JP2007113846A - Heat exchanger, and indoor unit for air conditioner - Google Patents

Heat exchanger, and indoor unit for air conditioner Download PDF

Info

Publication number
JP2007113846A
JP2007113846A JP2005305856A JP2005305856A JP2007113846A JP 2007113846 A JP2007113846 A JP 2007113846A JP 2005305856 A JP2005305856 A JP 2005305856A JP 2005305856 A JP2005305856 A JP 2005305856A JP 2007113846 A JP2007113846 A JP 2007113846A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
transfer tube
heat transfer
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005305856A
Other languages
Japanese (ja)
Other versions
JP4796814B2 (en
Inventor
Tatsuji Kitano
竜児 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005305856A priority Critical patent/JP4796814B2/en
Priority to CN2006101373885A priority patent/CN1952583B/en
Publication of JP2007113846A publication Critical patent/JP2007113846A/en
Application granted granted Critical
Publication of JP4796814B2 publication Critical patent/JP4796814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger, and an indoor unit for an air conditioner preventing heat conduction between heat transfer tube rows in a radiation fin, providing draft resistance corresponding to a degree of wind speed, uniforming wind speed distribution to improve heat exchange efficiency, and improving heat exchange performance. <P>SOLUTION: The heat exchanger 9 is provided with a plurality of radiation fins b having a plurality of rows c1, c2 of heat transfer tube through holes (a) in a width direction, and provided side by side with a predetermined interval from each other to pass heat exchange air through mutual gaps, and a heat transfer tube c passed through the heat transfer tube through-hole of the radiation fin and conducting a heat exchange medium through an interior. A heat shielding part S composed to prevent heat conduction between the heat transfer tube rows, and such that draft resistance of a portion wherein wind speed of the heat exchange air passing between the radiation fins is high is larger than draft resistance of a portion with low wind speed is provided between the heat transfer tube rows adjacent in the width direction of the radiation fin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フィンチューブタイプの熱交換器と、この熱交換器を備えた空気調和機の室内機に係り、特に熱交換器を構成する放熱フィンに設けられ、伝熱管列相互間での熱伝導を阻止する遮熱手段の改良に関する。   The present invention relates to a fin-tube type heat exchanger and an indoor unit of an air conditioner equipped with the heat exchanger, and more particularly to a heat radiating fin constituting the heat exchanger, and heat between the heat transfer tube rows. The present invention relates to an improvement in heat shielding means for preventing conduction.

室内機と室外機とから構成される空気調和機の室内機において、フィンチューブタイプの熱交換器が多用される。この熱交換器は、幅方向に複数列の伝熱管挿通孔を有し、互いの隙間に熱交換空気を流通させる複数枚の放熱フィンと、伝熱管挿通孔に挿通され放熱フィンを貫通し、内部に熱交換媒体(冷媒)を導通する伝熱管から構成される。
上記熱交換器における複数列の伝熱管は、送風機から吹出される熱交換空気の入り側の列と出側の列とによって温度差が生じる。したがって、高温の伝熱管列から低温の伝熱管列に放熱フィンを介して伝熱し、その分だけ熱交換空気との熱交換量が減少して性能低下を招いてしまう。
In an indoor unit of an air conditioner composed of an indoor unit and an outdoor unit, a fin tube type heat exchanger is frequently used. This heat exchanger has a plurality of rows of heat transfer tube insertion holes in the width direction, a plurality of heat radiation fins that circulate heat exchange air in the gap between each other, and the heat transfer tube insertion holes that pass through the heat radiation fins. It is comprised from the heat exchanger tube which conducts a heat exchange medium (refrigerant) inside.
In the plurality of rows of heat transfer tubes in the heat exchanger, a temperature difference is generated between the row on the entry side and the row on the exit side of the heat exchange air blown from the blower. Therefore, heat is transferred from the high-temperature heat transfer tube row to the low-temperature heat transfer tube row through the radiation fins, and the amount of heat exchange with the heat exchange air is reduced by that amount, leading to performance degradation.

この対応として、たとえば[特許文献1]および[特許文献2]では、放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間の熱伝導を防止する遮熱手段を設けている。上記遮熱手段は、放熱フィンの上端から下端に亘って設けられる、もしくは放熱フィンの必要な部位に設けられる同一形状の切込み(カット)である。
ところが、空気調和機の室内機においては、熱交換器と対向して送風機が配置されていて、吸込み口を介して熱交換器に室内空気を導き、熱交換させてから吹出し口を介して室内に吹出すようになっている。そのため、熱交換器は部分的に風速が大であるところと、小であるところが存在する。
As a countermeasure, for example, in [Patent Document 1] and [Patent Document 2], a heat shield means for preventing heat conduction between the heat transfer tube rows is provided between the heat transfer tube rows adjacent to each other in the width direction of the radiating fins. . The heat shield means is a cut of the same shape provided from the upper end to the lower end of the radiating fin, or provided at a necessary portion of the radiating fin.
However, in an indoor unit of an air conditioner, a blower is arranged opposite to the heat exchanger, and the indoor air is guided to the heat exchanger through the suction port and is exchanged, and then the indoor air is passed through the outlet. It comes to blow out. Therefore, the heat exchanger has a part where the wind speed is partially high and a part where the wind speed is small.

上述の放熱フィンでは、全体的に通風抵抗が均一であり、そのため風速が不均一になって、風速の違いから部分的に熱交換効率に差が生じ、熱交換性能の低下を招く。この種の条件に対応したのが、たとえば[特許文献3]であり、放熱フィンに設けられるスリットの数を部分的に減少して、通風抵抗を変化させている。
特開2004−325044号公報 特開2004− 85139号公報 特開平 11− 23179号公報
In the above-mentioned radiating fins, the ventilation resistance is uniform throughout, so that the wind speed becomes non-uniform, and the heat exchange efficiency is partially different due to the difference in wind speed, leading to a decrease in heat exchange performance. For example, [Patent Document 3] corresponds to this type of condition, and the number of slits provided in the heat dissipating fin is partially reduced to change the ventilation resistance.
JP 2004-325044 A JP 2004-85139 A Japanese Patent Laid-Open No. 11-23179

このように、従来は放熱フィンの幅方向に複数列の伝熱管を設け、伝熱管列相互間の伝熱を遮断する手段を備えた技術と、放熱フィンにおける通風抵抗を部分的に低減させる手段を備えた技術がそれぞれ単独で存在しているが、双方を兼ね備えた技術の開発には至っていない。
なお、遮熱手段として上述のカット(切込み)の他に、両側切起しが考えられるところから、本出願人は両側切起しとカットおよび上述の通風抵抗を減少する手段としてのスリット(切起し)数減少構造を例にとって、それぞれの熱交換器における熱伝達率と通風抵抗を解析した。その結果を、図7に示す。
両側切起しを基準として熱伝達率と通風抵抗を100%と設定すると、カットの場合は熱伝達率を略同等に維持するが、通風抵抗は大幅に減少する。スリット数を減少した場合は、通風抵抗が減少するが、同時に熱伝達率も低下してしまう。換言すれば、両側切起しを採用すると、熱伝達率の低下がなく、かつ両側部相互間における通風抵抗が大である。
Thus, conventionally, a technique including a plurality of rows of heat transfer tubes in the width direction of the heat radiating fins and means for blocking heat transfer between the heat transfer tube rows, and a means for partially reducing the ventilation resistance in the heat radiating fins. However, the technology that has both has not been developed yet.
In addition to the above-mentioned cut (cut) as the heat shielding means, both sides cut and raised can be considered. Therefore, the applicant of the present invention cuts and cuts both sides and slits (cuts) as means for reducing the above-mentioned ventilation resistance. For example, the heat transfer coefficient and the ventilation resistance in each heat exchanger were analyzed. The result is shown in FIG.
If the heat transfer coefficient and the ventilation resistance are set to 100% based on the cut-off on both sides, the heat transfer coefficient is maintained substantially equal in the case of cutting, but the ventilation resistance is greatly reduced. When the number of slits is reduced, the ventilation resistance is reduced, but at the same time, the heat transfer rate is also lowered. In other words, when both sides are raised, the heat transfer coefficient is not lowered and the ventilation resistance between both sides is large.

本発明は上記事情に着目してなされたものであり、その目的とするところは、上記の結果から、放熱フィンにおける各伝熱管列間の熱伝導を阻止するとともに、風速の大きい部分と小さい部分に対応した通風抵抗を得て、風速分布の略均一化を図り熱交換効率の向上を得られる熱交換器と、この熱交換器を備えて熱交換性能の向上を得られる空気調和機の室内機を提供しようとするものである。   The present invention has been made by paying attention to the above circumstances, and the purpose of the present invention is to prevent heat conduction between the heat transfer tube rows in the radiating fin from the above results, and to have a portion with a large wind speed and a portion with a small wind speed A heat exchanger that can obtain a draft resistance corresponding to the air flow and achieve a substantially uniform wind speed distribution to improve heat exchange efficiency, and an air conditioner room equipped with this heat exchanger to improve heat exchange performance Is to provide a machine.

上記目的を達成するため本発明の熱交換器は、幅方向に複数列の伝熱管挿通孔を有し互いに所定間隔を存して並設され互いの隙間に熱交換空気が流通する複数枚の放熱フィンと、これら放熱フィンの伝熱管挿通孔に貫通して設けられ内部に熱交換媒体が導通する伝熱管とを具備した熱交換器において、上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、放熱フィン相互間を流通する熱交換空気の風速の大きい部分の通風抵抗が、風速の小さい部分の通風抵抗よりも大きくなるように構成される遮熱手段を設けた。   In order to achieve the above object, the heat exchanger of the present invention has a plurality of rows of heat transfer tube insertion holes in the width direction, arranged in parallel with each other at a predetermined interval, and a plurality of heat exchange air flows through the gaps between them. In a heat exchanger comprising radiating fins and heat transfer tubes that pass through the heat transfer tube insertion holes of these radiating fins and through which a heat exchange medium is conducted, between the heat transfer tube rows adjacent in the width direction of the radiating fins In addition, the heat conduction between the heat transfer tube rows is blocked, and the resistance of the heat exchange air flowing between the radiating fins is higher in the portion where the wind speed is higher than that in the portion where the wind speed is lower. Provided heat shielding means.

上記目的を達成するため本発明の空気調和機の室内機は、吸込み口および吹出し口を備え、前面板および後本体とから構成される室内機本体と、この室内機本体内に配置される熱交換器と、吸込み口から室内空気を吸込んで熱交換器に流通させ、ここで熱交換したあと吹出し口から室内へ送風する送風機とを具備する空気調和機の室内機において、上記熱交換器は、幅方向に複数列の伝熱管挿通孔を有し互いに所定間隔を存して並設され互いの隙間に熱交換空気が流通する複数枚の放熱フィンと、放熱フィンの伝熱管挿通孔に貫通して設けられ内部に熱交換媒体が導通する伝熱管と、放熱フィンの幅方向に隣り合う伝熱管列間に伝熱管列相互間での熱伝導を阻止するとともに、放熱フィン相互間を流通する熱交換空気の風速の大きい部分の通風抵抗が、風速の小さい部分の通風抵抗よりも大きくなるように構成される遮熱手段とを備えた。   In order to achieve the above object, an indoor unit of an air conditioner according to the present invention includes an indoor unit body that includes a suction port and a blowout port and includes a front plate and a rear body, and heat that is disposed in the indoor unit body. In the indoor unit of an air conditioner comprising an exchanger and a blower that sucks indoor air from the suction port and distributes the air to the heat exchanger, and then heat-exchanges here and then blows the air from the outlet to the room, the heat exchanger includes: A plurality of heat transfer tube insertion holes in the width direction are arranged in parallel with each other at a predetermined interval so that heat exchange air flows through the gaps, and the heat transfer tube insertion holes of the heat dissipation fins penetrate the heat transfer tube insertion holes. Between the heat transfer tubes arranged between the heat transfer tubes adjacent to each other in the width direction of the radiating fins and between the radiating fins. Through the large part of the heat exchange air Resistance, and a heat shielding unit configured to be larger than the airflow resistance of the small portion of the wind speed.

本発明によれば、放熱フィンにおける各伝熱管列間の熱伝導を阻止するとともに、風速の大きい部分と小さい部分に対応した通風抵抗を得て、風速分布の略均一化を図り、熱交換効率の向上と、熱交換性能の向上を得られる等の効果を奏する。   According to the present invention, heat conduction between the heat transfer tube rows in the radiating fin is prevented, and ventilation resistance corresponding to a portion where the wind speed is large and a portion where the wind speed is small is obtained, thereby substantially uniforming the wind speed distribution and heat exchange efficiency. There are effects such as improvement of heat and improvement of heat exchange performance.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1(A)(B)は空気調和機を構成する室内機の模式的な断面図であり、互いに異なる状態を示している。
図中1は、前面板1Aと後本体1Bとから構成される筐体からなる室内機本体である。この室内機本体1は、側面視で湾曲成される前面部を備え、上面部と下面部および左右両側部は、ほぼ平板状をなしている。
室内機本体1の上面部には上面吸込み口2が設けられ、前面部には前面吸込み口3が設けられる。上記前面吸込み口3の下部に沿って吹出し口4が設けられる。上面吸込み口2にはグリル5が嵌め込まれていて、常時、開口状態にあるが、前面吸込み口3には可動式のフラットパネル6が開閉機構Kを介して開閉自在に取付けられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIGS. 1A and 1B are schematic cross-sectional views of indoor units that constitute an air conditioner, and show different states.
In the figure, reference numeral 1 denotes an indoor unit main body comprising a casing composed of a front plate 1A and a rear main body 1B. The indoor unit body 1 includes a front surface portion that is curved in a side view, and an upper surface portion, a lower surface portion, and both left and right side portions are substantially flat.
An upper surface inlet 2 is provided on the upper surface of the indoor unit body 1, and a front inlet 3 is provided on the front. A blowout port 4 is provided along the lower portion of the front suction port 3. A grille 5 is fitted in the upper surface suction port 2 and is always open, but a movable flat panel 6 is attached to the front surface suction port 3 through an opening / closing mechanism K so as to be opened and closed.

上記吹出し口4には、上下部2枚の水平ルーバ7A,7Bが上下に並行して設けられる。上下部水平ルーバ7A,7Bはそれぞれが図示しない駆動機構に連結され、制御部(制御手段)8により別個に回動制御される。すなわち、吹出し口4から吹出される熱交換空気の上下方向の風向を設定する、もしくは吹出し口4を閉成できる。
室内機本体1内には冷凍サイクル構成機器である熱交換器9が配置されていて、この熱交換器9は前側熱交換器部9Aと後側熱交換器部9Bとで側面視で略逆V字状に形成される。前側熱交換器部9Aは、室内機本体1の前面から上面の一部とほぼ平行に湾曲成される。後側熱交換器部9Bは、直状で斜めに傾斜して上面吸込み口2と対向する。
The blowout port 4 is provided with two horizontal louvers 7 </ b> A and 7 </ b> B in parallel up and down. The upper and lower horizontal louvers 7 </ b> A and 7 </ b> B are each connected to a drive mechanism (not shown) and are individually controlled to rotate by a control unit (control means) 8. That is, the vertical direction of the heat exchange air blown from the blowout port 4 can be set, or the blowout port 4 can be closed.
A heat exchanger 9 that is a refrigeration cycle component device is disposed in the indoor unit body 1, and the heat exchanger 9 is substantially reversed in side view between the front heat exchanger portion 9A and the rear heat exchanger portion 9B. It is formed in a V shape. The front heat exchanger section 9A is curved from the front surface of the indoor unit body 1 to be substantially parallel to a part of the upper surface. The rear heat exchanger section 9B is straight and obliquely inclined and faces the upper surface inlet 2.

ここでは、前側熱交換器部9Aの上部と、後側熱交換器部9Bに沿って補助熱交換器部9C、9Dが設けられるが、仕様によってはいずれか一方、もしくは全く備えていない熱交換器もある。補助熱交換器部9C,9Dはいずれも前側熱交換器部9Aと後側熱交換器部9Bの風上側に位置することが必要である。
そして、補助熱交換器部9C,9Dに対して前側熱交換器部9Aと後側熱交換器部9Bとで主熱交換器部9Eを構成することになる。いずれにしても、各熱交換器部9A〜9Eにおいては、図2以下で後述するような遮熱部(遮熱手段)Sが設けられていて、風速分布の均一化を図り、熱交換効率の向上と、熱交換性能の向上を得られる。
上記熱交換器9における前側熱交換器部9Aの前面側には、電気集塵機11が取付けられている。この電気集塵機11は、上記制御部8と電気的に接続され、本来の集塵動作をなすとともにオゾン発生装置として機能させることも可能である。
Here, auxiliary heat exchanger units 9C and 9D are provided along the upper part of the front heat exchanger unit 9A and the rear heat exchanger unit 9B, but depending on the specifications, either one or no heat exchange is provided. There is also a bowl. The auxiliary heat exchanger units 9C and 9D need to be positioned on the windward side of the front heat exchanger unit 9A and the rear heat exchanger unit 9B.
And the main heat exchanger part 9E is comprised by 9A of front heat exchanger parts, and the rear heat exchanger part 9B with respect to auxiliary heat exchanger part 9C, 9D. In any case, each of the heat exchanger sections 9A to 9E is provided with a heat shield section (heat shield means) S as will be described later with reference to FIG. And improved heat exchange performance.
An electric dust collector 11 is attached to the front side of the front heat exchanger section 9A in the heat exchanger 9. The electric dust collector 11 is electrically connected to the control unit 8 and can perform an original dust collecting operation and function as an ozone generator.

上記熱交換器9の前後側熱交換器部9A,9Bの相互間で、かつ上記吹出し口4と対向して、送風機12が配置される。この送風機12は、熱交換器9の幅方向寸法と略同一の軸方向寸法を備え、熱交換器9と対向して配置される横流ファンと、上記制御部8と電気的に接続され横流ファンを回転駆動するファンモータとから構成される。
上記前側熱交換器部9Aの下端は前ドレンパン13a上に載り、後側熱交換器部9Bの下端は後本体1Bと一体に形成される後ドレンパン13b上に載って、それぞれの熱交換器部9A,9Bから滴下するドレン水を受け、図示しない排水ホースを介して外部に排水できるようになっている。
A blower 12 is disposed between the front and rear heat exchanger portions 9A and 9B of the heat exchanger 9 and facing the outlet 4. The blower 12 has an axial dimension substantially the same as the width dimension of the heat exchanger 9, a cross flow fan disposed opposite to the heat exchanger 9, and the cross flow fan electrically connected to the control unit 8. And a fan motor that rotationally drives the motor.
The lower end of the front heat exchanger section 9A rests on the front drain pan 13a, and the lower end of the rear heat exchanger section 9B rests on the rear drain pan 13b formed integrally with the rear main body 1B. The drain water dripped from 9A, 9B can be received and drained to the outside through a drain hose (not shown).

前後ドレンパン13a,13bと近接した位置には、送風機12のファンに対するノーズを構成し、かつ吹出し口7に亘って隔壁部材14が設けられる。この隔壁部材14と後本体1Bとで囲まれる空間が、ノーズと吹出し口4とを連通する吹出し路15となる。室内機本体1内は上記送風機12の駆動にともなって、上面吸込み口2および前面吸込み口3と、上記吹出し路15とを連通する送風路16が形成される。
一方、上面吸込み口2および前面吸込み口3と、前部熱交換器部9Aおよび上部熱交換器部9Bとの間にフィルタ17が取付けられる。このフィルタ17は、フラットパネル6を開放した状態で、吹出し口4上端から挿着され、必要に応じて同部位から取外し自在である。
At a position close to the front and rear drain pans 13 a and 13 b, a nose for the fan of the blower 12 is configured, and a partition wall member 14 is provided across the outlet 7. A space surrounded by the partition wall member 14 and the rear main body 1 </ b> B serves as a blowout path 15 that communicates the nose and the blowout opening 4. In the indoor unit main body 1, an air passage 16 that connects the upper surface inlet 2, the front air inlet 3, and the blowout passage 15 is formed as the blower 12 is driven.
On the other hand, the filter 17 is attached between the upper surface inlet 2 and the front inlet 3 and the front heat exchanger part 9A and the upper heat exchanger part 9B. The filter 17 is inserted from the upper end of the outlet 4 with the flat panel 6 open, and can be removed from the same part as necessary.

上記フラットパネル6は、前面吸込み口3を閉成する状態で、フラットパネル6の上端と両側端が前面吸込み口3の上端と両側端に沿った位置に構成される。特に図1(A)に示すように、フラットパネル6は前面吸込み口3を閉成するばかりでなく、フラットパネル下部6aは吹出し口4の上部側を上部水平ルーバ7Aとともに二重に閉成する。
上記開閉駆動機構Kは、制御部8からの制御信号を受けると、駆動源はリンク部材を伸縮駆動してフラットパネル6を前後方向に移動する。具体的には、フラットパネル6を前面吸込み口3の閉成位置から前上方へ離間させ、この前面吸込み口3の上部側を大きく開放して位置姿勢を保持する「全開モード」と呼ぶ状態になる。
The flat panel 6 is configured such that the upper end and both side ends of the flat panel 6 are positioned along the upper end and both side ends of the front suction port 3 in a state where the front suction port 3 is closed. In particular, as shown in FIG. 1A, the flat panel 6 not only closes the front suction port 3, but the flat panel lower part 6a doubles the upper side of the outlet 4 together with the upper horizontal louver 7A. .
When the open / close drive mechanism K receives a control signal from the control unit 8, the drive source drives the link member to extend and contract to move the flat panel 6 in the front-rear direction. Specifically, the flat panel 6 is moved forward and upward from the closed position of the front suction port 3, and the upper side of the front suction port 3 is largely opened to maintain the position and posture. Become.

また、特に図示していないが、フラットパネル6が前面吸込み口3の閉成位置からわずかに前方へ離間し、前面吸込み口3を小さく開放するとともに、下端は吹出し口4の上部を覆って上部水平ルーバ7Aの前面対向位置に保持され、上端が下端よりも前方へ突出する傾斜姿勢をなす、「半開モード」と呼ぶ状態もできる。
このような空気調和機の室内機であり、図1(A)に示すように運転停止時はフラットパネル6が前面吸込み口3を閉成する「全閉モード」となる。上下部水平ルーバ7A,7Bは吹出し口4を閉成しているので、前面吸込み口3と吹出し口4から塵埃の侵入はない。フラットパネル下部6aは上部水平ルーバ7A表面に対する塵埃の付着を防止する。
Although not shown in particular, the flat panel 6 is slightly spaced forward from the closed position of the front suction port 3, opens the front suction port 3 small, and the lower end covers the upper part of the blowout port 4. A state called “half-open mode” in which the horizontal louver 7 </ b> A is held at the front facing position and has an inclined posture in which the upper end protrudes forward from the lower end is also possible.
The indoor unit of such an air conditioner is in a “fully closed mode” in which the flat panel 6 closes the front suction port 3 when the operation is stopped as shown in FIG. Since the upper and lower horizontal louvers 7 </ b> A and 7 </ b> B close the air outlet 4, no dust enters from the front air inlet 3 and the air outlet 4. The flat panel lower portion 6a prevents dust from adhering to the surface of the upper horizontal louver 7A.

たとえば、冷房運転を選択して運転開始ボタンを押すと、制御部8は室外機に収容されるコンプレッサ21を駆動制御して冷凍サイクル運転が開始される。同時に、送風機12が駆動され、開閉駆動機構Kと上下部水平ルーバ7A,7Bはフラットパネル6と上下部水平ルーバ7A,7Bを図1(B)に示す「全開モード」の状態とする。
室内空気は上面吸込み口2および前面吸込み口3から室内機本体1内に吸込まれ、送風路16に沿って導かれる。そして、電気集塵機11で集塵され、熱交換器9と熱交換して冷気に変り、吹出し路15を介して吹出し口4から吹出される。冷気が室内へ吹出されることにより、室内の冷房作用を得られる。
For example, when the cooling operation is selected and the operation start button is pressed, the control unit 8 drives and controls the compressor 21 accommodated in the outdoor unit, and the refrigeration cycle operation is started. At the same time, the blower 12 is driven, and the opening / closing drive mechanism K and the upper and lower horizontal louvers 7A and 7B place the flat panel 6 and the upper and lower horizontal louvers 7A and 7B in the state of “fully open mode” shown in FIG.
The room air is sucked into the indoor unit body 1 from the upper surface suction port 2 and the front surface suction port 3, and is guided along the air blowing path 16. Then, the dust is collected by the electric dust collector 11, exchanges heat with the heat exchanger 9 to change into cold air, and is blown out from the blowout port 4 through the blowout path 15. Cooling air is blown into the room, so that an indoor cooling action can be obtained.

冷房運転の開始からある程度の時間が経過すると室温が設定温度にまで降下し、その状態が継続する。このとき居住人によっては、熱交換空気が直接当ることを好まない人もいる。そこで、リモコンに備えられる機能スイッチを操作することにより、居住人に直接風を当てない運転を設定できるようになっている。
すなわち、設定ボタンを操作すると信号が制御部8へ送られ、制御部8は運転を冷房運転から弱冷房運転あるいは再熱除湿運転へ移行する、もしくは弱冷房運転あるいは再熱除湿運転から冷房運転へ移行するよう制御し、フラットパネル6を「全開モード」から「半開モード」に移行する。
空気調和機においては、上述の冷房運転とは別に、暖房運転に切換えることも可能であるが、その説明は省略する。
When a certain amount of time has elapsed since the start of the cooling operation, the room temperature drops to the set temperature, and this state continues. At this time, some residents do not like direct heat exchange air. Therefore, by operating a function switch provided on the remote controller, it is possible to set an operation in which the resident is not directly exposed to the wind.
That is, when the setting button is operated, a signal is sent to the control unit 8, and the control unit 8 shifts the operation from the cooling operation to the weak cooling operation or the reheat dehumidifying operation, or from the weak cooling operation or the reheat dehumidifying operation to the cooling operation. Control is performed to shift, and the flat panel 6 is shifted from the “full open mode” to the “half open mode”.
In the air conditioner, it is possible to switch to the heating operation separately from the above-described cooling operation, but the description thereof is omitted.

つぎに、上記熱交換器9に備えられる遮熱部Sについて詳述する。
図2(A)は、比較例としての熱交換器Z−1を説明する図、図2(B)は本発明における第1の実施の形態での熱交換器9−1と、この熱交換器9−1に設けられる遮熱部Sを説明する図である。
いずれの熱交換器9−1、Z−1においても、幅方向に複数列の伝熱管挿通孔aを有する複数枚の放熱フィンbが互いに所定間隔を存して並設され、これら放熱フィンbの上記伝熱管挿通孔aに伝熱管cが貫通する。上記各放熱フィンbの互いの隙間に熱交換空気が流通し、伝熱管c内には熱交換媒体である冷媒が導通する。
Next, the heat shield part S provided in the heat exchanger 9 will be described in detail.
FIG. 2A is a diagram for explaining a heat exchanger Z-1 as a comparative example, and FIG. 2B is a heat exchanger 9-1 according to the first embodiment of the present invention, and this heat exchange. It is a figure explaining the heat shield part S provided in the container 9-1.
In any of the heat exchangers 9-1 and Z-1, a plurality of heat radiation fins b having a plurality of rows of heat transfer tube insertion holes a in the width direction are arranged in parallel with each other at a predetermined interval. The heat transfer tube c penetrates the heat transfer tube insertion hole a. Heat exchange air flows through the gaps between the heat radiating fins b, and a refrigerant as a heat exchange medium is conducted in the heat transfer tube c.

上記放熱フィンbの幅方向に隣り合う伝熱管列c1−c2間に、伝熱管列c1−c2相互間での熱伝導を阻止する遮熱部d,Sが設けられる。比較例としての熱交換器Z−1に設けられる遮熱部dは、放熱フィンbの上端から下端に亘って設けられる均一形状のカット(切込み)である。この場合、放熱フィンb形状が全面に亘って同一であり、カットdも同一形状であるところから、放熱フィンb全面に亘って通風抵抗が均等である。   Between the heat transfer tube rows c1-c2 adjacent to each other in the width direction of the heat radiating fins b, heat shield portions d, S for preventing heat conduction between the heat transfer tube rows c1-c2 are provided. The heat shield part d provided in the heat exchanger Z-1 as a comparative example is a uniform-shaped cut (cut) provided from the upper end to the lower end of the radiating fin b. In this case, since the shape of the radiation fin b is the same over the entire surface and the cut d is also the same shape, the ventilation resistance is uniform over the entire surface of the radiation fin b.

しかしながら、熱交換器Z−1に対向して設けられる吸込み口3の形状構成や、送風機12の配置条件あるいは室内機本体1の構造形状によっても、熱交換器Z−1各部分に流通する熱交換空気の風速が相違する。図2(A)は、上記送風機12等の配置条件により、熱交換器Z−1の上部側の風速が大であり、下部側の風速が小である例を示しており、各部での熱交換効率に差が生じて熱交換性能の低下をきたす。
これに対して本発明における第1の実施の形態での熱交換器9−1は、基本的に図2(B)に示すような遮熱部Sの構成を採用している。なお、遮熱部S以外の熱交換器9−1の構成及び上記送風機12の配置条件等は、上記図2(A)に記載のものと同一である。すなわち、上部側熱交換器9uを流通する熱交換空気の風速が大であり、下部側熱交換器9dを流通する熱交換空気の風速が小であることが前提条件となっている。
However, the heat flowing through each part of the heat exchanger Z-1 also depends on the shape and configuration of the suction port 3 provided facing the heat exchanger Z-1, the arrangement conditions of the blower 12, or the structure of the indoor unit body 1. The wind speed of the exchange air is different. FIG. 2 (A) shows an example in which the wind speed on the upper side of the heat exchanger Z-1 is large and the wind speed on the lower side is small depending on the arrangement conditions of the blower 12 and the like. A difference occurs in the exchange efficiency and the heat exchange performance is lowered.
On the other hand, the heat exchanger 9-1 according to the first embodiment of the present invention basically adopts the configuration of the heat shield portion S as shown in FIG. In addition, the structure of the heat exchanger 9-1 other than the heat shield part S, the arrangement conditions of the blower 12, and the like are the same as those described in FIG. That is, the precondition is that the wind speed of the heat exchange air flowing through the upper heat exchanger 9u is high and the wind speed of the heat exchange air flowing through the lower heat exchanger 9d is low.

放熱フィンbの幅方向に隣り合う伝熱管列c1−c2間に設けられる遮熱部Sは、伝熱管列c1−c2相互間での熱伝導を阻止するとともに、放熱フィンb相互間を流通する熱交換空気の風速の大きい部分の通風抵抗が、風速の小さい部分の通風抵抗よりも大きくなるように構成される。
なお説明すると、上部側熱交換器部9uを流通する熱交換空気の風速が大であるので、通風抵抗の大なる構造(以下、「高圧損」と呼ぶ)の遮熱部Saを備えて、風速を下げさせる。逆に、下部側熱交換器部9dを流通する熱交換空気の風速が小であるので、通風抵抗の小なる構造(以下、「低圧損」と呼ぶ)の遮熱部Sbを備えて、風速を上げさせる。上記高圧損Saの具体的な構成は、たとえば片側切起し、もしくは両側切起しであり、低圧損Sbの具体的な構成は、たとえばカット、もしくは切り抜き(開口部)である。
このように、熱交換器9の上下部側熱交換器部9u,9dに対向する風速の相違に対応して、通風抵抗が異なる構造の高圧損と低圧損の遮熱部Sa,Sbを選択して備えることで、熱交換器9−1全体が略均一な風速分布になり、略均一な熱交換効率を得る。そして、上記熱交換器9−1を備えた空気調和機では、熱交換性能の向上を得られる。
The heat shield S provided between the heat transfer tube rows c1 and c2 adjacent to each other in the width direction of the heat radiation fin b prevents heat conduction between the heat transfer tube rows c1 and c2 and circulates between the heat radiation fins b. The ventilation resistance of the part with a large wind speed of heat exchange air is comprised so that it may become larger than the ventilation resistance of a part with a low wind speed.
In other words, since the wind speed of the heat exchange air flowing through the upper heat exchanger section 9u is large, the heat shield section Sa having a structure having a large ventilation resistance (hereinafter referred to as “high pressure loss”) is provided. Reduce the wind speed. On the contrary, since the wind speed of the heat exchange air flowing through the lower heat exchanger section 9d is small, the heat shield section Sb having a structure with low ventilation resistance (hereinafter referred to as “low pressure loss”) is provided. To raise. The specific configuration of the high-pressure loss Sa is, for example, one-side cut or double-side cut, and the low-pressure loss Sb is, for example, cut or cut out (opening).
As described above, the high-pressure loss and low-pressure loss heat shield portions Sa and Sb having different ventilation resistances are selected corresponding to the difference in wind speed facing the upper and lower heat exchanger portions 9u and 9d of the heat exchanger 9. Thus, the entire heat exchanger 9-1 has a substantially uniform wind speed distribution, and a substantially uniform heat exchange efficiency is obtained. And in the air conditioner provided with the said heat exchanger 9-1, the improvement of heat exchange performance can be acquired.

図3(A)は、本発明における第2の実施の形態での熱交換器9−2を示している。
上記熱交換器9−2は、側面視で略逆V字状をなし、室内機本体1の前面側に位置する前側熱交換器部9Aおよび後面側に位置する後側熱交換器部9Bとから構成される。前側熱交換器部9Aにおいて、上下方向の略中間部に切込みが入れられて、略くの字状に形成されているが、図1に示すように湾曲形成されたものであってもよい。
上記後側熱交換器部9Bは、上記放熱フィンbの幅方向に隣り合う伝熱管列c1−c2間に、伝熱管列c1−c2相互間での熱伝導を阻止するとともに、後側熱交換器部9Bにおける上部側の通風抵抗が、下部側の通風抵抗よりも大きくなるように構成される遮熱部Sを備えている。具体的には、上部側に高圧損の遮熱部Saである両側切起しを設け、下部側に低圧損の遮熱部Sbであるカットを設けている。
FIG. 3 (A) shows a heat exchanger 9-2 in the second embodiment of the present invention.
The heat exchanger 9-2 has a substantially inverted V shape in a side view, and includes a front heat exchanger portion 9A located on the front side of the indoor unit body 1 and a rear heat exchanger portion 9B located on the rear side. Consists of In the front heat exchanger portion 9A, a cut is made in a substantially middle portion in the up-down direction and is formed in a substantially square shape, but may be formed in a curved shape as shown in FIG.
The rear heat exchanger section 9B prevents heat conduction between the heat transfer tube rows c1-c2 between the heat transfer tube rows c1-c2 adjacent in the width direction of the radiating fin b, and also performs rear heat exchange. The heat insulation part S comprised so that the ventilation resistance of the upper part in the vessel part 9B may become larger than the ventilation resistance of the lower part is provided. Specifically, both sides of the heat shield part Sa having a high pressure loss are provided on the upper side, and a cut which is a heat shield part Sb having a low pressure loss is provided on the lower side.

すなわち、先に図1(A)(B)で説明したように、後側熱交換器部9Bの上端部に近接して上面吸込み口2が設けられているので、空調運転にともなって後側熱交換器部9Bに導かれる室内空気の風速が、後側熱交換器部9Bおける下端部よりも上端部が大になる。
図3(B)に示すように、比較例としての熱交換器Z−2を構成する後側熱交換器部9Bの上端から下端に亘って均一形状の遮熱部dであるカットを設けただけでは、上部側の風速が大となり、下部側の風速が小となって、風速分布に差が生じ後側熱交換器部9B全体に亘って均一な熱交換効率を保持できない。
これに対して上述のように構成することにより、図3(C)に示すように後側熱交換器部9Bにおける上部側の通風抵抗が大になって風速が下がり、下部側の通風抵抗が小になって風速が上がる。結果として、後側熱交換器部9B全体に亘って略均一な風速分布になり、略均一な熱交換効率を得る。そして、上記熱交換器9−2を備えた空気調和機では、熱交換性能の向上を得られる。
That is, as described above with reference to FIGS. 1 (A) and 1 (B), the upper surface suction port 2 is provided close to the upper end of the rear heat exchanger section 9B. The wind speed of the indoor air guided to the heat exchanger section 9B is larger at the upper end than the lower end of the rear heat exchanger section 9B.
As shown in FIG. 3 (B), a cut which is a uniform heat shield portion d is provided from the upper end to the lower end of the rear heat exchanger portion 9B constituting the heat exchanger Z-2 as a comparative example. Only, the wind speed on the upper side becomes large, the wind speed on the lower side becomes small, a difference occurs in the wind speed distribution, and uniform heat exchange efficiency cannot be maintained over the entire rear heat exchanger section 9B.
On the other hand, by configuring as described above, as shown in FIG. 3 (C), the ventilation resistance on the upper side in the rear heat exchanger section 9B is increased, the wind speed is lowered, and the ventilation resistance on the lower side is reduced. The wind speed increases as it becomes smaller. As a result, a substantially uniform wind speed distribution is obtained over the entire rear heat exchanger section 9B, and a substantially uniform heat exchange efficiency is obtained. And in the air conditioner provided with the said heat exchanger 9-2, the improvement of heat exchange performance can be acquired.

図4(A)は、本発明における第3の実施の形態での熱交換器9−3を示している。
上述したように室内機本体1は、前面および上面に吸込み口3,2を備え、上記前面吸込み口3に対向して、前面吸込み口3を開放した状態で室内機本体1の上部側から室内空気を吸込ませる開口のないフラットパネル6が設けられることを前提としている。
上記熱交換器9−3は側面視で略逆V字状をなし、室内機本体1の前面側に位置する前側熱交換器部9Aおよび後面側に位置する後側熱交換器部9Bとから構成される。前側熱交換器部9Aにおいて、上下方向の略中間部に切込みが入れられて、略くの字状に形成されているが、図1に示すように湾曲形成されたものであってもよい。
FIG. 4A shows a heat exchanger 9-3 according to the third embodiment of the present invention.
As described above, the indoor unit body 1 includes the suction ports 3 and 2 on the front surface and the upper surface, and faces the front suction port 3 so that the front suction port 3 is open and the indoor unit body 1 is opened from the upper side of the indoor unit body 1. It is assumed that a flat panel 6 without an opening for sucking air is provided.
The heat exchanger 9-3 has a substantially inverted V shape in a side view, and includes a front heat exchanger portion 9A located on the front side of the indoor unit body 1 and a rear heat exchanger portion 9B located on the rear side. Composed. In the front heat exchanger portion 9A, a cut is made in a substantially middle portion in the up-down direction and is formed in a substantially square shape, but may be formed in a curved shape as shown in FIG.

上記前側熱交換器部9Aは、上記放熱フィンbの幅方向に隣り合う伝熱管列c−1、c−2間に、伝熱管列c−1、c−2相互間での熱伝導を阻止するとともに、前側熱交換器部9Aにおける切込みから上部側の通風抵抗が、下部側の通風抵抗よりも大きくなるように構成される遮熱部Sを備えている。具体的には、上部側に高圧損の遮熱部Saである両側切起しを設け、下部側に低圧損の遮熱部Sbであるカットを設けている。
すなわち、先に図1(B)で説明したように、フラットパネル6が前面吸込み口3を開放した状態で、前面吸込み口3の上部側から熱交換空気を多く吸込み、下部側から吸込まれる熱交換空気の量が少ない。したがって、空調運転にともなって前側熱交換器部9Aの上部側に導かれる熱交換空気の風速が、下部側に導かれる熱交換空気の風速よりも大になる。
The front heat exchanger section 9A prevents heat conduction between the heat transfer tube rows c-1 and c-2 between the heat transfer tube rows c-1 and c-2 adjacent to each other in the width direction of the radiating fin b. In addition, there is provided a heat shield part S configured such that the ventilation resistance on the upper side from the cut in the front heat exchanger part 9A is larger than the ventilation resistance on the lower side. Specifically, both sides of the heat shield part Sa having a high pressure loss are provided on the upper side, and a cut which is a heat shield part Sb having a low pressure loss is provided on the lower side.
That is, as described above with reference to FIG. 1B, with the flat panel 6 opening the front suction port 3, a large amount of heat exchange air is sucked from the upper side of the front suction port 3 and sucked from the lower side. The amount of heat exchange air is small. Therefore, the wind speed of the heat exchange air guided to the upper side of the front heat exchanger section 9A with the air conditioning operation becomes higher than the wind speed of the heat exchange air guided to the lower side.

図4(B)に示すように、比較例としての熱交換器Z−3を構成する前側熱交換器部9Aの上部側と下部側とに亘って伝熱管列c−1、c−2相互間に均一形状の遮熱部dであるカットを設けただけでは、上部側の風速が大となり、下部側の風速が小となって、風速分布に差が生じ前側熱交換器部9A全体に亘って均一な熱交換効率を保持できない。
これに対して上述のように構成することにより、図4(C)に示すようにフラットパネル6を開放して熱交換空気を導通させた状態で、前側熱交換器部9A上部側の通風抵抗が大になって風速が下がり、下部側の通風抵抗が小になって風速が上がる。結果として、前側熱交換器部9A全体に亘って略均一な風速分布になり、略均一な熱交換効率を保持できる。そして、上記熱交換器9−3を備えた空気調和機では、熱交換性能の向上を得られる。
As shown in FIG. 4 (B), the heat transfer tube rows c-1 and c-2 are connected to each other across the upper side and the lower side of the front heat exchanger 9A constituting the heat exchanger Z-3 as a comparative example. Just by providing a cut that is a heat shield part d of uniform shape between them, the wind speed on the upper side becomes large, the wind speed on the lower side becomes small, a difference in wind speed distribution occurs, and the entire front heat exchanger part 9A A uniform heat exchange efficiency cannot be maintained.
On the other hand, by configuring as described above, the ventilation resistance on the upper side of the front heat exchanger section 9A in the state where the flat panel 6 is opened and the heat exchange air is conducted as shown in FIG. Becomes larger and the wind speed decreases, and the ventilation resistance on the lower side decreases and the wind speed increases. As a result, it becomes a substantially uniform wind speed distribution over the entire front side heat exchanger section 9A, and a substantially uniform heat exchange efficiency can be maintained. And in the air conditioner provided with the said heat exchanger 9-3, the improvement of heat exchange performance can be acquired.

なお、フラットパネル6は、先に図1(A)、(B)で説明したような可動式のものではなく、常時前面吸込み口を開口する固定式のものであっても良い。   In addition, the flat panel 6 may be a fixed type that always opens the front suction port instead of the movable type as described above with reference to FIGS. 1 (A) and 1 (B).

図5は、本発明における第4の実施の形態での熱交換器9−4A,9−4Bを示している。
ここでは、図の左側の熱交換器9−4Aにおいて、左側列c1の伝熱管cが全て細径に形成されているのに対して、右側列c2下部のみ大径の伝熱管cGが設けられる。図の右側の熱交換器9−4Bでは、左右列c1、c2下部のみ伝熱管cGが大径に形成されている。
いずれの熱交換器9−4A,9−4Bにおいても、大径の伝熱管cGが設けられる部位は、小径の伝熱管cが設けられる部位に比較して通風抵抗が大きく、その分、風速が低い。そこで、伝熱管列c1−c2の相互間に設けられる遮熱部Sは、管径の大なる伝熱管cGが挿通する部位における遮熱部Sbを低圧損の構成とし、管径の小なる伝熱管cが挿通する部位における遮熱部Saは高圧損の構成とする。具体的には、低圧損の遮熱部Sbはカットであり、高圧損の遮熱部Saは両側切起しである。
FIG. 5 shows heat exchangers 9-4A and 9-4B in the fourth embodiment of the present invention.
Here, in the heat exchanger 9-4A on the left side of the figure, the heat transfer tubes c in the left column c1 are all formed in a small diameter, whereas a large heat transfer tube cG is provided only in the lower part of the right column c2. . In the heat exchanger 9-4B on the right side of the figure, the heat transfer tube cG is formed with a large diameter only at the lower part of the left and right rows c1 and c2.
In any of the heat exchangers 9-4A and 9-4B, the portion where the large-diameter heat transfer tube cG is provided has a larger ventilation resistance than the portion where the small-diameter heat transfer tube c is provided, and the wind speed is accordingly increased. Low. Therefore, the heat shield portion S provided between the heat transfer tube rows c1-c2 is configured such that the heat shield portion Sb in the portion through which the heat transfer tube cG with a large tube diameter is inserted has a low pressure loss, and the heat transfer portion with a small tube diameter is transmitted. The heat shield part Sa in the part through which the heat pipe c is inserted has a high pressure loss configuration. Specifically, the heat shield part Sb with a low pressure loss is a cut, and the heat shield part Sa with a high pressure loss is cut up on both sides.

管径の大きい伝熱管cGが設けられる部分の通風抵抗が小になって風速が上がり、管径の小さい伝熱管cが設けられる部分の通風抵抗が大になって風速が下がる。結果として、熱交換器9−4A,9−4B全体に亘って略均一な風速分布になり、略均一な熱交換効率を保持できる。そして、上記熱交換器9−4A,9−4Bを備えた空気調和機では、熱交換性能の向上を得られる。
図6は、本発明における第5の実施の形態での熱交換器9−5を示している。
上記熱交換器9−5は、前側熱交換器部9Aおよび後側熱交換器部9Bからなる主熱交換器部9Eと、この主熱交換器部9Eの風上側一部に設けられる補助熱交換器部9Cとからなる。なお、前側熱交換器部9Aにおいて、上下方向の略中間部に切込みが入れられて、略くの字状に形成されているが、図1に示すように湾曲形成されたものであってもよい。
ここでは、上記主熱交換器部9Eを構成する前側熱交換器部9Aの前面側(風上側)に補助熱交換器部9Cが備えられている。前側熱交換器部9Aにおいて放熱フィンbの幅方向に隣り合う伝熱管列c1−c2間に、伝熱管列c1−c2相互間での熱伝導を阻止するとともに、風上側に補助熱交換器部9Cが存在しない部分の通風抵抗が、風上側に補助熱交換器部9Cが配置される部分の通風抵抗よりも大きくなるように構成される遮熱部Sを備えている。
The ventilation resistance of the portion where the heat transfer tube cG having a large tube diameter is reduced becomes low and the wind speed increases, and the ventilation resistance of the portion where the heat transfer tube c having a small tube diameter is provided becomes large and the wind speed decreases. As a result, a substantially uniform wind speed distribution is obtained throughout the heat exchangers 9-4A and 9-4B, and a substantially uniform heat exchange efficiency can be maintained. And in the air conditioner provided with the said heat exchanger 9-4A, 9-4B, the improvement of heat exchange performance can be acquired.
FIG. 6 shows a heat exchanger 9-5 according to the fifth embodiment of the present invention.
The heat exchanger 9-5 includes a main heat exchanger section 9E including a front heat exchanger section 9A and a rear heat exchanger section 9B, and auxiliary heat provided in a part of the windward side of the main heat exchanger section 9E. It consists of an exchange unit 9C. In addition, in the front side heat exchanger section 9A, a cut is made in a substantially middle part in the vertical direction, and it is formed in a substantially square shape, but it may be curved as shown in FIG. Good.
Here, an auxiliary heat exchanger section 9C is provided on the front side (windward side) of the front heat exchanger section 9A constituting the main heat exchanger section 9E. In the front heat exchanger portion 9A, heat conduction between the heat transfer tube rows c1-c2 is prevented between the heat transfer tube rows c1-c2 adjacent to each other in the width direction of the radiating fin b, and the auxiliary heat exchanger portion is provided on the windward side. There is provided a heat shield portion S configured such that the ventilation resistance of the portion where 9C does not exist is larger than the ventilation resistance of the portion where the auxiliary heat exchanger portion 9C is disposed on the windward side.

すなわち、前側熱交換器部9Aの上部側前面に補助熱交換器部9Cが配置されているので、この上部側は低圧損の遮熱部Sbとし、下部側前面には補助熱交換器部9Cが存在しないので、下部側を高圧損の遮熱部Saを構成とする。具体的には、低圧損の遮熱部Sbはカットとし、高圧損の遮熱部Saは両側起しとする。
このように、前側熱交換器部9Aの上部側で、かつ風上側に補助熱交換器部9Cが取付けられているので、前側熱交換器部9Aの上部側に導かれる熱交換空気の量が、補助熱交換器部9Cを備えていない下部側に導かれる熱交換空気の量よりも少なくなる。したがって、空調運転にともなって前側熱交換器部9Aの下部側に導かれる熱交換空気の風速が、上部側に導かれる熱交換空気の風速よりも大になる。
That is, since the auxiliary heat exchanger part 9C is arranged on the upper front surface of the front heat exchanger part 9A, the upper side is a low-pressure-loss heat shield part Sb, and the lower front surface is the auxiliary heat exchanger part 9C. Therefore, the heat shield part Sa having a high pressure loss is formed on the lower side. Specifically, the heat shield part Sb with a low pressure loss is cut, and the heat shield part Sa with a high pressure loss is raised on both sides.
Thus, since the auxiliary heat exchanger part 9C is mounted on the upper side of the front heat exchanger part 9A and on the windward side, the amount of heat exchange air guided to the upper side of the front heat exchanger part 9A is reduced. The amount of heat exchange air guided to the lower side not provided with the auxiliary heat exchanger section 9C is smaller. Therefore, the wind speed of the heat exchange air guided to the lower side of the front heat exchanger section 9A with the air conditioning operation becomes larger than the wind speed of the heat exchange air guided to the upper side.

上述のように構成することにより、前側熱交換器部9Aにおける上部側の通風抵抗が小になって風速が上がり、下部側の通風抵抗が大になって風速が下がる。結果として、風上側に補助熱交換器部9Cを備えた前側熱交換器部9A全体に亘って略均一な風速分布になり、略均一な熱交換効率を保持できる。そして、上記熱交換器9−5を備えた空気調和機では、熱交換性能の向上を得られる。
なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるとともに、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。
By comprising as mentioned above, the ventilation resistance of the upper side in 9 A of front side heat exchanger parts becomes small, a wind speed rises, the ventilation resistance of a lower part side becomes large, and a wind speed falls. As a result, a substantially uniform wind speed distribution is obtained over the entire front heat exchanger section 9A provided with the auxiliary heat exchanger section 9C on the windward side, so that a substantially uniform heat exchange efficiency can be maintained. And in the air conditioner provided with the said heat exchanger 9-5, the improvement of heat exchange performance can be acquired.
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage, and is disclosed in the above-described embodiment. Various inventions can be formed by appropriately combining a plurality of components.

本発明における熱交換器を備えた空気調和機の室内機の互いに異なる状態を模式的に示す断面図。Sectional drawing which shows typically a mutually different state of the indoor unit of the air conditioner provided with the heat exchanger in this invention. 本発明における第1の実施の形態に係る、熱交換器と比較例の熱交換器の構成と作用を説明する図。The figure explaining the structure and effect | action of the heat exchanger of the 1st Embodiment in this invention, and the heat exchanger of a comparative example. 本発明における第2の実施の形態に係る、熱交換器と比較例の熱交換器の構成と作用を説明する図。The figure explaining the structure and effect | action of the heat exchanger which concerns on 2nd Embodiment in this invention, and the heat exchanger of a comparative example. 本発明における第3の実施の形態に係る、熱交換器と比較例の熱交換器の構成と作用を説明する図。The figure explaining the structure and effect | action of the heat exchanger and heat exchanger of a comparative example based on 3rd Embodiment in this invention. 本発明における第4の実施の形態に係る、熱交換器の構成図。The block diagram of the heat exchanger based on 4th Embodiment in this invention. 本発明における第5の実施の形態に係る、熱交換器の構成図。The block diagram of the heat exchanger based on 5th Embodiment in this invention. 本発明における熱伝達率と通風抵抗の特性を比較する図。The figure which compares the characteristic of the heat transfer rate and ventilation resistance in this invention.

符号の説明Explanation of symbols

a…伝熱管挿通孔、b…放熱フィン、c…伝熱管、9…熱交換器、S…遮熱部(遮熱手段)、Sa…高圧損の遮熱部(両側切起し)、Sb…低圧損の遮熱部(カット)、2…上面吸込み口、3…前面吸込み口、4…吹出し口、1A…前面板、1B…後本体、1…室内機本体、9A…前側熱交換器部、9B…後側熱交換器部、6…フラットパネル、9E…主熱交換器部、9C、9D…補助熱交換器部。   a ... heat transfer tube insertion hole, b ... radiation fin, c ... heat transfer tube, 9 ... heat exchanger, S ... heat shield part (heat shield means), Sa ... heat shield part of high pressure loss (both sides raised), Sb ... heat shield part of low pressure loss (cut), 2 ... upper surface inlet, 3 ... front inlet, 4 ... outlet, 1A ... front plate, 1B ... rear body, 1 ... indoor unit body, 9A ... front heat exchanger Part, 9B ... rear heat exchanger part, 6 ... flat panel, 9E ... main heat exchanger part, 9C, 9D ... auxiliary heat exchanger part.

Claims (5)

幅方向に複数列の伝熱管挿通孔を有し、互いに所定間隔を存して並設され、互いの隙間に熱交換空気が流通する複数枚の放熱フィンと、
これら放熱フィンの上記伝熱管挿通孔に貫通して設けられ、内部に熱交換媒体が導通する伝熱管とを具備した熱交換器において、
上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、上記放熱フィン相互間を流通する熱交換空気の風速の大きい部分の通風抵抗が、風速の小さい部分の通風抵抗よりも大きくなるように構成される遮熱手段が設けられることを特徴とする熱交換器。
A plurality of heat dissipating fins having a plurality of rows of heat transfer tube insertion holes in the width direction, arranged in parallel with each other at a predetermined interval, and through which heat exchange air flows in the gaps between each other,
In a heat exchanger provided with a heat transfer tube that is provided through the heat transfer tube insertion hole of these radiating fins and through which a heat exchange medium is conducted,
Between the heat transfer tube rows adjacent in the width direction of the radiating fins, while preventing heat conduction between the heat transfer tube rows, the ventilation resistance of the portion where the wind speed of the heat exchange air flowing between the radiating fins is large, A heat exchanger comprising heat shielding means configured to be larger than a draft resistance of a portion having a low wind speed.
吸込み口および吹出し口を備え、前面板および後本体とから構成される室内機本体と、この室内機本体内に配置される熱交換器と、上記吸込み口から室内空気を吸込んで上記熱交換器に流通させ、ここで熱交換したあと上記吹出し口から室内へ送風する送風機とを具備する空気調和機の室内機において、
上記熱交換器は、
幅方向に複数列の伝熱管挿通孔を有し、互いに所定間隔を存して並設され、互いの隙間に熱交換空気が流通する複数枚の放熱フィンと、
これら放熱フィンの上記伝熱管挿通孔に貫通して設けられ、内部に熱交換媒体が導通する伝熱管と、
上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、上記放熱フィン相互間を流通する熱交換空気の風速の大きい部分の通風抵抗が、風速の小さい部分の通風抵抗よりも大きくなるように構成される遮熱手段とを備えたことを特徴とする空気調和機の室内機。
An indoor unit body having a suction port and a blowout port, and comprising a front plate and a rear body, a heat exchanger disposed in the indoor unit body, and the heat exchanger for sucking room air from the suction port In the indoor unit of an air conditioner comprising a blower that blows air from the outlet to the room after heat exchange here
The heat exchanger is
A plurality of heat dissipating fins having a plurality of rows of heat transfer tube insertion holes in the width direction, arranged in parallel with each other at a predetermined interval, and through which heat exchange air flows in the gaps between each other,
A heat transfer tube provided through the heat transfer tube insertion hole of these heat radiation fins, in which a heat exchange medium is conducted, and
Between the heat transfer tube rows adjacent in the width direction of the radiating fins, while preventing heat conduction between the heat transfer tube rows, the ventilation resistance of the portion where the wind speed of the heat exchange air flowing between the radiating fins is large, An indoor unit for an air conditioner, comprising: heat shielding means configured to be larger than a draft resistance of a portion having a low wind speed.
上記熱交換器は、側面視で略逆V字状をなし、上記室内機本体の前面側に位置する前側熱交換器部および後面側に位置する後側熱交換器部とから構成され、
上記後側熱交換器部は、上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、後側熱交換器部における上部側の通風抵抗が、下部側の通風抵抗よりも大きくなるように構成される遮熱手段を備えたことを特徴とする請求項2記載の空気調和機の室内機。
The heat exchanger has a substantially inverted V shape in a side view, and includes a front heat exchanger portion located on the front side of the indoor unit main body and a rear heat exchanger portion located on the rear surface side,
The rear heat exchanger portion prevents heat conduction between the heat transfer tube rows between the heat transfer tube rows adjacent to each other in the width direction of the radiating fin, and the upper side airflow resistance in the rear heat exchanger portion. The indoor unit of an air conditioner according to claim 2, further comprising a heat shield means configured to be larger than the ventilation resistance on the lower side.
上記室内機本体は、前面および上面に吸込み口を備え、
上記前面吸込み口に対向して、前面吸込み口を開放した状態で室内機本体の上部側から室内空気を吸込ませる開口のないフラットパネルが設けられ、
上記熱交換器は、側面視で略逆V字状をなし、上記室内機本体の前面側に位置する前側熱交換器部および後面側に位置する後側熱交換器部とから構成され、
上記前側熱交換器部は、
上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、前側熱交換器部における上部側の通風抵抗が、下部側の通風抵抗よりも大きくなるように構成される遮熱手段を備えたことを特徴とする請求項2記載の空気調和機の室内機。
The indoor unit body includes a suction port on the front surface and the upper surface,
A flat panel without an opening for sucking indoor air from the upper side of the indoor unit main body with the front suction port open, facing the front suction port, is provided.
The heat exchanger has a substantially inverted V shape in a side view, and includes a front heat exchanger portion located on the front side of the indoor unit main body and a rear heat exchanger portion located on the rear surface side,
The front heat exchanger part is
Between the heat transfer tube rows adjacent to each other in the width direction of the radiating fins, heat conduction between the heat transfer tube rows is prevented, and the ventilation resistance on the upper side in the front heat exchanger section is larger than the ventilation resistance on the lower side. The indoor unit for an air conditioner according to claim 2, further comprising a heat shield means configured to be configured as described above.
上記熱交換器は、前側熱交換器部および後側熱交換器部からなる主熱交換器部と、この主熱交換器部の風上側一部に設けられる補助熱交換器部とからなり、
上記主熱交換器部は、
上記放熱フィンの幅方向に隣り合う伝熱管列間に、伝熱管列相互間での熱伝導を阻止するとともに、風上側に上記補助熱交換器部が存在しない部分の通風抵抗が、風上側に上記補助熱交換器部が配置される部分の通風抵抗よりも大きくなるように構成される遮熱手段を備えたことを特徴とする請求項2記載の空気調和機の室内機。
The heat exchanger is composed of a main heat exchanger part composed of a front heat exchanger part and a rear heat exchanger part, and an auxiliary heat exchanger part provided in a part of the windward side of the main heat exchanger part,
The main heat exchanger part is
Between the heat transfer tube rows adjacent to each other in the width direction of the radiating fin, heat conduction between the heat transfer tube rows is prevented, and the ventilation resistance of the portion where the auxiliary heat exchanger part does not exist on the windward side is on the windward side. The indoor unit for an air conditioner according to claim 2, further comprising heat shielding means configured to be larger than a ventilation resistance of a portion where the auxiliary heat exchanger portion is disposed.
JP2005305856A 2005-10-20 2005-10-20 Heat exchanger and air conditioner indoor unit Active JP4796814B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005305856A JP4796814B2 (en) 2005-10-20 2005-10-20 Heat exchanger and air conditioner indoor unit
CN2006101373885A CN1952583B (en) 2005-10-20 2006-10-19 Heat exchanger and indoor machine of air conditioner containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305856A JP4796814B2 (en) 2005-10-20 2005-10-20 Heat exchanger and air conditioner indoor unit

Publications (2)

Publication Number Publication Date
JP2007113846A true JP2007113846A (en) 2007-05-10
JP4796814B2 JP4796814B2 (en) 2011-10-19

Family

ID=38059038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305856A Active JP4796814B2 (en) 2005-10-20 2005-10-20 Heat exchanger and air conditioner indoor unit

Country Status (2)

Country Link
JP (1) JP4796814B2 (en)
CN (1) CN1952583B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843139A (en) * 2017-11-22 2018-03-27 广东美的制冷设备有限公司 Fin component, heat exchanger and air conditioner room unit
CN108036669A (en) * 2017-11-22 2018-05-15 广东美的制冷设备有限公司 Fin component, heat exchanger and air conditioner room unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554741B2 (en) * 2010-09-28 2014-07-23 日立アプライアンス株式会社 Finned tube heat exchanger and air conditioner equipped with the same
JP5447569B2 (en) * 2012-03-26 2014-03-19 ダイキン工業株式会社 Air conditioner heat exchanger and air conditioner
KR102491602B1 (en) * 2015-10-23 2023-01-25 삼성전자주식회사 Air conditioner
CN107843030B (en) * 2017-11-22 2024-04-26 广东美的制冷设备有限公司 Indoor heat exchanger, air conditioner indoor unit and air conditioner
CN111219793A (en) * 2018-11-26 2020-06-02 东芝开利空调(中国)有限公司 Indoor unit of air conditioner
CN110006158A (en) * 2019-03-05 2019-07-12 青岛海尔空调电子有限公司 Air outlet device for air conditioner and air conditioner
CN110006156A (en) * 2019-03-05 2019-07-12 青岛海尔空调电子有限公司 Air outlet device for air conditioner and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313049A (en) * 1995-05-22 1996-11-29 Toshiba Corp Air conditioner
JPH0942699A (en) * 1995-05-22 1997-02-14 Toshiba Corp Air conditioner
JPH10185359A (en) * 1996-10-02 1998-07-14 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2005083606A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fin and its manufacturing method
JP2005188831A (en) * 2003-12-25 2005-07-14 Toshiba Kyaria Kk Indoor unit for air conditioner
WO2005088201A1 (en) * 2004-03-12 2005-09-22 Mitsubishi Denki Kabushiki Kaisha Indoor unit of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872996B2 (en) * 2002-03-22 2007-01-24 東芝キヤリア株式会社 Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313049A (en) * 1995-05-22 1996-11-29 Toshiba Corp Air conditioner
JPH0942699A (en) * 1995-05-22 1997-02-14 Toshiba Corp Air conditioner
JPH10185359A (en) * 1996-10-02 1998-07-14 Matsushita Electric Ind Co Ltd Finned heat exchanger
JP2005083606A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger with fin and its manufacturing method
JP2005188831A (en) * 2003-12-25 2005-07-14 Toshiba Kyaria Kk Indoor unit for air conditioner
WO2005088201A1 (en) * 2004-03-12 2005-09-22 Mitsubishi Denki Kabushiki Kaisha Indoor unit of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843139A (en) * 2017-11-22 2018-03-27 广东美的制冷设备有限公司 Fin component, heat exchanger and air conditioner room unit
CN108036669A (en) * 2017-11-22 2018-05-15 广东美的制冷设备有限公司 Fin component, heat exchanger and air conditioner room unit
CN108036669B (en) * 2017-11-22 2024-05-31 广东美的制冷设备有限公司 Fin assembly, heat exchanger and air conditioner indoor unit

Also Published As

Publication number Publication date
CN1952583B (en) 2011-08-03
JP4796814B2 (en) 2011-10-19
CN1952583A (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP4796814B2 (en) Heat exchanger and air conditioner indoor unit
CN210638189U (en) Air supply assembly for air conditioner outdoor unit and air conditioner outdoor unit
KR100907604B1 (en) Ceiling type air conditioner and energy saving air conditioning system
JP2007132578A (en) Indoor unit of air conditioner
KR100770710B1 (en) Room air conditioner
JP4708199B2 (en) Air conditioner
WO2017068725A1 (en) Indoor unit for air conditioner
JP2007212111A (en) Indoor unit for air conditioner
JP2001296037A (en) Air conditioner
WO2007083501A1 (en) Air conditioner
KR100770719B1 (en) Upper air discharge flap driving device of room air conditioner
JP4922817B2 (en) Air conditioner
KR100773692B1 (en) Suction/discharge flap structure of room air conditioner
JP5037400B2 (en) Manufacturing method of heat exchanger and indoor unit of air conditioner
JP2018115809A (en) Air conditioner
JP4381048B2 (en) Air conditioner
JP4807815B2 (en) Air conditioner
JP2002364873A5 (en)
JP2009168282A (en) Indoor unit of air conditioner
JPH03282132A (en) Air-conditioning device
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP2010190516A (en) Air conditioner
JP2000329370A (en) Wall-buried air conditioner
JP2007057180A (en) Air conditioner
KR20000004682U (en) Indoor unit for air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250