JP2007120547A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2007120547A
JP2007120547A JP2005310314A JP2005310314A JP2007120547A JP 2007120547 A JP2007120547 A JP 2007120547A JP 2005310314 A JP2005310314 A JP 2005310314A JP 2005310314 A JP2005310314 A JP 2005310314A JP 2007120547 A JP2007120547 A JP 2007120547A
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
cage
pocket
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005310314A
Other languages
Japanese (ja)
Other versions
JP4987280B2 (en
Inventor
Takashi Tsujimoto
崇 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005310314A priority Critical patent/JP4987280B2/en
Priority to PCT/JP2006/318353 priority patent/WO2007032470A1/en
Publication of JP2007120547A publication Critical patent/JP2007120547A/en
Application granted granted Critical
Publication of JP4987280B2 publication Critical patent/JP4987280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To substantialize low torque without deteriorating the rigidity of a bearing. <P>SOLUTION: The tapered roller bearing comprises an inner ring 2, an outer ring 3, a plurality of tapered rollers 4 which are disposed between the inner ring 2 and the outer ring 3 and is capable of freely rolling the between those rings, and a retainer 5 circumferentially holding the tapered rollers 4 thereon at specified intervals. The roller factor γ is set to exceed 0.94. An infinite number of micro recessed dents are formed, at random, at least in the surfaces of the tapered rollers 4, a surface roughness parameter Ryni for the surface in which the dents are formed is set within the range of 0.4 μm≤Ryni≤1.0 μm, and an Sk value is set to -1.6 or less. The retainer 5 comprises a small annular part 6 continuously formed on the small end face side of the tapered rollers 4, a large annular part 7 continuously formed on the large end face side of the tapered rollers 4, and a plurality of column parts 8 connecting the large and small annular parts 6, 7 to each other. A pocket 9 between the adjacent column parts 8 is formed in such a trapezoidal shape that its portion storing the small diameter side of the tapered rollers 4 is formed narrow and its portion storing the large diameter side of the tapered rollers 4 is formed wide. Cutout parts 10a, 10b, and 10c are provided to the column parts 8 on the narrow side of the pocket 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は円すいころ軸受に関し、たとえば自走車両のデファレンシャルやトランスミッション等の動力伝達軸を支持する軸受に適用することができる。   The present invention relates to a tapered roller bearing and can be applied to a bearing that supports a power transmission shaft such as a differential of a self-propelled vehicle or a transmission.

円すいころ軸受は、外径面に軌道面を設け、その軌道面の軸方向両側に小つばと大つばを配置した内輪と、内径面に軌道面を設けた外輪と、内輪と外輪の軌道面間に介在させた複数の円すいころと、円すいころをポケットに収納して保持する保持器を主要な構成要素としている。保持器は、円すいころの小端面側で連なる小環状部と、円すいころの大端面側で連なる大環状部と、両環状部を連結する複数の柱部とからなる。ポケットは隣り合った柱部間に形成され、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となった台形状である。   Tapered roller bearings have a raceway surface on the outer diameter surface, an inner ring with small and large collars arranged on both sides in the axial direction of the raceway surface, an outer ring with a raceway surface on the inner diameter surface, and raceway surfaces of the inner ring and the outer ring. The main components are a plurality of tapered rollers interposed between them and a retainer that stores and holds the tapered rollers in a pocket. The cage includes a small annular portion that is continuous on the small end surface side of the tapered roller, a large annular portion that is continuous on the large end surface side of the tapered roller, and a plurality of column portions that connect both annular portions. The pocket is formed between adjacent column portions, and has a trapezoidal shape in which a portion for storing the small diameter side of the tapered roller is a narrow side and a portion for storing the large diameter side is a wide side.

自走車両のデファレンシャルやトランスミッション等の動力伝達軸を支持する円すいころ軸受は、下部が油浴に漬かった状態で使用され、その回転に伴って油浴の油が潤滑油として軸受内部に流入する。このような用途に使用される円すいころ軸受では、潤滑油が円すいころの小径側から軸受内部に流入し、保持器よりも外径側から流入する潤滑油は外輪の軌道面に沿って円すいころの大径側へ通過し、保持器よりも内径側から流入する潤滑油は内輪の軌道面に沿って円すいころの大径側へ通過する。   Tapered roller bearings that support power transmission shafts such as differentials and transmissions of self-propelled vehicles are used with the lower part immersed in an oil bath, and the oil in the oil bath flows into the bearing as lubricating oil as it rotates. . In tapered roller bearings used for such applications, the lubricating oil flows into the bearing from the small diameter side of the tapered roller, and the lubricating oil flowing from the outer diameter side of the cage flows along the raceway surface of the outer ring. The lubricating oil that passes to the larger diameter side and flows from the inner diameter side to the cage passes along the raceway surface of the inner ring to the larger diameter side of the tapered roller.

このように潤滑油が外部から流入する部位に使用される円すいころ軸受には、保持器のポケットに切欠きを設けて、保持器の外径側と内径側とに分かれて流入する潤滑油がこの切欠きを通過するようにし、軸受内部での潤滑油の流通を向上させるようにしたものがある(特許文献1,2参照)。特許文献1に記載されたものでは、図17(A)に示すように、保持器5のポケット9間の柱部8の中央部に切欠き10dを設け、潤滑油に混入する異物が軸受内部に滞留しないようにしている。また、特許文献2に記載されたものでは、図17(B)に示すように、保持器5のポケット9の軸方向両端の小環状部6と大環状部7に切欠き10eを設け、保持器の外径側から流入する潤滑油が内輪側へ流れやすくなるようにしている。なお、各図中に記入したポケット9の各寸法は、後述するトルク測定試験における比較例に用いたものの値である。
特開平09−032858号公報 特開平11−201149号公報 特開平09−096352号公報 特開平11−210765号公報 特開2003−343552号公報
In such a tapered roller bearing used for a portion where the lubricating oil flows from the outside, a notch is provided in the pocket of the cage, and the lubricating oil that flows into the outer diameter side and the inner diameter side of the cage is separated. There is one that passes through this notch and improves the flow of lubricating oil inside the bearing (see Patent Documents 1 and 2). 17A, a notch 10d is provided in the center portion of the column portion 8 between the pockets 9 of the cage 5, and foreign matter mixed in the lubricating oil is generated inside the bearing as shown in FIG. So that it does not stay. Moreover, in what was described in patent document 2, as shown to FIG. 17 (B), the notch 10e is provided in the small annular part 6 and the large annular part 7 of the axial direction both ends of the pocket 9 of the holder | retainer 5, and hold | maintained. The lubricating oil flowing in from the outer diameter side of the vessel is made easier to flow to the inner ring side. In addition, each dimension of the pocket 9 entered in each figure is the value used for the comparative example in the torque measurement test mentioned later.
Japanese Patent Application Laid-Open No. 09-032858 JP-A-11-2011149 JP 09-096352 A JP-A-11-210765 JP 2003-343552 A

上述したように潤滑油が保持器の外径側と内径側とに分かれて軸受内部へ流入する円すいころ軸受では、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、トルク損失が大きくなることが分かった。この理由は、以下のように考えられる。   As described above, in the tapered roller bearing in which the lubricating oil is divided into the outer diameter side and the inner diameter side of the cage and flows into the bearing, the torque increases when the ratio of the lubricating oil flowing from the inner diameter side of the cage to the inner ring side increases. It turns out that the loss increases. The reason is considered as follows.

すなわち、保持器の外径側から外輪側へ流入する潤滑油は、外輪の内径面には障害物がないので、その軌道面に沿って円すいころの大径側へスムーズに通過して軸受内部から流出するが、保持器の内径側から内輪側へ流入する潤滑油は、内輪の外径面には大鍔があるので、その軌道面に沿って円すいころの大径側へ通過したときに大鍔で堰き止められ、軸受内部に滞留しやすくなる。このため、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、軸受内部に滞留する潤滑油の量が多くなり、この滞留する潤滑油が軸受回転に対する流動抵抗となってトルク損失が増大するものと考えられる。   That is, the lubricating oil flowing from the outer diameter side of the cage to the outer ring side smoothly passes to the large diameter side of the tapered roller along the raceway surface because there is no obstacle on the inner diameter surface of the outer ring. The lubricating oil flowing out from the inner diameter side of the cage to the inner ring side has a large flaw on the outer diameter surface of the inner ring, so when it passes along the raceway surface to the larger diameter side of the tapered roller It will be dammed up with a large spear and will easily stay inside the bearing. For this reason, when the ratio of the lubricating oil flowing from the inner diameter side to the inner ring side of the cage increases, the amount of the lubricating oil staying inside the bearing increases, and this staying lubricating oil becomes a flow resistance against the bearing rotation and generates torque. Loss is considered to increase.

したがって、軸受内部に潤滑油が流入する円すいころ軸受における潤滑油の流動抵抗によるトルク損失を低減させる必要がある。以上が低トルク化のために油の流動抵抗を減少させる方法であるが、大幅な低トルク化を行うためには、転がり粘性抵抗が低下するように軸受諸元を変更することが必要である。しかしながら、従来の低トルク化手法(特許文献3〜5参照)では、定格荷重を低下させない低トルク化は可能であるが、軸受剛性はいくらか低下する。   Therefore, it is necessary to reduce torque loss due to flow resistance of the lubricating oil in the tapered roller bearing in which the lubricating oil flows into the bearing. The above is a method for reducing the flow resistance of oil to reduce torque, but in order to significantly reduce torque, it is necessary to change the bearing specifications so that the rolling viscous resistance decreases. . However, in the conventional torque reduction method (see Patent Documents 3 to 5), torque reduction without reducing the rated load is possible, but the bearing rigidity is somewhat reduced.

この発明の主要な目的は、軸受剛性を低下させることなく、低トルク化を実現することにある。   The main object of the present invention is to realize a low torque without reducing the bearing rigidity.

この発明は、ころ本数を減らさず、あるいは増加させつつ、PCDを小さくすることによって、課題を解決したものである。図18は円すいころ軸受においてころピッチ径(PCD)を変化させたときの剛性比(−●−)およびトルク比(−○−)を表したものである。図18に示すように、PCDを小さくすると軸受のトルクは大幅に低下するが、軸受剛性はあまり低下しないことが、ころの弾性変形量を計算確認した結果として得られた。そこで、ころ本数を減らさないか増加させつつ、PCDを小さくすることによって、剛性を低下させずにトルクを低減させることができる。   The present invention solves the problem by reducing the PCD without decreasing or increasing the number of rollers. FIG. 18 shows the rigidity ratio (-●-) and torque ratio (-o-) when the roller pitch diameter (PCD) is changed in the tapered roller bearing. As shown in FIG. 18, when the PCD is reduced, the bearing torque is significantly reduced, but the bearing rigidity is not reduced so much as a result of calculating and confirming the amount of elastic deformation of the rollers. Therefore, the torque can be reduced without reducing the rigidity by reducing the PCD while decreasing or increasing the number of rollers.

この発明の円すいころ軸受は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とからなり、ころ係数γが0.94を越え、少なくとも前記円すいころの表面に、微小凹形状のくぼみをランダムに無数に設け、前記くぼみを設けた表面の面粗さパラメータRyniが0.4μm≦Ryni≦1.0μmの範囲内で、かつ、Sk値が−1.6以下であり、前記保持器が、円すいころの小端面側で連なる小環状部と、円すいころの大端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となった台形状のポケットが形成してあり、ポケットの狭幅側の柱部に切欠きが設けてあることを特徴とするものである。   The tapered roller bearing of the present invention comprises an inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage that holds the tapered rollers at a predetermined circumferential interval. The roller coefficient γ exceeds 0.94, and at least the surface of the tapered roller is randomly provided with an infinite number of minute concave recesses, and the surface roughness parameter Ryni of the surface provided with the recesses is 0.4 μm ≦ Ryni ≦ 1. Within a range of 0.0 μm and having a Sk value of −1.6 or less, and the cage includes a small annular portion continuous on the small end surface side of the tapered roller, and a large annular portion continuous on the large end surface side of the tapered roller, The part that houses the small diameter side of the tapered roller is the narrow side, and the part that accommodates the large diameter side is the wide side between the adjacent pillars. A trapezoidal pocket is formed, and the column on the narrow side of the pocket Is provided with a notch.

ころ係数γ(ころの充填率)は(ころ本数×ころ平均径)/(π×PCD)で表されるパラメータであって、ころ平均径が一定とした場合、γの値が大きいほどころ本数が多いことを意味する。従来の典型的な保持器付き円すいころ軸受ではころ係数γを通常0.94以下にして設計しているのに対し、ころ係数γが0.94を越えるということは、従来と比較して、ころ充填率ひいては軸受剛性が高いことを意味する。   The roller coefficient γ (roller filling ratio) is a parameter represented by (number of rollers × roller average diameter) / (π × PCD). When the average roller diameter is constant, the larger the value of γ, the greater the number of rollers. It means that there are many. In the conventional typical tapered roller bearing with a cage, the roller coefficient γ is usually designed to be 0.94 or less, whereas the roller coefficient γ exceeds 0.94. This means that the roller filling rate and thus the bearing rigidity is high.

少なくとも円すいころの表面に、微小凹形形状のくぼみをランダムに無数に設け、このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし、かつ、Sk値を−1.6以下とすることにより、円すいころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円すいころと内外輪との接触部を十分に潤滑することができる。   At least the surface of the tapered roller is provided with an infinite number of minute concave concaves, the surface roughness parameter Ryni of the surface provided with the concaves is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is − By setting it to 1.6 or less, even if the lubricant is uniformly held on the surface of the tapered roller and the amount of lubricant remaining in the bearing is reduced, the contact portion between the tapered roller and the inner and outer rings is sufficiently lubricated. be able to.

パラメータRyniは、基準長毎最大高さの平均値すなわち、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定した値である(ISO 4287:1997)。パラメータSkは粗さ曲線の歪み度(スキューネス)を指し(ISO 4287:1997)、凹凸分布の非対称性を知る目安となる統計量であり、ガウス分布のような対称な分布ではSk値は0に近くなり、凹凸の凸部を削除した場合は負の値、逆に凹部を削除した場合は正の値となる。Sk値のコントロールは、バレル研摩機の回転速度、加工時間、ワーク投入量、研摩チップの種類と大きさ等を選ぶことにより行える。Sk値を幅方向、円周方向とも−1.6以下とすることにより、微小凹形状のくぼみが油溜りとなり、満遍なく潤滑油を保持することができる。したがって、圧縮されても滑り方向、直角方向への油のリークは少なく、油膜形成に優れ、油膜形成状況は良好で、表面損傷を極力抑える効果がある。   The parameter Ryni is the average value of the maximum height for each reference length, that is, the reference length is extracted from the roughness curve in the direction of the average line, and the interval between the peak line and the valley bottom line of this extracted portion is the vertical magnification of the roughness curve. (ISO 4287: 1997). The parameter Sk indicates the degree of distortion (skewness) of the roughness curve (ISO 4287: 1997), and is a statistic that serves as a guideline for knowing the asymmetry of the uneven distribution. In a symmetric distribution such as a Gaussian distribution, the Sk value is 0. When the concave and convex portions are deleted, a negative value is obtained. Conversely, when a concave portion is deleted, a positive value is obtained. The Sk value can be controlled by selecting the rotational speed of the barrel polishing machine, the processing time, the workpiece input amount, the type and size of the polishing tip, and the like. By setting the Sk value to −1.6 or less in both the width direction and the circumferential direction, the minute concave recess becomes an oil reservoir, and the lubricating oil can be held evenly. Therefore, even when compressed, there is little oil leakage in the sliding direction and the right-angle direction, the oil film formation is excellent, the oil film formation state is good, and the surface damage is suppressed as much as possible.

保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、次のような作用が得られる。すなわち、保持器の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができる。その結果、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少する。したがって、潤滑油の流動抵抗によるトルク損失が低減する。   By providing a notch in the narrow column of the trapezoidal pocket of the cage, the following action can be obtained. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the large collar along the raceway surface of the inner ring is reduced, and the amount of lubricating oil staying inside the bearing is reduced. Therefore, torque loss due to the flow resistance of the lubricating oil is reduced.

請求項2の発明は、請求項1の円すいころ軸受において、前記くぼみを設けた面の面粗さパラメータRymaxが0.4〜1.0の範囲内であることを特徴とするものである。パラメータRymaxは基準長毎最大高さの最大値である(ISO4287:1997)。   According to a second aspect of the present invention, in the tapered roller bearing of the first aspect, a surface roughness parameter Rymax of the surface provided with the recess is in a range of 0.4 to 1.0. The parameter Rymax is the maximum value of the maximum height for each reference length (ISO 4287: 1997).

請求項3の発明は、請求項1または2の円すいころ軸受において、前記くぼみを設けた面の面粗さをパラメータRqniで表示したとき、軸方向面粗さRqni(L)と円周方向面粗さRqni(C)との比の値Rqni(L)/Rqni(C)が1.0以下であることを特徴とするものである。パラメータRqniは、粗さ中心線から粗さ曲線までの高さの偏差の自乗を測定長さの区間で積分し、その区間で平均した値の平方根であり、別名自乗平均平方根ともいう。Rqniは拡大記録した断面曲線、粗さ曲線から数値計算で求められ、粗さ計の触針を幅方向および円周方向に移動させて測定する。   According to a third aspect of the present invention, in the tapered roller bearing of the first or second aspect, when the surface roughness of the surface provided with the recess is indicated by a parameter Rqni, the axial surface roughness Rqni (L) and the circumferential surface The ratio value Rqni (L) / Rqni (C) to the roughness Rqni (C) is 1.0 or less. The parameter Rqni is the square root of the value obtained by integrating the square of the height deviation from the roughness center line to the roughness curve in the section of the measurement length and averaging it, and is also called the root mean square. Rqni is obtained by numerical calculation from the cross-sectional curve and roughness curve recorded in an enlarged manner, and is measured by moving the stylus of the roughness meter in the width direction and the circumferential direction.

請求項4の発明は、請求項1ないし3のいずれかの円すいころ軸受において、前記保持器のポケットの窓角が55°以上80°以下であることを特徴とするものである。窓角とは、ころの転動面と接する柱部の側面がなす角度をいう。窓角を55°以上としたのは、ころとの良好な接触状態を確保するためである。窓角を80°以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の樹脂材であっても円滑な回転が得られなくなる危険性が生じるからである。なお、通常の保持器では窓角は25°〜50°となっている。   According to a fourth aspect of the present invention, in the tapered roller bearing according to any one of the first to third aspects, the window angle of the pocket of the cage is 55 ° or more and 80 ° or less. The window angle is an angle formed by the side surface of the column portion that contacts the rolling surface of the roller. The reason why the window angle is set to 55 ° or more is to ensure a good contact state with the roller. The reason why the window angle is set to 80 ° or less is that if it is further increased, the pressing force in the radial direction is increased, and there is a risk that smooth rotation cannot be obtained even with a self-lubricating resin material. In a normal cage, the window angle is 25 ° to 50 °.

請求項5の発明は、請求項1ないし4のいずれかの円すいころ軸受において、前記保持器を機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックで形成したことを特徴とするものである。保持器に樹脂材を使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。   According to a fifth aspect of the present invention, in the tapered roller bearing according to any one of the first to fourth aspects, the cage is formed of an engineering plastic excellent in mechanical strength, oil resistance and heat resistance. is there. By using a resin material for the cage, the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than the steel plate cage. Together, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. Since these resins are lighter and have a smaller friction coefficient than steel plates, they are suitable for reducing torque loss and cage wear when starting the bearing.

請求項6の発明は、請求項1ないし5のいずれかの円すいころ軸受において、ポケットの狭幅側の小環状部にも切欠きが設けてあることを特徴とするものである。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油をこの切欠きからも外輪側へ逃がしてやることができる。したがって、内輪の軌道面に沿って大つばに至る潤滑油の量がより少なくなり、潤滑油の流動抵抗によるトルク損失がさらに低減する。   According to a sixth aspect of the present invention, in the tapered roller bearing according to any one of the first to fifth aspects, a notch is also provided in the small annular portion on the narrow side of the pocket. By adopting such a configuration, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be released from the notch to the outer ring side. Accordingly, the amount of lubricating oil reaching the large collar along the raceway surface of the inner ring is reduced, and torque loss due to the flow resistance of the lubricating oil is further reduced.

請求項7の発明は、請求項1ないし6のいずれかの円すいころ軸受において、ポケットの広幅側の少なくとも柱部に切欠きが設けてあることを特徴とするものである。このような構成を採用することにより、円すいころをバランスよく柱部に接触させることができる。   According to a seventh aspect of the present invention, in the tapered roller bearing according to any one of the first to sixth aspects, a notch is provided in at least a column portion on the wide side of the pocket. By adopting such a configuration, the tapered roller can be brought into contact with the column portion in a balanced manner.

請求項8の発明は、請求項7の円すいころ軸受において、ポケットの狭幅側に設けた切欠きの合計面積が、ポケットの広幅側に設けた切欠きの合計面積よりも広いことを特徴とするものである。このような構成を採用することにより、内輪の軌道面に沿って大つばに至る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減させることができる。   The invention of claim 8 is the tapered roller bearing of claim 7, characterized in that the total area of the notches provided on the narrow side of the pocket is wider than the total area of the notches provided on the wide side of the pocket. To do. By adopting such a configuration, it is possible to further reduce the torque loss due to the flow resistance of the lubricating oil by reducing the amount of the lubricating oil reaching the large collar along the raceway surface of the inner ring.

請求項9の発明は、請求項1ないし8のいずれかの円すいころ軸受において、保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向内向きのつばが設けてあり、前記つばの内径面と内輪の小つばの外径面との間のすきまの上限を小つばの外径寸法の2.0%であることを特徴とするものである。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によるトルク損失をより低減させることができる。   A ninth aspect of the present invention is the tapered roller bearing according to any one of the first to eighth aspects, wherein the small annular portion of the cage is axially outwardly opposed to the outer diameter surface of the small collar of the inner ring. A collar is provided, and the upper limit of the clearance between the inner diameter surface of the collar and the outer diameter surface of the small collar of the inner ring is 2.0% of the outer diameter dimension of the small collar. By adopting such a configuration, the amount of lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be reduced, and torque loss due to the flow resistance of the lubricating oil can be further reduced.

上述した各円すいころ軸受は、自走車両の動力伝達軸を支持するものに好適である(請求項10)。   Each tapered roller bearing described above is suitable for supporting a power transmission shaft of a self-propelled vehicle (claim 10).

この発明によれば、軸受剛性を低下させることなく、低トルク化を実現することができる。すなわち、保持器の台形状ポケットの狭幅側の柱部に外径側から内径側まで切り通した切欠きを設けることにより、保持器の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失が低減する。   According to this invention, a reduction in torque can be realized without reducing the bearing rigidity. That is, by providing a notch that cuts from the outer diameter side to the inner diameter side in the narrow column of the trapezoidal pocket of the cage, the lubricating oil that has flowed from the inner diameter side to the inner ring side of the cage is removed. Through the outer ring, the amount of lubricating oil reaching the large brim along the raceway surface of the inner ring is reduced, the amount of lubricating oil staying inside the bearing is reduced, and the flow resistance of the lubricating oil is reduced. Torque loss due to is reduced.

ころ係数γが0.94を越える設定とすることにより剛性の低下を防止することができる。また、ころ係数γが0.94を越える設定とすることにより、負荷容量がアップするばかりでなく、軌道面の最大面圧を低下させることができるため、過酷潤滑条件での極短寿命での表面起点剥離を防止することができる。   By setting the roller coefficient γ to exceed 0.94, it is possible to prevent a decrease in rigidity. In addition, by setting the roller coefficient γ to exceed 0.94, not only can the load capacity be increased, but also the maximum surface pressure of the raceway surface can be reduced, so that it has an extremely short life under severe lubrication conditions. Surface origin peeling can be prevented.

さらに、少なくとも円すいころの表面に、微小凹形状のくぼみをランダムに無数に設けることによって、油膜形成能力が向上し、低粘度・希薄潤滑下で極端に油膜厚さが薄い条件下でも長寿命を得ることができる。とくに、くぼみを設けた面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmの範囲内に設定し、従来よりも小さく抑えたことにより、希薄潤滑下でも油膜切れを防ぐことが可能で、従来品に比べ、極端に油膜厚さが薄い条件下でも長寿命を得ることができる。Sk値については、−1.6以下が表面凹部の形状、分布が加工条件により油膜形成に有利な範囲である。   Furthermore, by providing an infinite number of indentations with a small concave shape at least on the surface of the tapered roller, the oil film forming ability is improved, and a long life is achieved even under extremely thin oil film conditions under low viscosity and dilute lubrication. Obtainable. In particular, by setting the surface roughness parameter Ryni of the surface with the indentation within the range of 0.4 μm ≦ Ryni ≦ 1.0 μm and keeping it smaller than before, it is possible to prevent oil film breakage even under lean lubrication. Thus, a longer life can be obtained even under conditions where the oil film thickness is extremely thin compared to conventional products. As for the Sk value, −1.6 or less is a range advantageous for oil film formation in terms of the shape and distribution of the surface recess depending on the processing conditions.

以下、図面に従ってこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すように、円すいころ軸受1は、内輪2と、外輪3と、円すいころ4と、保持器5とで構成されている。内輪2は外周に円すい状の軌道面2aを有し、外輪3は内周に円すい状の軌道面3aを有する。内輪2の軌道面2aと外輪3の軌道面3aとの間に複数の円すいころ4が転動自在に介在させてある。各円すいころ4は保持器5に形成されたポケット内に収容され、内輪2の軌道面2aの両側に設けた小つば2bと大つば2cとで軸方向への移動を規制されている。   As shown in FIG. 1, the tapered roller bearing 1 includes an inner ring 2, an outer ring 3, a tapered roller 4, and a cage 5. The inner ring 2 has a conical track surface 2a on the outer periphery, and the outer ring 3 has a conical track surface 3a on the inner periphery. A plurality of tapered rollers 4 are interposed between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3 so as to roll freely. Each tapered roller 4 is accommodated in a pocket formed in the cage 5, and movement in the axial direction is restricted by a small brim 2 b and a large brim 2 c provided on both sides of the raceway surface 2 a of the inner ring 2.

円すいころ軸受1は、ころ係数γがγ>0.94となっている。ころ係数γはころの充填率を表し、次式で定義される。
ころ係数γ=(Z・DA)/(π・PCD)
ここに、
Z:ころ本数
DA:ころ平均径
PCD:ころピッチ径。
The tapered roller bearing 1 has a roller coefficient γ of γ> 0.94. The roller coefficient γ represents the filling rate of the roller and is defined by the following equation.
Roller coefficient γ = (Z · DA) / (π · PCD)
here,
Z: Number of rollers DA: Roller average diameter PCD: Roller pitch diameter.

比較のために、図16を参照して従来の技術に言及すると、同図に示す円すいころ軸受は、保持器が外輪から離間している典型的な保持器付き円すいころ軸受であって、外輪71と保持器72との接触を避けた上で、保持器72の柱幅を確保し、適切な保持器72の柱強度と円滑な回転を得るために、通常、ころ係数γ(ころの充填率)を0.94以下にして設計している。なお、図16中、符号73、74、75は、それぞれ、円すいころ、柱面、内輪を指し、符号θは窓角を表している。   For comparison, referring to the prior art with reference to FIG. 16, the tapered roller bearing shown in FIG. 16 is a typical tapered roller bearing with a cage in which the cage is spaced from the outer ring. In order to avoid the contact between 71 and the cage 72, to secure the column width of the cage 72 and to obtain the appropriate column strength and smooth rotation of the cage 72, a roller coefficient γ (filling of rollers) is usually used. The ratio is designed to be 0.94 or less. In FIG. 16, reference numerals 73, 74, and 75 denote a tapered roller, a column surface, and an inner ring, respectively, and reference sign θ denotes a window angle.

また、図示は省略するが、円すいころ4の全表面には微小凹形状のくぼみがランダムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータRyniが0.4μm≦Ryni≦1.0μm、かつ、Sk値が−1.6以下としてある。 In addition, although illustration is omitted, an infinite number of minute concave recesses are randomly provided on the entire surface of the tapered roller 4. The surface provided with the depression has a surface roughness parameter Ryni of 0.4 μm ≦ Ryni ≦ 1.0 μm and an Sk value of −1.6 or less.

保持器5は、図1(B)に示すように、円すいころ4の小端面側で連なる小環状部6と、円すいころ4の大端面側で連なる大環状部7と、これらの小環状部6と大環状部7を連結する複数の柱部8とを含んでいる。そして、図2に示すように、隣り合った柱部8間にポケット9が形成される。保持器に、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。また、これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。保持器材料としては、PPS,PEEK,PA,PPA,PAI等のスーパーエンプラを使用するほか、必要に応じて、強度増強のため、これら樹脂材料またはその他のエンジニアリング・プラスチックに、ガラス繊維または炭素繊維などを配合したものを使用してもよい。   As shown in FIG. 1B, the cage 5 includes a small annular portion 6 that is continuous on the small end face side of the tapered roller 4, a large annular portion 7 that is continuous on the large end face side of the tapered roller 4, and these small annular portions. 6 and a plurality of pillars 8 that connect the macro-annular part 7. Then, as shown in FIG. 2, a pocket 9 is formed between the adjacent column portions 8. By using engineering plastics with excellent mechanical strength, oil resistance and heat resistance for the cage, the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than that of steel plate cages. Therefore, in combination with the effect of the lubricating oil present in the bearing, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. In addition, these resins are lighter and have a smaller coefficient of friction than steel plates, and are therefore suitable for reducing torque loss and cage wear at the start of the bearing. As the cage material, super engineering plastics such as PPS, PEEK, PA, PPA, PAI are used, and if necessary, these resin materials or other engineering plastics are made of glass fiber or carbon fiber for strength enhancement. You may use what mix | blended.

エンジニアリング・プラスチックは、汎用エンジニアリング・プラスチックとスーパー・エンジニアリング・プラスチックを含む。以下に代表的なものを掲げるが、これらはエンジニアリング・プラスチックの例示であって、エンジニアリング・プラスチックが以下のものに限定されるものではない。   Engineering plastics include general purpose engineering plastics and super engineering plastics. Typical examples are listed below, but these are examples of engineering plastics, and engineering plastics are not limited to the following.

〔汎用エンジニアリング・プラスチック〕ポリカーボネート(PC)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m−PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF−PET)、超高分子量ポリエチレン(UHMW−PE)   [General-purpose engineering plastics] Polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF) -PET), ultra high molecular weight polyethylene (UHMW-PE)

〔スーパー・エンジニアリング・プラスチック〕ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、ポリベンズイミダゾール(PBI)、ポリメチルベンテン(TPX)、ポリ1,4−シクロヘキサンジメチレンテレフタレート(PCT)、ポリアミド46(PA46)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド11,12 (PA11,12)、フッ素樹脂、ポリフタルアミド(PPA) [Super Engineering Plastics] Polysulfone (PSF), Polyethersulfone (PES), Polyphenylene sulfide (PPS), Polyarylate (PAR), Polyamideimide (PAI), Polyetherimide (PEI), Polyetheretherketone ( PEEK), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), polybenzimidazole (PBI), polymethylbenten (TPX), poly1,4-cyclohexanedimethylene terephthalate (PCT), polyamide 46 (PA46), polyamide 6T (PA6T), polyamide 9T (PA9T), polyamide 11,12 (PA11,12), fluororesin, polyphthalamide (PPA)

保持器5のポケット9は台形状で、円すいころ4の小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる。ポケット9の狭幅側と広幅側には、それぞれ両側の柱部8に2つずつ、外径側から内径側まで切り通した切欠き10a,10bが設けてある。各切欠き10a,10bの寸法は、いずれも深さ1.0mm、幅4.6mmとされている。なお、図面に例示した切欠き10a,10bは、保持器5の半径方向に切り通した溝の形態をしているが、保持器5の内径側と外径側を連絡して潤滑油の円滑な通過を許容することができる限り、形状や寸法は任意である。 The pocket 9 of the cage 5 has a trapezoidal shape, and the portion for storing the small diameter side of the tapered roller 4 is the narrow side, and the portion for storing the large diameter side is the wide side. On the narrow side and wide side of the pocket 9, two notches 10 a and 10 b that are cut from the outer diameter side to the inner diameter side are provided in each of the column portions 8 on both sides. Each notch 10a, 10b has a depth of 1.0 mm and a width of 4.6 mm. The notches 10a and 10b illustrated in the drawings are in the form of grooves cut through in the radial direction of the cage 5, but the inner diameter side and the outer diameter side of the cage 5 are connected to make the lubricating oil smooth. As long as the passage can be allowed, the shape and dimensions are arbitrary.

図3および図4に保持器5の変形例を示す。図3に示す変形例は、ポケット9の狭幅側の小環状部6にも切欠き10cを設けたものである。そして、狭幅側の3つの切欠き10a,10cの合計面積が、広幅側の2つの切欠き10bの合計面積よりも広くなっている。なお、切欠き10cは深さ1.0mm、幅5.7mmとしてある。 3 and 4 show a modified example of the cage 5. In the modification shown in FIG. 3, a notch 10 c is also provided in the small annular portion 6 on the narrow side of the pocket 9. The total area of the three notches 10a and 10c on the narrow side is wider than the total area of the two notches 10b on the wide side. The notch 10c has a depth of 1.0 mm and a width of 5.7 mm.

図4に示す変形例は、狭幅側の柱部8の各切欠き10aの深さが1.5mmと広幅側の柱部8の各切欠き10bよりも深く、狭幅側の各切欠き10aの合計面積が、広幅側の各切欠き10bの合計面積よりも広くなっている。 In the modification shown in FIG. 4, the depth of each notch 10a of the narrow column portion 8 is 1.5 mm, which is deeper than each notch 10b of the wide column portion 8, and each notch on the narrow side. The total area of 10a is wider than the total area of the notches 10b on the wide side.

図5に示すように、保持器5の小環状部6の軸方向外側には、内輪2の小つば2bの外径面に対向させた径方向内向きのつば11が設けてあり、このつば11の内径面と内輪2の小つば2bの外径面との間のすきまδは、小つば2bの外径寸法の2.0%以下に狭く設定してある。   As shown in FIG. 5, a radially inward flange 11 is provided on the outer side in the axial direction of the small annular portion 6 of the cage 5 so as to face the outer diameter surface of the small collar 2b of the inner ring 2. The clearance δ between the inner diameter surface of 11 and the outer diameter surface of the small collar 2b of the inner ring 2 is set narrowly to 2.0% or less of the outer diameter dimension of the small collar 2b.

次に、図6および図7を参照して柱部8の側面5aがなす角度すなわち窓角θについて述べると、下限窓角θminが55°(図6)、上限窓角θmaxが80°である(図7)。下限窓角θminを55°としたのはころとの良好な接触状態を確保するためであり、窓角55°未満ではころとの接触状態が悪くなる。すなわち、窓角を55°以上とすると、保持器強度を確保した上でγ>0.94として、かつ、良好な接触状態を確保できるのである。また、上限窓角θmaxを80°としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の樹脂材であっても円滑な回転が得られなくなる危険性が生じるからである。比較のために従来の技術に言及するならば、保持器が外輪から離間している典型的な保持器付き円すいころ軸受(図16)では、窓角は大きくても約50°である。   Next, the angle formed by the side surface 5a of the column part 8, that is, the window angle θ will be described with reference to FIGS. 6 and 7. The lower limit window angle θmin is 55 ° (FIG. 6), and the upper limit window angle θmax is 80 °. (FIG. 7). The reason why the lower limit window angle θmin is set to 55 ° is to ensure a good contact state with the roller, and when the window angle is less than 55 °, the contact state with the roller is deteriorated. That is, when the window angle is 55 ° or more, the cage strength is secured and γ> 0.94 and a good contact state can be secured. Further, the upper limit window angle θmax is set to 80 ° because if it is larger than this, the pressing force in the radial direction increases, and there is a risk that smooth rotation cannot be obtained even with a self-lubricating resin material. It is. For comparison, referring to the prior art, for a typical tapered roller bearing with retainer spaced from the outer ring (FIG. 16), the window angle is at most about 50 °.

図8に軸受の寿命試験の結果を示す。同図中、「軸受」欄の「比較例1」は保持器と外輪とが離れた典型的な従来の円すいころ軸受(図16参照)である。「比較例2」はこの発明の円すいころ軸受のうち従来品に対してころ係数γのみをγ>0.94とした円すいころ軸受である。「実施例」はころ係数γをγ>0.94とし、かつ、窓角を55°〜80°の範囲にしたこの発明の円すいころ軸受である。寸法(単位mm)はいずれもφ45×φ81×16で、ころ本数は「比較例1」が24、「比較例2」と「実施例」が27であった。試験は、過酷潤滑(油膜パラメータΛ=0.2)、過大負荷条件下で行った。図8から明らかなように、「比較例2」は「比較例1」の2倍以上の長寿命となる。さらに、「実施例」はころ係数が「比較例2」と同じ0.96であるが、寿命時間は「比較例2」の約5倍以上にもなる。   FIG. 8 shows the result of the bearing life test. In the figure, “Comparative Example 1” in the “Bearing” column is a typical conventional tapered roller bearing (see FIG. 16) in which the cage and the outer ring are separated. “Comparative Example 2” is a tapered roller bearing in which only the roller coefficient γ is γ> 0.94 in the tapered roller bearing of the present invention compared to the conventional product. “Example” is a tapered roller bearing of the present invention in which the roller coefficient γ is set to γ> 0.94 and the window angle is in the range of 55 ° to 80 °. The dimensions (unit: mm) were all φ45 × φ81 × 16, and the number of rollers was 24 for “Comparative Example 1” and 27 for “Comparative Example 2” and “Example”. The test was performed under severe lubrication (oil film parameter Λ = 0.2) and overload conditions. As is clear from FIG. 8, “Comparative Example 2” has a lifetime that is at least twice that of “Comparative Example 1”. Furthermore, the roller coefficient of “Example” is 0.96, which is the same as that of “Comparative Example 2”, but the life time is about five times or more that of “Comparative Example 2”.

次に、図9および図10に基づきこの発明の変形実施例を説明する。図9に示す円すいころ軸受1は、エンジニアリング・プラスチックで一体成形した保持器5の柱部8の外径面に、外輪3の軌道面側に向けて凸状となった突起部5bを形成したものである。その他は前述した保持器5と同じである。   Next, a modified embodiment of the present invention will be described with reference to FIGS. The tapered roller bearing 1 shown in FIG. 9 has a protruding portion 5b that is convex toward the raceway surface side of the outer ring 3 on the outer diameter surface of the column portion 8 of the cage 5 that is integrally formed of engineering plastic. Is. The rest is the same as the cage 5 described above.

突起部5bは図10に示すように柱部8の横断方向の断面輪郭形状が円弧状をしている。この円弧状の輪郭の曲率半径Rは外輪の軌道面の半径Rより小さい。これは、突起部5bと外輪の軌道面との間に良好なくさび状油膜が形成されるようにするためである。望ましくは、突起部の曲率半径Rは外輪の軌道面の半径Rの70〜90%程度に形成するとよい。突起部の曲率半径Rが70%未満では、くさび状油膜の入口開き角度が大きくなりすぎて却って動圧が低下する。突起部の曲率半径Rが90%を越えると、くさび状油膜の入口角度が小さくなりすぎて同様に動圧が低下する。 As shown in FIG. 10, the projecting portion 5 b has a cross-sectional contour shape in the transverse direction of the column portion 8 having an arc shape. The radius of curvature R 2 of this arc-shaped contour is smaller than the radius R 1 of the raceway surface of the outer ring. This is because a good wedge-shaped oil film is formed between the protrusion 5b and the raceway surface of the outer ring. Desirably, the radius of curvature R 2 of the projecting portion may be formed in about 70% to 90% of the radius R 1 of the raceway surface of the outer ring. The radius of curvature R 2 of the protrusions is less than 70%, and the inlet opening angle of the wedge-shaped oil film becomes too large rather dynamic pressure drops. The radius of curvature R 2 of the protrusions is more than 90%, the dynamic pressure in the same manner that the inlet angle of the wedge-shaped oil film becomes too small is reduced.

突起部5bの横幅Wは望ましくは柱部8の横幅Wの50%以上となるように形成する(W≧0.5W)。50%未満では良好なくさび状油膜を形成するための充分な突起部5bの高さが確保できなくなるためである。なお、外輪の軌道面の半径Rは大径側から小径側へと連続的に変化しているので、それに合わせて突起部5bの曲率半径Rも大環状部7の大きな曲率半径Rから小環状部6の小さな曲率半径Rへと連続的に変化するようにする。 Width W 2 of the projecting portion 5b is preferably formed to have a more than 50% of the width W 1 of the pillar portion 8 (W 2 ≧ 0.5W 1) . This is because if it is less than 50%, it is not possible to secure a sufficient height of the protruding portion 5b for forming a rust-like oil film. Since the radius R 1 of the raceway surface of the outer ring is continuously changed to the small-diameter side from the large diameter side, large radius of curvature R 2 of the radius of curvature R 2 be macrocyclic portion 7 of the projections 5b accordingly To a small radius of curvature R 2 of the small annular portion 6.

図9および図10に示す実施の形態の円すいころ軸受1は以上のように構成されているため、軸受1が回転して保持器5が回転し始めると、外輪軌道面と保持器5の突起部5bとの間にくさび状油膜が形成される。このくさび状油膜は軸受1の回転速度にほぼ比例した動圧を発生させるので、保持器5のピッチ円径(PCD)を従来より大きくして外輪軌道面に近接させても、軸受1を大きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無理なくころ本数を増やすことが可能となる。   Since the tapered roller bearing 1 of the embodiment shown in FIGS. 9 and 10 is configured as described above, when the bearing 1 rotates and the cage 5 starts to rotate, the outer ring raceway surface and the protrusion of the cage 5 A wedge-shaped oil film is formed between the portions 5b. Since this wedge-shaped oil film generates a dynamic pressure substantially proportional to the rotational speed of the bearing 1, even if the pitch circle diameter (PCD) of the cage 5 is made larger than before and close to the outer ring raceway surface, the bearing 1 becomes large. It is possible to rotate without causing wear or torque loss, and it is possible to increase the number of rollers without difficulty.

図11は、この発明の円すいころ軸受を使用し得る自動車のデファレンシャルの構成を例示したものである。このデファレンシャルは、プロペラシャフト(図示省略)に連結され、デファレンシャルケース21内に挿入したドライブピニオン22が差動歯車ケース23に取り付けたリングギヤ24とかみ合い、差動歯車ケース23の内部に取り付けたピニオンギヤ25が、差動歯車ケース23に左右から挿入されるドライブシャフト(図示省略)と結合するサイドギヤ26とかみ合って、エンジンの駆動力をプロペラシャフトから左右のドライブシャフトに伝達するようになっている。このデファレンシャルでは、動力伝達軸であるドライブピニオン22と差動歯車ケース23が、それぞれ一対の円すいころ軸受1a,1bで支持してある。 FIG. 11 shows an example of the configuration of an automobile differential that can use the tapered roller bearing of the present invention. This differential is connected to a propeller shaft (not shown), and a drive pinion 22 inserted into the differential case 21 meshes with a ring gear 24 attached to the differential gear case 23, and a pinion gear 25 attached to the inside of the differential gear case 23. However, the drive gear of the engine is transmitted from the propeller shaft to the left and right drive shafts by meshing with the side gear 26 coupled to the drive shaft (not shown) inserted into the differential gear case 23 from the left and right. In this differential, a drive pinion 22 that is a power transmission shaft and a differential gear case 23 are supported by a pair of tapered roller bearings 1a and 1b, respectively.

デファレンシャルケース21はシール部材27a,27b,27cで密封され、内部に潤滑油が貯留される。各円すいころ軸受1a,1bはこの潤滑油の油浴に下部が漬かった状態で回転する。各円すいころ軸受1a,1bが高速で回転してその下部が油浴に漬かると、図5に矢印で示すように、油浴の潤滑油が円すいころ4の小径側から保持器5の外径側と内径側とに分かれて軸受内部へ流入し、保持器5の外径側から外輪3へ流入した潤滑油は、外輪3の軌道面3aに沿って円すいころ4の大径側へ通過して軸受内部から流出する。一方、保持器5の内径側から内輪2側へ流入する潤滑油は、保持器5の外径側から流入する潤滑油よりも遥かに少なく、かつ、このすきまδから流入する潤滑油の大半は、ポケット9の狭幅側の柱部8に設けた切欠き10aを通過して、保持器5の外径側へ移動する。したがって、そのまま内輪2の軌道面2aに沿って大つば2cに至る潤滑油の量は非常に少なくなり、軸受内部に滞留する潤滑油の量を減らすことができる。   The differential case 21 is sealed with seal members 27a, 27b, and 27c, and lubricating oil is stored inside. Each tapered roller bearing 1a, 1b rotates with its lower part immersed in this lubricating oil bath. When each tapered roller bearing 1a, 1b rotates at high speed and its lower part is immersed in an oil bath, the lubricating oil in the oil bath is drawn from the small diameter side of the tapered roller 4 to the outer diameter of the cage 5 as shown by arrows in FIG. The lubricating oil that flows into the bearing divided into the inner diameter side and the inner diameter side and flows into the outer ring 3 from the outer diameter side of the cage 5 passes along the raceway surface 3 a of the outer ring 3 to the larger diameter side of the tapered roller 4. Out of the bearing. On the other hand, the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 side is far less than the lubricating oil flowing from the outer diameter side of the cage 5, and most of the lubricating oil flowing from this clearance δ is Then, it passes through the notch 10 a provided in the column portion 8 on the narrow side of the pocket 9 and moves to the outer diameter side of the cage 5. Therefore, the amount of the lubricating oil that reaches the large collar 2c along the raceway surface 2a of the inner ring 2 becomes very small, and the amount of the lubricating oil staying inside the bearing can be reduced.

図12は、この発明の円すいころ軸受を使用し得る自動車のトランスミッションの構成を例示したものである。このトランスミッションは同期噛合式のもので、同図で左方向がエンジン側、右方向が駆動車輪側である。メインシャフト41とメインドライブギヤ42との間に円すいころ軸受43が介装される。この例では、メインドライブギヤ42の内周に円すいころ軸受43の外輪軌道面が直接形成されている。メインドライブギヤ42は、円すいころ軸受44でケーシング45に対して回転自在に支持される。メインドライブギヤ42にクラッチギヤ46が係合連結され、クラッチギヤ46に近接してシンクロ機構47が配設される。   FIG. 12 exemplifies a configuration of an automobile transmission that can use the tapered roller bearing of the present invention. This transmission is of a synchronous mesh type, and in the figure the left direction is the engine side and the right direction is the drive wheel side. A tapered roller bearing 43 is interposed between the main shaft 41 and the main drive gear 42. In this example, the outer ring raceway surface of the tapered roller bearing 43 is directly formed on the inner periphery of the main drive gear 42. The main drive gear 42 is rotatably supported with respect to the casing 45 by a tapered roller bearing 44. A clutch gear 46 is engaged and connected to the main drive gear 42, and a synchronization mechanism 47 is disposed in the vicinity of the clutch gear 46.

シンクロ機構47は、セレクタ(図示省略)の作動によって軸方向(同図で左右方向)に移動するスリーブ48と、スリーブ48の内周に軸方向移動自在に装着されたシンクロナイザーキー49と、メインシャフト41の外周に係合連結されたハブ50と、クラッチギヤ46の外周(コーン部)に摺動自在に装着されたシンクロナイザーリング51と、シンクロナイザーキー49をスリーブ48の内周に弾性的に押圧する押さえピン52及びスプリング53とを備えている。   The synchronizer 47 includes a sleeve 48 that moves in the axial direction (left and right in the figure) by the operation of a selector (not shown), a synchronizer key 49 that is mounted on the inner periphery of the sleeve 48 so as to be axially movable, A hub 50 engaged and connected to the outer periphery of the shaft 41, a synchronizer ring 51 slidably mounted on the outer periphery (cone portion) of the clutch gear 46, and a synchronizer key 49 are elastically attached to the inner periphery of the sleeve 48. A pressing pin 52 and a spring 53 are provided.

同図に示す状態では、スリーブ48及びシンクロナイザーキー49が押さえピン52によって中立位置に保持されている。この時、メインドライブギヤ42はメインシャフト41に対して空転する。一方、セレクタの作動により、スリーブ48が同図に示す状態から例えば軸方向左側に移動すると、スリーブ48に従動してシンクロナイザーキー49が軸方向左側に移動し、シンクロナイザーリング51をクラッチギヤ46のコーン部の傾斜面に押し付ける。これにより、クラッチギヤ46の回転速度が落ち、逆にシンクロ機構47側の回転速度が高められる。そして、両者の回転速度が同期した頃、スリーブ48がさらに軸方向左側に移動して、クラッチギヤ46とかみ合い、メインシャフト41とメインドライブギヤ42との間がシンクロ機構47を介して連結される。これにより、メインシャフト41とメインドライブギヤ42とが同期回転する。   In the state shown in the figure, the sleeve 48 and the synchronizer key 49 are held in the neutral position by the pressing pin 52. At this time, the main drive gear 42 idles with respect to the main shaft 41. On the other hand, when the sleeve 48 is moved to the left side in the axial direction, for example, by the operation of the selector, the synchronizer key 49 is moved to the left side in the axial direction following the sleeve 48, and the synchronizer ring 51 is moved to the clutch gear 46. Press against the inclined surface of the cone. As a result, the rotational speed of the clutch gear 46 decreases, and conversely, the rotational speed on the synchro mechanism 47 side is increased. When the rotational speeds of the two are synchronized, the sleeve 48 further moves to the left in the axial direction, engages with the clutch gear 46, and the main shaft 41 and the main drive gear 42 are connected via the sync mechanism 47. . Thereby, the main shaft 41 and the main drive gear 42 rotate synchronously.

上述の各実施の形態の円すいころ軸受では、円すいころの転動面および端面ならびに内外輪の軌道面(さらに円すいころ軸受の内輪については大つば面)の少なくとも一つに、微小凹形状のくぼみをランダムに無数に形成して微小粗面化してある。この微小粗面は、くぼみを設けた面の面粗さパラメータRqniが0.4μm≦Rqni≦1.0μmの範囲内であり、かつ、Sk値が−1.6以下、好ましくは−4.9〜−1.6の範囲である。また、くぼみを設けた面の面粗さパラメータRymaxが0.4〜1.0である。さらに、面粗さを各表面の軸方向と円周方向のそれぞれで求めてパラメータRqniで表示したとき、軸方向面粗さRqni(L)と円周方向面粗さRqni(C)の比の値Rqni(L)/Rqni(C)が1.0以下になっている。このような微小粗面を得るための表面加工処理としては、特殊なバレル研摩によって、所望の仕上げ面を得ることができるが、ショット等を用いてもよい。   In the tapered roller bearing according to each of the above-described embodiments, a minute concave recess is formed on at least one of the rolling surface and end surface of the tapered roller and the raceway surface of the inner and outer rings (and the large flange surface for the inner ring of the tapered roller bearing). The surface is randomly roughened by countless numbers. This minute rough surface has a surface roughness parameter Rqni of a surface provided with a depression within a range of 0.4 μm ≦ Rqni ≦ 1.0 μm, and an Sk value of −1.6 or less, preferably −4.9. It is the range of -1.6. Further, the surface roughness parameter Rymax of the surface provided with the depression is 0.4 to 1.0. Further, when the surface roughness is obtained in the axial direction and the circumferential direction of each surface and displayed by the parameter Rqni, the ratio of the axial surface roughness Rqni (L) to the circumferential surface roughness Rqni (C) The value Rqni (L) / Rqni (C) is 1.0 or less. As the surface processing for obtaining such a fine rough surface, a desired finished surface can be obtained by special barrel polishing, but a shot or the like may be used.

円すいころ軸受の場合、図1(B)から理解できるように、運転中、円すいころ4の転動面が内輪2および外輪3の軌道と転がり接触するほか、円すいころ4の大端面が内輪2の大つば2cの内側面と滑り接触する。したがって、円すいころ4の場合、転動面のほか大端面にも微小凹形状のくぼみをランダムに無数に形成させてもよい。同様に、内輪2の場合、軌道面のほか大つば2cの内側面にも微小凹形状のくぼみをランダムに無数に形成させてもよい。   In the case of a tapered roller bearing, as can be understood from FIG. 1 (B), the rolling surface of the tapered roller 4 is in rolling contact with the races of the inner ring 2 and the outer ring 3 during operation, and the large end surface of the tapered roller 4 is the inner ring 2. In sliding contact with the inner surface of the large collar 2c. Therefore, in the case of the tapered roller 4, an infinite number of minute concave recesses may be randomly formed on the large end face in addition to the rolling face. Similarly, in the case of the inner ring 2, an infinite number of minute concave recesses may be formed on the inner surface of the large brim 2c in addition to the raceway surface.

パラメータRyni,Rymax,Sk,Rqniの測定方法、条件を例示するならば次のとおりである。なお、これらのパラメータで表される表面性状を、転がり軸受の転動体や軌道輪といった構成要素について測定する場合、一ヶ所の測定値でも代表値として信頼できるが、たとえば直径方向に対向する二ヶ所を測定するとよい。
パラメータ算出規格:JIS B 0601: 1994(サーフコム JIS 1994)
測定長さ:5λ
カットオフ種別:ガウシアン
測定倍率:×10000
測定速度:0.30mm/s
測定箇所:ころ中央部
測定数:2
測定装置:面粗さ測定器サーフコム1400A(東京精密株式会社)
The measurement method and conditions of the parameters Ryni, Rymax, Sk, Rqni are exemplified as follows. When measuring the surface properties represented by these parameters for components such as rolling elements and rolling rings of rolling bearings, a single measured value can be relied on as a representative value. Should be measured.
Parameter calculation standard: JIS B 0601: 1994 (Surfcom JIS 1994)
Measurement length: 5λ
Cut-off type: Gaussian Measurement magnification: × 10000
Measurement speed: 0.30 mm / s
Measurement location: Roller center measurement number: 2
Measuring device: Surface roughness measuring device Surfcom 1400A (Tokyo Seimitsu Co., Ltd.)

次に、円すいころの転動面を滑らかな面に仕上げた従来の円すいころ軸受A,B(比較例)と、円すいころの転動面に微小凹形状のくぼみをランダムに無数に形成した軸受C〜E(比較例)ならびに軸受F,G(実施例)について行った寿命試験について説明する(表1参照)。使用した軸受A〜Gはいずれも、外輪の外径が81mm、内輪の内径が45mmの円すいころ軸受である。なお、比較例の軸受A,Bにおけるころの転動面は、研削後にスーパーフィニッシュ(超仕上げ)を施して加工され、くぼみ加工を施してない。比較例の軸受C〜Eならびに実施例の軸受F,Gのころの転動面は、バレル研摩特殊加工によって微小凹形状のくぼみがランダムに無数に形成してある。なお、Rqni(L/C)については、ころ軸受C〜Gは1.0以下であり、ころ軸受A,Bは1.0前後である。   Next, the conventional tapered roller bearings A and B (comparative example) in which the rolling surface of the tapered roller is finished to a smooth surface, and a bearing in which an infinite number of minute concave recesses are formed on the rolling surface of the tapered roller. A life test conducted on C to E (comparative example) and bearings F and G (examples) will be described (see Table 1). The bearings A to G used are tapered roller bearings having an outer diameter of 81 mm and an inner diameter of 45 mm. In addition, the rolling surfaces of the rollers in the bearings A and B of the comparative example are processed by super finishing (superfinishing) after grinding, and are not subjected to indentation processing. The rolling surfaces of the rollers C to E of the comparative examples and the bearings F and G of the examples are formed with a myriad of indentations of minute concave shapes randomly by barrel polishing special processing. For Rqni (L / C), the roller bearings C to G are 1.0 or less, and the roller bearings A and B are about 1.0.

Figure 2007120547
Figure 2007120547

図13に示す2円筒試験機を使用してピーリング試験を行い、金属接触率を評価した。同図において、駆動側円筒32(D円筒:Driver)と従動側円筒34(F円筒:Follower)は各々の回転軸の片端に取り付けられ、2本の回転軸36,38はそれぞれプーリ40を介して別々のモータで駆動できるようになっている。D円筒32側の軸36をモータで駆動し、F円筒34はD円筒32に従動させる自由転がりにした。F円筒34は、表面処理に関して比較例と実施例の2種類を用意した。試験条件等詳細は表2のとおりである。   A peeling test was performed using a two-cylinder testing machine shown in FIG. 13 to evaluate the metal contact rate. In the figure, a driving side cylinder 32 (D cylinder: Driver) and a driven side cylinder 34 (F cylinder: Follower) are attached to one end of each rotating shaft, and the two rotating shafts 36 and 38 are respectively connected via pulleys 40. Can be driven by separate motors. The shaft 36 on the D cylinder 32 side was driven by a motor, and the F cylinder 34 was free-rolled to follow the D cylinder 32. For the F cylinder 34, two types of comparative examples and examples were prepared for the surface treatment. Details of the test conditions are shown in Table 2.

Figure 2007120547
Figure 2007120547

金属接触率の比較データを図14に示す。同図は横軸が経過時間、縦軸が金属接触率を表し、図14(A)は比較例の軸受におけるころの転動面の金属接触率を、図14(B)は実施例の軸受におけるころの転動面の金属接触率を、それぞれ示す。これらの図を対比すれば、比較例に比べて実施例では金属接触率が改善されていることを明瞭に確認できる。言い換えれば、油膜形成率(=100%−金属接触率)が、実施例の軸受の方が比較例の軸受に比べて、運転開始時で10%程度、試験終了時(2時間後)で2%程度、向上している。   Comparison data of metal contact ratio is shown in FIG. In this figure, the horizontal axis represents the elapsed time, the vertical axis represents the metal contact rate, FIG. 14A shows the metal contact rate of the rolling surface of the roller in the comparative example bearing, and FIG. 14B shows the bearing of the example. The metal contact ratios of the rolling surfaces of the rollers are shown respectively. Comparing these figures, it can be clearly confirmed that the metal contact ratio is improved in the embodiment as compared with the comparative example. In other words, the oil film formation rate (= 100% −metal contact rate) is about 10% at the start of operation and 2 at the end of the test (after 2 hours) in the bearing of the example compared to the bearing of the comparative example. % Improvement.

別の実施例として、図2に示した保持器を用いた円すいころ軸受(実施例1)と、図3に示した保持器を用いた円すいころ軸受(実施例2)を用意した。また、比較例として、ポケットに切欠きのない保持器を用いた円すいころ軸受(比較例1)と、図18(A)、(B)に示した保持器を用いた円すいころ軸受(比較例2,3)を用意した。なお、各円すいころ軸受は、寸法が外径100mm、内径45mm、幅27.25mmであり、ポケットの切欠き以外の部分は同じである。   As another example, a tapered roller bearing (Example 1) using the cage shown in FIG. 2 and a tapered roller bearing (Example 2) using the cage shown in FIG. 3 were prepared. Moreover, as a comparative example, a tapered roller bearing (Comparative Example 1) using a cage without a notch in the pocket and a tapered roller bearing (Comparative Example) using the cage shown in FIGS. 18 (A) and 18 (B). 2, 3) were prepared. Each tapered roller bearing has an outer diameter of 100 mm, an inner diameter of 45 mm, and a width of 27.25 mm, and the portions other than the pocket notch are the same.

実施例と比較例の円すいころ軸受について、縦型トルク試験機を用いたトルク測定試験を行った。試験条件は以下のとおりである。
アキシアル荷重:300kgf
回転速度:300〜2000rpm(100rpmピッチ)
潤滑条件:油浴潤滑(潤滑油:75W−90)
About the tapered roller bearing of an Example and a comparative example, the torque measurement test using the vertical torque tester was done. The test conditions are as follows.
Axial load: 300kgf
Rotational speed: 300-2000 rpm (100 rpm pitch)
Lubrication condition: oil bath lubrication (lubricating oil: 75W-90)

図15に試験結果を示す。同図のグラフの縦軸は、ポケットに切欠きのない保持器を用いた比較例1のトルクに対するトルク低減率を表す。ポケットの柱部中央部に切欠きを設けた比較例2や、ポケットの小環状部と大環状部に切欠きを設けた比較例3も、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを設けた実施例1は、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側の小環状部にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広くした実施例2は、さらに優れたトルク低減効果が認められる。   FIG. 15 shows the test results. The vertical axis of the graph in the figure represents the torque reduction rate with respect to the torque of Comparative Example 1 using a cage with no notch in the pocket. Although the comparative example 2 which provided the notch in the center part of the pocket | column part of a pocket and the comparative example 3 which provided the notch in the small annular part and the large annular part of a pocket also show a torque reduction effect, the narrow part of a pocket In Example 1 in which a notch is provided in the column on the side, a torque reduction effect superior to those of the comparative examples is recognized, and a notch on the narrow side is provided with a notch in the small annular portion on the narrow side. In Example 2 in which the total area of these is wider than that on the wide side, a further excellent torque reduction effect is recognized.

また、試験の最高回転速度である2000rpmにおけるトルク低減率は、実施例1が9.5%、実施例2が11.5%であり、デファレンシャルやトランスミッション等における高速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例2と比較例3の回転速度2000rpmにおけるトルク低減率は、それぞれ8.0%と6.5%である。   In addition, the torque reduction rate at 2000 rpm, which is the maximum rotation speed of the test, was 9.5% in Example 1 and 11.5% in Example 2, which was excellent even under high-speed rotation conditions such as in differentials and transmissions. A torque reduction effect can be obtained. In addition, the torque reduction rate in the rotational speed 2000rpm of the comparative example 2 and the comparative example 3 is 8.0% and 6.5%, respectively.

(A)はこの発明の実施の形態を示す円すいころ軸受の横断面図 (B)は同軸受の縦断面図(A) is a cross-sectional view of a tapered roller bearing showing an embodiment of the present invention (B) is a vertical cross-sectional view of the bearing 図1の円すいころ軸受における保持器の展開平面図Fig. 1 is a developed plan view of a cage in the tapered roller bearing of Fig. 1. 保持器の変形例を示す図2と類似の展開平面図An expanded plan view similar to FIG. 2 showing a modified example of the cage 保持器の別の変形例を示す図2と類似の展開平面図Fig. 2 is a developed plan view similar to Fig. 2 showing another modified example of the cage. 図1(B)の部分拡大図Partial enlarged view of FIG. 窓角が下限の円すいころ軸受の部分拡大横断面図Partial enlarged cross-sectional view of tapered roller bearing with lower window angle 窓角が上限の円すいころ軸受の部分拡大横断面図Partial enlarged cross-sectional view of tapered roller bearing with upper window angle 軸受の寿命試験の結果を示す図Diagram showing results of bearing life test 保持器の変形例を示す円すいころ軸受の部分拡大横断面図Partial enlarged cross-sectional view of a tapered roller bearing showing a modification of the cage 図9の部分拡大図Partial enlarged view of FIG. 一般的な自動車デファレンシャルの断面図Cross section of a typical automobile differential 一般的な自動車トランスミッションの断面図Cross section of a typical automobile transmission 2円筒試験機の全体概略図Overall schematic diagram of a 2-cylinder testing machine (A)は比較例の金属接触率を示すグラフ (B)は実施例の金属接触率を示すグラフ(A) is a graph showing the metal contact rate of the comparative example (B) is a graph showing the metal contact rate of the example トルク測定試験の結果を示すグラフGraph showing results of torque measurement test 従来の技術を示す円すいころ軸受の部分横断面図Partial cross-sectional view of tapered roller bearing showing conventional technology (A)は従来の技術を示す保持器の展開平面図 (B)は従来の技術を示す保持器の展開平面図(A) is a development plan view of a cage showing a conventional technique (B) is a development plan view of a cage showing a conventional technique 円すいころ軸受においてころピッチ径(PCD)を変化させたときの剛性比(−●−)およびトルク比(−○−)の変化を表した線図Diagram showing changes in stiffness ratio (-●-) and torque ratio (-○-) when changing the roller pitch diameter (PCD) in tapered roller bearings

符号の説明Explanation of symbols

1,1a,1b 円すいころ軸受
2 内輪
2a 軌道面
2b 小つば
2c 大つば
3 外輪
3a 軌道面
4 円すいころ
5 保持器
6 小環状部
7 大環状部
8 柱部
9 ポケット
10a,10b,10c 切欠き
11 つば
1, 1a, 1b Tapered roller bearing 2 Inner ring 2a Raceway surface 2b Small brim 2c Large brim 3 Outer ring 3a Raceway surface 4 Tapered roller 5 Cage 6 Small annular part 7 Large annular part 8 Pillar part 9 Pocket 10a, 10b, 10c Notch 11 collar

Claims (10)

内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とからなり、
ころ係数γが0.94を越え、
少なくとも前記円すいころの表面に、微小凹形状のくぼみをランダムに無数に設け、前記くぼみを設けた表面の面粗さパラメータRyniが0.4μm≦Ryni≦1.0μmの範囲内で、かつ、Sk値が−1.6以下であり、
前記保持器が、円すいころの小端面側で連なる小環状部と、円すいころの大端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となった台形状のポケットが形成してあり、狭幅側の柱部に切欠きが設けてある円すいころ軸受。
An inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage that holds the tapered rollers at a predetermined circumferential interval,
Roller coefficient γ exceeds 0.94,
At least the surface of the tapered roller is provided with an infinite number of minute concave recesses, and the surface roughness parameter Ryni of the surface provided with the recesses is within a range of 0.4 μm ≦ Ryni ≦ 1.0 μm, and Sk The value is -1.6 or less,
The retainer is composed of a small annular portion that is continuous on the small end face side of the tapered roller, a large annular portion that is continuous on the large end face side of the tapered roller, and a plurality of pillar portions that connect these annular portions, and adjacent pillar portions. A trapezoidal pocket is formed in which the small diameter side of the tapered roller is the narrow side and the large diameter side is the wide side, and there is a notch in the narrow column. Tapered roller bearings provided.
前記くぼみを設けた面の面粗さパラメータRymaxが0.4〜1.0の範囲内である請求項1の円すいころ軸受。   2. The tapered roller bearing according to claim 1, wherein a surface roughness parameter Rymax of the surface provided with the recess is in a range of 0.4 to 1.0. 前記くぼみを設けた面の面粗さをパラメータRqniで表示したとき、軸方向面粗さRqni(L)と円周方向面粗さRqni(C)との比の値Rqni(L)/Rqni(C)が1.0以下である請求項1または2の円すいころ軸受。   When the surface roughness of the surface provided with the depression is represented by the parameter Rqni, the ratio value Rqni (L) / Rqni (R) of the axial surface roughness Rqni (L) and the circumferential surface roughness Rqni (C) The tapered roller bearing according to claim 1 or 2, wherein C) is 1.0 or less. 前記保持器のポケットの窓角が55°以上80°以下である請求項1ないし3のいずれかの円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 3, wherein a window angle of a pocket of the cage is 55 ° or more and 80 ° or less. 前記保持器が機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックで形成してある請求項1ないし4のいずれかの円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 4, wherein the cage is made of an engineering plastic excellent in mechanical strength, oil resistance and heat resistance. ポケットの狭幅側の小環状部にも切欠きが設けてある請求項1ないし5のいずれかの円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 5, wherein a notch is also provided in a small annular portion on a narrow side of the pocket. ポケットの広幅側の少なくとも柱部に切欠きが設けてある請求項1ないし6のいずれかの円すいころ軸受。   The tapered roller bearing according to any one of claims 1 to 6, wherein a notch is provided in at least a column portion on the wide side of the pocket. ポケットの狭幅側に設けた切欠きの合計面積が、ポケットの広幅側に設けた切欠きの合計面積よりも広い請求項7の円すいころ軸受。   The tapered roller bearing according to claim 7, wherein the total area of the notches provided on the narrow side of the pocket is wider than the total area of the notches provided on the wide side of the pocket. 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向内向きのつばが設けてあり、前記つばの内径面と内輪の小つばの外径面との間のすきまの上限が小つばの外径寸法の2.0%である請求項1ないし8のいずれかの円すいころ軸受。   A radially inward flange facing the outer diameter surface of the small collar of the inner ring is provided on the outer side in the axial direction of the small annular portion of the cage, and the inner diameter surface of the collar and the outer diameter surface of the small collar of the inner ring The tapered roller bearing according to any one of claims 1 to 8, wherein the upper limit of the clearance between the two is 2.0% of the outer diameter of the small brim. 自走車両の動力伝達軸を支持する請求項1ないし9のいずれかの円すいころ軸受。
The tapered roller bearing according to any one of claims 1 to 9, which supports a power transmission shaft of a self-propelled vehicle.
JP2005310314A 2005-09-16 2005-10-25 Tapered roller bearing Expired - Fee Related JP4987280B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005310314A JP4987280B2 (en) 2005-10-25 2005-10-25 Tapered roller bearing
PCT/JP2006/318353 WO2007032470A1 (en) 2005-09-16 2006-09-15 Conical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310314A JP4987280B2 (en) 2005-10-25 2005-10-25 Tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2007120547A true JP2007120547A (en) 2007-05-17
JP4987280B2 JP4987280B2 (en) 2012-07-25

Family

ID=38144618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310314A Expired - Fee Related JP4987280B2 (en) 2005-09-16 2005-10-25 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4987280B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH0932858A (en) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd Conical roller bearing
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2005069421A (en) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd Conical roller bearing
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH0932858A (en) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd Conical roller bearing
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2005069421A (en) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd Conical roller bearing
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Also Published As

Publication number Publication date
JP4987280B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP2008038927A (en) Tapered roller bearing
EP1770294A1 (en) Tapered roller bearing
JP5005209B2 (en) Tapered roller bearing
JP2008051272A (en) Wheel bearing device
JP4975293B2 (en) Tapered roller bearings
JP2008051308A (en) Wheel bearing device
JP4987280B2 (en) Tapered roller bearing
JP4717574B2 (en) Tapered roller bearing
JP5031219B2 (en) Tapered roller bearing
JP4994638B2 (en) Tapered roller bearing
JP5031220B2 (en) Tapered roller bearing
JP4994630B2 (en) Tapered roller bearings
JP4975294B2 (en) Tapered roller bearings
JP2007120575A (en) Tapered roller bearing
JP4987278B2 (en) Tapered roller bearing for transmission
JP2007120648A (en) Tapered roller bearing
JP2007120577A (en) Tapered roller bearing
JP2008164105A (en) Tapered roller bearing
JP4987277B2 (en) Tapered roller bearings for differential
JP2007127219A (en) Tapered roller bearing for differential
JP2008196594A (en) Conical roller bearing
JP2008051220A (en) Wheel bearing device
JP2008051274A (en) Wheel bearing device
JP2007120650A (en) Roller bearing
JP2007127220A (en) Tapered roller bearing for transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees