JP2007123002A - Reformer of fuel cell - Google Patents

Reformer of fuel cell Download PDF

Info

Publication number
JP2007123002A
JP2007123002A JP2005312543A JP2005312543A JP2007123002A JP 2007123002 A JP2007123002 A JP 2007123002A JP 2005312543 A JP2005312543 A JP 2005312543A JP 2005312543 A JP2005312543 A JP 2005312543A JP 2007123002 A JP2007123002 A JP 2007123002A
Authority
JP
Japan
Prior art keywords
evaporator
reformer
fuel cell
burner
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312543A
Other languages
Japanese (ja)
Inventor
Akihiko Noya
明彦 野家
Hidekazu Fujimura
秀和 藤村
Tsutomu Okuzawa
奥澤  務
Takaaki Mizukami
貴彰 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005312543A priority Critical patent/JP2007123002A/en
Publication of JP2007123002A publication Critical patent/JP2007123002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer in which a heat transfer area and an evaporator area of an evaporator container are formed large and a water volume of the evaporator is made large to enable the stable supply of steam. <P>SOLUTION: A burner, a heat transfer tube, a catalyst tube filled with a catalyst, and an evaporator container are arranged centered on a burner in a concentric shape to the center axis of the burner in a reformer of the fuel cell. A steam exhaust tube to take out steam from the evaporator container is arranged outside the evaporator container. The heat transfer tube heats the catalyst tube and the evaporator, and by mixing hydrocarbon at the exit of the steam exhaust tube, the mixed gas is introduced into the catalyst layer to carry out reforming reaction. The evaporator container has a vertical portion surrounding the burner and a horizontal portion which is inclined extending in horizontal direction at the surrounding of the burner. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市ガスやLPGなどの炭化水素系の燃料を水蒸気と混合して改質反応部に送り、水蒸気改質して高濃度の水素ガスを生成する多重円筒型改質器に係わり、特に固体高分子型燃料電池用改質器に係わる。   The present invention relates to a multi-cylindrical reformer that mixes a hydrocarbon-based fuel such as city gas or LPG with steam and sends it to a reforming reaction section, and reforms the steam to produce high-concentration hydrogen gas. In particular, it relates to a reformer for a polymer electrolyte fuel cell.

固体高分子型燃料電池用改質器は都市ガスやLPGなどの燃料を水蒸気と混合した後、改質反応部で水蒸気改質し、得られた高濃度の水素ガスを燃料電池本体に供給するものである。   A reformer for a polymer electrolyte fuel cell mixes a fuel such as city gas or LPG with water vapor, then reforms the water vapor in a reforming reaction section, and supplies the resulting high-concentration hydrogen gas to the fuel cell body. Is.

固体高分子型燃料電池用改質器には、熱効率の向上と小型化が求められており、この課題を解決するために、特許文献1に記載される円筒型改質器が提案されている。上記改質器は水蒸気改質に用いる水蒸気を発生させる水加熱部(蒸発器)を、加熱用バーナの燃焼排ガス通路の外周部に設け、水蒸気の出口を原料ガスの供給口と連結管で連結し、蒸発器で発生した水蒸気を燃料と混合して、改質触媒に送るようになっている。このように蒸発器の水加熱部の構造を簡略化することにより、改質器の小型化を図ることができると共に、燃焼排ガスの熱の利用による水の加熱(蒸気発生)が可能である。   In order to solve this problem, a cylindrical reformer described in Patent Document 1 has been proposed for a reformer for a polymer electrolyte fuel cell. . The reformer is provided with a water heating section (evaporator) that generates steam used for steam reforming at the outer periphery of the combustion exhaust gas passage of the heating burner, and the outlet of the steam is connected to the feed port of the raw material gas through a connecting pipe The steam generated in the evaporator is mixed with fuel and sent to the reforming catalyst. Thus, by simplifying the structure of the water heating section of the evaporator, it is possible to reduce the size of the reformer and to heat water (steam generation) by using the heat of the combustion exhaust gas.

また、特許文献2に記載の改質器においては、水加熱器の加熱面を水平方向に配置している。この場合、水が消費され、水加熱器内に無くなると急激に蒸気の発生量が減少し、場合によっては燃料電池の運転に支障をきたすことになる。   Moreover, in the reformer described in Patent Document 2, the heating surface of the water heater is arranged in the horizontal direction. In this case, when the water is consumed and disappears in the water heater, the amount of steam generated abruptly decreases, and in some cases, the operation of the fuel cell is hindered.

特開2003−321206号公報JP 2003-321206 A 特開2002−187705号公報JP 2002-187705 A

上記従来技術には、以下の課題がある。改質器の蒸発器は加熱用バーナの燃焼排ガス流路の外周部に設置されており、燃焼排ガスから水加熱路(蒸発器)内の水への伝熱は、蒸発器の片側の壁面のみで行われ、伝熱面積が小さいことから、燃焼排ガスから蒸発器内の水への伝熱効率が悪い。   The above prior art has the following problems. The evaporator of the reformer is installed on the outer periphery of the combustion exhaust gas passage of the heating burner, and heat transfer from the combustion exhaust gas to the water in the water heating passage (evaporator) is only on the wall on one side of the evaporator. Since the heat transfer area is small, the heat transfer efficiency from the combustion exhaust gas to the water in the evaporator is poor.

また、改質器の蒸発器内の水位は、燃料電池の負荷状況によって必要となる蒸気量が変化することから、運転状況により変動する。蒸発器内の水位が変動すると、伝熱面積も変わり、水位が低くなるにつれて、燃焼排ガスから蒸発器内の水への伝熱効率は悪くなる。また、伝熱面積が変化することで、伝熱状態が変わるため、蒸発器への給水を含め改質器全体の制御がしづらくなり、蒸気の発生が不安定になりやすい。   In addition, the water level in the evaporator of the reformer varies depending on the operating conditions because the required amount of steam varies depending on the load condition of the fuel cell. When the water level in the evaporator fluctuates, the heat transfer area also changes, and the heat transfer efficiency from the combustion exhaust gas to the water in the evaporator deteriorates as the water level decreases. Further, since the heat transfer state changes due to the change of the heat transfer area, it becomes difficult to control the entire reformer including the water supply to the evaporator, and the generation of steam tends to be unstable.

一方、改質器を小型化するためには、燃焼排ガス流路の外周部に設けた蒸発器の流路を狭くしなければならず、伝熱面が局所的に加熱された場合には、ミストの発生あるいは水の突沸が起こりやすくなる。その結果、蒸気と共に過剰な水分が改質反応部に運ばれ、所定条件での改質反応ができなくなる。このように、水蒸気改質に必要な蒸気供給が不安定となることにより、改質器の水素発生量は大きく変動することになる。以上述べたように、従来技術では燃焼排ガスから蒸発器内の水への伝熱効率が悪く、蒸気の発生が不安定で改質器の制御がしづらい他、改質器の蒸気発生量が変動しやすいという課題があった。   On the other hand, in order to downsize the reformer, the flow path of the evaporator provided at the outer peripheral portion of the combustion exhaust gas flow path must be narrowed, and when the heat transfer surface is locally heated, Mist generation or water bumping is likely to occur. As a result, excess moisture is carried along with the steam to the reforming reaction section, and the reforming reaction under a predetermined condition cannot be performed. As described above, the supply of steam necessary for steam reforming becomes unstable, so that the amount of hydrogen generated in the reformer varies greatly. As described above, in the conventional technology, heat transfer efficiency from combustion exhaust gas to water in the evaporator is poor, steam generation is unstable and control of the reformer is difficult, and the steam generation amount of the reformer varies. There was a problem that it was easy to do.

本発明の目的は、伝熱効率が良く、安定した蒸気供給が可能な蒸発器を有する改質器を提供することにある。   An object of the present invention is to provide a reformer having an evaporator with good heat transfer efficiency and capable of supplying stable steam.

本発明は、バーナ、伝熱筒、触媒層を充填した触媒筒及び蒸発器容器がバーナを中心として、該バーナの中心軸に対し同心状に配置され、前記蒸発器容器から蒸気を取り出す蒸気排出管が前記蒸発器容器の外側に配置され、伝熱筒は前記触媒筒及び前記蒸発器を加熱し、前記蒸気排出管の出口に炭化水素を混合して、混合ガスを前記触媒層に導いて改質反応を行わせるものであって、前記蒸発器容器は前記バーナを取り囲む縦長部分と、前記バーナの周囲に横方向に広がる傾斜した横長部分とを有することを特徴とする燃料電池の改質器を提供するものである。   In the present invention, a burner, a heat transfer cylinder, a catalyst cylinder filled with a catalyst layer, and an evaporator container are arranged concentrically with respect to the central axis of the burner with the burner as a center, and steam discharge for extracting steam from the evaporator container A tube is disposed outside the evaporator vessel, the heat transfer cylinder heats the catalyst cylinder and the evaporator, mixes hydrocarbons at the outlet of the vapor discharge pipe, and guides the mixed gas to the catalyst layer. A reforming reaction for a fuel cell, characterized in that the evaporator vessel has a vertically long portion surrounding the burner and a slanted horizontally long portion extending laterally around the burner. A container is provided.

本発明によれば、改質器の蒸発器容器を、バーナの中心軸に沿った縦長の円筒部分と、傾斜した横長部分とで構成することにより、伝熱面積及び蒸発面積を大幅に増加し、効率よく蒸気の製造量を確保することができる。   According to the present invention, the heat transfer area and the evaporation area are greatly increased by configuring the evaporator vessel of the reformer with a vertically long cylindrical portion along the central axis of the burner and an inclined horizontally long portion. The amount of steam production can be secured efficiently.

本発明の好ましい実施形態を例示すれば、以下のとおりである。   Examples of preferred embodiments of the present invention are as follows.

前記蒸発器の横長部分の底面が、前記バーナの中心軸から遠ざかるほど前記中心軸に直交する平面に対し低下していることを特徴とする燃料電池の改質器である。この形態によれば、蒸発器容器の水平部分内の水位が変動しても、蒸発面積が維持されて効率よく蒸気が製造される。蒸発器の底面を傾斜させることにより、傾斜の角度および方向を調節し、必要な伝熱面積を確保しながら、改質器の構造や形状の変化に対応できる。これにより、小型で熱効率の良い改質器が得られる。   In the fuel cell reformer, the bottom surface of the horizontally long portion of the evaporator is lowered with respect to a plane perpendicular to the central axis as the distance from the central axis of the burner increases. According to this aspect, even if the water level in the horizontal portion of the evaporator container fluctuates, the evaporation area is maintained and steam is efficiently produced. By inclining the bottom surface of the evaporator, the angle and direction of the inclination can be adjusted, and a change in the structure and shape of the reformer can be accommodated while ensuring the necessary heat transfer area. Thereby, a small and highly efficient reformer can be obtained.

蒸発器の底面を改質器の中心から外周方向に向けて低下するように傾斜させたことにより、蒸発器への給水時に外周から水が充填されていくため、傾斜方向が逆の場合に比べて伝熱面積が広くなり効率の良い伝熱が可能となる。また、燃焼ガスの温度もやや低くなっているため、水の局所的な過熱が抑えられ、安定した蒸気発生が可能となる。   Since the bottom surface of the evaporator is inclined so as to decrease from the center of the reformer toward the outer peripheral direction, water is filled from the outer periphery when water is supplied to the evaporator. This increases the heat transfer area and enables efficient heat transfer. In addition, since the temperature of the combustion gas is somewhat low, local overheating of water is suppressed and stable steam generation is possible.

蒸発器底面の傾斜角度を5°〜60°の範囲とすれば、運転状況により水位が変動した場合にも、伝熱面積は傾斜によって緩やかに変化するため、安定した蒸気の発生が可能となる。また、傾斜角度を小さくした場合には、蒸発器を軸方向に短くでき、傾斜角度を大きくした場合には、径方向を小さくできる。これにより、伝熱効率の向上と改質器の小型化を図ることができる。   If the inclination angle of the bottom surface of the evaporator is in the range of 5 ° to 60 °, even when the water level fluctuates depending on the operating conditions, the heat transfer area changes gradually according to the inclination, so that stable steam can be generated. . Further, when the inclination angle is reduced, the evaporator can be shortened in the axial direction, and when the inclination angle is increased, the radial direction can be reduced. Thereby, improvement in heat transfer efficiency and downsizing of the reformer can be achieved.

前記蒸発器底面の傾斜角度が5°〜60°の範囲が好ましいがこれに限定されない。なお、傾斜面は平滑である必要は無く、また一様に傾斜していなくともよい。更に、蒸発器容器の水平部分の半径方向に傾斜がついていれば、周方向における傾斜は連続していなくとも良い。例えば、傾斜のついた複数の溝を上記底面に放射状に形成しても良い。   The inclination angle of the evaporator bottom surface is preferably in the range of 5 ° to 60 °, but is not limited thereto. The inclined surface does not have to be smooth and does not have to be uniformly inclined. Furthermore, as long as the horizontal portion of the evaporator container is inclined in the radial direction, the inclination in the circumferential direction may not be continuous. For example, a plurality of inclined grooves may be formed radially on the bottom surface.

前記蒸発器底面の内側に溶射層例えば高熱伝導性の溶射層を形成する。上記底面の内側に溶射層を形成して、微細な突起を形成することにより、突沸を防止し、かつ伝熱面積を増やして、熱伝導を高めることができる。前記高熱伝導性材料として、Al、Cu、Fe、Ni及びCrのいずれかを含む金属材料を用いることができる。   A sprayed layer, for example, a high thermal conductivity sprayed layer is formed inside the bottom surface of the evaporator. By forming a sprayed layer on the inner side of the bottom surface and forming fine protrusions, bumping can be prevented, and the heat transfer area can be increased to increase heat conduction. As the high thermal conductivity material, a metal material containing any of Al, Cu, Fe, Ni, and Cr can be used.

さらに、前記蒸発器底面の内側を粗面化処理することにより、突沸を防止し、かつ伝熱面積を増やして、熱伝導を高めることができる。前記粗面化処理として、サンドブラスト処理を用いることができる。   Furthermore, by roughening the inside of the bottom surface of the evaporator, bumping can be prevented, and the heat transfer area can be increased to enhance heat conduction. Sandblasting can be used as the surface roughening treatment.

蒸発器容器における水平部分の底面の内側に溶射層を形成することにより、表面に小さな凸凹が形成される。これにより、蒸発器内の水が加熱され気泡ができる際に、大きな気泡の形成が抑えられる。この結果、蒸気にミストが含まれることがなくなり、所定条件での改質反応が可能となる。   By forming the sprayed layer inside the bottom surface of the horizontal portion of the evaporator container, small irregularities are formed on the surface. Thereby, when the water in an evaporator is heated and a bubble is made, formation of a big bubble is suppressed. As a result, the steam does not contain mist, and a reforming reaction under a predetermined condition becomes possible.

溶射する材料に高伝熱材料を用いたことにより、伝熱性能を低下させることなく、所定条件での改質反応が可能となる。高伝熱性材料として、Al、Cu、Fe、Ni及びCrのいずれかを含む金属を用いることが好ましい。蒸発器底面の内側に溶射する高伝熱性材料として、Al、Cu、Fe、Ni及びCrのいずれかを含む金属を用いることで、所定条件での改質反応に有効な伝熱性能の良い溶射膜を容易に形成することができる。   By using a high heat transfer material as the material to be sprayed, it is possible to perform a reforming reaction under predetermined conditions without deteriorating the heat transfer performance. It is preferable to use a metal containing any of Al, Cu, Fe, Ni, and Cr as the high heat transfer material. Thermal spray with good heat transfer performance effective for reforming reaction under a predetermined condition by using a metal containing any of Al, Cu, Fe, Ni and Cr as a high heat transfer material sprayed inside the bottom of the evaporator A film can be easily formed.

蒸発器底面の内側と外側のいずれか片方あるいは両方の表面をフィン状とすることができる。蒸発器底面の内側と外側のいずれか片方あるいは両方の表面をフィン状とすることにより、燃焼排ガスと蒸発器底面および蒸発器底面と蒸発器内の水との伝熱面積が大きくなり、燃焼排ガスから蒸発器内の水へ、短時間で熱を効率良く伝えることができる。これにより熱効率の良い改質反応が可能となる。   One or both of the inside and outside of the bottom surface of the evaporator can be formed into a fin shape. By making the surface of either or both of the inside and outside of the evaporator into fins, the heat transfer area between the combustion exhaust gas, the evaporator bottom surface, the evaporator bottom surface, and the water in the evaporator is increased. Heat can be efficiently transferred to the water in the evaporator in a short time. Thereby, a reforming reaction with good thermal efficiency is possible.

以下、本発明を実施例により説明する。本発明の実施例を図1、図2、図3を用いて説明する。図1は加熱用バーナの燃焼排ガス流路に傾斜した底面が直に接し、内側に溶射を施した蒸発器を上部に設置した多重円筒型改質器を示している。蒸発器底面を改質器の中心から外周方向に5°傾斜させ、内側にアルミニウム粒子を溶射した蒸発器を上部に設置した多重円筒型改質器の断面図である。多重円筒型改質器は蒸発器2、加熱用バーナ1、加熱用バーナの燃焼排ガス流路、改質用ガス8の流路、改質触媒7から構成される。   Hereinafter, the present invention will be described with reference to examples. An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a multi-cylindrical reformer in which an inclined bottom surface is in direct contact with a combustion exhaust gas flow path of a heating burner and an evaporator is sprayed on the inside. It is sectional drawing of the multi-cylinder type reformer which installed the evaporator which inclined the bottom face of the evaporator 5 degree | times to the outer peripheral direction from the center of the reformer, and sprayed aluminum particle | grains inside. The multi-cylinder reformer includes an evaporator 2, a heating burner 1, a combustion exhaust gas passage for the heating burner, a passage for the reforming gas 8, and a reforming catalyst 7.

図1は蒸発器底面を改質器の中心から外周方向に5°傾斜させ、内側にアルミニウム粒子を溶射した蒸発器を上部に設置した多重円筒型改質器の断面図である。   FIG. 1 is a cross-sectional view of a multi-cylindrical reformer in which the evaporator bottom surface is inclined at an angle of 5 ° from the center of the reformer toward the outer periphery and aluminum particles are sprayed on the inside.

図2は蒸発器底面を改質器の中心から外周方向に傾斜させ、両側をフィン状にした蒸発器を上部に設置した多重円筒型改質器の断面図である。図2において、蒸発器底面を改質器の中心から外周方向に傾斜させ、かつ両側をフィン状にした蒸発器を上部に設置した。   FIG. 2 is a cross-sectional view of a multi-cylindrical reformer in which the evaporator bottom surface is inclined from the center of the reformer toward the outer periphery and finned on both sides is installed at the top. In FIG. 2, the evaporator bottom face was inclined in the outer peripheral direction from the center of the reformer, and both sides of the evaporator were finned.

図3は、蒸発器底面を改質器の中心から外周方向に傾斜させ、内側をブラスト処理した蒸発器を上部に設置した多重円筒型改質器の断面図である。   FIG. 3 is a cross-sectional view of a multi-cylindrical reformer in which the evaporator bottom surface is inclined from the center of the reformer toward the outer periphery and the inside is blasted on the top.

多重円筒型改質器の中心軸上に加熱用バーナ1を設置し、同心円状に内側に加熱用バーナの燃焼排ガス流路、その外側に改質用ガス8の流路を設けた。また、改質器の上部には中空円筒状の蒸発器2を設けた。蒸発器2はステンレス製で外周底部には溝を同心円状に設けた。蒸発器2の底面は中心から外周方向へ向けて5°傾斜させた。また、加熱用バーナ1の燃焼排ガス流路に接する蒸発器2の底面の内側には、アルミニウム粒子を溶射材とした溶射膜3を形成した。蒸発器2の溝底部には給水管4、天板には蒸気排出管5を設けた。バーナの燃焼ガス6は、矢印に沿って流れ、流路13を通過する際に触媒層7を加熱する。更に蒸発器の円筒部及び水平部の伝熱面に沿って流れ、蒸発器を加熱して蒸気を製造する。燃焼ガスは最後に該ガスとして排出される。   The heating burner 1 was installed on the central axis of the multi-cylindrical reformer, and the combustion exhaust gas flow path of the heating burner was provided concentrically inside, and the reforming gas 8 flow path was provided outside thereof. A hollow cylindrical evaporator 2 was provided above the reformer. The evaporator 2 was made of stainless steel, and a groove was provided concentrically on the outer peripheral bottom. The bottom surface of the evaporator 2 was inclined 5 ° from the center toward the outer periphery. Further, a sprayed film 3 using aluminum particles as a spraying material was formed inside the bottom surface of the evaporator 2 in contact with the combustion exhaust gas flow path of the heating burner 1. A water supply pipe 4 is provided at the groove bottom of the evaporator 2, and a steam discharge pipe 5 is provided at the top plate. The burner combustion gas 6 flows along the arrow and heats the catalyst layer 7 as it passes through the flow path 13. Furthermore, it flows along the heat transfer surfaces of the cylindrical part and the horizontal part of the evaporator, and the evaporator is heated to produce steam. The combustion gas is finally discharged as the gas.

蒸発器で製造された蒸気は、蒸気排出管5により蒸発器から引き出され、炭化水素供給口8からの炭化水素と混合され、改質触媒層7を通過して改質される。改質ガスは、改質ガス出口17から取り出され、燃料電池の燃料マニホールド(図示せず)から燃料電池に供給される。なお、燃焼ガス、蒸気及び改質ガスの塔内の流れは他の実施例でも実質的に同じであるので、他の実施例においては説明を省略する。   The steam produced by the evaporator is drawn out from the evaporator through the steam discharge pipe 5, mixed with hydrocarbons from the hydrocarbon feed port 8, and reformed through the reforming catalyst layer 7. The reformed gas is taken out from the reformed gas outlet 17 and supplied to the fuel cell from a fuel manifold (not shown) of the fuel cell. Note that the flow of the combustion gas, steam, and reformed gas in the tower is substantially the same in the other embodiments, and thus the description thereof is omitted in the other embodiments.

加熱用バーナ1の燃焼排ガス流路は、改質器の底部で折り返した燃焼排ガス6が上部まで戻った後、上部に設置された蒸発器の底面に沿って、改質器の外周方向に流れ外に排気されるようにした。   The flue gas flow path of the heating burner 1 flows in the outer peripheral direction of the reformer along the bottom surface of the evaporator installed at the top after the flue gas 6 turned back at the bottom of the reformer returns to the top. It was made to exhaust outside.

一方、改質用ガス8の流路は、加熱用バーナ1の燃焼排ガス6の排気口付近から流入した改質用ガス8が、バーナの燃焼排ガス流路の外側を、燃焼排ガス6と対向する方向に流れた後、流路内に設置した改質触媒7に到達するようにした。また、改質用ガス8には蒸発器2で発生した蒸気を混合できるようにした。   On the other hand, in the reforming gas 8 flow path, the reforming gas 8 that has flowed in from the vicinity of the exhaust port of the combustion exhaust gas 6 of the heating burner 1 faces the combustion exhaust gas 6 outside the combustion exhaust gas flow path of the burner. After flowing in the direction, it reached the reforming catalyst 7 installed in the flow path. The reforming gas 8 can be mixed with steam generated in the evaporator 2.

改質器表面からの放熱を低減し、熱損失を抑制するために改質器全体を保温材9で保温した。上記のように構成した多重円筒型改質器を、加熱用バーナ1に都市ガスと空気を一定割合で流し均一に混合させた後、着火させて起動した。バーナの燃焼によって生じた高温の燃焼ガス6は、蒸発器2の底面に沿って燃焼ガス流路を通り外周方向に排気された。   In order to reduce heat dissipation from the surface of the reformer and suppress heat loss, the entire reformer was kept warm by the heat insulating material 9. The multi-cylindrical reformer configured as described above was started by igniting after heating the burner 1 with city gas and air flowing at a constant ratio and mixing them uniformly. The high-temperature combustion gas 6 generated by the combustion of the burner was exhausted in the outer circumferential direction through the combustion gas flow path along the bottom surface of the evaporator 2.

改質器を起動後、一定時間経過した後給水管4から蒸発器2に所定量の給水を開始した。蒸発器2に供給された水は、伝熱面を通して加熱用バーナ1の燃焼排ガス6により連続的に加熱された。蒸発器2の底面を全周伝熱面とすることで伝熱面積が広くなり、蒸発器内の水を短時間で効率良く蒸気にすることができた。発生した蒸気は蒸発器2の天板に設けた蒸気排出管5から排出され、改質用ガス8と混合されて改質触媒層7に送られた。   A predetermined amount of water was supplied from the water supply pipe 4 to the evaporator 2 after a lapse of a certain time after starting the reformer. The water supplied to the evaporator 2 was continuously heated by the combustion exhaust gas 6 of the heating burner 1 through the heat transfer surface. By making the bottom surface of the evaporator 2 a heat transfer surface on the entire circumference, the heat transfer area was widened, and the water in the evaporator could be efficiently converted into steam in a short time. The generated steam was discharged from a steam discharge pipe 5 provided on the top plate of the evaporator 2, mixed with the reforming gas 8, and sent to the reforming catalyst layer 7.

蒸発器2の底面を水平面に対し5°以上傾斜させたことにより、蒸発器2内の水位が低下した際、加熱用バーナ1の燃焼排ガス6と蒸発器2内の水との伝熱面積が急激に減少するのが抑えられ、水位の変化による蒸気発生量の変動を抑制することができた。蒸発器2内の水位は必要な伝熱面積と蒸気発生量が確保できるように調整した。蒸発器底面の内側にアルミニウム粒子を溶射したことにより、伝熱面が小さな凸凹状態となり、大きな気泡が生成されることが無く水の突沸が抑えられた。これにより、蒸気中にミストが混在することがなくなり、所定条件で定常的な蒸気発生が可能となった。また、蒸発器底面の内側へ溶射する材料をアルミニウム粒子とすることで、伝熱効率の良い溶射膜を形成することができた。   By inclining the bottom surface of the evaporator 2 by 5 ° or more with respect to the horizontal plane, when the water level in the evaporator 2 decreases, the heat transfer area between the combustion exhaust gas 6 of the heating burner 1 and the water in the evaporator 2 is reduced. The rapid decrease was suppressed, and fluctuations in the amount of steam generated due to changes in the water level could be suppressed. The water level in the evaporator 2 was adjusted so as to ensure the necessary heat transfer area and the amount of steam generated. By spraying aluminum particles on the inside of the bottom of the evaporator, the heat transfer surface became small and uneven, large bubbles were not generated, and bumping of water was suppressed. As a result, mist is not mixed in the steam, and steady steam generation is possible under predetermined conditions. In addition, by using aluminum particles as the material sprayed to the inside of the bottom surface of the evaporator, it was possible to form a sprayed film with good heat transfer efficiency.

図1の多重円筒型改質器用蒸発器の実施例によれば、蒸発器2の底面を改質器の中心から外周方向に向けて5°以上傾斜させることにより、運転状況により水位が変化しても、安定的、かつ加熱用バーナの燃焼排ガス6の熱を効率良く利用した蒸気発生が可能である。また、蒸気中にミストや液滴等の過剰な水分が含まれることがなくなり、所定条件で定常的に改質反応ができた。13は燃焼ガス流路で、15は蒸発器の縦長円筒部の伝熱面、16は改質ガス流路、17は改質ガス出口、18は燃焼ガス排出流路、19は蒸発器の水平部分の伝熱面、20は蒸発器の水平部分の底面、21は蒸発器の縦長円筒部である。   According to the embodiment of the evaporator for the multi-cylindrical reformer in FIG. 1, the water level changes depending on the operating condition by inclining the bottom surface of the evaporator 2 by 5 ° or more from the center of the reformer toward the outer peripheral direction. However, it is possible to generate steam which is stable and efficiently utilizes the heat of the combustion exhaust gas 6 of the heating burner. In addition, excessive moisture such as mist and droplets was not included in the steam, and the reforming reaction was steadily performed under predetermined conditions. 13 is a combustion gas flow path, 15 is a heat transfer surface of the vertically long cylindrical portion of the evaporator, 16 is a reformed gas flow path, 17 is a reformed gas outlet, 18 is a combustion gas discharge flow path, and 19 is a horizontal plane of the evaporator. The heat transfer surface of the part, 20 is the bottom surface of the horizontal part of the evaporator, and 21 is the vertically long cylindrical part of the evaporator.

別の実施例を図2に示す。図2は蒸発器2の底面を中心から外周方向に5°傾斜させ、蒸発器底面の両側をフィン10にした蒸発器2を上部に設置した多重円筒型改質器を示している。改質器の構成は図1と同様で、蒸発器底面の内側と外側には、加熱用バーナ1を中心として放射状にフィン10が設けられている。改質器を起動すると、加熱用バーナ1からの燃焼排ガス6は図1の実施例と同様に、燃焼排ガス流路を通り外周方向に放出される。高温の燃焼排ガス6の熱は、蒸発器2の底面付近を通過する際、表面に設けられたフィン10により伝熱面積が広くなり、効率良く蒸発器側に伝えられた。   Another embodiment is shown in FIG. FIG. 2 shows a multi-cylindrical reformer in which the evaporator 2 having the bottom surface of the evaporator 2 inclined at 5 ° from the center toward the outer periphery and fins 10 on both sides of the evaporator bottom surface is installed at the top. The configuration of the reformer is the same as in FIG. 1, and fins 10 are provided radially on the inside and outside of the bottom surface of the evaporator, with the heating burner 1 as the center. When the reformer is started, the flue gas 6 from the heating burner 1 is discharged in the outer peripheral direction through the flue gas passage, as in the embodiment of FIG. When the heat of the high-temperature combustion exhaust gas 6 passes near the bottom surface of the evaporator 2, the heat transfer area is widened by the fins 10 provided on the surface, and is efficiently transmitted to the evaporator side.

同様に蒸発器2に伝わった熱は、蒸発器内側に設けたフィン10から蒸発器内の水に効率良く伝えられた。これにより、加熱用バーナ1の燃焼排ガス6の熱が効率よく蒸発器内の水に伝えられ、熱効率の高い蒸気発生が可能となった。発生した蒸気は図1の場合と同様に、蒸発器2の蒸気排出管5から排出され、改質用ガス8と混合された後、改質触媒層7に送られた。   Similarly, the heat transferred to the evaporator 2 was efficiently transferred from the fins 10 provided inside the evaporator to the water in the evaporator. Thereby, the heat of the combustion exhaust gas 6 of the heating burner 1 is efficiently transmitted to the water in the evaporator, and steam with high thermal efficiency can be generated. The generated steam was discharged from the steam discharge pipe 5 of the evaporator 2, mixed with the reforming gas 8, and sent to the reforming catalyst layer 7 as in the case of FIG.

図2の多重円筒型改質器用蒸発器の実施例から、蒸発器2の底面を中心から外周方向に5°傾斜させ、蒸発器底面の両側をフィン10にすることにより、熱効率の良い蒸気発生が可能であることを確認した。   From the embodiment of the evaporator for the multi-cylindrical reformer shown in FIG. 2, the bottom surface of the evaporator 2 is inclined from the center by 5 ° toward the outer periphery, and the both sides of the bottom surface of the evaporator are made fins 10 to generate steam with high thermal efficiency. Confirmed that it was possible.

次の実施例を図3に示す。図3は蒸発器2の底面を中心から外周方向に5°傾斜させ、蒸発器底面の内側をブラスト面11とした蒸発器2を上部に設置した多重円筒型改質器を示している。改質器の構成は図1、図2と同じで、蒸発器底面の内側はブラスト面11であり、表面が小さな凸凹状態となっている。加熱用バーナ1の燃焼排ガス6の流れは図1、図2と同様である。燃焼排ガス6の熱は、蒸発器底面から蒸発器内の水に伝えられる。蒸発器内の水が加熱される際に気泡が形成されるが、表面が小さな凸凹状になっているため、大きな気泡ができず蒸気発生時に、蒸気にミストや液滴が混入することがなかった。これにより、蒸気に過剰な水分が含まれることがなくなり、所定条件で安定した改質反応が可能となった。   The following example is shown in FIG. FIG. 3 shows a multi-cylinder reformer in which the evaporator 2 with the bottom surface of the evaporator 2 inclined at an angle of 5 ° from the center toward the outer periphery and the inside of the evaporator bottom surface as the blast surface 11 is installed at the top. The configuration of the reformer is the same as in FIGS. 1 and 2, and the inside of the bottom surface of the evaporator is a blast surface 11, and the surface is in a small uneven state. The flow of the combustion exhaust gas 6 of the heating burner 1 is the same as in FIGS. The heat of the combustion exhaust gas 6 is transmitted from the bottom surface of the evaporator to the water in the evaporator. Bubbles are formed when the water in the evaporator is heated, but since the surface is small and uneven, large bubbles cannot be formed and no mist or droplets are mixed into the vapor when it is generated. It was. As a result, excessive moisture is not contained in the steam, and a stable reforming reaction is possible under predetermined conditions.

図3の多重円筒型改質器用蒸発器の実施例から、蒸発器2の底面を中心から外周方向に傾斜させ、蒸発器底面の内側をブラストで粗く表面処理することにより、蒸気発生時にミストや液滴が発生しなくなり、所定条件で安定した改質反応が可能となった。   From the embodiment of the evaporator for the multi-cylindrical reformer in FIG. 3, the bottom surface of the evaporator 2 is inclined from the center to the outer peripheral direction, and the inner surface of the bottom surface of the evaporator is roughened by blasting, so that mist or Liquid droplets were not generated, and stable reforming reaction was possible under predetermined conditions.

多重円筒型改質器の蒸発器において、蒸発器の底面を傾斜させたことにより、傾斜の角度および方向を調節することで、必要な伝熱面積を確保しながら、改質器の構造や形状の変化に対応でき、小型で熱効率の良い改質器が得られる。   In the evaporator of a multi-cylindrical reformer, the structure and shape of the reformer are ensured while ensuring the necessary heat transfer area by adjusting the angle and direction of the tilt by tilting the bottom of the evaporator. Therefore, a reformer that is small and has high thermal efficiency can be obtained.

多重円筒型改質器の蒸発器において、蒸発器底面を改質器の中心から外周方向に向けて傾斜させたことにより、伝熱面積が広くなり効率の良い伝熱が可能で、かつ安定した蒸気発生が可能となる。多重円筒型改質器の蒸発器において、蒸発器底面の傾斜角度を5°〜60°の範囲としたことにより、運転状況によって蒸発器内の水位が変動した場合も伝熱面積が傾斜によって緩やかに変化するため、安定した蒸気の発生が可能となる。また、傾斜角度を調整することにより、蒸発器の軸方向または径方向を小さくでき、改質器の小型化を図ることができる。   In the evaporator of a multi-cylindrical reformer, the bottom surface of the evaporator is inclined from the center of the reformer toward the outer periphery, so that the heat transfer area is widened and efficient heat transfer is possible and stable. Steam generation is possible. In the evaporator of the multi-cylindrical reformer, the inclination angle of the bottom surface of the evaporator is in the range of 5 ° to 60 °, so that the heat transfer area becomes gentle due to the inclination even when the water level in the evaporator fluctuates depending on the operating conditions. Therefore, stable steam generation is possible. Further, by adjusting the inclination angle, the axial direction or radial direction of the evaporator can be reduced, and the reformer can be miniaturized.

多重円筒型改質器の蒸発器において、蒸発器底面の内側に溶射したことにより、蒸発器内の水が加熱された際、大きな気泡が形成されなくなり、ミストや液滴の発生が抑えられ、所定条件での改質反応が可能となる。多重円筒型改質器の蒸発器において、蒸発器底面の内側に溶射する材料に高伝熱性材料を用いたことにより、伝熱性能を低下させることなく、所定条件での改質反応が可能となる。   In the evaporator of the multi-cylindrical reformer, by spraying inside the bottom of the evaporator, when the water in the evaporator is heated, large bubbles are not formed, and generation of mist and droplets is suppressed, The reforming reaction can be performed under predetermined conditions. In a multi-cylinder reformer evaporator, the use of a highly heat-conductive material as the material sprayed inside the bottom of the evaporator enables a reforming reaction under specified conditions without reducing heat transfer performance. Become.

多重円筒型改質器の蒸発器において、蒸発器底面の内側に溶射する高伝熱性材料として、アルミナあるいはCu、Fe、Ni、Crのいずれかを含む金属を用いたことにより、所定条件での改質反応に有効な伝熱性能の良い溶射膜を容易に形成することができる。   In the evaporator of the multi-cylindrical reformer, by using a metal containing either alumina or Cu, Fe, Ni, Cr as a high heat transfer material sprayed on the inside of the bottom surface of the evaporator, It is possible to easily form a sprayed film having good heat transfer performance that is effective for the reforming reaction.

多重円筒型改質器の蒸発器において、蒸発器底面の内側と外側のいずれか片方あるいは両方の表面をフィン状としたことにより燃焼排ガスと蒸発器底面および蒸発器底面と蒸発器内の水との伝熱面積が大きくなる。その結果、燃焼排ガスから蒸発器内の水へ、短時間で熱を効率良く伝えることができる。これにより熱効率の良い改質反応が可能となる。   In the evaporator of the multi-cylindrical reformer, the flue gas, the bottom of the evaporator, the bottom of the evaporator, the water in the evaporator, The heat transfer area increases. As a result, heat can be efficiently transferred from the combustion exhaust gas to the water in the evaporator in a short time. Thereby, a reforming reaction with good thermal efficiency is possible.

多重円筒型改質器の蒸発器において、蒸発器底面の内側を粗く表面処理したことにより、蒸発器内の水が加熱され気泡ができる際に、大きな気泡の形成が抑えられ、ミストや液滴が発生しなくなり、所定条件での改質反応が可能となる。   In the evaporator of the multi-cylindrical reformer, the rough inner surface of the bottom of the evaporator is used to suppress the formation of large bubbles when the water in the evaporator is heated and bubbles are formed. No longer occurs, and a reforming reaction under a predetermined condition becomes possible.

多重円筒型改質器の蒸発器において、蒸発器底面の内側を粗く表面処理する方法として、サンドブラストを用いたことにより、低コストで簡便に必要な表面処理を行うことが可能となる。蒸発器底面を傾斜させ、内側を溶射またはサンドブラストで表面を粗くし、あるいは蒸発器底面の表側をフィン状にすることにより、改質器の熱効率の向上および小型化が可能となる。   In the evaporator of the multi-cylindrical reformer, the necessary surface treatment can be easily performed at low cost by using sandblasting as a method of roughing the inner surface of the bottom surface of the evaporator. By inclining the bottom surface of the evaporator and making the inside rough by spraying or sandblasting, or by making the front side of the bottom surface of the evaporator into a fin shape, the thermal efficiency of the reformer can be improved and the size can be reduced.

本発明は固体高分子型燃料電池用改質器の蒸発器に特に適している。   The present invention is particularly suitable for an evaporator of a solid polymer fuel cell reformer.

本発明の第1実施例による改質器の断面図。1 is a cross-sectional view of a reformer according to a first embodiment of the present invention. 第2実施例における開始つきの断面図。Sectional drawing with the start in 2nd Example. 他の実施例による開始つきの断面図。Sectional view with start according to another embodiment.

符号の説明Explanation of symbols

1…加熱用バーナ、2…蒸発器、3…溶射膜、4…給水管、5…蒸気排出管、6…燃焼排ガス、7…改質触媒層、8…改質用ガス、9…保温材、10…フィン、11…ブラスト面、13…燃焼ガス流路、15…伝熱面、16…改質ガス流路、17…改質ガス出口、18…燃焼ガス排出流路、19…蒸発器の水平部分の伝熱面、20…蒸発器の水平部分の底面、21…蒸発器の縦長円筒部。   DESCRIPTION OF SYMBOLS 1 ... Heating burner, 2 ... Evaporator, 3 ... Sprayed film, 4 ... Water supply pipe, 5 ... Steam exhaust pipe, 6 ... Combustion exhaust gas, 7 ... Reforming catalyst layer, 8 ... Reforming gas, 9 ... Insulating material DESCRIPTION OF SYMBOLS 10 ... Fin, 11 ... Blast surface, 13 ... Combustion gas flow path, 15 ... Heat-transfer surface, 16 ... Reformed gas flow path, 17 ... Reformed gas outlet, 18 ... Combustion gas discharge flow path, 19 ... Evaporator Heat transfer surface of horizontal part of 20, 20 ... bottom face of horizontal part of evaporator, 21 ... vertically long cylindrical part of evaporator.

Claims (9)

バーナ、伝熱筒、触媒層を充填した触媒筒及び蒸発器容器がバーナを中心として、該バーナの中心軸に対し同心状に配置され、前記蒸発器容器から蒸気を取り出す蒸気排出管が前記蒸発器容器の外側に配置され、伝熱筒の燃焼ガスは前記触媒筒及び前記蒸発器を加熱し、前記蒸気排出管の出口に炭化水素を混合して、混合ガスを前記触媒層に導いて改質反応を行わせるものであって、前記蒸発器容器は前記バーナを取り囲む縦長部分と、前記バーナの周囲に横方向に広がる傾斜した横長部分とを有することを特徴とする燃料電池の改質器。   A burner, a heat transfer cylinder, a catalyst cylinder filled with a catalyst layer, and an evaporator container are arranged concentrically with respect to the center axis of the burner, and a steam discharge pipe for taking out steam from the evaporator container has the evaporation The combustion gas in the heat transfer cylinder is disposed outside the vessel, heats the catalyst cylinder and the evaporator, mixes hydrocarbons at the outlet of the steam discharge pipe, and introduces the mixed gas to the catalyst layer. A reformer for a fuel cell, characterized in that the evaporator vessel has a vertically long portion surrounding the burner and a slanted horizontally long portion extending laterally around the burner. . 上記蒸発器の横長部分の底面が、前記バーナの中心軸から遠ざかるほど前記中心軸に直交する平面に対し低下していることを特徴とする請求項1記載の燃料電池の改質器。   2. The reformer for a fuel cell according to claim 1, wherein a bottom surface of the horizontally long portion of the evaporator is lowered with respect to a plane orthogonal to the central axis as the distance from the central axis of the burner increases. 前記蒸発器の水平部分の底面の傾斜角度が5°〜60°の範囲であることを特徴とする請求項1の燃料電池の改質器。   The reformer of a fuel cell according to claim 1, wherein the inclination angle of the bottom surface of the horizontal portion of the evaporator is in the range of 5 ° to 60 °. 前記蒸発器の水平部分の底面の内側に溶射層を形成したことを特徴とする請求項1記載の燃料電池の改質器。   2. The reformer for a fuel cell according to claim 1, wherein a sprayed layer is formed inside the bottom surface of the horizontal portion of the evaporator. 前記溶射層の材料が、高伝熱性材料であることを特徴とする請求項4の燃料電池の改質器。   5. The reformer for a fuel cell according to claim 4, wherein the material of the thermal spray layer is a highly heat conductive material. 前記高伝熱性材料として、Al、Cu、Fe、Ni及びCrのいずれかを含む金属材料を用いることを特徴とする請求項5の燃料電池の改質器。   6. The reformer for a fuel cell according to claim 5, wherein a metal material containing any one of Al, Cu, Fe, Ni and Cr is used as the high heat transfer material. 前記蒸発器の水平部分の底面の内側と外側の少なくとも一方の表面にフィンを形成したことを特徴とする請求項1記載の燃料電池の改質器。   2. The fuel cell reformer according to claim 1, wherein fins are formed on at least one of an inner surface and an outer surface of a bottom surface of the horizontal portion of the evaporator. 前記蒸発器の水平部分の底面の内側が粗面化処理されていることを特徴とする請求項1記載の燃料電池の改質器。   The reformer for a fuel cell according to claim 1, wherein the inner surface of the bottom surface of the horizontal portion of the evaporator is roughened. 前記粗面化処理が、サンドブラスト処理であることを特徴とする請求項8の燃料電池の改質器。   9. The reformer for a fuel cell according to claim 8, wherein the roughening treatment is sandblast treatment.
JP2005312543A 2005-10-27 2005-10-27 Reformer of fuel cell Pending JP2007123002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312543A JP2007123002A (en) 2005-10-27 2005-10-27 Reformer of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312543A JP2007123002A (en) 2005-10-27 2005-10-27 Reformer of fuel cell

Publications (1)

Publication Number Publication Date
JP2007123002A true JP2007123002A (en) 2007-05-17

Family

ID=38146628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312543A Pending JP2007123002A (en) 2005-10-27 2005-10-27 Reformer of fuel cell

Country Status (1)

Country Link
JP (1) JP2007123002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157498A (en) * 2008-12-03 2010-07-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer for fuel cell
KR101400719B1 (en) * 2012-02-02 2014-05-29 세종공업 주식회사 Evaporator Unification Reformer and Fuel Cell System
JP2015018751A (en) * 2013-07-12 2015-01-29 Toto株式会社 Solid oxide fuel cell device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157498A (en) * 2008-12-03 2010-07-15 Tokyo Gas Co Ltd Multiple cylindrical steam reformer for fuel cell
KR101400719B1 (en) * 2012-02-02 2014-05-29 세종공업 주식회사 Evaporator Unification Reformer and Fuel Cell System
JP2015018751A (en) * 2013-07-12 2015-01-29 Toto株式会社 Solid oxide fuel cell device

Similar Documents

Publication Publication Date Title
JPWO2005073126A1 (en) Reformer
JP2004149402A (en) Hydrogen generator and fuel cell system having the same
JP5020002B2 (en) Hydrogen generator and fuel cell system
JP2008007349A (en) Reforming apparatus and fuel cell equipped with it
US11121387B2 (en) Burner evaporator for a fuel cell system
JP2007123002A (en) Reformer of fuel cell
JP2012520234A (en) Fuel injection apparatus and method for fuel reformer
JP4870499B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
JP5461756B2 (en) Evaporator
JP6387521B2 (en) Hydrogen generator and fuel cell system using the same
JP6596856B2 (en) Reformed water evaporator and power generator
WO2016027430A1 (en) Fuel cell device
KR101421355B1 (en) Fuel humidifier
JP2004292183A (en) Steam generation apparatus for reforming original fuel
JP6402049B2 (en) Fuel cell system
JP4069621B2 (en) Reformer
JP2008001581A (en) Reformer
JP5677513B2 (en) Kerosene reformer
JP6809012B2 (en) Modified water evaporator and power generator
JP2007031249A (en) Reformer
JP2012186048A (en) Fuel evaporating apparatus
JP6757664B2 (en) Fuel cell system
JP3806362B2 (en) Fuel vaporizer for fuel cell power generator
JP2010189217A (en) Reformer and reforming method
JP2006036634A (en) Single-pipe cylinder type reformer