JP2007123701A - Method of depositing oxide thin film - Google Patents

Method of depositing oxide thin film Download PDF

Info

Publication number
JP2007123701A
JP2007123701A JP2005316404A JP2005316404A JP2007123701A JP 2007123701 A JP2007123701 A JP 2007123701A JP 2005316404 A JP2005316404 A JP 2005316404A JP 2005316404 A JP2005316404 A JP 2005316404A JP 2007123701 A JP2007123701 A JP 2007123701A
Authority
JP
Japan
Prior art keywords
oxygen
chamber
film
gas
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316404A
Other languages
Japanese (ja)
Inventor
Masato Kon
真人 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005316404A priority Critical patent/JP2007123701A/en
Publication of JP2007123701A publication Critical patent/JP2007123701A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress variations in quality among products at the minimum by depositing a film while always keeping oxygen partial pressure in a chamber constant, irrespective of the releasing rate of a gas containing oxygen atoms to be released from an object to be deposited that is introduced into the chamber. <P>SOLUTION: When the oxide thin film is formed in a gas atmosphere containing oxygen on the object to be deposited releasing a gas while it is left in a vacuum, the films is formed while controlling an oxygen flow rate to be introduced into the chamber by monitoring the light-emitting strength of oxygen in plasma so that an oxygen proportion in the chamber in which the released gas component contains oxygen atoms can be a certain set value. Thus, the above problem is solved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸化物薄膜の成膜方法に関する。特に、真空雰囲気下でガスを放出しやすい基材への酸化物薄膜の成膜方法に関する。   The present invention relates to a method for forming an oxide thin film. In particular, the present invention relates to a method for forming an oxide thin film on a base material that easily releases a gas in a vacuum atmosphere.

電界効果型トランジスタは、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等各種のスイッチング素子として用いられ、特に薄膜化したものは薄膜トランジスタ(以下TFT)としてよく知られている。   Field effect transistors are used as various switching elements such as unit electronic elements of semiconductor memory integrated circuits, high frequency signal amplifying elements, liquid crystal driving elements, and the thinned transistors are well known as thin film transistors (hereinafter referred to as TFTs). .

これらトランジスタの活性層には、シリコンまたはシリコン化合物が広く用いられている。高速動作が必要な高周波増幅素子、集積回路用素子等には、シリコン単結晶が用いられ、また、低速動作で充分な表示素子用には、大面積化の要求からアモルファスシリコンが使われている。   Silicon or silicon compounds are widely used for the active layers of these transistors. Single-crystal silicon is used for high-frequency amplifying elements and integrated circuit elements that require high-speed operation, and amorphous silicon is used for display elements that are sufficient for low-speed operation due to the demand for large area. .

一方、フレキシブルディスプレイには、フレキシブル基板を用いることが要求される。このような基板は、一般に耐熱温度が低いため、プロセス温度のさらなる低下が要求される。アモルファスシリコン薄膜の作製にはCVDが広く用いられており、特にプラズマCVDでは、プラズマが原料ガスであるシランを分解するため、熱CVDと比較して低い温度で成膜できるが、それでも200〜300℃の反応温度が必要である。   On the other hand, the flexible display is required to use a flexible substrate. Since such a substrate generally has a low heat-resistant temperature, further reduction in the process temperature is required. CVD is widely used to produce an amorphous silicon thin film. In particular, in plasma CVD, plasma decomposes silane, which is a raw material gas, so that it can be formed at a lower temperature than thermal CVD. A reaction temperature of 0C is required.

近年、室温成膜が可能で電界効果移動度がアモルファスシリコンと同等以上の酸化物半導体InGaZnO4が提案され、薄膜トランジスタの活性層としての可能性が示された(非特許文献1参照)。   In recent years, an oxide semiconductor InGaZnO 4 that can be formed at room temperature and has a field-effect mobility equal to or higher than that of amorphous silicon has been proposed, and the possibility as an active layer of a thin film transistor has been shown (see Non-Patent Document 1).

K.Nomura,H.Ohta,A.Takagi,T.Kamiyama,M.Hirano,H.Hosono: Nature 432(2004)488.K. Nomura, H .; Ohta, A .; Takagi, T .; Kamiyama, M .; Hirano, H .; Hosono: Nature 432 (2004) 488.

前記非特許文献1に記載のInGaZnO4は、透明導電膜として知られていた材料であるが、成膜時に酸素分圧を制御することでキャリア源と考えられている酸素空孔を低減し、off電流を低減させることに成功している。また容易にアモルファス状態が得られるため、フレキシブルディスプレイへの応用に適している。   InGaZnO 4 described in Non-Patent Document 1 is a material known as a transparent conductive film, but it reduces oxygen vacancies, which are considered as a carrier source, by controlling the oxygen partial pressure during film formation. It has succeeded in reducing the current. Moreover, since an amorphous state can be easily obtained, it is suitable for application to a flexible display.

しかし、InGaZnO4など酸素空孔をキャリア源とする酸化物半導体の成膜では、酸素流量の精密な制御が必要なことが判ってきており、さらに、その絶対量が微量であることが、酸素流量の制御をより困難にしている。
また、有機基板などを使用した際は、脱ガス量が多く、この脱ガスの量は、基板の種類やロット、入荷までの取り扱い状態によって個々に異なる。
この脱ガス成分として、基板に吸着した水分子を考えた場合、水は酸素原子を供給するため、酸素分圧に影響を与え、僅かな酸素分圧の変化に敏感な酸化物半導体の成膜において、再現性を低下させる要因となる。
このような状況を踏まえると、InGaZnO4などの酸化物半導体を薄膜トランジスタに使用した場合、前記InGaZnO4などの酸化物半導体薄膜を、例えば、有機基板に真空雰囲気下で均質のデバイスを多数製造する量産に適用するには、品質のばらつきが生じることが懸念される。
However, it has been found that in the formation of an oxide semiconductor using oxygen vacancies such as InGaZnO4 as a carrier source, precise control of the oxygen flow rate is necessary, and that the absolute amount is very small. Making it more difficult to control.
Further, when an organic substrate or the like is used, the amount of degassing is large, and the amount of degassing varies depending on the type of substrate, the lot, and the handling state until arrival.
When water molecules adsorbed on the substrate are considered as this degassing component, water supplies oxygen atoms, so the oxygen partial pressure is affected and the oxide semiconductor film is sensitive to slight changes in oxygen partial pressure. In this case, the reproducibility is reduced.
Considering such a situation, when an oxide semiconductor such as InGaZnO4 is used for a thin film transistor, the oxide semiconductor thin film such as InGaZnO4 is applied to mass production for manufacturing a large number of homogeneous devices on an organic substrate in a vacuum atmosphere, for example. Therefore, there is a concern that the quality may vary.

本発明は、かかる問題を鑑みてなされたもので、チャンバーに導入される被成膜物から放出される酸素原子を含むガスの放出があっても、また放出量に関わらず、チャンバー内の酸素分圧を常に一定に保って成膜することを可能にし、製品間での品質のばらつきを最小限に抑えることが可能な酸化物薄膜の形成方法を提供することを目的とする。   The present invention has been made in view of such a problem. Even if there is a release of a gas containing oxygen atoms released from an object to be deposited introduced into the chamber, the oxygen in the chamber can be obtained regardless of the release amount. It is an object of the present invention to provide a method for forming an oxide thin film that can form a film while keeping the partial pressure constant, and can minimize variations in quality among products.

上記の課題を達成するために、まず第1の発明は、真空中に放置するとガスを放出する被成膜物へ、酸素を含むガス雰囲気で酸化物薄膜を成膜するにあたって、該放出ガス成分に酸素原子が含まれるチャンバー内の酸素割合を、プラズマ中の酸素の発光線の強度を監視して、前記酸素割合が設定したある一定の値になるようにチャンバーへ導入する酸素流量を制御、調整して成膜することを特徴とする成膜方法である。
脱ガス成分はプラズマによって分解され、そこに酸素が含まれる場合、チャンバー内の酸素分圧を押し上げる要因となる。脱ガス成分から供給される酸素はチャンバーに導入された酸素と同様にその一部がプラズマによって励起され、そして緩和される過程で電磁波を放出する。
前記電磁波の発光線の強度を計測することにより、チャンバー内の酸素の分圧を相対的に見積もることができる。この発光強度が一定になるようにチャンバーに導入する酸素流量をリアルタイムに自動制御することで、基板または有機材料にから放出される酸素原子を含む脱ガスの量の如何に関わらず安定して同レベルの品質のデバイスを量産することが可能になる。
In order to achieve the above object, first, the first invention is directed to forming an oxide thin film in a gas atmosphere containing oxygen on a film-deposited material that releases gas when left in a vacuum. The oxygen ratio in the chamber containing oxygen atoms is monitored, the intensity of the emission line of oxygen in the plasma is monitored, and the oxygen flow rate introduced into the chamber is controlled so that the oxygen ratio becomes a predetermined value, The film forming method is characterized in that the film is formed by adjusting.
The degassed component is decomposed by the plasma, and when oxygen is contained therein, it becomes a factor for increasing the oxygen partial pressure in the chamber. Oxygen supplied from the degassing component emits electromagnetic waves in the process of being partly excited and relaxed by plasma in the same manner as oxygen introduced into the chamber.
By measuring the intensity of the emission line of the electromagnetic wave, the partial pressure of oxygen in the chamber can be relatively estimated. By automatically controlling the flow rate of oxygen introduced into the chamber in real time so that the emission intensity is constant, the same amount can be stably obtained regardless of the amount of degassing including oxygen atoms released from the substrate or organic material. It becomes possible to mass-produce devices with a level of quality.

本発明の第2の発明は、発光強度の測定に777nmの波長の発光線を用いることを特徴とする請求項1に記載の成膜方法である。
酸素の発光線は、複数知られているが、強度の高い777nmの発光線を使用することでプロセスの制御が容易になる。
本発明の第3の発明は、成膜方法にスパッタリング法を用いることを特徴とする請求項1または2に記載の成膜方法である。
スパッタリング法は、グロー放電を主体としたプラズマプロセスであるため、改めてガスを引き込んでプラズマ化する必要は無く、グロー中の発光線がそのまま使用できる。
According to a second aspect of the present invention, there is provided the film forming method according to claim 1, wherein an emission line having a wavelength of 777 nm is used for measuring the emission intensity.
A plurality of oxygen emission lines are known, but the process can be easily controlled by using a high intensity 777 nm emission line.
A third aspect of the present invention is the film forming method according to claim 1 or 2, wherein a sputtering method is used as the film forming method.
Since the sputtering method is a plasma process mainly composed of glow discharge, it is not necessary to draw a gas into plasma again, and the light emission lines in the glow can be used as they are.

以上の構成から、本発明には、以下の効果がある。   From the above configuration, the present invention has the following effects.

チャンバーに導入される、酸素を含むガスを放出する基板または有機材料などの被成膜物へ酸化物を成膜するに際し、前記被成膜物から放出される酸素原子を含むガスの量に関わらず、チャンバー内の酸素分圧を常に一定に保つことができ、酸化物薄膜製品間での品質のばらつきを最小限に抑えることができる。   When an oxide film is formed on a deposition object such as a substrate or an organic material that releases a gas containing oxygen, which is introduced into the chamber, regardless of the amount of gas containing oxygen atoms released from the deposition object. In addition, the oxygen partial pressure in the chamber can always be kept constant, and quality variations among oxide thin film products can be minimized.

本発明の実施の形態について、図1を用いて以下詳細に説明する。   An embodiment of the present invention will be described below in detail with reference to FIG.

成膜装置は、スパッタ装置が好ましい。
チャンバー1内のカソードの近傍に光ファイバー2を設置する。また、波長777nmの光のみを透過する単色化フィルター3を、前記光ファイバー2とフォトマルチプライヤー4の間に設置し、777nmの光のみを電気信号に変えるシステムを設置する。
そして、この信号が設定した一定の値になるようにチャンバーに導入する酸素ガス流量を制御する制御システム5を設置する。
以上より、チャンバーに導入した基板等からの酸素原子を含む脱ガスが少ない場合には、プラズマからの発光強度は小さくなり、前記システムは、前記プラズマの発光強度を検知して、チャンバーに導入する酸素ガスの流量を増加させる。反対にチャンバーに導入した基板等からの酸素原子を含む脱ガスが多い場合は、プラズマからの発光強度は大きくなり、前記システムはチャンバーに導入する酸素ガスの流量を制限する。
いずれの場合もチャンバーに導入した酸素ガスが、プラズマの発光強度を底上げするので、最終的には発光線の強度は一定になる。すなわち基板等からの脱ガスの量の如何に関わらずチャンバー内の酸素分圧は一定になるように制御される。
The film forming apparatus is preferably a sputtering apparatus.
An optical fiber 2 is installed near the cathode in the chamber 1. In addition, a monochromizing filter 3 that transmits only light having a wavelength of 777 nm is installed between the optical fiber 2 and the photomultiplier 4, and a system that converts only light of 777 nm into an electrical signal is installed.
And the control system 5 which controls the oxygen gas flow volume introduce | transduced into a chamber so that this signal may become the set fixed value is installed.
As described above, when there is little degassing including oxygen atoms from the substrate or the like introduced into the chamber, the emission intensity from the plasma is reduced, and the system detects the emission intensity of the plasma and introduces it into the chamber. Increase the flow rate of oxygen gas. On the other hand, when there is a lot of degassing including oxygen atoms from the substrate or the like introduced into the chamber, the emission intensity from the plasma increases, and the system limits the flow rate of oxygen gas introduced into the chamber.
In either case, the oxygen gas introduced into the chamber raises the emission intensity of the plasma, so that the intensity of the emission line finally becomes constant. That is, the oxygen partial pressure in the chamber is controlled to be constant regardless of the amount of degassing from the substrate or the like.

前述したシステムを用いて成膜を行った例を述べる。   An example of film formation using the system described above will be described.

単色化フィルター3には酸素777nmの発光線に対応するフィルターを用いた。
成膜装置は、ロードロック機構付きのrfマグネトロンスパッタ装置を用いた。
また、ターゲットには、InGaZnO4を使用した。
そして、チャンバーにArガスを導入し、放電電力200Wで放電を開始した。この時の波長777nmの発光強度が0になるように制御システム5のキャリブレーションを行い、続いてロードロック室から基板を導入した。
前記基板には有機材料であるPENを使用し、電極など各種のパターニングが予めほどこされ、また、表面にはリフトオフ用のレジストが塗布形成されている。
次に、酸素ガスを導入すると同時に流量の制御を開始した。数秒後、発光強度は一定に達し、定常化した。
As the monochromating filter 3, a filter corresponding to an emission line of oxygen 777 nm was used.
As the film forming apparatus, an rf magnetron sputtering apparatus with a load lock mechanism was used.
Moreover, InGaZnO4 was used for the target.
And Ar gas was introduce | transduced into the chamber and discharge was started with discharge power 200W. At this time, the control system 5 was calibrated so that the emission intensity at a wavelength of 777 nm was zero, and then the substrate was introduced from the load lock chamber.
PEN, which is an organic material, is used for the substrate, and various patterns such as electrodes are applied in advance, and a lift-off resist is applied and formed on the surface.
Next, control of the flow rate was started simultaneously with the introduction of oxygen gas. After a few seconds, the emission intensity reached a constant level and became steady.

以上のようにして複数回実験を行い複数の薄膜トランジスタを作製した。   As described above, a plurality of thin film transistors were manufactured by performing a plurality of experiments.

本発明の一例を示す説明図。Explanatory drawing which shows an example of this invention.

符号の説明Explanation of symbols

1・・・チャンバー
2・・・光ファイバー
3・・・単色化フィルター
4・・・フォトマルチプライヤー
5・・・制御システム
6・・・酸素導入ライン
DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Optical fiber 3 ... Monochromatic filter 4 ... Photo multiplier 5 ... Control system 6 ... Oxygen introduction line

Claims (3)

真空中に放置するとガスを放出する被成膜物へ、酸素を含むガス雰囲気で酸化物薄膜を成膜するにあたって、該放出ガス成分に酸素原子が含まれるチャンバー内の酸素割合を、プラズマ中の酸素の発光線の強度を監視して、前記酸素割合が設定したある一定の値になるようにチャンバーへ導入する酸素流量を制御、調整して成膜することを特徴とする成膜方法。 When an oxide thin film is formed in a gas atmosphere containing oxygen on a film-deposited material that releases gas when left in a vacuum, the oxygen ratio in the chamber in which oxygen atoms are contained in the released gas component is determined in the plasma. A film forming method characterized by monitoring the intensity of an oxygen emission line and forming a film by controlling and adjusting an oxygen flow rate introduced into the chamber so that the oxygen ratio becomes a predetermined constant value. 前記発光線が、777nmの波長の発光線を用いることを特徴とする請求項1に記載の成膜方法。 The film forming method according to claim 1, wherein the emission line is an emission line having a wavelength of 777 nm. 前記成膜方法が、スパッタリング法であることを特徴とする請求項1または2に記載の成膜方法。 The film forming method according to claim 1, wherein the film forming method is a sputtering method.
JP2005316404A 2005-10-31 2005-10-31 Method of depositing oxide thin film Pending JP2007123701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316404A JP2007123701A (en) 2005-10-31 2005-10-31 Method of depositing oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316404A JP2007123701A (en) 2005-10-31 2005-10-31 Method of depositing oxide thin film

Publications (1)

Publication Number Publication Date
JP2007123701A true JP2007123701A (en) 2007-05-17

Family

ID=38147188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316404A Pending JP2007123701A (en) 2005-10-31 2005-10-31 Method of depositing oxide thin film

Country Status (1)

Country Link
JP (1) JP2007123701A (en)

Similar Documents

Publication Publication Date Title
JP7193584B2 (en) Transistor and display device
US10103277B2 (en) Method for manufacturing oxide semiconductor film
JP6223526B2 (en) Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device
JP2021057603A (en) Display device
TWI698988B (en) Display device
US8980686B2 (en) Sputtering target and method for manufacturing semiconductor device
JP5520084B2 (en) Method for manufacturing field effect transistor
JP2003179233A (en) Thin film transistor and indication element equipped therewith
KR20150097416A (en) Semiconductor device manufacturing method
JP2011199271A (en) Method of manufacturing semiconductor element, and film forming device
JP2008050654A (en) METHOD FOR FORMING P-TYPE In-Ga-Zn-O FILM
JP2007123699A (en) Thin-film transistor and method of manufacturing same
JP2009141221A (en) METHOD OF MANUFACTURING ZnO SEMICONDUCTOR FILM, ZnO SEMICONDUCTOR FILM, AND SEMICONDUCTOR DEVICE USING THE SAME
TW201351503A (en) PVD ALN film with oxygen doping for a low etch rate hardmask film
KR20150063307A (en) Method of manufacturing oxide multi-layer
JP2008121034A (en) Method and apparatus for film deposition of zinc oxide thin film
JP2011181803A (en) Method of manufacturing igzo-based amorphous oxide thin film and method of manufacturing field effect transistor using the same
JP2007123701A (en) Method of depositing oxide thin film
JP5124436B2 (en) Organic electronic device, organic electronic device manufacturing method, and organic electronic device manufacturing apparatus
JP2011181802A (en) Method of manufacturing igzo-based amorphous oxide semiconductor film and method of manufacturing field effect transistor using the same
JP2010103376A (en) Thin film forming apparatus and thin film forming method
KR20160001347A (en) The method for forming the igzo thin layer and the igzo thin layer formed thereby