JP2007119872A - Method for producing galvannealed steel sheet and galvannealed steel sheet - Google Patents

Method for producing galvannealed steel sheet and galvannealed steel sheet Download PDF

Info

Publication number
JP2007119872A
JP2007119872A JP2005315638A JP2005315638A JP2007119872A JP 2007119872 A JP2007119872 A JP 2007119872A JP 2005315638 A JP2005315638 A JP 2005315638A JP 2005315638 A JP2005315638 A JP 2005315638A JP 2007119872 A JP2007119872 A JP 2007119872A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide layer
galvanized steel
acidic solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005315638A
Other languages
Japanese (ja)
Other versions
JP4848737B2 (en
Inventor
Shinji Otsuka
真司 大塚
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Seiji Nakajima
清次 中島
Hiroyuki Masuoka
弘之 増岡
Wataru Tanimoto
亘 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005315638A priority Critical patent/JP4848737B2/en
Publication of JP2007119872A publication Critical patent/JP2007119872A/en
Application granted granted Critical
Publication of JP4848737B2 publication Critical patent/JP4848737B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably producing a galvannealed steel sheet having excellent slidability upon press forming, and exhibiting satisfactory degreasing properties in alkaline degreasing treatment performed before chemical conversion treatment, and to provide the galvannealed steel sheet. <P>SOLUTION: A steel sheet is galvanized, is galvannealed by a heating treatment, is subjected to skinpass rolling, and is made in contact with an acid solution. After the completion of the contact, the steel sheet is let to alone for 1 to 30 sec, and is washed with water, thus a Zn based oxide layer of ≥10 nm is formed on the surface of the galvanized steel sheet. Thus, the galvannealed steel sheet in which the average thickness of the oxide layer in the surface layer of the flat part in the plated steel sheet is ≥10 nm, and also, the oxide layer comprises Zn and P as essential components can be obtained. Further, the concentration of P in the acid solution is preferably 0.05 to 0.8 mol/l. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れたプレス成形性を有し、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定的に製造する方法及び合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a method for stably producing an alloyed hot-dip galvanized steel sheet having excellent press formability and exhibiting good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment, and alloyed hot-dip zinc. The present invention relates to a plated steel sheet.

合金化溶融亜鉛めっき鋼板は亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。   Alloyed hot-dip galvanized steel sheets are widely used in a wide range of fields, especially for automobile bodies, because they are superior in weldability and paintability compared to galvanized steel sheets. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に、界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a high Fe concentration film tends to form a hard and brittle Γ phase at the plating-steel sheet interface, and has a problem that a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. Therefore, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been taken.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a zinc-based plated steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、または加工性を向上させる技術を開示している。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability or workability by forming a film is disclosed.

特許文献4は、亜鉛系めっき鋼板の表面に、リン酸ナトリウム5〜60 g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または、上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術を開示している。   Patent Document 4 discloses that a plated steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6, or subjected to electrolytic treatment, or the above aqueous solution is applied to the surface of a zinc-based plated steel sheet. Discloses a technique for improving the press formability and chemical conversion treatment by forming an oxide film mainly composed of P oxide.

特許文献5は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術を開示している。   Patent Document 5 describes a technique for improving press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Is disclosed.

しかしながら、上記の先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。本発明者らは、その原因について詳細な検討を行った結果、合金化溶融めっき鋼板はAl酸化物が存在することにより、表面の反応性が劣ること、及び表面の凹凸が大きいことが原因であることを見出した。即ち、先行技術を合金化溶融めっき鋼板に適用した場合、表面の反応性が低いため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても、所定の皮膜を表面に形成することは困難であり、反応性の低い部分、すなわち、Al酸化物量が多い部分では膜厚が薄くなってしまう。また、表面の凹凸が大きいため、プレス成型時にプレス金型と直接接触するのは表面の凸部となるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。すなわち、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行った場合には凸部に潤滑効果を有する皮膜を効率的に形成することが困難であることが明らかとなった。   However, when the above prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. As a result of conducting detailed studies on the causes of the present invention, the alloyed hot-dip galvanized steel sheet is caused by the presence of Al oxide, the surface reactivity is inferior, and the surface unevenness is large. I found out. That is, when the prior art is applied to an alloyed hot-dip steel sheet, the surface reactivity is low, so that a predetermined film is formed on the surface even when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. are performed. Is difficult, and the film thickness becomes thin in a portion with low reactivity, that is, a portion with a large amount of Al oxide. In addition, since the surface irregularities are large, it is the surface protrusions that come into direct contact with the press die during press molding, but the sliding resistance at the contact portion between the thin part of the protrusions and the mold As a result, the effect of improving press formability cannot be sufficiently obtained. That is, it has been found that it is difficult to efficiently form a film having a lubricating effect on the convex portions when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, and the like are performed.

一般的に,合金化溶融亜鉛めっき鋼板は,溶融亜鉛めっき→合金化処理後に調質圧延が施されるが,この調質圧延時にロールとの接触によりつぶされ平坦化された部分は,周囲と比較すると凸部として存在する。プレス成形時に実際にプレス金型と接触するのは、この平坦部が主体となるため、この平坦部における摺動抵抗を小さくすれば、プレス成形性を安定して改善することができる。この平坦部における摺動抵抗を小さくするには、めっき層と金型との凝着を防ぐのが有効であり、そのためには、めっき層の表面に、硬質かつ高融点の皮膜を形成することが有効であり、このような酸化物層の形成には、酸性溶液と接触させてめっき表層に酸化物層を形成する方法が有効なことが明らかになった。   In general, galvannealed steel sheets are subjected to temper rolling after hot dip galvanizing → alloying treatment. By comparison, it exists as a convex portion. Since the flat part is the main component that actually contacts the press mold during press molding, the press formability can be stably improved by reducing the sliding resistance at the flat part. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. To that end, a hard and high melting point film should be formed on the surface of the plating layer. It was found that the method of forming an oxide layer on the plating surface layer by contacting with an acidic solution is effective for forming such an oxide layer.

特許文献6には、鋼板に溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施し、鉄−亜鉛合金めっき表面に平坦部を形成した後に、酸性溶液と接触させ、1〜30秒保持し、水洗することで、凸部に潤滑効果を有する皮膜を効率的に形成する合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
特開平1−319661号公報 特開昭53−60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2002−256448公報
In Patent Document 6, after hot-dip galvanizing on a steel sheet, alloyed by heat treatment, further subjected to temper rolling, and after forming a flat portion on the iron-zinc alloy plating surface, contact with an acidic solution, 1 to 30 seconds A method for producing an alloyed hot-dip galvanized steel sheet that efficiently forms a film having a lubricating effect on the convex portion by holding and washing with water has been proposed.
Japanese Patent Laid-Open No. 1-319661 Japanese Unexamined Patent Publication No. 53-60332 Japanese Patent Laid-Open No. 2-190483 Japanese Patent Laid-Open No. 4-88196 Japanese Patent Laid-Open No. 3-19093 JP 2002-256448

一般に、プレス後に施される塗装ラインでは、アルカリ系の脱脂液を用いて脱脂処理が施され、その後、化成処理→電着塗装が行われる。この時、亜鉛めっき鋼板の表面に酸化膜を形成させた鋼板では、脱脂液の流動がほとんど無く脱脂液が劣化している条件では脱脂性に劣る場合があることがわかった。   In general, in a coating line applied after pressing, a degreasing treatment is performed using an alkaline degreasing solution, and then a chemical conversion treatment → electrodeposition coating is performed. At this time, it was found that a steel sheet having an oxide film formed on the surface of a galvanized steel sheet may have poor degreasing properties under the condition that the degreasing liquid is hardly flowed and the degreasing liquid is degraded.

本発明は、かかる事情に鑑み、上記の脱脂性の課題を解決し、プレス成形時の摺動性に優れるとともに、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造する方法およびその合金化溶融亜鉛めっき鋼板を提供することを目的とする。特に、特許文献6に開示されている、鋼板に溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施し、鉄−亜鉛合金めっき表面に平坦部を形成した後に、酸性溶液と接触させ、1〜30秒保持し、水洗することで、凸部に潤滑効果を有する皮膜を効率的に形成する技術の脱脂性改善技術を提供することを目的とする。   In view of such circumstances, the present invention solves the above-mentioned problem of degreasing properties, is excellent in slidability during press molding, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. An object of the present invention is to provide a method for stably producing a galvannealed steel sheet and an alloyed galvanized steel sheet thereof. In particular, disclosed in Patent Document 6, after hot dip galvanizing on a steel sheet, alloyed by heat treatment, further subjected to temper rolling, and after forming a flat portion on the iron-zinc alloy plated surface, contact with an acidic solution An object of the present invention is to provide a technique for improving the degreasing property of a technique for efficiently forming a film having a lubricating effect on a convex portion by holding for 1-30 seconds and washing with water.

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、酸性溶液として、Pを含有させた水溶液を用いることで、Pを含有した酸化物層が鋼板の平坦部表層に形成し、その結果、良好な脱脂性が得られることを見出した。   The inventors of the present invention made further studies to solve the above problems. As a result, it was found that by using an aqueous solution containing P as the acidic solution, an oxide layer containing P was formed on the surface of the flat portion of the steel sheet, and as a result, good degreasing properties were obtained.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。
[1]鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記酸性溶液中にPを含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記酸性溶液中のP濃度が0.05〜0.8mol/lであることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]に記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板の平坦部表層における酸化物層の平均厚さが10nm以上であり、かつ、酸化物層がZnおよびPを必須成分として含むことを特徴とする合金化溶融亜鉛めっき鋼板。
[4]前記[3]において、前記酸化物層中のP量が、酸化物層を主として形成している酸化亜鉛との質量比(P/ZnO)で0.001〜0.030であることを特徴とする合金化溶融亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Hot-dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, temper rolling, contact with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water, A method for producing an alloyed hot-dip galvanized steel sheet, which comprises forming a Zn-based oxide layer of 10 nm or more on the surface of a plated steel sheet, wherein P is contained in the acidic solution.
[2] The method for producing an galvannealed steel sheet according to [1], wherein the P concentration in the acidic solution is 0.05 to 0.8 mol / l.
[3] A plated steel sheet produced by the method for producing an alloyed hot-dip galvanized steel sheet according to [1] or [2], wherein the average thickness of the oxide layer in the flat surface layer of the plated steel sheet is 10 nm or more An alloyed hot-dip galvanized steel sheet, wherein the oxide layer contains Zn and P as essential components.
[4] In the above [3], the amount of P in the oxide layer is 0.001 to 0.030 in mass ratio (P / ZnO) to zinc oxide mainly forming the oxide layer. Alloyed hot-dip galvanized steel sheet.

本発明によれば、プレス成形時の摺動抵抗が小さく、安定して優れたプレス成形性を示すとともに、化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造できる。   According to the present invention, the alloyed molten zinc has low sliding resistance during press molding, exhibits stable and excellent press formability, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. A plated steel sheet can be manufactured stably.

合金化溶融亜鉛めっき鋼板の製造の際には、鋼板に溶融亜鉛めっきを施した後に、さらに加熱し合金化処理が施されるが、この合金化処理時の鋼板−めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板表面には凹凸が存在する。しかしながら、合金化処理後には、通常、材質確保のために調質圧延が施され、この調質圧延時のロールとの接触により、めっき表面は平滑化され凹凸が緩和される。従って、プレス成型時には、金型がめっき表面の凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。   When producing an alloyed hot-dip galvanized steel sheet, the steel sheet is hot-dip galvanized and then further heated and alloyed. The difference in reactivity between the steel sheet and the plating interface during the alloying process. Thus, irregularities exist on the surface of the galvannealed steel sheet. However, after the alloying treatment, temper rolling is usually performed for securing the material, and the plating surface is smoothed and unevenness is alleviated by contact with the roll during temper rolling. Therefore, at the time of press molding, the force required for the mold to crush the convex portion on the plating surface is reduced, and the sliding characteristics can be improved.

このような合金化溶融亜鉛めっき鋼板表面が調質圧延などによりつぶされ平坦化された部分(以下、平坦部と称す)は、プレス成形時に金型が直接接触する部分であるため、金型との凝着を防止する硬質かつ高融点の物質が存在することが、摺動性の向上には重要である。この点では、表層に酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。   Such a galvannealed steel sheet surface is flattened and flattened by temper rolling or the like (hereinafter referred to as a flat part) because the mold is in direct contact with the mold during press molding. The presence of a hard and high-melting substance that prevents the adhesion of the resin is important for improving the slidability. In this respect, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.

実際のプレス成形時には、表層の酸化物は摩耗し、削り取られるため、金型と被加工材の接触面積が大きい場合には、十分に厚い酸化物層の存在が必要である。めっき表面には合金化処理時の加熱により酸化物層が形成されているものの、調質圧延時のロールとの接触により大部分が破壊され、新生面が露出しているため、良好な摺動性を得るためには調質圧延以前に厚い酸化物層を形成しなければならない。また、このことを考慮に入れて、調質圧延前に厚い酸化物層を形成させたとしても、調質圧延時に生じる酸化物層の破壊を避けることはできないため、平坦部の酸化物層が不均一に存在し、良好な摺動性を安定して得ることはできない。   During actual press molding, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, a sufficiently thick oxide layer must be present. Although an oxide layer is formed on the plating surface by heating during alloying treatment, most of it is destroyed by contact with the roll during temper rolling, and the new surface is exposed. In order to obtain this, a thick oxide layer must be formed before temper rolling. Taking this into consideration, even if a thick oxide layer is formed before temper rolling, it is impossible to avoid the destruction of the oxide layer that occurs during temper rolling. It exists unevenly and good slidability cannot be obtained stably.

このため、調質圧延が施された合金化溶融亜鉛めっき鋼板、特にめっき表面平坦部に、均一に酸化物層を形成する処理を施すと良好な摺動性を安定的に得ることができる。   For this reason, good slidability can be stably obtained by subjecting the alloyed hot-dip galvanized steel sheet that has been subjected to temper rolling, in particular to a flat surface of the plated surface, to a process that uniformly forms an oxide layer.

合金化溶融亜鉛めっき鋼板を酸性溶液と接触させ、その後、鋼板表面に酸性溶液の液膜が形成された状態で1〜30秒放置した後水洗、乾燥することによって、めっき表層に酸化物層を形成することができる。しかし、その後、防錆油が塗布されると、化成処理前のアルカリ脱脂工程において脱脂性に劣ることがある。   The alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution, and then left for 1 to 30 seconds in a state where a liquid film of the acidic solution is formed on the surface of the steel sheet, followed by washing with water and drying to form an oxide layer on the plating surface layer. Can be formed. However, if rust preventive oil is applied thereafter, the degreasing property may be inferior in the alkaline degreasing step before the chemical conversion treatment.

脱脂性に劣るメカニズムについては明確ではないが、次のように考えることができる。前述しためっき表層への酸化物層の形成は、酸性溶液の液膜中へのZnの溶解に伴うpH上昇による水酸化物の沈殿反応を利用しており、形成された酸化物層の一部あるいは全ては、Znの水酸化物であると考えられる。ここで水酸基(‐OH)は、酸化物の最表層に存在し、防錆油中の添加剤との吸着性を増加させることで、鋼板表面の親油性が上昇すると考えられる。一方、アルカリ脱脂液は、主として、防錆油をけん化させ液中に乳化・分散させるアルカリビルダーと、脱脂液の浸透性を向上させる界面活性剤から構成されている。そのため、表面の親油性が高い場合には乳化・分散に長時間を有する。この場合、液の対流が充分であれば、物理的に分散させることが可能であるが、液の対流が充分ではない、所謂静止状態に近い脱脂液では、防錆油成分がかなりの時間残存するため、以降の化成処理において化成ムラを生じる場合がある。   Although it is not clear about the mechanism inferior in degreasing property, it can be considered as follows. The formation of the oxide layer on the plating surface layer described above utilizes the precipitation reaction of hydroxide due to the pH increase associated with the dissolution of Zn in the acid solution liquid film, and a part of the formed oxide layer Or all are considered to be hydroxides of Zn. Here, the hydroxyl group (—OH) is present in the outermost layer of the oxide, and it is considered that the lipophilicity of the steel sheet surface is increased by increasing the adsorptivity with the additive in the rust preventive oil. On the other hand, the alkaline degreasing liquid is mainly composed of an alkali builder that saponifies the rust preventive oil and emulsifies and disperses it in the liquid, and a surfactant that improves the permeability of the degreasing liquid. Therefore, when the surface is highly lipophilic, it takes a long time to emulsify and disperse. In this case, if the convection of the liquid is sufficient, it can be physically dispersed, but the rust-preventing oil component remains for a considerable period of time in a so-called defatted liquid that is not sufficiently convective in the liquid. For this reason, there is a case where uneven formation occurs in the subsequent chemical conversion treatment.

よって、良好な脱脂性を得るためには、防錆油を塗布される前のめっき鋼板表面の水酸基と防錆油の添加剤との吸着を阻害することが重要である。この際に、酸化物層にPを含有させることで、鋼板表面の親油性を抑えることができ、脱脂性を改善することができる。このような脱脂性を改善するメカニズムについては明確ではないが、次のように考えることができる。すなわち、亜鉛の水酸化物は、酸化物層の中でも亜鉛が供給される鋼板側に形成し、Pはさらにその表層に存在すると考えられる。つまり、酸化物表面が微量のPで覆われる形で酸化皮膜を形成しており、水酸基と防錆油中の添加剤とが結合するのを防止していると考えられる。   Therefore, in order to obtain good degreasing properties, it is important to inhibit the adsorption of the hydroxyl group on the plated steel sheet surface before the rust preventive oil is applied and the additive of the rust preventive oil. At this time, the inclusion of P in the oxide layer can suppress the lipophilicity of the steel sheet surface and improve the degreasing property. Although the mechanism for improving the degreasing property is not clear, it can be considered as follows. That is, it is considered that zinc hydroxide is formed on the steel plate side to which zinc is supplied in the oxide layer, and P is further present in the surface layer. That is, it is considered that the oxide film is formed so that the oxide surface is covered with a small amount of P, thereby preventing the hydroxyl group and the additive in the rust preventive oil from being bonded.

以上より、本発明においては、鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する際に、前記酸性溶液中にPを含有することとする。これは本発明において、最も重要な要件である。   As described above, in the present invention, hot dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, subjected to temper rolling, brought into contact with an acidic solution, and left for 1 to 30 seconds after completion of the contact, and then washed with water. By doing so, when forming a Zn-based oxide layer of 10 nm or more on the surface of the galvanized steel sheet, the acidic solution contains P. This is the most important requirement in the present invention.

この時、酸性溶液中のP濃度は0.05mol/l以上0.8mol/l以下の範囲で含有するのが好ましい。0.05mol/l未満の濃度では、酸化物層中にPを含有させる効果が十分でないためである。より好ましくは0.15mol/l以上である。一方、0.8mol/lを超えた場合、効果が飽和し、薬液コストの増大を招くためだけでなく、後述するように酸化物層中の酸化亜鉛の比率が減少するために摺動特性が劣化するためである。   At this time, the P concentration in the acidic solution is preferably in the range of 0.05 mol / l or more and 0.8 mol / l or less. This is because if the concentration is less than 0.05 mol / l, the effect of containing P in the oxide layer is not sufficient. More preferably, it is 0.15 mol / l or more. On the other hand, when it exceeds 0.8 mol / l, the effect is saturated and not only the chemical cost increases, but also the ratio of zinc oxide in the oxide layer decreases as will be described later. It is to do.

酸性溶液にPを含有させるための化合物については、Pを含む化合物であれば特に限定されない。リン酸、縮合リン酸、亜リン酸、次亜リン酸、もしくはこれらの塩から選ばれる少なくとも一種のリン化合物を含むものであれば特に限定されるものではないが、具体例を挙げると、オルソリン酸、ピロリン酸、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、ピロリン酸ナトリウム、リン酸アルミニウム、次亜リン酸アンモニウム、亜リン酸アンモニウム、リン酸三アンモニウム、等が挙げられる。   About the compound for making P contain in an acidic solution, if it is a compound containing P, it will not specifically limit. Although it will not specifically limit if it contains at least 1 type of phosphorus compound chosen from phosphoric acid, condensed phosphoric acid, phosphorous acid, hypophosphorous acid, or these salts, For example, ortholine Acid, pyrophosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, pyrroline Examples thereof include sodium acid, aluminum phosphate, ammonium hypophosphite, ammonium phosphite, and triammonium phosphate.

以上より、本発明のめっき鋼板の平坦部表層にはZnおよびPを必須成分として含む10nm以上酸化物層が得られることになる。   From the above, an oxide layer of 10 nm or more containing Zn and P as essential components can be obtained on the flat surface layer of the plated steel sheet of the present invention.

なお、前記酸化物層中のP量は、酸化物層を主として形成している酸化亜鉛との質量比として、P/ZnOが0.001以上0.030以下の範囲で含有することが好ましい。0.001未満の場合、脱脂性を改善することが出来ない為である。一方、0.030を超えた場合であっても脱脂性を改善することは出来るが、プレス時の摺動特性に有効である酸化亜鉛の量が減少するため、プレス加工性が劣化するためである。   The P content in the oxide layer is preferably in the range of P1 / ZnO in the range of 0.001 or more and 0.030 or less as a mass ratio with respect to zinc oxide mainly forming the oxide layer. If it is less than 0.001, the degreasing property cannot be improved. On the other hand, the degreasing property can be improved even if it exceeds 0.030, but the amount of zinc oxide that is effective for the sliding property at the time of pressing decreases, so that the press workability deteriorates.

なお、ここで、酸化亜鉛の質量は以下のようにして求めることができる。まず、Arイオンスパッタリングと組み合わせたオージェ電子分光(AES)により酸化物層の平均厚さを求めた。この方法においては、所定厚さまでスパッタした後、測定対象の各元素のスペクトル強度から相対感度因子補正により、その深さでの組成を求めることができる。このうち、酸化物に起因する0の含有率は、ある深さで最大値となった後(これが最表層の場合もある)、減少し、一定となる。0の含有率が最大値より深い位置で、最大値と一定値との和の1/2となる深さを、酸化物の厚さとした。この酸化物の厚さに酸化亜鉛の比重5.47を乗じることにより、酸化亜鉛の質量とした。   Here, the mass of zinc oxide can be determined as follows. First, the average thickness of the oxide layer was determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering. In this method, after sputtering to a predetermined thickness, the composition at that depth can be obtained by correcting the relative sensitivity factor from the spectral intensity of each element to be measured. Among these, the content of 0 attributed to the oxide decreases and becomes constant after reaching a maximum value at a certain depth (this may be the outermost layer). At a position where the content of 0 is deeper than the maximum value, the depth that is 1/2 of the sum of the maximum value and the constant value is defined as the oxide thickness. By multiplying the thickness of this oxide by the specific gravity of zinc oxide 5.47, the mass of zinc oxide was obtained.

また、P量は蛍光X線を用いて、試料のPのカウント数と、既知のP質量の標準試料を作成し、標準試料のカウント数を測定して計算することにより、Pの質量を求めた。   In addition, the amount of P is obtained by using a fluorescent X-ray to calculate the P count of the sample and a standard sample having a known P mass, and by measuring and calculating the standard sample count. It was.

なお、本発明における酸化物層とは、Znを必須として含んだ酸化物及び/又は水酸化物などからなる層のことである。また、本発明に係る合金化溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn as an essential component. Moreover, regarding the production of the galvannealed steel sheet according to the present invention, Al must be added to the plating bath, but the additive element components other than Al are not particularly limited. That is, the effect of the present invention is not impaired even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、図1に示す構成の処理設備を用いて酸化物層を形成した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further subjected to temper rolling. Subsequently, an oxide layer was formed using a processing facility having the configuration shown in FIG.

まず、活性化処理槽1を空通しし、酸性溶液槽2で、酢酸ソーダ40g/l、硫酸第一鉄5g/lを含有するpH1.5の酸性溶液に、液温30℃で浸漬した後、絞りロール3で鋼板表面に液膜を形成した。この際、液膜量が約1g/m2となるように絞りロールの圧力の調整を行った。ここで、酸性溶液槽2においては、Pの濃度を変化させるために、リン酸、リン酸とリン酸ナトリウムの混合溶液、ピロリン酸ナトリウムの濃度を変えた溶液を用いた。
次いで、水洗槽5、6を空通しした後、湯洗槽7で50℃の温水を鋼板にスプレーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化物層を形成した。なお、比較のために、図1に示す構成の処理設備を全て空通しした無処理のものも作製した。
First, after activating the activation treatment tank 1 and immersing in an acidic solution tank 2 in an acidic solution of pH 1.5 containing sodium acetate 40 g / l and ferrous sulfate 5 g / l at a liquid temperature of 30 ° C. Then, a liquid film was formed on the surface of the steel sheet with the squeezing roll 3. At this time, the pressure of the squeeze roll was adjusted so that the liquid film amount was about 1 g / m 2 . Here, in the acidic solution tank 2, in order to change the concentration of P, phosphoric acid, a mixed solution of phosphoric acid and sodium phosphate, and a solution in which the concentration of sodium pyrophosphate was changed were used.
Next, the water washing tanks 5 and 6 were evacuated, and then hot water of 50 ° C. was sprayed on the steel sheet in the hot water washing tank 7 to be washed and dried with a dryer 8 to form an oxide layer on the plating surface. For comparison, an untreated one in which all the treatment facilities having the configuration shown in FIG.

次に、以上の様に作製した鋼板について、プレス成形性を簡易的に評価する手法として摩擦係数の測定、および化成処理前アルカリ脱脂性の評価を実施した。なお、摩擦係数の測定、化成処理前アルカリ脱脂性の評価は次のようにして行った。   Next, the steel plate produced as described above was subjected to measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion as a method for simply evaluating press formability. In addition, the measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion treatment were performed as follows.

(1)プレス成形性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
(1) Press formability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each specimen was measured as follows.

図2は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押上げることにより、ビード16による摩擦係数測定用試料11への押付荷重Nを測定するための第1ロードセル17が、スライドテーブル支持台15に取付けられている。上記押付力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル18が、スライドテーブル13の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトンR352Lを試料11の表面に塗布して試験を行った。   FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 11 collected from a test material is fixed to a sample table 12, and the sample table 12 is fixed to the upper surface of a slide table 13 that can move horizontally. On the lower surface of the slide table 13, there is provided a slide table support base 15 having a roller 14 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N on the friction coefficient measurement sample 11 by the bead 16 is applied. A first load cell 17 is attached to the slide table support base 15. A second load cell 18 for measuring a sliding resistance force F for moving the slide table 13 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 13. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 11 as a lubricating oil, and the test was performed.

図3、4は使用したビードの形状・寸法を示す概略斜視図である。ビード16の下面が試料11の表面に押し付けられた状態で摺動する。図3に示すビード16の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図4に示すビード16の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。   3 and 4 are schematic perspective views showing the shape and dimensions of the beads used. The bead 16 slides with its lower surface pressed against the surface of the sample 11. The bead 16 shown in FIG. 3 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is configured with a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 3 mm. The shape of the bead 16 shown in FIG. 4 is 10 mm wide, 6.9 mm long in the sliding direction of the sample, the lower part at both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead to which the sample is pressed is 10 mm wide and sliding. It has a plane with a direction length of 60 mm.

摩擦係数測定試験は下に示す2条件で行った。   The friction coefficient measurement test was conducted under the following two conditions.

[条件1]
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):100cm/minとした。
[Condition 1]
The bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 100 cm / min.

[条件2]
図4に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
[Condition 2]
The bead shown in FIG. 4 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 20 cm / min.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.

(2)化成処理前アルカリ脱脂性評価
各供試体に、防錆油を塗油し、垂直に24時間保持することで塗油量を約2g/m2と一定にした後、化成処理前のアルカリ脱脂液(日本パーカライジング製FC-L4460)に45℃で2分間浸漬した後、スプレー圧:1kg/cm2で30秒間水洗を実施した。その後、供試体を垂直に30秒間保持し、その際の水濡れ率(供試体全面積に対する水ハジキが発生していない面積の割合)を目視で判定した。ここで、完全に脱脂が完了した場合の水濡れ率は100%であり、脱脂不良が生じるに伴い水濡れ率は低下する。
なお、アルカリ脱脂液は、経時による処理液の劣化を考慮して、炭酸ガスを吹き込みpHを11.0程度に調整したものを使用し、供試体を浸漬する際には、脱脂液の攪拌・流動は行わず完全静止状態で実施した。
(2) Alkaline degreasing evaluation before chemical conversion treatment Rust preventive oil was applied to each specimen, and the oil coating amount was kept constant at about 2 g / m 2 by holding it vertically for 24 hours. After dipping in an alkaline degreasing solution (Nippon Parkerizing FC-L4460) at 45 ° C. for 2 minutes, it was washed with water at a spray pressure of 1 kg / cm 2 for 30 seconds. Thereafter, the specimen was held vertically for 30 seconds, and the water wetting rate at that time (the ratio of the area where water repelling did not occur relative to the total area of the specimen) was visually determined. Here, when the degreasing is completely completed, the water wetting rate is 100%, and the water wetting rate decreases as the degreasing failure occurs.
Note that the alkaline degreasing solution uses a solution in which carbon dioxide gas is blown and the pH is adjusted to about 11.0 in consideration of the deterioration of the treatment solution over time. The test was carried out in a completely stationary state.

以上より得られた試験結果を表1に示す。   The test results obtained from the above are shown in Table 1.

表1に示す試験結果から下記事項が明らかとなった。
(1)No.1の比較例では、酸性溶液による処理を行っていないため、平坦部に摺動性を向上させるのに十分な酸化膜が形成されず、摩擦係数が高い。
(2)No.2は、Pを含有していない酸性溶液で酸化物形成処理を行った比較例であり、No.1と比較すると摩擦係数が低くなっており摺動性は向上しているが、酸性溶液中にPが含有されていないため、アルカリ脱脂後の水濡れ率が非常に低く、アルカリ脱脂性が劣る。
(3)No.3〜7は、酸性溶液中にリン酸を加えた本発明例であり、P濃度が本発明で規定した範囲内にある場合(No.4〜7)は摺動性の向上が見られるとともに、アルカリ脱脂後の水濡れ率が全て100%であり、良好なアルカリ脱脂性を示している。一方、P濃度が低濃度側にはずれる場合(No.3)は、水濡れ率は100%までは改善されていないものの比較材よりも良好であり、アルカリ脱脂液が劣化していない状態では、実用的には充分な水濡れ性を示すと考えられる。
(4)No.8、9は酸性溶液槽2にリン酸とリン酸ナトリウムを加えた本発明例であり、酸化物層のP濃度比であるP/ZnOが本発明に規定した範囲内にある場合(No.8)、摺動性の向上が見られると共にアルカリ脱脂後の水濡れ率が全て100%であり、良好なアルカリ脱脂性を示している。一方、酸化物層のP濃度であるP/ZnOが高い側にはずれる場合(No.9)、摩擦係数が他の発明例と比べるとやや高いものの、比較例よりは良好である。アルカリ脱脂性は他の発明例同様に良好である。
(5)No.10〜13は酸性溶液槽2にピロリン酸を用いた本発明例であるが、溶液中のP濃度、酸化物層のP濃度比(P/ZnO)ともに本発明で規定した範囲内にあり、摺動性の向上と良好なアルカリ脱脂性を示している。
From the test results shown in Table 1, the following matters were clarified.
(1) No. In Comparative Example 1, since the treatment with the acidic solution is not performed, an oxide film sufficient to improve the slidability is not formed on the flat portion, and the friction coefficient is high.
(2) No. No. 2 is a comparative example in which an oxide formation treatment was performed with an acidic solution containing no P. Compared with 1, the friction coefficient is low and the slidability is improved. However, since P is not contained in the acidic solution, the water wetting rate after alkaline degreasing is very low and the alkaline degreasing property is inferior. .
(3) No. 3 to 7 are examples of the present invention in which phosphoric acid is added to an acidic solution, and when the P concentration is within the range defined by the present invention (No. 4 to 7), improvement in slidability is observed. The water wetting rate after alkaline degreasing is 100%, indicating good alkaline degreasing properties. On the other hand, when the P concentration deviates to the low concentration side (No. 3), the water wetting rate is not improved to 100% but better than the comparative material, and in the state where the alkaline degreasing liquid has not deteriorated, Practically, it is considered that sufficient water wettability is exhibited.
(4) No. Nos. 8 and 9 are examples of the present invention in which phosphoric acid and sodium phosphate are added to the acidic solution tank 2, and P / ZnO which is the P concentration ratio of the oxide layer is within the range defined in the present invention (No. 8) Improvement of slidability is observed, and water wettability after alkaline degreasing is 100%, indicating good alkaline degreasing properties. On the other hand, when P / ZnO, which is the P concentration of the oxide layer, deviates to the higher side (No. 9), the friction coefficient is slightly higher than that of the other invention examples, but is better than the comparative example. Alkaline degreasing properties are as good as other invention examples.
(5) No. 10 to 13 are examples of the present invention using pyrophosphoric acid in the acidic solution tank 2, but both the P concentration in the solution and the P concentration ratio of the oxide layer (P / ZnO) are within the range defined in the present invention. It shows improved slidability and good alkaline degreasing properties.

本発明の合金化溶融亜鉛めっき鋼板は、溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で適用できる。   Since the alloyed hot-dip galvanized steel sheet of the present invention is excellent in weldability and paintability, it can be applied in a wide range of fields mainly for automobile body applications.

実施例で使用した酸化物層形成処理設備の要部を示す図である。It is a figure which shows the principal part of the oxide layer formation processing equipment used in the Example. 摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図2中のビード形状・寸法を示す概略斜視図である。FIG. 3 is a schematic perspective view showing bead shapes and dimensions in FIG. 2. 図2中のビード形状・寸法を示す概略斜視図である。FIG. 3 is a schematic perspective view showing bead shapes and dimensions in FIG. 2.

符号の説明Explanation of symbols

1 活性化処理槽
2 酸性溶液槽
3 絞りロール
4 シャワー水洗装置
5 水洗槽
6 水洗槽
7 湯洗槽
8 ドライヤ
S 鋼板
11 摩擦係数測定用試料
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 ビード
17 第1ロードセル
18 第2ロードセル
19 レール
N 押付荷重
F 摺動抵抗力
1 Activation treatment tank
2 Acidic solution tank
3 Drawing roll
4 Shower washing machine
5 Flush tank
6 Flush tank
7 Hot water bath
8 Dryer S Steel plate
11 Friction coefficient measurement sample
12 Sample stage
13 Slide table
14 Laura
15 Slide table support
16 beads
17 First load cell
18 Second load cell
19 Rail N Pressing load F Sliding resistance

Claims (4)

鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記酸性溶液中にPを含有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   The surface of the galvanized steel sheet is subjected to hot dip galvanizing on the steel sheet, further alloyed by heat treatment, temper rolling, contacted with an acidic solution, left for 1 to 30 seconds after completion of contact, and then washed with water. A method for producing an alloyed hot-dip galvanized steel sheet, wherein P is contained in the acidic solution, wherein a zinc-based oxide layer having a thickness of 10 nm or more is formed in the acidic solution. 前記酸性溶液中のP濃度が0.05〜0.8mol/lであることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。   2. The method for producing an alloyed hot-dip galvanized steel sheet according to claim 1, wherein the P concentration in the acidic solution is 0.05 to 0.8 mol / l. 請求項1又は2に記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板の平坦部表層における酸化物層の平均厚さが10nm以上であり、かつ、酸化物層がZnおよびPを必須成分として含むことを特徴とする合金化溶融亜鉛めっき鋼板。   A plated steel sheet produced by the method for producing an alloyed hot-dip galvanized steel sheet according to claim 1 or 2, wherein the average thickness of the oxide layer in the flat portion surface layer of the plated steel sheet is 10 nm or more, and oxidation An alloyed hot-dip galvanized steel sheet characterized in that the material layer contains Zn and P as essential components. 前記酸化物層中のP量が、酸化物層を主として形成している酸化亜鉛との質量比(P/ZnO)で0.001〜0.030であることを特徴とする請求項3に記載の合金化溶融亜鉛めっき鋼板。   The alloying melt according to claim 3, wherein the amount of P in the oxide layer is 0.001 to 0.030 in mass ratio (P / ZnO) to zinc oxide mainly forming the oxide layer. Galvanized steel sheet.
JP2005315638A 2005-10-31 2005-10-31 Alloyed hot-dip galvanized steel sheet with excellent degreasing properties Expired - Fee Related JP4848737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315638A JP4848737B2 (en) 2005-10-31 2005-10-31 Alloyed hot-dip galvanized steel sheet with excellent degreasing properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315638A JP4848737B2 (en) 2005-10-31 2005-10-31 Alloyed hot-dip galvanized steel sheet with excellent degreasing properties

Publications (2)

Publication Number Publication Date
JP2007119872A true JP2007119872A (en) 2007-05-17
JP4848737B2 JP4848737B2 (en) 2011-12-28

Family

ID=38144017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315638A Expired - Fee Related JP4848737B2 (en) 2005-10-31 2005-10-31 Alloyed hot-dip galvanized steel sheet with excellent degreasing properties

Country Status (1)

Country Link
JP (1) JP4848737B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191317A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Method for manufacturing hot dip galvanized steel sheet having excellent degreasing property
JP2013007093A (en) * 2011-06-24 2013-01-10 Jfe Steel Corp Method for producing steel sheet excellent in chemical treatment property and galling resistance
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
US10351960B2 (en) 2014-02-27 2019-07-16 Jfe Steel Corporation Galvanized steel sheet and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296057A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Galvanized steel sheet excellent in pressability, chemical convertibility and degreasing liquid contamination resistance
JP2002266061A (en) * 2001-03-07 2002-09-18 Nkk Corp Galvannealed steel sheet
JP2003306781A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk Method of producing hot dip galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296057A (en) * 1995-04-26 1996-11-12 Nippon Steel Corp Galvanized steel sheet excellent in pressability, chemical convertibility and degreasing liquid contamination resistance
JP2002266061A (en) * 2001-03-07 2002-09-18 Nkk Corp Galvannealed steel sheet
JP2003306781A (en) * 2002-04-18 2003-10-31 Jfe Steel Kk Method of producing hot dip galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191317A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Method for manufacturing hot dip galvanized steel sheet having excellent degreasing property
JP2013007093A (en) * 2011-06-24 2013-01-10 Jfe Steel Corp Method for producing steel sheet excellent in chemical treatment property and galling resistance
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
JP5884207B2 (en) * 2014-02-27 2016-03-15 Jfeスチール株式会社 Zinc-based plated steel sheet and method for producing the same
CN106062249A (en) * 2014-02-27 2016-10-26 杰富意钢铁株式会社 Galvanized steel sheet and method for manufacturing the same
KR101878220B1 (en) * 2014-02-27 2018-07-13 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for producing the same
US10351960B2 (en) 2014-02-27 2019-07-16 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
US10392706B2 (en) 2014-02-27 2019-08-27 Jfe Steel Corporation Galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP4848737B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3608519B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4650128B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR100608556B1 (en) Method for Production of Galvannealed Sheet Steel
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP4655788B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4848737B2 (en) Alloyed hot-dip galvanized steel sheet with excellent degreasing properties
JP2009127077A (en) Method for production of hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP2007231375A (en) Galvannealed steel sheet
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2005139557A (en) Hot dip galvannealed steel sheet, and its production method
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
KR101360802B1 (en) Method for manufacturing galvanized steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP5124928B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5045120B2 (en) Alloy hot-dip galvanized steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP4911095B2 (en) Alloyed hot-dip galvanized steel sheet, method for producing the same, and zinc phosphate treatment liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4848737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees