock (self-ignition), the ignition timing control unit 60 retards the ignition (self-ignition) by retarding the ignition timing. Suppresses occurrence. Hereinafter, processing for determining the retard amount of the ignition timing when knocking (self-ignition) is detected will be described with reference to the flowchart of FIG.

まずステップS101においては、ノック(自着火)が検出されたノックサイクルでの筒内温度T1の履歴が筒内温度推定部52にて推定される。前述したように、吸気弁閉時期後から点火時期に至る任意の時刻(クランク角度)の筒内温度T1については、(30)式を用いて算出することができ、点火時期後の筒内未燃部温度T1については、(31)式を用いて算出することができる。そして、点火時期後から排気弁開時期に至る任意の時刻(クランク角度)の筒内既燃部温度T1については、(11)〜(31)式及び状態方程式を連立させた上で、既知の一般的な化学平衡計算を行うことで算出することができる。 First, in step S101, the in-cylinder temperature T 1 history in the knock cycle in which knock (self-ignition) has been detected is estimated by the in-cylinder temperature estimation unit 52. As described above, the in-cylinder temperature T 1 at an arbitrary time (crank angle) from the intake valve closing timing to the ignition timing can be calculated using the equation (30). for non燃部temperature T 1, it can be calculated using equation (31). The in-cylinder burned part temperature T 1 at an arbitrary time (crank angle) from the ignition timing to the exhaust valve opening timing is known after combining the equations (11) to (31) and the state equation. It can be calculated by performing a general chemical equilibrium calculation.

次に、ステップS102においては、筒内圧力センサ14で検出されたノックサイクルでの筒内圧力p1の履歴とステップS101(筒内温度推定部52)で推定されたノックサイクルでの筒内温度T1の履歴とに基づいて、ノックサイクルでの質量燃焼割合の履歴が推定される。ここでは、前述の(15)〜(29)式及び状態方程式を用いてノックサイクルでの質量燃焼割合の履歴を算出することができる。さらに、(15)〜(29)式及び状態方程式を用いてノックサイクルでの熱発生量の履歴も算出することができる。ステップS103においては、ノックサイクルでの圧縮行程のポリトロープ指数κが推定される。ここでは、ノックサイクルにおける吸気弁閉時期から点火時期までの筒内圧力p1及び燃焼室容積vの履歴に基づいて、圧縮行程のポリトロープ指数κを算出することができる。 Next, in step S102, in-cylinder temperature at the knock cycle estimated in the history and the step S101 of the in-cylinder pressure p 1 at the detected knock cycles cylinder pressure sensor 14 (in-cylinder temperature estimation portion 52) based on the history of T 1, the mass combustion rate history knocking cycle is estimated. Here, the history of the mass combustion ratio in the knock cycle can be calculated using the equations (15) to (29) and the state equation described above. Furthermore, the history of the heat generation amount in the knock cycle can also be calculated using the equations (15) to (29) and the state equation. In step S103, the polytropic index κ of the compression stroke in the knock cycle is estimated. Here, the polytropic index κ of the compression stroke can be calculated based on the history of the in-cylinder pressure p 1 and the combustion chamber volume v from the intake valve closing timing to the ignition timing in the knock cycle.

次に、ステップS104においては、点火時期を遅角させる遅角サイクルにおける点火時期の遅角量が設定される。ここでは、点火時期が前回から予め決められた分遅角されるように遅角量が設定される。ステップS105においては、遅角サイクルにおける吸気弁閉時期から遅角前の点火時期(ノックサイクルの点火時期に対応するクランク角度)までの筒内温度T2が予測される。ここでは、遅角サイクルにおける吸気弁閉時期から遅角前の点火時期までの筒内温度T2が、ノックサイクルにおける吸気弁閉時期から点火時期までの筒内温度T1に等しいものと予測する。 Next, in step S104, a retard amount of the ignition timing in the retard cycle for retarding the ignition timing is set. Here, the retard amount is set so that the ignition timing is retarded by a predetermined amount from the previous time. In step S105, in-cylinder temperature T 2 to retard the previous ignition timing from the intake valve closing timing in the retarding cycle (crank angle corresponding to the ignition timing of the knock cycle) is predicted. Here, it is predicted that the in-cylinder temperature T 2 from the intake valve closing timing in the retard cycle to the ignition timing before the retard is equal to the in-cylinder temperature T 1 from the intake valve close timing to the ignition timing in the knock cycle. .

ステップS106においては、遅角サイクルにおける点火時期(遅角後の点火時期)までの筒内圧力p2及び筒内温度T2が予測される。ここでは、遅角前の点火時期(ノックサイクルの点火時期に対応するクランク角度)から遅角後の点火時期までの筒内圧力p2が、ノックサイクルにおける吸気弁閉時期から点火時期までの筒内圧力p1、ステップS103で算出されたノックサイクルでの圧縮行程のポリトロープ指数κ、及び燃焼室容積vに基づいて予測される。そして、遅角前の点火時期から遅角後の点火時期までの筒内温度T2が、ステップS105で予測された遅角サイクルにおける吸気弁閉時期から遅角前の点火時期までの筒内温度T2(ノックサイクルにおける吸気弁閉時期から点火時期までの筒内温度T1)、ステップS103で算出されたノックサイクルでの圧縮行程のポリトロープ指数κ、及び燃焼室容積vに基づいて予測される。 In step S106, the cylinder pressure p 2 and the in-cylinder temperature T 2 to the ignition timing in the retarding cycle (ignition timing after retard) is predicted. Here, the in-cylinder pressure p 2 from the ignition timing before the retard (crank angle corresponding to the ignition timing of the knock cycle) to the ignition timing after the retard is the cylinder pressure from the intake valve closing timing to the ignition timing in the knock cycle. Predicted based on the internal pressure p 1 , the polytropic index κ of the compression stroke in the knock cycle calculated in step S103, and the combustion chamber volume v. The in-cylinder temperature T 2 from the ignition timing before retarding to the ignition timing after retarding is the in-cylinder temperature from the intake valve closing timing to the ignition timing before retarding in the retarding cycle predicted in step S105. Predicted based on T 2 (cylinder temperature T 1 from the intake valve closing timing to ignition timing in the knock cycle), the polytropic index κ of the compression stroke in the knock cycle calculated in step S103, and the combustion chamber volume v .

ステップS107においては、遅角サイクルにおける点火時期(遅角後の点火時期)後の筒内圧力p2及び筒内温度T2が予測される。ここでは、ステップS102で算出されたノックサイクルでの質量燃焼割合及び熱発生量の履歴を点火時期の遅角分遅らせ、その履歴を遅角サイクルでの質量燃焼割合及び熱発生量の推定履歴として用いる。そして、この推定した遅角サイクルでの質量燃焼割合及び熱発生量の履歴と、ステップS106で予測された遅角サイクルにおける点火時期(遅角後の点火時期)の筒内圧力p2とを基に、(15)〜(25)式を用いて遅角サイクルにおける点火時期後の筒内圧力p2を算出する。さらに、この遅角サイクルにおける点火時期後の筒内圧力p2と、ステップS106で予測された筒内圧力p2及び筒内温度T2とを基に、遅角サイクルにおける点火時期後の筒内温度T2を算出する。 In step S107, retarded (ignition timing after retarding) the ignition timing in the cycle within the cylinder after the pressure p 2 and the in-cylinder temperature T 2 is predicted. Here, the history of the mass combustion ratio and heat generation amount in the knock cycle calculated in step S102 is delayed by the retardation of the ignition timing, and the history is used as the estimation history of the mass combustion ratio and heat generation amount in the delay cycle. Use. Then, based on the estimated history of mass combustion ratio and heat generation amount in the retard cycle, and the in-cylinder pressure p 2 of the ignition timing (ignition timing after retard) in the retard cycle predicted in step S106. In addition, the in-cylinder pressure p 2 after the ignition timing in the retard cycle is calculated using the equations (15) to (25). Further, based on the in-cylinder pressure p 2 after the ignition timing in this retarded cycle and the in-cylinder pressure p 2 and the in-cylinder temperature T 2 predicted in step S106, the in-cylinder after the ignition timing in the retarded cycle is determined. A temperature T 2 is calculated.

ステップS108においては、ステップS105〜S107で予測された遅角サイクルにおける筒内圧力p2及び筒内温度T2の履歴に基づいて遅角サイクルにおける自着火(ノック)の発生が予測される。ここでは、内燃機関10の筒内圧力及び筒内温度に対して自着火の開始時期を関連付ける自着火時期推定モデルを用いて、遅角サイクルにおける自着火の開始時期が予測される。例えば、(32)〜(34)式(Livengood-Wu積分式)を用いて、遅角サイクルにおける自着火の開始時期を予測することができる。また、(35)〜(38)式及び状態方程式を用いても、遅角サイクルにおける自着火の開始時期を予測することができる。 In step S108, the occurrence of self-ignition in the retard cycle (knock) based on the cylinder history of the pressure p 2 and the in-cylinder temperature T 2 in the predicted retarded cycle in step S105~S107 are predicted. Here, the self-ignition start timing in the retard cycle is predicted using a self-ignition timing estimation model that associates the self-ignition start time with the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine 10. For example, the start timing of self-ignition in the retard cycle can be predicted using equations (32) to (34) (Livengood-Wu integral equation). Further, the start timing of self-ignition in the retard cycle can be predicted using the equations (35) to (38) and the state equation.

ステップS109においては、ステップS108で予測された遅角サイクルにおける自着火の予測開始時期とノックサイクルにおける自着火の検出開始時期との差が、現在設定している点火時期の遅角量より大きいか否かが判定される。ステップS109の判定結果がNOの場合は、現在設定している遅角量では自着火(ノック)が発生すると判定し、ステップS104に戻る。そして、ステップS104で設定する遅角量をさらに増大させて(点火時期をさらに遅角させて)ステップS105〜S109の処理をステップS109の判定結果がYESになるまで繰り返す。一方、ステップS109の判定結果がYESの場合は、現在設定している遅角量で自着火(ノック)が発生しないと判定し、現在設定している遅角量で次のサイクルの点火時期を制御する。   In step S109, is the difference between the autoignition prediction start timing in the retard cycle predicted in step S108 and the autoignition detection start timing in the knock cycle larger than the retard amount of the currently set ignition timing? It is determined whether or not. If the determination result in step S109 is NO, it is determined that self-ignition (knock) occurs at the currently set retardation amount, and the process returns to step S104. Then, the retard amount set in step S104 is further increased (ignition timing is further retarded), and the processing in steps S105 to S109 is repeated until the determination result in step S109 becomes YES. On the other hand, if the determination result in step S109 is YES, it is determined that self-ignition (knock) does not occur with the currently set retard amount, and the ignition timing of the next cycle is determined with the currently set retard amount. Control.

以上説明したように、本実施形態では、ノック(自着火)が検出されたノックサイクルでの筒内圧力p1及び筒内温度T1の履歴を基に点火時期を遅角させる遅角サイクルにおける筒内圧力p2及び筒内温度T2の履歴を予測し、この予測した遅角サイクルにおける筒内圧力p2及び筒内温度T2の履歴を基に遅角サイクルにおける自着火(ノック)の開始時期を予測する。そして、この予測した遅角サイクルにおける自着火(ノック)の開始時期を基に点火時期の遅角量を決定することで、必要最小限の遅角量で自着火(ノック)の発生を抑止することができる。したがって、内燃機関10のノックの発生を抑止するための点火時期制御をより精度よく行うことができ、内燃機関10の燃焼制御をより精度よく行うことができる。 As described above, in the present embodiment, in the retard cycle in which the ignition timing is retarded based on the history of the in-cylinder pressure p 1 and the in-cylinder temperature T 1 in the knock cycle in which knock (self-ignition) is detected. The history of the in-cylinder pressure p 2 and the in-cylinder temperature T 2 is predicted, and based on the predicted history of the in-cylinder pressure p 2 and the in-cylinder temperature T 2 , self-ignition (knock) in the retard cycle is predicted. Predict the start time. Then, by determining the retard amount of the ignition timing based on the predicted start timing of self-ignition (knock) in the predicted retard cycle, the occurrence of self-ignition (knock) is suppressed with the minimum required retard amount. be able to. Therefore, the ignition timing control for suppressing the occurrence of knocking in the internal combustion engine 10 can be performed with higher accuracy, and the combustion control of the internal combustion engine 10 can be performed with higher accuracy.

そして、本実施形態では、ノック(自着火)が検出されたノックサイクルでの質量燃焼割合の履歴を用いて、遅角サイクルにおける筒内圧力p2及び筒内温度T2の履歴を予測することで、遅角サイクルにおける筒内圧力p2及び筒内温度T2の履歴を容易かつ精度よく予測することができる。したがって、遅角サイクルにおける自着火(ノック)の開始時期を容易かつ精度よく予測することができる。 In the present embodiment, the history of the in-cylinder pressure p 2 and the in-cylinder temperature T 2 in the retard cycle is predicted using the history of the mass combustion ratio in the knock cycle in which knock (self-ignition) has been detected. Thus, the history of the in-cylinder pressure p 2 and the in-cylinder temperature T 2 in the retard cycle can be predicted easily and accurately. Therefore, the start timing of self-ignition (knock) in the retard cycle can be easily and accurately predicted.

次に、本実施形態の他の構成例について説明する。   Next, another configuration example of this embodiment will be described.

「圧縮比制御1」
以上の説明では、内燃機関10の点火時期を遅角させることで内燃機関10のノック(自着火)の発生を抑止するものとした。ただし、内燃機関10が可変圧縮比型エンジンである場合は、内燃機関10の圧縮比を低減させることによっても、内燃機関10のノック(自着火)の発生を抑止することができる。この例では、電子制御装置42は、ノックセンサ20(あるいは筒内圧力センサ14)によりノック(自着火)が検出された場合に、内燃機関10の圧縮比を低減させることでノック(自着火)の発生を抑止する圧縮比制御部を有する。ここでの内燃機関10の圧縮比を変化させるための具体的な機構については、例えば吸気弁閉時期を変化させる可変バルブタイミング機構等の周知の機構で実現可能であるため詳細な説明を省略する。以下、ノック(自着火)が検出された場合に圧縮比の低減量を決定する処理を、図6のフローチャートに従って説明する。
"Compression ratio control 1"
In the above description, the occurrence of knocking (self-ignition) of the internal combustion engine 10 is suppressed by retarding the ignition timing of the internal combustion engine 10. However, when the internal combustion engine 10 is a variable compression ratio type engine, the occurrence of knocking (self-ignition) of the internal combustion engine 10 can also be suppressed by reducing the compression ratio of the internal combustion engine 10. In this example, when the knock sensor 20 (or in-cylinder pressure sensor 14) detects a knock (self-ignition), the electronic control unit 42 reduces the compression ratio of the internal combustion engine 10 to reduce the knock (self-ignition). A compression ratio control unit for suppressing the occurrence of The specific mechanism for changing the compression ratio of the internal combustion engine 10 here can be realized by a well-known mechanism such as a variable valve timing mechanism for changing the intake valve closing timing, for example, and thus detailed description thereof is omitted. . Hereinafter, processing for determining the amount of reduction in the compression ratio when knocking (self-ignition) is detected will be described with reference to the flowchart of FIG.

ステップS201〜S203については、図5のフローチャートのS101〜S103と同様である。ステップS204においては、圧縮比を低減させる圧縮比低減サイクルにおける圧縮比の低減量が設定される。ここでは、圧縮比が前回から予め決められた分低減されるように低減量が設定される。ステップS205においては、ノックサイクルにおける吸気弁閉時期から点火時期までの筒内温度T1及び筒内圧力p1に基づいて、圧縮比低減サイクルにおける吸気弁閉時期から点火時期までの筒内温度T2及び筒内圧力p2が予測される。ここでは、圧縮比低減サイクルとノックサイクルとで吸気弁閉時の筒内温度及び筒内圧力が等しいものと予測して、圧縮比低減サイクルにおける吸気弁閉時期から点火時期までの筒内温度T2及び筒内圧力p2が以下の(49)、(50)式でそれぞれ算出される。 Steps S201 to S203 are the same as S101 to S103 in the flowchart of FIG. In step S204, a reduction amount of the compression ratio in the compression ratio reduction cycle for reducing the compression ratio is set. Here, the reduction amount is set so that the compression ratio is reduced by a predetermined amount from the previous time. In step S205, based on the in-cylinder temperature T 1 from the intake valve closing timing to the ignition timing in the knock cycle and the in-cylinder pressure p 1 , the in-cylinder temperature T from the intake valve closing timing to the ignition timing in the compression ratio reduction cycle. 2 and in-cylinder pressure p 2 are predicted. Here, it is predicted that the in-cylinder temperature and the in-cylinder pressure when the intake valve is closed are the same in the compression ratio reduction cycle and the knock cycle, and the in-cylinder temperature T from the intake valve closing timing to the ignition timing in the compression ratio reduction cycle. 2 and in-cylinder pressure p 2 are calculated by the following equations (49) and (50), respectively.

2=T1×(v1/v2×vIVC2/vIVC1)κ-1 (49)
2=p1×(v1/v2×vIVC2/vIVC1)κ (50)
T 2 = T 1 × (v 1 / v 2 × v IVC 2 / v IVC 1 ) κ −1 (49)
p 2 = p 1 × (v 1 / v 2 × v IVC 2 / v IVC 1 ) κ (50)

ただし、(49)、(50)式において、T2は圧縮比低減サイクルにおけるあるクランク角度での筒内温度、T1はノックサイクルにおけるT2と同じクランク角度での筒内温度、p2は圧縮比低減サイクルにおけるT2と同じクランク角度での筒内圧力、p1はノックサイクルにおけるT2と同じクランク角度での筒内圧力、v2は圧縮比低減サイクルにおけるT2と同じクランク角度での燃焼室容積、v1はノックサイクルにおけるT2と同じクランク角度での燃焼室容積、vIVC2は圧縮比低減サイクルにおける吸気弁閉時の燃焼室容積、vIVC1はノックサイクルにおける吸気弁閉時の燃焼室容積、κはポリトロープ指数である。 In the equations (49) and (50), T 2 is the in-cylinder temperature at a certain crank angle in the compression ratio reduction cycle, T 1 is the in-cylinder temperature at the same crank angle as T 2 in the knock cycle, and p 2 is In-cylinder pressure at the same crank angle as T 2 in the compression ratio reduction cycle, p 1 is in-cylinder pressure at the same crank angle as T 2 in the knock cycle, and v 2 is the same crank angle as T 2 in the compression ratio reduction cycle. , V 1 is the combustion chamber volume at the same crank angle as T 2 in the knock cycle, v IVC2 is the combustion chamber volume when the intake valve is closed in the compression ratio reduction cycle, and v IVC1 is when the intake valve is closed in the knock cycle. The combustion chamber volume, κ, is the polytropic index.

ステップS206においては、圧縮比低減サイクルにおける点火時期後の筒内圧力p2及び筒内温度T2が予測される。ここでは、S202で算出されたノックサイクルでの質量燃焼割合及び熱発生量の履歴を圧縮比低減サイクルでの質量燃焼割合及び熱発生量の推定履歴として用いる。そして、この推定した圧縮比低減サイクルでの質量燃焼割合及び熱発生量の履歴と、ステップS205で予測された圧縮比低減サイクルにおける点火時期の筒内圧力p2とを基に、(15)〜(25)式を用いて圧縮比低減サイクルにおける点火時期後の筒内圧力p2を算出する。さらに、この圧縮比低減サイクルにおける点火時期後の筒内圧力p2と、ステップS205で予測された筒内圧力p2及び筒内温度T2とを基に、圧縮比低減サイクルにおける点火時期後の筒内温度T2を算出する。 In step S206, the cylinder pressure p 2 and the in-cylinder temperature T 2 of the ignition timing in the compression ratio reduction cycle is predicted. Here, the history of mass combustion ratio and heat generation amount in the knock cycle calculated in S202 is used as the estimation history of mass combustion ratio and heat generation amount in the compression ratio reduction cycle. Then, based on the estimated history of the mass combustion ratio and heat generation amount in the compression ratio reduction cycle and the in-cylinder pressure p 2 at the ignition timing in the compression ratio reduction cycle predicted in step S205, (15) to The in-cylinder pressure p 2 after the ignition timing in the compression ratio reduction cycle is calculated using equation (25). Further, based on the in-cylinder pressure p 2 after the ignition timing in the compression ratio reduction cycle, the in-cylinder pressure p 2 and the in-cylinder temperature T 2 predicted in step S205, the after-ignition timing in the compression ratio reduction cycle is determined. An in-cylinder temperature T 2 is calculated.

ステップS207においては、ステップS205,S206で予測された圧縮比低減サイクルにおける筒内圧力p2及び筒内温度T2に基づいて圧縮比低減サイクルにおける自着火(ノック)の発生が予測される。ここでは、内燃機関10の筒内圧力及び筒内温度に対して自着火の開始時期を関連付ける自着火時期推定モデルを用いて、圧縮比低減サイクルにおける自着火の開始時期が予測される。例えば、(32)〜(34)式(Livengood-Wu積分式)を用いて、圧縮比低減サイクルにおける自着火の開始時期を予測することができる。また、(35)〜(38)式及び状態方程式を用いても、圧縮比低減サイクルにおける自着火の開始時期を予測することができる。 In step S207, the occurrence of self-ignition (knocking) is predicted at the compression ratio reduction cycle based on the cylinder pressure p 2 and the in-cylinder temperature T 2 in the predicted compression ratio decrease cycle in step S205, S206. Here, the start timing of self-ignition in the compression ratio reduction cycle is predicted using a self-ignition timing estimation model that associates the start timing of self-ignition with the in-cylinder pressure and in-cylinder temperature of the internal combustion engine 10. For example, the start timing of self-ignition in the compression ratio reduction cycle can be predicted using the equations (32) to (34) (Livengood-Wu integral equation). In addition, the start timing of self-ignition in the compression ratio reduction cycle can be predicted using the equations (35) to (38) and the state equation.

ステップS208においては、ステップS207で予測された圧縮比低減サイクルにおける自着火の予測開始時期がノックサイクルにおける自着火の検出開始時期より遅いか否か(あるいは所定角度以上遅いか否か)が判定される。ステップS208の判定結果がNOの場合は、現在設定している圧縮比の低減量では自着火(ノック)が発生すると判定し、ステップS204に戻る。そして、ステップS204で設定する圧縮比の低減量をさらに増大させて(圧縮比をさらに低減させて)ステップS205〜S208の処理をステップS208の判定結果がYESになるまで繰り返す。一方、ステップS208の判定結果がYESの場合は、現在設定している圧縮比の低減量で自着火(ノック)が発生しないと判定し、現在設定している圧縮比の低減量で次のサイクルの圧縮比を制御する。   In step S208, it is determined whether or not the prediction start timing of self-ignition in the compression ratio reduction cycle predicted in step S207 is later than the detection start timing of self-ignition in the knock cycle (or whether or not it is later than a predetermined angle). The If the determination result in step S208 is NO, it is determined that self-ignition (knock) occurs at the currently set amount of reduction of the compression ratio, and the process returns to step S204. Then, the amount of reduction of the compression ratio set in step S204 is further increased (the compression ratio is further reduced), and the processes in steps S205 to S208 are repeated until the determination result in step S208 becomes YES. On the other hand, if the determination result in step S208 is YES, it is determined that self-ignition (knock) does not occur with the currently set compression ratio reduction amount, and the next cycle is performed with the currently set compression ratio reduction amount. Control the compression ratio.

内燃機関10の圧縮比を制御する構成例においては、ノック(自着火)が検出されたノックサイクルでの筒内圧力p1及び筒内温度T1の履歴を基に圧縮比を低減させる圧縮比低減サイクルにおける筒内圧力p2及び筒内温度T2の履歴を予測し、この予測した圧縮比低減サイクルにおける筒内圧力p2及び筒内温度T2の履歴を基に圧縮比低減サイクルにおける自着火(ノック)の開始時期を予測する。そして、この予測した圧縮比低減サイクルにおける自着火(ノック)の開始時期を基に圧縮比低減サイクルにおける圧縮比の低減量を決定することで、必要最小限の圧縮比低減量で自着火(ノック)の発生を抑止することができる。したがって、内燃機関10のノックの発生を抑止するための圧縮比制御をより精度よく行うことができ、内燃機関10の燃焼制御をより精度よく行うことができる。 In the configuration example for controlling the compression ratio of the internal combustion engine 10, the compression ratio for reducing the compression ratio based on the history of the in-cylinder pressure p 1 and the in-cylinder temperature T 1 in the knock cycle in which knock (self-ignition) is detected. predicting cylinder history of the pressure p 2 and the in-cylinder temperature T 2 in the reduction cycle, the self in the predicted in-cylinder pressure p 2 and the compression ratio reduction cycles on the basis of the history of the in-cylinder temperature T 2 in the compression ratio reduction cycles Predict the start of ignition (knock). Then, by determining the amount of compression ratio reduction in the compression ratio reduction cycle based on the predicted start timing of self-ignition (knock) in the compression ratio reduction cycle, self-ignition (knock) is achieved with the minimum amount of compression ratio reduction required. ) Can be suppressed. Therefore, the compression ratio control for suppressing the occurrence of knocking in the internal combustion engine 10 can be performed with higher accuracy, and the combustion control of the internal combustion engine 10 can be performed with higher accuracy.

「圧縮比制御2」
以上の説明では、内燃機関10が筒内の混合気を点火させて燃焼させる火花点火機関であるものとした。ただし、本実施形態では、内燃機関10が筒内の混合気を圧縮することで自着火させて燃焼させる圧縮自着火機関であってもよい。さらに、内燃機関10が可変圧縮比型エンジンである場合は、内燃機関10の圧縮比を制御することで筒内混合気の自着火時期を制御することができる。この例では、電子制御装置42は、点火時期制御部60の代わりに、内燃機関10の圧縮比を変化(増減)させることで筒内混合気の自着火時期を変化させる圧縮比制御部を有する。以下、筒内混合気の自着火時期を制御するために圧縮比の変化量(増減量)を決定する処理を、図7のフローチャートに従って説明する。
"Compression ratio control 2"
In the above description, the internal combustion engine 10 is a spark ignition engine that ignites and burns the air-fuel mixture in the cylinder. However, in the present embodiment, the internal combustion engine 10 may be a compression self-ignition engine that self-ignites and burns by compressing the air-fuel mixture in the cylinder. Further, when the internal combustion engine 10 is a variable compression ratio type engine, the self-ignition timing of the in-cylinder mixture can be controlled by controlling the compression ratio of the internal combustion engine 10. In this example, the electronic control unit 42 has a compression ratio control unit that changes the self-ignition timing of the in-cylinder mixture by changing (increasing or decreasing) the compression ratio of the internal combustion engine 10 instead of the ignition timing control unit 60. . Hereinafter, processing for determining the amount of change (increase / decrease) in the compression ratio in order to control the self-ignition timing of the in-cylinder mixture will be described with reference to the flowchart of FIG.

まずステップS301においては、ステップS101,S201と同様の方法で、筒内温度T1の履歴が筒内温度推定部52にて推定される。ステップS302においては、ステップS103,S203と同様の方法で、圧縮行程のポリトロープ指数κが推定される。ステップS303においては、圧縮比を増減(変化)させる圧縮比増減サイクルにおける圧縮比の増減量(変化量)が設定される。ここでは、例えば筒内圧力センサ14により検出された自着火開始時期と所望の自着火開始時期との偏差に基づいて、圧縮比の増減量が設定される。 First, in step S301, the in-cylinder temperature T 1 history is estimated by the in-cylinder temperature estimation unit 52 in the same manner as in steps S101 and S201. In step S302, the polytropic index κ of the compression stroke is estimated by the same method as in steps S103 and S203. In step S303, an increase / decrease amount (change amount) of the compression ratio in the compression ratio increase / decrease cycle for increasing / decreasing (changing) the compression ratio is set. Here, for example, the increase / decrease amount of the compression ratio is set based on the deviation between the self-ignition start time detected by the in-cylinder pressure sensor 14 and the desired self-ignition start time.

ステップS304においては、ステップS301(筒内温度推定部52)で推定された筒内温度T1の履歴と筒内圧力センサ14で検出された筒内圧力p1の履歴とに基づいて、圧縮比増減サイクルにおける吸気弁閉時期後の筒内温度T2及び筒内圧力p2が予測される。ここでは、圧縮比を増減させる前後で吸気弁閉時の筒内温度及び筒内圧力が等しいものと予測し、ステップS205と同様に(49)、(50)式を利用して圧縮比増減サイクルにおける筒内温度T2及び筒内圧力p2を算出することができる。 In step S304, on the basis of the detected cylinder history of the pressure p 1 in the history-cylinder pressure sensor 14 of the estimated in-cylinder temperature T 1 of in step S301 (in-cylinder temperature estimation unit 52), the compression ratio The in-cylinder temperature T 2 and the in-cylinder pressure p 2 after the intake valve closing timing in the increase / decrease cycle are predicted. Here, it is predicted that the in-cylinder temperature and the in-cylinder pressure when the intake valve is closed before and after the compression ratio is increased and decreased, and the compression ratio increase / decrease cycle is calculated using the equations (49) and (50) as in step S205. The in-cylinder temperature T 2 and the in-cylinder pressure p 2 can be calculated.

ステップS305においては、ステップS304で予測された圧縮比増減サイクルにおける吸気弁閉時期後の筒内温度T2及び筒内圧力p2に基づいて圧縮比増減サイクルにおける自着火の開始時期が予測される。ここでは、内燃機関10の筒内圧力及び筒内温度に対して自着火の開始時期を関連付ける自着火時期推定モデルを用いて、圧縮比増減サイクルにおける自着火の開始時期が予測される。例えば、(32)〜(34)式(Livengood-Wu積分式)を用いて、圧縮比増減サイクルにおける自着火の開始時期を予測することができる。また、(35)〜(38)式及び状態方程式を用いても、圧縮比増減サイクルにおける自着火の開始時期を予測することができる。 In step S305, the start timing of ignition is predicted at the compression ratio increase or decrease cycle based on cylinder temperature T 2 and the cylinder pressure p 2 after the intake valve closing timing in the predicted compression ratio increase and decrease cycle in step S304 . Here, the self-ignition start timing in the compression ratio increase / decrease cycle is predicted using a self-ignition timing estimation model that associates the self-ignition start time with the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine 10. For example, the start timing of self-ignition in the compression ratio increase / decrease cycle can be predicted using equations (32) to (34) (Livengood-Wu integral equation). Further, the start timing of self-ignition in the compression ratio increase / decrease cycle can also be predicted using the equations (35) to (38) and the state equation.

ステップS306においては、ステップS305で予測された圧縮比増減サイクルにおける自着火の予測開始時期と所望の自着火開始時期との偏差の絶対値が設定量以下であるか否かが判定される。ステップS306の判定結果がNOの場合は、ステップS303に戻り、設定する圧縮比の増減量をさらに変化させてステップS304〜S306の処理をステップS306の判定結果がYESになるまで繰り返す。一方、ステップS306の判定結果がYESの場合は、現在設定している圧縮比の増減量で次のサイクルの圧縮比を制御する。   In step S306, it is determined whether or not the absolute value of the deviation between the self-ignition prediction start time and the desired self-ignition start time in the compression ratio increase / decrease cycle predicted in step S305 is equal to or less than the set amount. If the determination result in step S306 is NO, the process returns to step S303, the amount of increase / decrease in the compression ratio to be set is further changed, and the processes in steps S304 to S306 are repeated until the determination result in step S306 becomes YES. On the other hand, if the decision result in the step S306 is YES, the compression ratio of the next cycle is controlled by the increase / decrease amount of the currently set compression ratio.

この構成例によれば、必要最小限の圧縮比増減量で内燃機関10の自着火時期の制御をより精度よく行うことができ、内燃機関10の燃焼制御をより精度よく行うことができる。   According to this configuration example, the self-ignition timing of the internal combustion engine 10 can be more accurately controlled with the minimum amount of increase / decrease in the compression ratio, and the combustion control of the internal combustion engine 10 can be performed with higher accuracy.

以上の本実施形態の説明では、内燃機関10の筒内圧力pを筒内圧力センサ14により検出するものとした。ただし、本実施形態では、筒内温度補正部62による吸気弁閉時の筒内温度TIVCと予め仮定された質量燃焼割合及び熱発生量の履歴とを基に筒内圧力pを推定することもできる。 In the above description of the present embodiment, the in-cylinder pressure p of the internal combustion engine 10 is detected by the in-cylinder pressure sensor 14. However, in the present embodiment, the in-cylinder pressure p is estimated based on the in-cylinder temperature T IVC when the intake valve is closed by the in-cylinder temperature correction unit 62 and the history of the presumed mass combustion ratio and heat generation amount. You can also.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態に係る内燃機関の状態量推定装置を備える内燃機関の制御装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the control apparatus of an internal combustion engine provided with the state quantity estimation apparatus of the internal combustion engine which concerns on embodiment of this invention. 筒内温度推定部の構成の概略を示す図である。It is a figure which shows the outline of a structure of a cylinder temperature estimation part. 吸気弁閉時の筒内混合気温度に対するNOx濃度の感度の一例を示す図である。It is a figure which shows an example of the sensitivity of the NOx density | concentration with respect to the in-cylinder mixture temperature at the time of an intake valve closing. 筒内温度推定部の他の構成の概略を示す図である。It is a figure which shows the outline of the other structure of a cylinder temperature estimation part. ノックが検出された場合に点火時期の遅角量を決定する処理を説明するフローチャートである。It is a flowchart explaining the process which determines the amount of retardation of ignition timing when a knock is detected. ノックが検出された場合に圧縮比の低減量を決定する処理を説明するフローチャートである。It is a flowchart explaining the process which determines the reduction amount of a compression ratio when a knock is detected. 混合気の自着火時期を制御するために圧縮比の変化量を決定する処理を説明するフローチャートである。It is a flowchart explaining the process which determines the variation | change_quantity of a compression ratio in order to control the self-ignition timing of air-fuel | gaseous mixture.

符号の説明Explanation of symbols

10 内燃機関、12 クランク角センサ、14 筒内圧力センサ、16 NOxセンサ、18 空燃比センサ、20 ノックセンサ、42 電子制御装置、52 筒内温度推定部、54 筒内混合気量推定部、56 筒内新気量推定部、58 筒内残留ガス推定部、60 点火時期制御部、62 筒内温度補正部、64 NOx濃度推定部、66 NOx濃度比較部、74 自着火時期推定部、76 自着火時期比較部。   DESCRIPTION OF SYMBOLS 10 Internal combustion engine, 12 Crank angle sensor, 14 In-cylinder pressure sensor, 16 NOx sensor, 18 Air-fuel ratio sensor, 20 Knock sensor, 42 Electronic controller, 52 In-cylinder temperature estimation part, 54 In-cylinder mixture estimation part, 56 In-cylinder fresh air amount estimation unit, 58 In-cylinder residual gas estimation unit, 60 Ignition timing control unit, 62 In-cylinder temperature correction unit, 64 NOx concentration estimation unit, 66 NOx concentration comparison unit, 74 Auto-ignition timing estimation unit, 76 Ignition time comparison section.

Claims (22)

筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定装置であって、
内燃機関の筒内圧力を取得する筒内圧力取得部と、
内燃機関の排気ガスにおける所定成分の濃度を検出する排気濃度検出部と、
筒内圧力取得部による取得筒内圧力と排気濃度検出部による所定成分の検出濃度とに基づいて内燃機関の筒内温度を推定する筒内温度推定部と、
を備えることを特徴とする内燃機関の状態量推定装置。
A state quantity estimation device for an internal combustion engine that estimates a state quantity of an internal combustion engine that burns an air-fuel mixture in a cylinder,
An in-cylinder pressure acquisition unit for acquiring an in-cylinder pressure of the internal combustion engine;
An exhaust concentration detector for detecting the concentration of a predetermined component in the exhaust gas of the internal combustion engine;
An in-cylinder temperature estimation unit that estimates the in-cylinder temperature of the internal combustion engine based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit and the detected concentration of the predetermined component by the exhaust concentration detection unit;
A state quantity estimating device for an internal combustion engine, comprising:
請求項1に記載の内燃機関の状態量推定装置であって、
筒内温度推定部は、
内燃機関の仮筒内温度を設定するとともに該仮筒内温度を補正する筒内温度補正部と、
筒内温度補正部による仮筒内温度と筒内圧力取得部による取得筒内圧力とに基づいて内燃機関の排気ガスにおける所定成分の濃度を推定する排気濃度推定部と、
を有し、
筒内温度補正部は、排気濃度推定部による所定成分の推定濃度と排気濃度検出部による所定成分の検出濃度との偏差の絶対値が減少するよう仮筒内温度を補正し、
筒内温度推定部は、排気濃度推定部による所定成分の推定濃度と排気濃度検出部による所定成分の検出濃度との偏差の絶対値が設定量以下であるときの仮筒内温度を基に内燃機関の筒内温度を推定することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 1,
The in-cylinder temperature estimation unit
An in-cylinder temperature correction unit that sets the temperature in the temporary cylinder of the internal combustion engine and corrects the temperature in the temporary cylinder;
An exhaust concentration estimating unit that estimates the concentration of a predetermined component in the exhaust gas of the internal combustion engine based on the temporary in-cylinder temperature by the in-cylinder temperature correcting unit and the in-cylinder pressure acquired by the in-cylinder pressure acquiring unit;
Have
The in-cylinder temperature correcting unit corrects the temporary in-cylinder temperature so that the absolute value of the deviation between the estimated concentration of the predetermined component by the exhaust concentration estimating unit and the detected concentration of the predetermined component by the exhaust concentration detecting unit decreases,
The in-cylinder temperature estimation unit performs internal combustion based on the temporary in-cylinder temperature when the absolute value of the deviation between the estimated concentration of the predetermined component by the exhaust concentration estimation unit and the detected concentration of the predetermined component by the exhaust concentration detection unit is equal to or less than a set amount. An internal combustion engine state quantity estimation device for estimating an in-cylinder temperature of an engine.
請求項2に記載の内燃機関の状態量推定装置であって、
排気濃度推定部は、内燃機関の筒内圧力及び筒内温度に対して前記所定成分の濃度を関連付ける排気濃度推定モデルを用いて、該所定成分の濃度を推定することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 2,
The exhaust gas concentration estimation unit estimates the concentration of the predetermined component using an exhaust gas concentration estimation model that relates the concentration of the predetermined component to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine. State quantity estimation device.
請求項2または3に記載の内燃機関の状態量推定装置であって、
筒内温度補正部は、内燃機関の吸気弁閉時の仮筒内温度を設定するとともに該仮筒内温度を補正することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimation apparatus according to claim 2 or 3,
The in-cylinder temperature correction unit sets the temporary in-cylinder temperature when the intake valve of the internal combustion engine is closed, and corrects the temporary in-cylinder temperature.
請求項1〜4のいずれか1に記載の内燃機関の状態量推定装置であって、
前記所定成分の濃度は、窒素酸化物の濃度であることを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimation device according to any one of claims 1 to 4,
The internal combustion engine state quantity estimating apparatus, wherein the concentration of the predetermined component is a concentration of nitrogen oxides.
筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定装置であって、
内燃機関の筒内圧力を取得する筒内圧力取得部と、
内燃機関のノックまたは自着火の開始時期を検出する自着火時期検出部と、
筒内圧力取得部による取得筒内圧力と自着火時期検出部によるノックまたは自着火の検出開始時期とに基づいて内燃機関の筒内温度を推定する筒内温度推定部と、
を備えることを特徴とする内燃機関の状態量推定装置。
A state quantity estimation device for an internal combustion engine that estimates a state quantity of an internal combustion engine that burns an air-fuel mixture in a cylinder,
An in-cylinder pressure acquisition unit for acquiring an in-cylinder pressure of the internal combustion engine;
A self-ignition timing detection unit for detecting the start timing of knocking or self-ignition of the internal combustion engine;
An in-cylinder temperature estimation unit that estimates the in-cylinder temperature of the internal combustion engine based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit and the knock or self-ignition detection start timing by the self-ignition timing detection unit;
A state quantity estimating device for an internal combustion engine, comprising:
請求項6に記載の内燃機関の状態量推定装置であって、
筒内温度推定部は、
内燃機関の仮筒内温度を設定するとともに該仮筒内温度を補正する筒内温度補正部と、
筒内温度補正部による仮筒内温度と筒内圧力取得部による取得筒内圧力とに基づいて内燃機関のノックまたは自着火の開始時期を推定する自着火時期推定部と、
を有し、
筒内温度補正部は、自着火時期推定部によるノックまたは自着火の推定開始時期と自着火時期検出部によるノックまたは自着火の検出開始時期との偏差の絶対値が減少するよう仮筒内温度を補正し、
筒内温度推定部は、自着火時期推定部によるノックまたは自着火の推定開始時期と自着火時期検出部によるノックまたは自着火の検出開始時期との偏差の絶対値が設定量以下であるときの仮筒内温度を基に内燃機関の筒内温度を推定することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 6,
The in-cylinder temperature estimation unit
An in-cylinder temperature correction unit that sets the temperature in the temporary cylinder of the internal combustion engine and corrects the temperature in the temporary cylinder;
A self-ignition timing estimation unit that estimates the start timing of knocking or self-ignition of the internal combustion engine based on the in-cylinder temperature by the in-cylinder temperature correction unit and the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit;
Have
The in-cylinder temperature correction unit adjusts the temporary in-cylinder temperature so that the absolute value of the deviation between the knock or self-ignition estimation start time by the self-ignition timing estimation unit and the knock or self-ignition detection start time by the self-ignition timing detection unit decreases. To correct
The in-cylinder temperature estimation unit is used when the absolute value of the deviation between the knock or self-ignition estimation start time by the self-ignition timing estimation unit and the knock or self-ignition detection start time by the self-ignition timing detection unit is less than the set amount. An internal-combustion-engine state quantity estimation device that estimates an in-cylinder temperature of an internal combustion engine based on a temporary in-cylinder temperature.
請求項7に記載の内燃機関の状態量推定装置であって、
自着火時期推定部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、ノックまたは自着火の開始時期を推定することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 7,
The self-ignition timing estimation unit estimates the start time of knock or self-ignition using a self-ignition timing estimation model that associates the start time of knock or self-ignition with the in-cylinder pressure and in-cylinder temperature of the internal combustion engine. An internal combustion engine state quantity estimation device.
請求項7または8に記載の内燃機関の状態量推定装置であって、
筒内温度補正部は、内燃機関の吸気弁閉時の仮筒内温度を設定するとともに該仮筒内温度を補正することを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 7 or 8,
The in-cylinder temperature correction unit sets the temporary in-cylinder temperature when the intake valve of the internal combustion engine is closed, and corrects the temporary in-cylinder temperature.
請求項1〜9のいずれか1に記載の内燃機関の状態量推定装置であって、
筒内圧力取得部による取得筒内圧力と筒内温度推定部による推定筒内温度とに基づいて内燃機関の筒内混合気量を推定する筒内混合気量推定部を備えることを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimation device according to any one of claims 1 to 9,
An in-cylinder mixture amount estimation unit that estimates an in-cylinder mixture amount of an internal combustion engine based on an in-cylinder pressure acquired by an in-cylinder pressure acquisition unit and an estimated in-cylinder temperature by an in-cylinder temperature estimation unit is provided. A state quantity estimating device for an internal combustion engine.
請求項10に記載の内燃機関の状態量推定装置であって、
内燃機関の燃料噴射量を取得する燃料噴射量取得部と、
内燃機関の空燃比を検出する空燃比検出部と、
燃料噴射量取得部による取得燃料噴射量と空燃比検出部による検出空燃比とに基づいて内燃機関の筒内新気量を推定する筒内新気量推定部と、
を備えることを特徴とする内燃機関の状態量推定装置。
An internal combustion engine state quantity estimating apparatus according to claim 10,
A fuel injection amount acquisition unit for acquiring the fuel injection amount of the internal combustion engine;
An air-fuel ratio detector for detecting the air-fuel ratio of the internal combustion engine;
An in-cylinder fresh air amount estimation unit that estimates the in-cylinder fresh air amount of the internal combustion engine based on the fuel injection amount acquired by the fuel injection amount acquisition unit and the air-fuel ratio detected by the air-fuel ratio detection unit;
A state quantity estimating device for an internal combustion engine, comprising:
請求項11に記載の内燃機関の状態量推定装置であって、
筒内混合気量推定部による推定筒内混合気量と筒内新気量推定部による推定筒内新気量とに基づいて内燃機関の筒内残留ガス量または筒内残留ガス割合を推定する筒内残留ガス推定部を備えることを特徴とする内燃機関の状態量推定装置。
The state quantity estimation apparatus for an internal combustion engine according to claim 11,
The in-cylinder residual gas amount or the in-cylinder residual gas ratio of the internal combustion engine is estimated based on the estimated in-cylinder mixture amount by the in-cylinder mixture amount estimation unit and the estimated in-cylinder fresh air amount by the in-cylinder fresh air amount estimation unit. A state quantity estimation device for an internal combustion engine, comprising a cylinder residual gas estimation unit.
請求項1〜12のいずれか1に記載の内燃機関の状態量推定装置を備え、筒内で混合気を点火させて燃焼させる内燃機関の点火時期を制御する内燃機関の制御装置であって、
内燃機関のノックまたは自着火を検出する自着火検出部と、
自着火検出部によりノックまたは自着火が検出された場合に点火時期を遅角させる点火時期制御部と、
を備え、
点火時期制御部は、
筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいて点火時期を遅角させる場合の筒内圧力及び筒内温度を予測する遅角時状態量予測部と、
遅角時状態量予測部で予測された筒内圧力及び筒内温度に基づいて点火時期を遅角させる場合のノックまたは自着火の発生を予測する遅角時自着火予測部と、
を有し、
遅角時自着火予測部によるノックまたは自着火の発生の予測結果を基に点火時期の遅角量を決定することを特徴とする内燃機関の制御装置。
An internal combustion engine control apparatus comprising the internal combustion engine state quantity estimation device according to any one of claims 1 to 12, and controlling an ignition timing of an internal combustion engine that ignites and burns an air-fuel mixture in a cylinder.
A self-ignition detecting unit for detecting knock or self-ignition of the internal combustion engine;
An ignition timing control unit that retards the ignition timing when knocking or self-ignition is detected by the self-ignition detection unit;
With
The ignition timing control unit
Ignition based on in-cylinder pressure when knock or self-ignition acquired by in-cylinder pressure acquisition unit is detected and in-cylinder temperature when knock or self-ignition estimated by in-cylinder temperature estimation unit is detected A retarded state quantity predicting unit for predicting the in-cylinder pressure and the in-cylinder temperature when retarding the timing;
A retarded auto-ignition predicting unit for predicting the occurrence of knock or self-ignition when retarding the ignition timing based on the in-cylinder pressure and the in-cylinder temperature predicted by the retarded state quantity predicting unit;
Have
A control apparatus for an internal combustion engine, wherein a retard amount of an ignition timing is determined based on a prediction result of occurrence of knocking or self-ignition by a retarded self-ignition prediction unit.
請求項13に記載の内燃機関の制御装置であって、
遅角時状態量予測部は、
筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいてノックまたは自着火が検出された場合の質量燃焼割合を推定し、
該推定した質量燃焼割合に基づいて点火時期を遅角させる場合の筒内圧力及び筒内温度を予測することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 13,
The retarded state quantity prediction unit
Knock based on the in-cylinder pressure when the in-cylinder pressure acquisition unit detects knocking or self-ignition and the in-cylinder temperature when the in-cylinder temperature estimation unit detects knocking or self-ignition Or estimate the mass combustion rate when auto-ignition is detected,
A control apparatus for an internal combustion engine, which predicts an in-cylinder pressure and an in-cylinder temperature when retarding an ignition timing based on the estimated mass combustion ratio.
請求項13または14に記載の内燃機関の制御装置であって、
遅角時自着火予測部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、点火時期を遅角させる場合のノックまたは自着火の発生を予測することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 13 or 14,
The retarded angle self-ignition prediction unit uses a self-ignition timing estimation model that associates the start timing of knock or self-ignition with respect to the in-cylinder pressure and the in-cylinder temperature of the internal combustion engine. A control apparatus for an internal combustion engine that predicts the occurrence of self-ignition.
請求項1〜12のいずれか1に記載の内燃機関の状態量推定装置と、筒内で混合気を燃焼させる可変圧縮比型内燃機関の圧縮比を制御する圧縮比制御部と、を備える内燃機関の制御装置であって、
圧縮比制御部は、
筒内圧力取得部で取得された筒内圧力と筒内温度推定部で推定された筒内温度とに基づいて圧縮比を変化させる場合の筒内圧力及び筒内温度を予測する圧縮比変化時状態量予測部と、
圧縮比変化時状態量予測部で予測された筒内圧力及び筒内温度に基づいて圧縮比を変化させる場合のノックまたは自着火の発生を予測する圧縮比変化時自着火予測部と、
を有し、
圧縮比変化時自着火予測部によるノックまたは自着火の発生の予測結果を基に圧縮比の変化量を決定することを特徴とする内燃機関の制御装置。
An internal combustion engine comprising: the state quantity estimation device for an internal combustion engine according to any one of claims 1 to 12; and a compression ratio control unit that controls a compression ratio of a variable compression ratio internal combustion engine that burns an air-fuel mixture in a cylinder. An engine control device,
The compression ratio control unit
When the compression ratio changes to predict the in-cylinder pressure and the in-cylinder temperature when changing the compression ratio based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition unit and the in-cylinder temperature estimated by the in-cylinder temperature estimation unit A state quantity prediction unit;
A compression ratio change auto-ignition prediction unit that predicts the occurrence of knocking or self-ignition when the compression ratio is changed based on the in-cylinder pressure and the in-cylinder temperature predicted by the state quantity prediction unit at the time of compression ratio change;
Have
A control apparatus for an internal combustion engine, characterized in that a change amount of a compression ratio is determined based on a prediction result of occurrence of knocking or self-ignition by a self-ignition prediction unit when a compression ratio changes.
請求項16に記載の内燃機関の制御装置であって、
圧縮比変化時自着火予測部は、内燃機関の筒内圧力及び筒内温度に対してノックまたは自着火の開始時期を関連付ける自着火時期推定モデルを用いて、圧縮比を変化させる場合のノックまたは自着火の発生を予測することを特徴とする内燃機関の制御装置。
The control apparatus for an internal combustion engine according to claim 16,
The compression ratio change self-ignition prediction unit uses a self-ignition timing estimation model that associates the start timing of knock or self-ignition with the in-cylinder pressure and in-cylinder temperature of the internal combustion engine. A control apparatus for an internal combustion engine that predicts the occurrence of self-ignition.
請求項16または17に記載の内燃機関の制御装置であって、
可変圧縮比型内燃機関は、筒内で混合気を点火させて燃焼させる火花点火機関であり、
内燃機関のノックまたは自着火を検出する自着火検出部をさらに備え、
圧縮比制御部は、自着火検出部によりノックまたは自着火が検出された場合に圧縮比を低減させ、
圧縮比変化時状態量予測部は、筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいて圧縮比を低減させる場合の筒内圧力及び筒内温度を予測し、
圧縮比変化時自着火予測部は、圧縮比変化時状態量予測部で予測された筒内圧力及び筒内温度に基づいて圧縮比を低減させる場合のノックまたは自着火の発生を予測し、
圧縮比制御部は、圧縮比変化時自着火予測部によるノックまたは自着火の発生の予測結果を基に圧縮比の低減量を決定することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 16 or 17,
The variable compression ratio internal combustion engine is a spark ignition engine that ignites and burns an air-fuel mixture in a cylinder,
A self-ignition detecting unit for detecting knock or self-ignition of the internal combustion engine;
The compression ratio control unit reduces the compression ratio when knocking or self-ignition is detected by the self-ignition detection unit,
When the compression ratio change state quantity prediction unit detects the knock or self-ignition acquired by the in-cylinder pressure acquisition unit, the knock or self-ignition estimated by the in-cylinder pressure and in-cylinder temperature estimation unit is detected. Predicting the in-cylinder pressure and the in-cylinder temperature when reducing the compression ratio based on the in-cylinder temperature.
The compression ratio change self-ignition prediction unit predicts the occurrence of knock or self-ignition when the compression ratio is reduced based on the in-cylinder pressure and the in-cylinder temperature predicted by the compression ratio change state quantity prediction unit,
The compression ratio control unit determines a reduction amount of the compression ratio based on a prediction result of occurrence of knock or self-ignition by the self-ignition prediction unit when the compression ratio changes.
請求項18に記載の内燃機関の制御装置であって、
圧縮比変化時状態量予測部は、
筒内圧力取得部で取得されたノックまたは自着火が検出された場合の筒内圧力と筒内温度推定部で推定されたノックまたは自着火が検出された場合の筒内温度とに基づいてノックまたは自着火が検出された場合の質量燃焼割合を推定し、
該推定した質量燃焼割合に基づいて圧縮比を低減させる場合の筒内圧力及び筒内温度を予測することを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 18,
The state quantity prediction unit when the compression ratio changes
Knock based on the in-cylinder pressure when the in-cylinder pressure acquisition unit detects knocking or self-ignition and the in-cylinder temperature when the in-cylinder temperature estimation unit detects knocking or self-ignition Or estimate the mass combustion rate when auto-ignition is detected,
A control apparatus for an internal combustion engine, which predicts an in-cylinder pressure and an in-cylinder temperature when the compression ratio is reduced based on the estimated mass combustion ratio.
請求項16または17に記載の内燃機関の制御装置であって、
可変圧縮比型内燃機関は、筒内で混合気を圧縮することで自着火させて燃焼させる圧縮自着火機関であることを特徴とする内燃機関の制御装置。
The control device for an internal combustion engine according to claim 16 or 17,
The variable compression ratio type internal combustion engine is a compression self-ignition engine which is a compression self-ignition engine which self-ignites and burns by compressing an air-fuel mixture in a cylinder.
筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定方法であって、
内燃機関の筒内圧力を取得する筒内圧力取得ステップと、
内燃機関の排気ガスにおける所定成分の濃度を検出する排気濃度検出ステップと、
筒内圧力取得ステップによる取得筒内圧力と排気濃度検出ステップによる所定成分の検出濃度とに基づいて内燃機関の筒内温度を推定する筒内温度推定ステップと、
を含むことを特徴とする内燃機関の状態量推定方法。
An internal combustion engine state quantity estimation method for estimating an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder,
An in-cylinder pressure obtaining step for obtaining an in-cylinder pressure of the internal combustion engine;
An exhaust concentration detecting step for detecting a concentration of a predetermined component in the exhaust gas of the internal combustion engine;
An in-cylinder temperature estimating step for estimating the in-cylinder temperature of the internal combustion engine based on the acquired in-cylinder pressure in the in-cylinder pressure acquisition step and the detected concentration of the predetermined component in the exhaust concentration detection step;
An internal combustion engine state quantity estimation method comprising:
筒内で混合気を燃焼させる内燃機関の状態量を推定する内燃機関の状態量推定方法であって、
内燃機関の筒内圧力を取得する筒内圧力取得ステップと、
内燃機関のノックまたは自着火の開始時期を検出する自着火時期検出ステップと、
筒内圧力取得ステップによる取得筒内圧力と自着火時期検出ステップによるノックまたは自着火の検出開始時期とに基づいて内燃機関の筒内温度を推定する筒内温度推定ステップと、
を含むことを特徴とする内燃機関の状態量推定方法。
An internal combustion engine state quantity estimation method for estimating an internal combustion engine state quantity for burning an air-fuel mixture in a cylinder,
An in-cylinder pressure obtaining step for obtaining an in-cylinder pressure of the internal combustion engine;
A self-ignition timing detection step for detecting the start timing of knocking or self-ignition of the internal combustion engine;
An in-cylinder temperature estimation step for estimating the in-cylinder temperature of the internal combustion engine based on the in-cylinder pressure acquired by the in-cylinder pressure acquisition step and the knock or self-ignition detection start timing by the self-ignition timing detection step;
An internal combustion engine state quantity estimation method comprising:
JP2005318869A 2005-11-01 2005-11-01 State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine Pending JP2007127004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005318869A JP2007127004A (en) 2005-11-01 2005-11-01 State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005318869A JP2007127004A (en) 2005-11-01 2005-11-01 State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007127004A true JP2007127004A (en) 2007-05-24

Family

ID=38149854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005318869A Pending JP2007127004A (en) 2005-11-01 2005-11-01 State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007127004A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108212A1 (en) * 2007-03-05 2008-09-12 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
WO2011145223A1 (en) * 2010-05-17 2011-11-24 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012021432A (en) * 2010-07-13 2012-02-02 Toyota Motor Corp Control device of internal combustion engine
JP2012233435A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Internal combustion engine
CN103133104A (en) * 2011-11-22 2013-06-05 现代自动车株式会社 Method of predicting NOx generation amount
JP2013148057A (en) * 2012-01-23 2013-08-01 Isuzu Motors Ltd Apparatus for estimating in-cylinder residual gas quantity and estimation method thereof
JP5674903B1 (en) * 2013-11-15 2015-02-25 三菱電機株式会社 In-cylinder pressure estimation device for internal combustion engine
JP2016003568A (en) * 2014-06-13 2016-01-12 いすゞ自動車株式会社 Internal combustion engine control device and internal combustion engine control method
JP2016003589A (en) * 2014-06-16 2016-01-12 スズキ株式会社 Combustion timing estimation device and combustion timing estimation method for homogeneous charge compression self-ignition internal combustion engine
JP2016196852A (en) * 2015-04-03 2016-11-24 トヨタ自動車株式会社 Control device of internal combustion engine
KR101734240B1 (en) 2015-12-10 2017-05-11 현대자동차 주식회사 DEVICE AND METHOD OF PREDICTING NOx GENERATION AMOUNT
JP2017082799A (en) * 2016-12-16 2017-05-18 スズキ株式会社 Control device for pre-mixing compression self-ignition type internal combustion engine
JP2017166356A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Control device for internal combustion engine
EP3385526A1 (en) 2017-04-04 2018-10-10 Toyota Jidosha Kabushiki Kaisha A control device for an internal combustion engine
KR20190063903A (en) 2017-11-30 2019-06-10 현대자동차주식회사 Method for predicting of nitrogen dioxide emission in diesel engine
CN110439699A (en) * 2018-05-03 2019-11-12 现代自动车株式会社 Reflect the control method of the nitrogen oxides in the engine of operating range
CN110906361A (en) * 2019-12-12 2020-03-24 广州珠江电力有限公司 Optimized combustion control method and system based on low-nitrogen combustion
CN112211737A (en) * 2020-10-14 2021-01-12 哈尔滨工程大学 Method for calculating steady-state temperature rise of fuel at control chamber of high-pressure common rail fuel injector
WO2022224516A1 (en) * 2021-04-19 2022-10-27 日立Astemo株式会社 Control device for internal combustion engine

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641511A (en) * 2007-03-05 2010-02-03 丰田自动车株式会社 Internal combustion engine controller
WO2008108212A1 (en) * 2007-03-05 2008-09-12 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller
US8161944B2 (en) 2007-03-05 2012-04-24 Toyota Jidosha Kabushiki Kaisha Control device of the internal combustion engine
JP5234225B2 (en) * 2010-05-17 2013-07-10 トヨタ自動車株式会社 Control device for internal combustion engine
WO2011145223A1 (en) * 2010-05-17 2011-11-24 トヨタ自動車株式会社 Control device for internal combustion engine
US9080528B2 (en) 2010-05-17 2015-07-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN102893003A (en) * 2010-05-17 2013-01-23 丰田自动车株式会社 Control device for internal combustion engine
JP2012021432A (en) * 2010-07-13 2012-02-02 Toyota Motor Corp Control device of internal combustion engine
JP2012233435A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Internal combustion engine
CN103133104A (en) * 2011-11-22 2013-06-05 现代自动车株式会社 Method of predicting NOx generation amount
KR101317410B1 (en) 2011-11-22 2013-10-10 서울대학교산학협력단 Nox mass prediction method
JP2013148057A (en) * 2012-01-23 2013-08-01 Isuzu Motors Ltd Apparatus for estimating in-cylinder residual gas quantity and estimation method thereof
JP5674903B1 (en) * 2013-11-15 2015-02-25 三菱電機株式会社 In-cylinder pressure estimation device for internal combustion engine
JP2016003568A (en) * 2014-06-13 2016-01-12 いすゞ自動車株式会社 Internal combustion engine control device and internal combustion engine control method
JP2016003589A (en) * 2014-06-16 2016-01-12 スズキ株式会社 Combustion timing estimation device and combustion timing estimation method for homogeneous charge compression self-ignition internal combustion engine
JP2016196852A (en) * 2015-04-03 2016-11-24 トヨタ自動車株式会社 Control device of internal combustion engine
KR101734240B1 (en) 2015-12-10 2017-05-11 현대자동차 주식회사 DEVICE AND METHOD OF PREDICTING NOx GENERATION AMOUNT
US10253674B2 (en) 2015-12-10 2019-04-09 Hyundai Motor Company Device and method of predicting NOx generation amount
JP2017166356A (en) * 2016-03-14 2017-09-21 トヨタ自動車株式会社 Control device for internal combustion engine
JP2017082799A (en) * 2016-12-16 2017-05-18 スズキ株式会社 Control device for pre-mixing compression self-ignition type internal combustion engine
EP3385526A1 (en) 2017-04-04 2018-10-10 Toyota Jidosha Kabushiki Kaisha A control device for an internal combustion engine
KR20190063903A (en) 2017-11-30 2019-06-10 현대자동차주식회사 Method for predicting of nitrogen dioxide emission in diesel engine
US10989701B2 (en) 2017-11-30 2021-04-27 Hyundai Motor Company Method of predicting nitrogen dioxide emission from engine
KR20190127093A (en) 2018-05-03 2019-11-13 현대자동차주식회사 Method of nitrogen oxide in engine reflecting travel distance
CN110439699A (en) * 2018-05-03 2019-11-12 现代自动车株式会社 Reflect the control method of the nitrogen oxides in the engine of operating range
CN110906361A (en) * 2019-12-12 2020-03-24 广州珠江电力有限公司 Optimized combustion control method and system based on low-nitrogen combustion
CN110906361B (en) * 2019-12-12 2021-09-24 广州珠江电力有限公司 Optimized combustion control method and system based on low-nitrogen combustion
CN112211737A (en) * 2020-10-14 2021-01-12 哈尔滨工程大学 Method for calculating steady-state temperature rise of fuel at control chamber of high-pressure common rail fuel injector
CN112211737B (en) * 2020-10-14 2022-07-15 哈尔滨工程大学 Method for calculating steady-state temperature rise of fuel at control room of high-pressure common rail fuel injector
WO2022224516A1 (en) * 2021-04-19 2022-10-27 日立Astemo株式会社 Control device for internal combustion engine
JP7431381B2 (en) 2021-04-19 2024-02-14 日立Astemo株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP2007127004A (en) State quantity estimation device of internal combustion engine, control device of internal combustion engine, and method of estimating state amount of internal combustion engine
JP4075858B2 (en) Method for measuring fuel cetane number of internal combustion engine
KR100674536B1 (en) Ignition timing control for internal combustion engine
CN100529382C (en) Ignition timing control for internal combustion engine
JP4036138B2 (en) Combustion control device for spark ignition internal combustion engine
US7448253B2 (en) Combustion state determination method of internal combustion engine
Truedsson et al. Pressure sensitivity of HCCI auto-ignition temperature for primary reference fuels
US20080000462A1 (en) Control method of compression self ignition internal combustion engine
JP5674903B1 (en) In-cylinder pressure estimation device for internal combustion engine
Chang et al. Analysis of load and speed transitions in an HCCI engine using 1-D cycle simulation and thermal networks
Rao et al. A study of the relationship between NOx and the ion current in a direct-injection diesel engine
JP4158747B2 (en) Ignition timing control device for internal combustion engine
Karvountzis-Kontakiotis et al. Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model
CN106103956B (en) The air/fuel ratio detecting apparatus of internal combustion engine
JP5045575B2 (en) Combustion control device for internal combustion engine
JP6500816B2 (en) Control device for internal combustion engine
JP2005344550A (en) Method of measuring cetane number of fuel for internal combustion engine
JP5737196B2 (en) Control device for internal combustion engine
JP2005240712A (en) Gas engine
CN111247321A (en) Split-cycle engine
Rublewski et al. Modeling NO formation in spark ignition engines with a layered adiabatic core and combustion inefficiency routine
JP2015113755A (en) Diagnosis device for internal combustion engine
Mehresh et al. Experimental and numerical investigation of effect of fuel on ion sensor signal to determine combustion timing in homogeneous charge compression ignition engines
Oppenauer et al. Simplified calculation of chemical equilibrium and thermodynamic properties for diesel combustion
JP4244654B2 (en) Engine ignition timing control device