JP2007115983A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2007115983A
JP2007115983A JP2005307371A JP2005307371A JP2007115983A JP 2007115983 A JP2007115983 A JP 2007115983A JP 2005307371 A JP2005307371 A JP 2005307371A JP 2005307371 A JP2005307371 A JP 2005307371A JP 2007115983 A JP2007115983 A JP 2007115983A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
resin insulating
metal layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005307371A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamanaka
浩之 山仲
Gen Ito
玄 伊藤
Atsushi Kanai
淳 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2005307371A priority Critical patent/JP2007115983A/en
Publication of JP2007115983A publication Critical patent/JP2007115983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To ensure that heat generation by elements is reduced, and cracks are less prone to occur to a solder 2 connecting mounted components, in a wiring board which has an electrical wiring on at least one side thereof and is mounted with a heater element 1. <P>SOLUTION: The total thickness of metal layers 3 on both sides of a first resin insulating layer 4 is set to be greater than that of the first resin insulating layer. The end edges of the metal layers 3 on the both sides of the first resin insulating layer 4 are positioned inside the periphery of the first resin insulating layer 4. Moreover, second resin insulating layers 5 with a reinforcing textile filled therein circumferentially contact the perimeters of the metal layers 3 on the both sides of the first resin insulating layer 4, has a thickness the same as or greater than those of the metal layers, and is added to the first resin insulating layer 4. The second resin insulating layer 5 on the side where the heater element 1 is mounted covers the metal layer 3 and contacts to an end edge of the heater element 1, and has a thickness the same as or greater than that of the heater element 1. Additionally, the coefficients of thermal expansion of both the first resin insulating layer 4 and second resin insulating layer 5 are set to be smaller than that of the metal layers 3 disposed on the both sides of the first resin insulating layer 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発熱素子を実装した構成においても放熱特性及び接続信頼性の高い配線板に関する。   The present invention relates to a wiring board having high heat dissipation characteristics and high connection reliability even in a configuration in which a heating element is mounted.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

その対策として、放熱性の高いセラミック基板やシート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層(銅板ないし銅箔等)を一体化した積層板を用意し、金属層を回路加工した配線板がある(例えば、特許文献1の段落番号0002の記載)。   As a countermeasure, prepare a laminated board in which a thick metal layer (copper plate or copper foil) is integrated with an insulating layer holding a thermosetting resin on a highly heat-dissipating ceramic substrate or sheet-like fiber base material. There is a circuit processed wiring board (for example, description in paragraph 0002 of Patent Document 1).

シート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層を一体化した配線板では、配線板に半田付によりパワー素子など発熱素子を実装すると、金属層の熱膨張・収縮の応力が半田部にかかり、半田部にクラックが発生しやすくなる。   In a wiring board in which a thick metal layer is integrated with an insulating layer holding a thermosetting resin on a sheet-like fiber base material, if a heating element such as a power element is mounted on the wiring board by soldering, the thermal expansion / contraction of the metal layer will be reduced. Stress is applied to the solder portion, and cracks are likely to occur in the solder portion.

特開2003−198103号公報JP 2003-198103 A

本発明が解決しようとする課題は、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有し、発熱素子を実装した配線板において、素子による発熱を緩和し実装部品を接続した半田部にクラックが起こりにくくすることである。   The problem to be solved by the present invention is composed of a first resin insulating layer reinforced with a sheet-like fiber base material and a metal layer integrated on both sides thereof, and at least one metal layer has a function of electric wiring. In the wiring board on which the heat generating element is mounted, the heat generated by the element is alleviated and cracks are less likely to occur in the solder portion to which the mounting component is connected.

上記課題を達成するために、本発明に係る配線板(請求項1)は、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する構成において、前記電気配線には、発熱素子が実装されている。第1樹脂絶縁層両面の金属層はその合計厚みが第1樹脂絶縁層の厚みより厚く設定される。そして、第1樹脂絶縁層両面の金属層ともその端縁は第1樹脂絶縁層の周縁より内側に位置する。さらに、第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、発熱素子実装側の前記第2樹脂絶縁層は、金属層を覆い且つ発熱素子端縁に接しており、発熱素子上面と同等以上の高さとなる厚みを有している。加えて、第1樹脂絶縁層と第2樹脂絶縁層ともに、熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層より小さいことを特徴とする。   In order to achieve the above object, a wiring board according to the present invention (Claim 1) is composed of a first resin insulating layer reinforced with a sheet-like fiber base and a metal layer integrated on both sides thereof, and at least one side. In the configuration in which the metal layer has a function of electric wiring, a heating element is mounted on the electric wiring. The total thickness of the metal layers on both sides of the first resin insulation layer is set to be greater than the thickness of the first resin insulation layer. And the edge of the metal layer of both surfaces of the 1st resin insulation layer is located inside the periphery of the 1st resin insulation layer. Further, the first resin insulation layer is provided with a reinforcing fiber-filled second resin insulation layer that is in contact with the entire circumference of the metal layer edges on both sides and has a thickness equal to or greater than the metal layer thickness. The second resin insulating layer covers the metal layer and is in contact with the edge of the heating element, and has a thickness that is equal to or higher than the upper surface of the heating element. In addition, both the first resin insulation layer and the second resin insulation layer are characterized in that the coefficient of thermal expansion is smaller than that of the metal layers disposed on both surfaces of the first resin insulation layer.

本発明に係る他の配線板(請求項2)は、上記の構成において、発熱素子実装側の前記第2樹脂絶縁層は、金属層を覆い且つ発熱素子を覆う高さとなる厚みを有し金属層および発熱素子を覆っていることを特徴とする。   In another wiring board according to the present invention (Claim 2), in the above-described configuration, the second resin insulating layer on the heating element mounting side has a thickness that covers the metal layer and is high enough to cover the heating element. The layer and the heating element are covered.

上記請求項1又は2において、好ましくは、樹脂絶縁層の熱伝導率が4W/m・K以上であり(請求項3)、電気配線の機能を有する金属層は厚み0.7mm以上の銅層である(請求項4)。   In the first or second aspect, preferably, the resin insulating layer has a thermal conductivity of 4 W / m · K or more (Claim 3), and the metal layer having a function of electric wiring is a copper layer having a thickness of 0.7 mm or more. (Claim 4).

電気配線の機能を有する金属層上にパワー素子等の発熱部品を実装する場合、当該パワー素子の熱膨張率は5ppm/℃程度である。一方、パワー素子直下の金属層の熱膨張率(α)は17〜30ppm/℃程度である。パワー素子の発熱と発熱停止による、冷熱サイクルを繰り返すと、両者の熱膨張率の差に起因して、両者を接合している半田部に応力が集中し、半田部にクラックが発生して接続信頼性が低下する。   When a heat-generating component such as a power element is mounted on a metal layer having a function of electrical wiring, the thermal expansion coefficient of the power element is about 5 ppm / ° C. On the other hand, the coefficient of thermal expansion (α) of the metal layer directly under the power element is about 17 to 30 ppm / ° C. If the heat cycle of the power element is repeated and the heat generation is stopped, stress is concentrated on the solder part that joins the two due to the difference in the coefficient of thermal expansion between them, and the solder part is cracked and connected. Reliability decreases.

しかし、本発明に係る配線板(請求項1、2)においては、第1樹脂絶縁層と第2樹脂絶縁層の熱膨張率が金属層の熱膨張率より小さく、金属層は、その端縁全周が金属層の厚みと同等以上の第2樹脂絶縁層に接し規制されている。これによって、金属層の平面方向の熱膨張は抑えられることになる。発熱素子実装側の第2樹脂絶縁層は、金属層全体を覆い且つ発熱素子端縁にまで達しているので、金属層の熱膨張抑制効果は一層大きくなっている。また、第1樹脂絶縁層は、その両面の金属層の合計厚みより薄いので、第1樹脂絶縁層で熱伝導が阻害されることが少なく、第1樹脂絶縁層を介した両面の金属層の熱伝導性は確保され、金属層自体の昇温も抑えられる。このようにして、金属層の温度上昇による膨張が抑制され、半田部にかかる応力が低減される。
さらに、樹脂絶縁層を熱伝導率4W/m・K以上とし(請求項3)、金属層の厚みを厚く設定する(請求項4)ことにより放熱効果は大きくなる。
However, in the wiring board according to the present invention (Claims 1 and 2), the thermal expansion coefficient of the first resin insulating layer and the second resin insulating layer is smaller than the thermal expansion coefficient of the metal layer, and the metal layer has its edge. The entire circumference is regulated by being in contact with a second resin insulation layer equal to or greater than the thickness of the metal layer. Thereby, the thermal expansion in the plane direction of the metal layer is suppressed. Since the second resin insulation layer on the heat generating element mounting side covers the entire metal layer and reaches the edge of the heat generating element, the effect of suppressing the thermal expansion of the metal layer is further increased. In addition, since the first resin insulation layer is thinner than the total thickness of the metal layers on both sides, the first resin insulation layer is less likely to inhibit thermal conduction, and the metal layers on both sides through the first resin insulation layer Thermal conductivity is ensured, and the temperature rise of the metal layer itself is suppressed. In this way, the expansion due to the temperature rise of the metal layer is suppressed, and the stress applied to the solder portion is reduced.
Furthermore, by setting the resin insulating layer to have a thermal conductivity of 4 W / m · K or more (Claim 3) and setting the thickness of the metal layer to be thick (Claim 4), the heat dissipation effect is increased.

請求項1に係る発明を実施する具体的な形態は、例えば、図1(a)に示すような構成が望ましい。シート状繊維基材で補強された第1樹脂絶縁層4の両面に金属層(例えば、銅層)3が一体化され、少なくとも片面の金属層は電気配線の機能を有する。電気配線の機能を有する金属層には、発熱素子1が半田2により実装される。第1樹脂絶縁層4両面に一体化した金属層3は、その合計厚みが第1樹脂絶縁層4の厚みより厚く設定されている。また、これら金属層3の端縁は、第1樹脂絶縁層4の周縁より内側に位置している。そして、第1樹脂絶縁層4には、その両面の金属層3端縁全周に接し厚みが金属層3の厚みと同等以上である補強繊維充填第2樹脂絶縁層5が付加されている。ここで、特に、発熱素子1実装側の第2樹脂絶縁層5は、金属層3を覆い且つ発熱素子1端縁に接しており、発熱素子上面と同等以上の高さとなる厚みを有している。第1樹脂絶縁層4と第2樹脂絶縁層5の双方の熱膨張率は、金属層3の熱膨張率より小さく設定してある。   The specific form for carrying out the invention according to claim 1 is preferably, for example, a configuration as shown in FIG. Metal layers (for example, copper layers) 3 are integrated on both surfaces of the first resin insulating layer 4 reinforced with the sheet-like fiber base material, and at least one metal layer has a function of electric wiring. The heating element 1 is mounted with solder 2 on the metal layer having the function of electrical wiring. The total thickness of the metal layer 3 integrated on both surfaces of the first resin insulation layer 4 is set to be greater than the thickness of the first resin insulation layer 4. Further, the end edges of these metal layers 3 are located inside the periphery of the first resin insulation layer 4. The first resin insulation layer 4 is provided with a reinforcing fiber-filled second resin insulation layer 5 that is in contact with the entire circumference of the edges of the metal layers 3 on both sides and has a thickness equal to or greater than the thickness of the metal layer 3. Here, in particular, the second resin insulation layer 5 on the heating element 1 mounting side covers the metal layer 3 and is in contact with the edge of the heating element 1 and has a thickness that is equal to or higher than the upper surface of the heating element. Yes. The thermal expansion coefficient of both the first resin insulating layer 4 and the second resin insulating layer 5 is set to be smaller than the thermal expansion coefficient of the metal layer 3.

上記のような構成は、まず、シート状繊維基材に熱硬化性樹脂を保持したプリプレグ層の両面に金属層を配置して加熱加圧成形により一体化する。プリプレグ層は、前記成形により第1樹脂絶縁層4となる。そして、金属層3の端縁が第1樹脂絶縁層4の周縁より内側に位置するように、金属層を加工して両面金属層付き板状体とする。この加工は、金属層が電気配線の機能を有するように加工することを含む。尚、予め所定形状に加工した金属層を前記プリプレグ層の両面に配置し、加熱加圧成形により一体化して、両面金属層付き板状体としてもよい。
次に、前記の両面金属層付き板状体の両面にプリプレグ層を重ね、加熱加圧成形により一体化して第2樹脂絶縁層5を形成する。金属層3上の第2樹脂絶縁層5を研磨又はざぐり加工にて除去し、金属層3を露出させる。前記研磨又はざぐり加工において、発熱素子1を実装する側の第2樹脂絶縁層5は、実装領域のみに対応する第2樹脂絶縁層を除去する。その反対側の面については、金属層3の端縁全周が第2樹脂絶縁層5に接した状態となるように、前記研磨又はざぐり加工を行なう。このようにして、第1樹脂絶縁層4に第2樹脂絶縁層5が付加された状態とする。
そして、所定の発熱素子1を、上記第2樹脂絶縁層5を除去した実装領域に、半田リフロー等の手段により実装する。
第2樹脂絶縁層の付加は、金属層3に対面する領域を予め除去したプリプレグ層を両面金属層付き板状体に重ねて加熱加圧成形により一体化すれば、前記の研磨又はざぐり加工の工程を省略又は簡略化することができる。
In the configuration as described above, first, metal layers are arranged on both sides of a prepreg layer in which a thermosetting resin is held on a sheet-like fiber base material, and are integrated by heating and pressing. The prepreg layer becomes the first resin insulating layer 4 by the molding. Then, the metal layer is processed so that the edge of the metal layer 3 is located inside the periphery of the first resin insulating layer 4 to obtain a plate-like body with a double-sided metal layer. This processing includes processing so that the metal layer has a function of electric wiring. In addition, it is good also as a plate-like body with a double-sided metal layer by arrange | positioning the metal layer previously processed into the predetermined shape on both surfaces of the said prepreg layer, and integrating by heat press molding.
Next, a prepreg layer is stacked on both sides of the plate-like body with the double-sided metal layer, and is integrated by heating and pressing to form the second resin insulating layer 5. The second resin insulating layer 5 on the metal layer 3 is removed by polishing or counterboring to expose the metal layer 3. In the polishing or counterboring process, the second resin insulating layer 5 on the side where the heating element 1 is mounted removes the second resin insulating layer corresponding only to the mounting region. The opposite surface is subjected to the polishing or counterboring process so that the entire edge of the metal layer 3 is in contact with the second resin insulating layer 5. In this way, the second resin insulation layer 5 is added to the first resin insulation layer 4.
Then, the predetermined heating element 1 is mounted on the mounting region from which the second resin insulating layer 5 is removed by means such as solder reflow.
The addition of the second resin insulation layer can be achieved by superposing the prepreg layer from which the region facing the metal layer 3 has been removed in advance on a plate-like body with double-sided metal layers and integrating them by heat and pressure molding. The process can be omitted or simplified.

請求項2に係る発明を実施する具体的な形態は、例えば、図1(b)に示すような構成である。図1(a)を参照して説明した両面金属層付き板状体と同様の両面金属層付き板状体に発熱素子1を実装した後、第1樹脂絶縁層4に第2樹脂絶縁層5を付加する。この付加は、発熱素子1実装側においては、第2樹脂絶縁層5が金属層3を覆い且つ発熱素子1を覆う高さとなる厚みを有し金属層および発熱素子を覆った構成とする。その反対側の面については、第2樹脂絶縁層5の厚みを金属層3の厚みと同等とし、金属層3の上面全体が露出するようにする。
このような構成は、発熱素子1を実装した両面金属層付き板状体を補強繊維充填熱硬化性樹脂で封止することにより達成できる。
A specific form for carrying out the invention according to claim 2 is, for example, a configuration as shown in FIG. After the heating element 1 is mounted on a plate with a double-sided metal layer similar to the plate with a double-sided metal layer described with reference to FIG. 1A, the second resin insulation layer 5 is formed on the first resin insulation layer 4. Is added. This addition is configured such that, on the heating element 1 mounting side, the second resin insulating layer 5 has a height that covers the metal layer 3 and covers the heating element 1 and covers the metal layer and the heating element. For the opposite surface, the thickness of the second resin insulation layer 5 is made equal to the thickness of the metal layer 3 so that the entire upper surface of the metal layer 3 is exposed.
Such a configuration can be achieved by sealing the plate with double-sided metal layer on which the heating element 1 is mounted with a reinforcing fiber-filled thermosetting resin.

上記発明を実施する具体的な形態は、図1(a)(b)いずれの場合においても、第1樹脂絶縁層4の厚みは、その両面の金属層3の合計厚みよりも薄いので、第1樹脂絶縁層4に金属層3を押し込むことによっては、金属層3の端縁周囲にその厚み以上に樹脂絶縁層が接した状態とすることはできない。第1樹脂絶縁層4に第2樹脂絶縁層5を付加することは必須の事項となる。   1A and 1B, the specific form of carrying out the invention is that the thickness of the first resin insulating layer 4 is thinner than the total thickness of the metal layers 3 on both sides. 1 By pressing the metal layer 3 into the resin insulating layer 4, the resin insulating layer cannot be brought into contact with the periphery of the edge of the metal layer 3 beyond its thickness. Adding the second resin insulation layer 5 to the first resin insulation layer 4 is an essential matter.

上記プリプレグを構成するシート状繊維基材は、ガラス繊維や有機繊維で構成された織布や不織布である。樹脂絶縁層の熱膨張率を小さくするためには、アラミド繊維やアルミナ繊維からなるシート状繊維基材が好適である。請求項3において、第1樹脂絶縁層は、好ましくは、熱伝導率が4W/m・K以上である。前記シート状繊維基材に含浸して樹脂絶縁層を構成するための熱硬化性樹脂は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合には、例えば、以下のような樹脂組成を採用する。
すなわち、無機充填材を含有し(式1)で示す分子構造のエポキシ樹脂モノマを配合したエポキシ樹脂組成物を採用する。前記無機充填材は、熱伝導率20W/m・K以上であって、樹脂固形分100体積部に対し10〜100体積部の量で絶縁層中に存在するようにする。
The sheet-like fiber base material constituting the prepreg is a woven fabric or a nonwoven fabric made of glass fiber or organic fiber. In order to reduce the thermal expansion coefficient of the resin insulating layer, a sheet-like fiber base material made of aramid fiber or alumina fiber is suitable. In Claim 3, Preferably, the first resin insulation layer has a thermal conductivity of 4 W / m · K or more. The thermosetting resin for impregnating the sheet-like fiber base material to form the resin insulating layer is, for example, as follows when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Adopt resin composition.
That is, an epoxy resin composition containing an inorganic filler and containing an epoxy resin monomer having a molecular structure represented by (Formula 1) is employed. The inorganic filler has a thermal conductivity of 20 W / m · K or more and is present in the insulating layer in an amount of 10 to 100 parts by volume with respect to 100 parts by volume of the resin solid content.

Figure 2007115983
Figure 2007115983

上記(式1)で示す分子構造のエポキシ樹脂モノマは、ビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ化合物全般である。エポキシ樹脂モノマの硬化反応を進めるために、硬化剤を配合する。硬化剤は、例えば、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体、フェノール類又はその化合物や重合体などである。また、エポキシ樹脂モノマと硬化剤の反応を促進するために、硬化促進剤を使用することができる。硬化促進剤は、例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などである。   The epoxy resin monomers having the molecular structure represented by the above (formula 1) are all epoxy compounds having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule. In order to advance the curing reaction of the epoxy resin monomer, a curing agent is blended. Examples of the curing agent include amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, phenols or compounds and polymers thereof, and the like. Moreover, in order to accelerate | stimulate reaction of an epoxy resin monomer and a hardening | curing agent, a hardening accelerator can be used. Examples of the curing accelerator include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof, and the like.

上記硬化剤や硬化促進剤を配合したエポキシ樹脂組成物に配合する熱伝導率20W/m・K以上の無機充填材は、金属酸化物又は水酸化物あるいは無機セラミックス、その他の充填材であり、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等である。これら無機充填材は2種類以上を併用してもよい。
無機充填材は、樹脂固形分100体積部に対し10〜100体積部の量となるように配合する。前記無機充填材の熱伝導率と配合量の下限値は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合に必要である。また、エポキシ樹脂組成物に配合する無機充填材が少ないと、無機充填材をエポキシ樹脂組成物中に均一に分散させることが難しくなる。熱伝導性の確保と共にこの点においても、無機充填材配合量の下限値の規定は重要である。一方、無機充填材の配合量を多くすると、エポキシ樹脂組成物の粘性が増大して取り扱いが難しくなるので、無機充填材配合量の上限値は、このような観点から規定する。
The inorganic filler having a thermal conductivity of 20 W / m · K or more blended in the epoxy resin composition blended with the curing agent or curing accelerator is a metal oxide, hydroxide, inorganic ceramic, or other filler. For example, inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, fibrous fillers such as synthetic fibers and ceramic fibers, colorants, etc. is there. Two or more of these inorganic fillers may be used in combination.
An inorganic filler is mix | blended so that it may become the quantity of 10-100 volume parts with respect to 100 volume parts of resin solid content. The lower limit values of the thermal conductivity and blending amount of the inorganic filler are necessary when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Moreover, when there are few inorganic fillers mix | blended with an epoxy resin composition, it will become difficult to disperse | distribute an inorganic filler uniformly in an epoxy resin composition. In this respect as well as ensuring thermal conductivity, it is important to define the lower limit value of the inorganic filler content. On the other hand, when the blending amount of the inorganic filler is increased, the viscosity of the epoxy resin composition is increased and the handling becomes difficult. Therefore, the upper limit value of the blending amount of the inorganic filler is defined from this viewpoint.

尚、無機充填材の熱伝導率が30W/m・K以上であれば、樹脂絶縁層の熱伝導率をさらに高くできるので好ましい。また、無機充填材は、その形状が、粉末(塊状、球状)、短繊維、長繊維等いずれであってもよいが、平板状のものを選定すると、高熱伝導率の無機充填材自身が樹脂中で積み重なった状態で存在することになり、樹脂絶縁層の厚み方向の熱伝導性をさらに高くできるので好ましい。上記エポキシ樹脂組成物には、そのほか必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を配合することができる。   In addition, it is preferable if the thermal conductivity of the inorganic filler is 30 W / m · K or more because the thermal conductivity of the resin insulating layer can be further increased. In addition, the inorganic filler may have any shape such as powder (bulk, sphere), short fiber, long fiber, etc., but when a flat plate is selected, the inorganic filler itself with high thermal conductivity is resin. It exists in the state which accumulated in the inside, and since the heat conductivity of the thickness direction of a resin insulating layer can be made still higher, it is preferable. In addition to the above epoxy resin composition, a flame retardant, a diluent, a plasticizer, a coupling agent, and the like can be blended as necessary.

樹脂絶縁層の形成は、上記エポキシ樹脂組成物を必要に応じ溶剤に希釈してワニスを調製しこれをシート状繊維基材に含浸し、加熱乾燥して半硬化状態にしたプリプレグを準備する。そして、これらを加熱加圧成形して樹脂絶縁層とする。前記加熱加圧成形に当っては、金属層を前記プリプレグ層の両面に配置し、これらを加熱加圧成形により一体化する。金属層は、電解金属、圧延金属のいずれであってもよい。
エポキシ樹脂組成物を溶剤に希釈してワニスを調製する場合、溶剤の配合・使用が、エポキシ樹脂硬化物の熱伝導性に影響を与えることはない。
The resin insulation layer is formed by preparing a prepreg in which the epoxy resin composition is diluted with a solvent as necessary to prepare a varnish, impregnating the varnish into a sheet-like fiber base material, and drying by heating to a semi-cured state. And these are heat-press-molded and it is set as a resin insulating layer. In the heat and pressure molding, metal layers are arranged on both surfaces of the prepreg layer, and these are integrated by heat and pressure molding. The metal layer may be either electrolytic metal or rolled metal.
When the varnish is prepared by diluting the epoxy resin composition in a solvent, the blending and use of the solvent does not affect the thermal conductivity of the cured epoxy resin.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1
エポキシ樹脂モノマ成分としてビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。前記「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式1)において、R=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)22部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスにし、さらに無機充填材として窒化ホウ素(電気化学工業製「GP」,平均粒子径:8μm,熱伝導率60W/m・K,粒子形状:平板状)107部(樹脂固形分100体積部に対し50体積部に相当)を加えて混練し、エポキシ樹脂ワニスを調製した。
このエポキシ樹脂ワニスを、厚み50マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.7mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、第1樹脂絶縁層の両面に金属層(銅層)を一体化した厚み1.5mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。
Example 1
As an epoxy resin monomer component, prepare 100 parts of an epoxy resin monomer having a biphenyl skeleton (Japan Epoxy Resin “YL6121H”, epoxy equivalent 175), and dissolve it at 100 ° C. in 100 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.). , Returned to room temperature. The "YL6121H" the molecular structure described above in (Equation 1), R = -CH 3, n = 0.1 in which the epoxy resin monomer and molecular structural formula (Formula 1), R = -H, n = 0.1 An epoxy resin monomer containing an equimolar amount of an epoxy resin monomer of 0.1.
As a curing agent, 22 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) is prepared and dissolved in 100 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. And returned to room temperature.
The above epoxy resin monomer solution and curing agent solution are mixed and stirred to form a uniform varnish, and boron nitride (“GP” manufactured by Denki Kagaku Kogyo, average particle size: 8 μm, thermal conductivity 60 W / m K, particle shape: flat plate shape) 107 parts (equivalent to 50 volume parts with respect to 100 volume parts of resin solid content) were added and kneaded to prepare an epoxy resin varnish.
The epoxy resin varnish was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 micrometers and dried by heating to obtain a prepreg. A metal layer (copper layer) with a thickness of 0.7 mm having a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of this prepreg, and is integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.5 mm in which metal layers (copper layers) were integrated on both surfaces of the first resin insulation layer was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み120マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)の所定形状に合わせて金属層対応部分をパンチング加工で除去してから、配線板の両面に7枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
離型フィルムを剥がして、パワー素子実装領域において、金属層(銅層)が露出するまで第2樹脂絶縁層をざぐり加工により除去した。そして、第2樹脂絶縁層を除去した領域に発熱素子(セラミックヒータチップ)を半田付により実装した。第1樹脂絶縁層に付加した第2樹脂絶縁層は、発熱素子実装側では発熱素子の端縁周囲に当接し発熱素子と同じ高さとし、反対側では、金属層(銅層)と同じ高さで金属層端縁周囲に当接する構成とした。これは、図1(a)に示す構成に相当するものである。第1及び第2樹脂絶縁層の熱膨張率は、12ppm/℃である。
Next, the epoxy resin varnish was impregnated into an aramid fiber nonwoven fabric having a thickness of 120 micrometers and dried by heating to obtain a prepreg. The prepreg is made to match the predetermined shape of the double-sided metal layer (copper layer) and the metal layer corresponding part is removed by punching. Then, 7 pieces are arranged on both sides of the wiring board and sandwiched between release films, and the temperature is 175 ° C. The second resin insulation layer was integrated by heating and pressing under a condition of 4 MPa for 90 minutes.
The release film was peeled off, and the second resin insulating layer was removed by spotting until the metal layer (copper layer) was exposed in the power element mounting region. Then, a heating element (ceramic heater chip) was mounted on the region from which the second resin insulating layer was removed by soldering. The second resin insulation layer added to the first resin insulation layer contacts the periphery of the edge of the heating element on the heating element mounting side and has the same height as the heating element, and on the opposite side, the same height as the metal layer (copper layer). In this configuration, the metal layer abuts around the edge of the metal layer. This corresponds to the configuration shown in FIG. The thermal expansion coefficient of the first and second resin insulation layers is 12 ppm / ° C.

実施例1で得た配線板について素子発熱温度、そり量および半田接続信頼性を測定した結果を、使用した銅層厚みと共に表1にまとめて示す。測定は、以下に示す方法による。
素子発熱温度:構成体を放熱板、冷却装置へ搭載し、実装したセラミックヒータチップに80Wの電力を入力した際の素子の温度を測定した。
そり量:構成体を、105℃〜−40℃の範囲で冷熱サイクル試験を行ない、1000サイクル後の平面に対する浮き上がり量をそり量として測定した。
半田接続信頼性:構成体を、105℃〜−40℃の範囲で冷熱サイクル試験を行ない、1000サイクル後の半田部クラック発生の有無を調べた。
The results of measuring the element heat generation temperature, warpage amount and solder connection reliability of the wiring board obtained in Example 1 are shown together in Table 1 together with the copper layer thickness used. The measurement is based on the method shown below.
Element heating temperature: The component was mounted on a heat sink and a cooling device, and the temperature of the element when 80 W of power was input to the mounted ceramic heater chip was measured.
Warpage amount: The structural body was subjected to a thermal cycle test in the range of 105 ° C. to −40 ° C., and the amount of lifting with respect to the plane after 1000 cycles was measured as the amount of warpage.
Solder connection reliability: The structural body was subjected to a cooling / heating cycle test in the range of 105 ° C. to −40 ° C., and the presence or absence of occurrence of solder cracks after 1000 cycles was examined.

実施例2
実施例1のエポキシ樹脂ワニスを、厚み50マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.7mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、厚み1.5mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とし、一方の面に発熱素子(セラミックヒータチップ)を半田付により実装した。
次に、上記エポキシ樹脂ワニスを、厚み120マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)の所定形状に合わせて金属層対応部分をパンチング加工で除去してから、配線板の発熱素子実装側には10枚配置し、反対側には7枚配置して、離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
Example 2
The epoxy resin varnish of Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 micrometers and dried by heating to obtain a prepreg. A metal layer (copper layer) with a thickness of 0.7 mm having a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of this prepreg, and is integrated by heating and pressing for 90 minutes under conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.5 mm was obtained. Then, the metal layer (copper layer) was processed into a predetermined shape to form a wiring board with a double-sided metal layer (copper layer), and a heating element (ceramic heater chip) was mounted on one surface by soldering.
Next, the epoxy resin varnish was impregnated into an aramid fiber nonwoven fabric having a thickness of 120 micrometers and dried by heating to obtain a prepreg. After this prepreg is matched with the predetermined shape of the double-sided metal layer (copper layer) and the metal layer corresponding portion is removed by punching, 10 pieces are arranged on the heating element mounting side of the wiring board and 7 pieces are on the opposite side. The second resin insulating layer was integrated by placing and molding by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, sandwiched between release films.

第1樹脂絶縁層に付加した第2樹脂絶縁層が、発熱素子実装側では金属層(銅層)と発熱素子の全体を覆い、反対側では、金属層(銅層)と同じ高さで金属層端縁周囲に当接する構成の配線板を得た。これは、図1(b)に示す構成に相当するものである。   The second resin insulation layer added to the first resin insulation layer covers the entire metal layer (copper layer) and the heating element on the heating element mounting side, and the metal on the opposite side is the same height as the metal layer (copper layer). A wiring board having a configuration in contact with the periphery of the layer edge was obtained. This corresponds to the configuration shown in FIG.

実施例3
エポキシ樹脂(油化シェル製「エピコート1001」,エポキシ当量:500)96質量部、硬化剤としてジシアンジアミド4質量部、硬化促進剤として2−エチル−4−メチルイミダゾール0.5質量部を配合し、樹脂固形分が60質量%となるようにメチルエチルケトン溶媒に溶解し、エポキシ樹脂ワニスを調製した。
このエポキシ樹脂ワニスを、厚み100μmのガラス繊維織布(織り密度:縦糸60本/25mm,横糸58本/25mm 旭シュエーベル製「G216」)に含浸し加熱乾燥して、プリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.7mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、第1樹脂絶縁層の両面に金属層(銅層)を一体化した厚み1.5mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。
Example 3
96 parts by mass of an epoxy resin ("Epicoat 1001" manufactured by Yuka Shell, epoxy equivalent: 500), 4 parts by mass of dicyandiamide as a curing agent, and 0.5 parts by mass of 2-ethyl-4-methylimidazole as a curing accelerator, An epoxy resin varnish was prepared by dissolving in a methyl ethyl ketone solvent so that the resin solid content was 60% by mass.
This epoxy resin varnish was impregnated into a 100 μm thick glass fiber woven fabric (weave density: 60 warps / 25 mm, 58 wefts / 25 mm “G216” manufactured by Asahi Schwer) and dried by heating to obtain a prepreg. A metal layer (copper layer) with a thickness of 0.7 mm having a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of this prepreg, and is integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.5 mm in which metal layers (copper layers) were integrated on both surfaces of the first resin insulation layer was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み200μmのガラス繊維織布(織り密度:縦糸44本/25mm、横糸33本/25mm 旭シュエーベル製「7628」)に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)の所定形状に合わせて金属層対応部分をパンチング加工で除去してから、配線板の両面に4枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
離型フィルムを剥がして、パワー素子実装領域において、金属層(銅層)が露出するまで第2樹脂絶縁層をざぐり加工により除去した。そして、第2樹脂絶縁層を除去した領域に発熱素子(セラミックヒータチップ)を半田付により実装した。第1樹脂絶縁層に付加した第2樹脂絶縁層は、発熱素子実装側では発熱素子の端縁周囲に当接し発熱素子と同じ高さとし、反対側では、金属層(銅層)と同じ高さで金属層端縁周囲に当接する構成とした。これは、図1(a)に示す構成に相当するものである。第1及び第2樹脂絶縁層の熱膨張率は、12ppm/℃である。
Next, the above-mentioned epoxy resin varnish was impregnated into a glass fiber woven fabric having a thickness of 200 μm (weave density: 44 warps / 25 mm, 33 wefts / 25 mm “7628” manufactured by Asahi Schwer) and dried by heating to obtain a prepreg. The prepreg is matched with the predetermined shape of the double-sided metal layer (copper layer) and the metal layer corresponding parts are removed by punching. Then, four prepregs are arranged on both sides of the wiring board and sandwiched between the release films. The second resin insulation layer was integrated by heating and pressing under a condition of 4 MPa for 90 minutes.
The release film was peeled off, and the second resin insulating layer was removed by spotting until the metal layer (copper layer) was exposed in the power element mounting region. Then, a heating element (ceramic heater chip) was mounted on the region from which the second resin insulating layer was removed by soldering. The second resin insulation layer added to the first resin insulation layer contacts the periphery of the edge of the heating element on the heating element mounting side and has the same height as the heating element, and on the opposite side, the same height as the metal layer (copper layer). In this configuration, the metal layer abuts around the edge of the metal layer. This corresponds to the configuration shown in FIG. The thermal expansion coefficient of the first and second resin insulation layers is 12 ppm / ° C.

実施例4
実施例1のエポキシ樹脂ワニスを、厚み50マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.5mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、厚み1.1mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。
Example 4
The epoxy resin varnish of Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 micrometers and dried by heating to obtain a prepreg. A metal layer (copper layer) having a thickness of 0.5 mm with a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of one prepreg, and is formed by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.1 mm was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み120マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)の所定形状に合わせて金属層対応部分をパンチング加工で除去してから、配線板の両面に5枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
離型フィルムを剥がして、パワー素子実装領域において、金属層(銅層)が露出するまで第2樹脂絶縁層をざぐり加工により除去した。そして、第2樹脂絶縁層を除去した領域に発熱素子(セラミックヒータチップ)を半田付により実装した。第1樹脂絶縁層に付加した第2樹脂絶縁層は、発熱素子実装側では発熱素子の端縁周囲に当接し発熱素子と同じ高さとし、反対側では、金属層(銅層)と同じ高さで金属層端縁周囲に当接する構成とした。これは、図1(a)に示す構成に相当するものである。
Next, the epoxy resin varnish was impregnated into an aramid fiber nonwoven fabric having a thickness of 120 micrometers and dried by heating to obtain a prepreg. The prepreg is matched to the predetermined shape of the double-sided metal layer (copper layer) and the metal layer corresponding part is removed by punching. Then, five prepregs are placed on both sides of the wiring board and sandwiched between the release films. The second resin insulation layer was integrated by heating and pressing under a condition of 4 MPa for 90 minutes.
The release film was peeled off, and the second resin insulating layer was removed by spotting until the metal layer (copper layer) was exposed in the power element mounting region. Then, a heating element (ceramic heater chip) was mounted on the region from which the second resin insulating layer was removed by soldering. The second resin insulation layer added to the first resin insulation layer contacts the periphery of the edge of the heating element on the heating element mounting side and has the same height as the heating element, and on the opposite side, the same height as the metal layer (copper layer). In this configuration, the metal layer abuts around the edge of the metal layer. This corresponds to the configuration shown in FIG.

比較例1
実施例1のエポキシ樹脂ワニスを、厚み50マイクロメートルのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.7mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、厚み1.5mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。これは図2に示す構成に相当するものである。
Comparative Example 1
The epoxy resin varnish of Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 micrometers and dried by heating to obtain a prepreg. A metal layer (copper layer) with a thickness of 0.7 mm having a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of this prepreg, and is integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.5 mm was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer). This corresponds to the configuration shown in FIG.

比較例2
実施例1のエポキシ樹脂ワニスを、厚み50μmのガラス繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である0.7mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧成形して一体化し、厚み1.5mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。
Comparative Example 2
The epoxy resin varnish of Example 1 was impregnated into a 50 μm thick glass fiber nonwoven fabric and dried by heating to obtain a prepreg. A metal layer (copper layer) with a thickness of 0.7 mm having a thermal expansion coefficient of 17 ppm / ° C. is stacked on both sides of this prepreg, and is integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminate having a thickness of 1.5 mm was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み0.4mmのガラス繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)の所定形状に合わせて金属層対応部分をパンチング加工で除去してから、配線板の両面に2枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
離型フィルムを剥がして、パワー素子実装領域において、金属層(銅層)が露出するまで第2樹脂絶縁層をざぐり加工により除去した。そして、第2樹脂絶縁層を除去した領域に発熱素子(セラミックヒータチップ)を半田付により実装した。第1樹脂絶縁層に付加した第2樹脂絶縁層は、発熱素子実装側では発熱素子の端縁周囲に当接し発熱素子と同じ高さとし、反対側では、金属層(銅層)と同じ高さで金属層端縁周囲に当接する構成とした。これは、図1(a)に示す構成に相当するものであるが、第1及び2樹脂絶縁層の熱膨張率が18ppm/℃と、金属層(銅層)の熱膨張率より大きいものである。
Next, the epoxy resin varnish was impregnated into a 0.4 mm thick glass fiber nonwoven fabric and dried by heating to obtain a prepreg. The prepreg is matched to the predetermined shape of the double-sided metal layer (copper layer) and the metal layer corresponding part is removed by punching. Then, two prepregs are placed on both sides of the wiring board and sandwiched between the release films. The second resin insulation layer was integrated by heating and pressing under a condition of 4 MPa for 90 minutes.
The release film was peeled off, and the second resin insulating layer was removed by spotting until the metal layer (copper layer) was exposed in the power element mounting region. Then, a heating element (ceramic heater chip) was mounted on the region from which the second resin insulating layer was removed by soldering. The second resin insulation layer added to the first resin insulation layer contacts the periphery of the edge of the heating element on the heating element mounting side and has the same height as the heating element, and on the opposite side, the same height as the metal layer (copper layer). In this configuration, the metal layer abuts around the edge of the metal layer. This corresponds to the configuration shown in FIG. 1A, but the thermal expansion coefficient of the first and second resin insulation layers is 18 ppm / ° C., which is larger than the thermal expansion coefficient of the metal layer (copper layer). is there.

実施例2〜4、比較例1〜2の配線板についても、実施例1と同様に特性を測定し、結果を表1に示した。   For the wiring boards of Examples 2 to 4 and Comparative Examples 1 and 2, the characteristics were measured in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2007115983
Figure 2007115983


上記表に示したように、比較例1においては、金属層の端縁周囲を規制するものがないので、金属層の熱膨張を抑えられず、配線板のそりが大きくなり、半田部のクラックも発生しやすくなっている。比較例2においては、第2樹脂絶縁層を付加しているものの、その熱膨張率が金属層の熱膨張率より大きいので、配線板のそりと半田部のクラック発生を抑えられていない。
本発明に係る実施例においては、配線板のそりと半田部のクラック発生を抑えられていることを理解できる。また、第2樹脂絶縁層にて周囲を覆うことと放熱性の高い樹脂を使用することで素子の発熱を抑えられることがわかる。さらに、金属層厚みを0.7mmにすると、素子の発熱を抑えられており、0.7mm以上にすることが好ましいことがわかる。

As shown in the above table, in Comparative Example 1, since there is nothing to regulate the periphery of the edge of the metal layer, the thermal expansion of the metal layer cannot be suppressed, the warping of the wiring board becomes large, and the crack of the solder portion Is also likely to occur. In Comparative Example 2, although the second resin insulating layer is added, since the thermal expansion coefficient is larger than the thermal expansion coefficient of the metal layer, the generation of the warp of the wiring board and the crack of the solder portion is not suppressed.
In the embodiment according to the present invention, it can be understood that warpage of the wiring board and occurrence of cracks in the solder portion are suppressed. In addition, it can be seen that heat generation of the element can be suppressed by covering the periphery with the second resin insulating layer and using a resin with high heat dissipation. Furthermore, it can be seen that when the metal layer thickness is 0.7 mm, heat generation of the element is suppressed, and it is preferable to set the thickness to 0.7 mm or more.

本発明に係る実施の形態の配線板断面図である。It is a wiring board sectional view of an embodiment concerning the present invention. 従来の配線板断面図である。It is conventional wiring board sectional drawing.

符号の説明Explanation of symbols

1はパワー素子
2は半田
3は金属層
4は第1樹脂絶縁層
5は第2樹脂絶縁層
1 is a power element 2 solder 3 a metal layer 4 a first resin insulation layer 5 a second resin insulation layer

Claims (4)

シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する配線板において、前記電気配線には、発熱素子が実装されており、
両面の金属層は、その合計厚みが第1樹脂絶縁層の厚みより厚く設定され、
両面の金属層とも、その端縁は第1樹脂絶縁層の周縁より内側に位置し、
第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、発熱素子実装側の前記第2樹脂絶縁層は、金属層を覆い且つ発熱素子端縁に接しており、発熱素子上面と同等以上の高さとなる厚みを有し、
第1樹脂絶縁層と第2樹脂絶縁層双方の熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層の熱膨張率より小さいことを特徴とする配線板。
The wiring board is composed of a first resin insulating layer reinforced with a sheet-like fiber substrate and a metal layer integrated on both surfaces thereof, and at least one metal layer has a function of electrical wiring. The element is mounted,
The total thickness of the metal layers on both sides is set to be greater than the thickness of the first resin insulation layer,
In both metal layers, the edge is located inside the periphery of the first resin insulation layer,
The first resin insulation layer is provided with a reinforcing fiber-filled second resin insulation layer that is in contact with the entire periphery of the metal layer edges on both sides and has a thickness equal to or greater than the metal layer thickness. The resin insulating layer covers the metal layer and is in contact with the edge of the heating element, and has a thickness that is equal to or higher than the upper surface of the heating element,
A wiring board characterized in that the thermal expansion coefficient of both the first resin insulating layer and the second resin insulating layer is smaller than the thermal expansion coefficient of the metal layers disposed on both surfaces of the first resin insulating layer.
シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する配線板において、前記電気配線には、発熱素子が実装されており、
両面の金属層は、その合計厚みが第1樹脂絶縁層の厚みより厚く設定され、
両面の金属層とも、その端縁は第1樹脂絶縁層の周縁より内側に位置し、
第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、発熱素子実装側の前記第2樹脂絶縁層は、金属層を覆い且つ発熱素子を覆う高さとなる厚みを有し金属層および発熱素子を覆っており、
第1樹脂絶縁層と第2樹脂絶縁層双方の熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層の熱膨張率より小さいことを特徴とする配線板。
The wiring board is composed of a first resin insulating layer reinforced with a sheet-like fiber substrate and a metal layer integrated on both surfaces thereof, and at least one metal layer has a function of electrical wiring. The element is mounted,
The total thickness of the metal layers on both sides is set to be greater than the thickness of the first resin insulation layer,
In both metal layers, the edge is located inside the periphery of the first resin insulation layer,
The first resin insulation layer is provided with a reinforcing fiber-filled second resin insulation layer that is in contact with the entire periphery of the metal layer edges on both sides and has a thickness equal to or greater than the metal layer thickness. The resin insulating layer has a thickness that covers the metal layer and covers the heating element, and covers the metal layer and the heating element.
A wiring board characterized in that the thermal expansion coefficient of both the first resin insulating layer and the second resin insulating layer is smaller than the thermal expansion coefficient of the metal layers disposed on both surfaces of the first resin insulating layer.
樹脂絶縁層の熱伝導率が4W/m・K以上であることを特徴とする請求項1又は2記載の配線板。   The wiring board according to claim 1, wherein the resin insulating layer has a thermal conductivity of 4 W / m · K or more. 電気配線の機能を有する金属層が、銅層からなり、厚み0.7mm以上である請求項1又は2記載の配線板。   The wiring board according to claim 1 or 2, wherein the metal layer having a function of electric wiring is made of a copper layer and has a thickness of 0.7 mm or more.
JP2005307371A 2005-10-21 2005-10-21 Wiring board Pending JP2007115983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307371A JP2007115983A (en) 2005-10-21 2005-10-21 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307371A JP2007115983A (en) 2005-10-21 2005-10-21 Wiring board

Publications (1)

Publication Number Publication Date
JP2007115983A true JP2007115983A (en) 2007-05-10

Family

ID=38097886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307371A Pending JP2007115983A (en) 2005-10-21 2005-10-21 Wiring board

Country Status (1)

Country Link
JP (1) JP2007115983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010559A (en) * 2008-06-30 2010-01-14 Shin Kobe Electric Mach Co Ltd Wiring board
JP2012236298A (en) * 2010-06-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946007A (en) * 1995-08-02 1997-02-14 Mitsubishi Electric Corp Circuit board and its manufacture
JPH11204693A (en) * 1998-01-14 1999-07-30 Fuji Electric Co Ltd Semiconductor device
JP2000299559A (en) * 1999-04-12 2000-10-24 Fujitsu Ten Ltd Power module substrate
JP2003243610A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Insulation type semiconductor device
JP2004327556A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Semiconductor device and its manufacturing process
JP2005056873A (en) * 2003-08-01 2005-03-03 Hitachi Ltd Semiconductor power module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946007A (en) * 1995-08-02 1997-02-14 Mitsubishi Electric Corp Circuit board and its manufacture
JPH11204693A (en) * 1998-01-14 1999-07-30 Fuji Electric Co Ltd Semiconductor device
JP2000299559A (en) * 1999-04-12 2000-10-24 Fujitsu Ten Ltd Power module substrate
JP2003243610A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Insulation type semiconductor device
JP2004327556A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Semiconductor device and its manufacturing process
JP2005056873A (en) * 2003-08-01 2005-03-03 Hitachi Ltd Semiconductor power module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010559A (en) * 2008-06-30 2010-01-14 Shin Kobe Electric Mach Co Ltd Wiring board
JP2012236298A (en) * 2010-06-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molded article

Similar Documents

Publication Publication Date Title
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
JP2010053224A (en) Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member
JP2013001807A (en) Resin composition for electronic circuit board material, prepreg and laminated plate
JPWO2003018675A1 (en) Resin composition, prepreg, laminate and semiconductor package
JP2007224269A (en) Prepreg for heat- and press-molding, and laminated board
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
US11490513B2 (en) Metal base circuit board and method of manufacturing the metal base circuit board
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP4561697B2 (en) Multilayer circuit board
JP2007115983A (en) Wiring board
JP4192871B2 (en) Laminated board and wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP4192870B2 (en) Laminated board and wiring board
JP4254705B2 (en) Wiring board
JP6830191B2 (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP4075268B2 (en) Circuit board manufacturing method
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP2007335835A (en) Wiring board
TWI770047B (en) Printed wiring boards, printed circuit boards, prepregs
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP2012144687A (en) Resin sheet, metallic foil with resin, substrate material, and component-mounting substrate
JP2016065250A (en) Prepreg, laminate sheet and metal laminate sheet
JP2011088950A (en) Prepreg, metal-clad laminate and printed circuit board using them
JP6136058B2 (en) Resin composition for electronic circuit board material, prepreg, laminate and metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629