JP2007113690A - Conical roller bearing for differential - Google Patents

Conical roller bearing for differential Download PDF

Info

Publication number
JP2007113690A
JP2007113690A JP2005305772A JP2005305772A JP2007113690A JP 2007113690 A JP2007113690 A JP 2007113690A JP 2005305772 A JP2005305772 A JP 2005305772A JP 2005305772 A JP2005305772 A JP 2005305772A JP 2007113690 A JP2007113690 A JP 2007113690A
Authority
JP
Japan
Prior art keywords
tapered roller
cage
pocket
small
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005305772A
Other languages
Japanese (ja)
Other versions
JP4987277B2 (en
Inventor
Takashi Tsujimoto
崇 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005305772A priority Critical patent/JP4987277B2/en
Priority to PCT/JP2006/318353 priority patent/WO2007032470A1/en
Publication of JP2007113690A publication Critical patent/JP2007113690A/en
Application granted granted Critical
Publication of JP4987277B2 publication Critical patent/JP4987277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Landscapes

  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce torque without reducing bearing rigidity, contributing to miniaturization and the extra-long service life of a differential by preventing early damage by excessive bearing pressure of a raceway surface and increase of load capacity. <P>SOLUTION: This conical roller bearing for the differential has an inner race 2, an outer race 3, a plurality of conical rollers 4 rollingly arranged between the inner race 2 and the outer race 3, and a cage 5 for holding the conical rollers 4 at a predetermined circumferential interval. A roller factor γ exceeds 0.94. The cage 5 is composed of a small annular part 6 continuing on the small diameter end surface side of the conical rollers 4, a large annular part 7 continuing on the large diameter end surface side of the conical rollers, and a plurality of column parts 8 for connecting these annular parts 6 and 7. A trapezoidal pocket 9, setting a part for storing the small diameter side of the conical rollers 4 on the narrow width side and setting a part for storing the large diameter side on the wide width side, is formed between the adjacent column parts 8. A cutout 10a is arranged in the narrow width side column part 8 of the pocket 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車のデファレンシャル用円すいころ軸受に関する。   The present invention relates to a tapered roller bearing for an automobile differential.

図12は一般的な自動車のデファレンシャルを例示している。同図の上が車体前方、下が車体後方である。デファレンシャルケース41の前部にドライブピニオン軸42が収容され、一対の円すいころ軸受44,45で回転自在に支持される。ドライブピニオン軸42の前端部にはプロペラシャフト(図示せず)が連結され、後端部にはリンクギヤ(減速大歯車)46とかみ合うドライブピニオンギヤ(減速小歯車)43が固定され又は一体に設けてある。   FIG. 12 illustrates a typical automobile differential. The top of the figure is the front of the vehicle body and the bottom is the rear of the vehicle body. A drive pinion shaft 42 is accommodated in the front portion of the differential case 41 and is rotatably supported by a pair of tapered roller bearings 44 and 45. A propeller shaft (not shown) is connected to the front end portion of the drive pinion shaft 42, and a drive pinion gear (reduction small gear) 43 that meshes with a link gear (reduction large gear) 46 is fixed or integrally provided to the rear end portion. It is.

リンクギヤ46は差動歯車ケース47に連結され、差動歯車ケース47は一対の円すいころ軸受48,49でデファレンシャルケース41に対して回転自在に支持される。差動歯車ケース47の内部に、一対のピニオンギヤ50と、これとかみ合う一対のサイドギヤ51とがそれぞれ配設される。ピニオンギヤ50はピニオン軸52に固定され、サイドギヤ51はスラストワッシャを介して差動歯車ケース47に装着してある。図示されていない左右のドライブシャフトが、それぞれに対応するサイドギヤ51の内径部に連結(セレーション連結等)される。   The link gear 46 is connected to a differential gear case 47, and the differential gear case 47 is rotatably supported with respect to the differential case 41 by a pair of tapered roller bearings 48 and 49. Inside the differential gear case 47, a pair of pinion gears 50 and a pair of side gears 51 that mesh with the pinion gears 50 are disposed. The pinion gear 50 is fixed to the pinion shaft 52, and the side gear 51 is attached to the differential gear case 47 through a thrust washer. Left and right drive shafts (not shown) are connected to the inner diameter portions of the side gears 51 corresponding to the drive shafts (serration connection or the like).

プロペラシャフトの駆動トルクは、ドライブピニオンギヤ43→リンクギヤ46→差動歯車ケース47→ピニオンギヤ50→サイドギヤ51→ドライブシャフトという経路で伝達される。一方、タイヤの駆動抵抗は、ドライブシャフト→サイドギヤ51→ピニオンギヤ50へと伝達される。   The drive torque of the propeller shaft is transmitted through a path of drive pinion gear 43 → link gear 46 → differential gear case 47 → pinion gear 50 → side gear 51 → drive shaft. On the other hand, the driving resistance of the tire is transmitted from the drive shaft → the side gear 51 → the pinion gear 50.

デファレンシャル用円すいころ軸受は、外径面の軌道面の両側に小つばと大つばが設けられた内輪と、内径面に軌道面が設けられた外輪と、内輪と外輪の軌道面間に配列された複数の円すいころと、これらの円すいころをポケットに収納して保持する保持器とからなり、保持器には、円すいころの小径端面側で連なる小環状部と、円すいころの大径端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、ポケットが、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状に形成されたものが用いられている。   The tapered roller bearing for differential is arranged between the inner ring with small and large collars on both sides of the raceway surface of the outer diameter surface, the outer ring with the raceway surface on the inner diameter surface, and the raceway surfaces of the inner ring and the outer ring. A plurality of tapered rollers and a cage that holds and stores these tapered rollers in a pocket. The cage includes a small annular portion that is continuous on the small diameter end surface side of the tapered roller, and a large diameter end surface side of the tapered roller. And a plurality of pillars connecting these annular portions, and the pocket has a narrow side where the small diameter side of the tapered roller is accommodated and a wide side is the part which accommodates the large diameter side. A trapezoidal shape is used.

自走車両のデファレンシャル用円すいころ軸受は、下部が油浴に漬かった状態で使用され、その回転に伴って油浴の油が潤滑油として軸受内部に流入する。このような用途に使用される円すいころ軸受では、潤滑油が円すいころの小径側から軸受内部に流入し、保持器よりも外径側から流入する潤滑油は外輪の軌道面に沿って円すいころの大径側へ通過し、保持器よりも内径側から流入する潤滑油は内輪の軌道面に沿って円すいころの大径側へ通過する。   A differential tapered roller bearing for a self-propelled vehicle is used in a state where a lower part is immersed in an oil bath, and oil in the oil bath flows into the bearing as lubricating oil along with its rotation. In tapered roller bearings used for such applications, the lubricating oil flows into the bearing from the small diameter side of the tapered roller, and the lubricating oil flowing from the outer diameter side of the cage flows along the raceway surface of the outer ring. The lubricating oil that passes to the larger diameter side and flows from the inner diameter side to the cage passes along the raceway surface of the inner ring to the larger diameter side of the tapered roller.

このように潤滑油が外部から流入する部位に使用される円すいころ軸受には、保持器のポケットに切欠きを設けて、保持器の外径側と内径側とに分かれて流入する潤滑油がこの切欠きを通過するようにし、軸受内部での潤滑油の流通を向上させるようにしたものがある(特許文献1、2参照)。特許文献1に記載されたものでは、図15(A)に示すように、保持器5のポケット9間の柱部8の中央部に切欠き10dを設け、潤滑油に混入する異物が軸受内部に滞留しないようにしている。また、特許文献2に記載されたものでは、図15(B)に示すように、保持器5のポケット9の軸方向両端の小環状部6と大環状部7に切欠き10eを設け、保持器の外径側から流入する潤滑油が内輪側へ流れやすくなるようにしている。なお、各図中に記入したポケット9の各寸法は、後述するトルク測定試験における比較例に用いたものの値である。   In such a tapered roller bearing used for a portion where the lubricating oil flows from the outside, a notch is provided in the pocket of the cage, and the lubricating oil that flows into the outer diameter side and the inner diameter side of the cage is separated. There is one that passes through this notch to improve the flow of lubricating oil inside the bearing (see Patent Documents 1 and 2). As shown in FIG. 15 (A), in the one described in Patent Document 1, a notch 10d is provided in the central portion of the column portion 8 between the pockets 9 of the cage 5, and foreign matter mixed into the lubricating oil is generated inside the bearing. So that it does not stay. Moreover, in what was described in patent document 2, as shown to FIG. 15 (B), the notch 10e is provided in the small annular part 6 and the large annular part 7 of the axial direction both ends of the pocket 9 of the holder | retainer 5, and hold | maintained. The lubricating oil flowing in from the outer diameter side of the vessel is made easier to flow to the inner ring side. In addition, each dimension of the pocket 9 entered in each figure is the value used for the comparative example in the torque measurement test mentioned later.

また、自動車のデファレンシャルは、近年、低燃費化等のために低粘度の油が使われる傾向にある。低粘度オイルが使用される環境化では、(1)油温が高い、(2)油量が少ない、(3)予圧抜けが発生するなどの悪条件が重なった場合に、軸受の潤滑不良に起因する非常に短寿命の表面起点剥離が面圧の高い内輪軌道面に生じることがある。   In recent years, low-viscosity oil tends to be used for automobile differentials in order to reduce fuel consumption. In an environment where low-viscosity oil is used, bearing lubrication is poor when adverse conditions such as (1) high oil temperature, (2) low oil volume, and (3) preload loss occur. Due to the extremely short life, surface-origin separation may occur on the inner ring raceway surface with high surface pressure.

この表面起点剥離による短寿命対策としては最大面圧低減が直接的かつ有効な解決策である。最大面圧を低減するためには軸受寸法を変更するか、軸受寸法を変えない場合は軸受のころ本数を増大させる。ころ直径を減少させないでころ本数を増やすためには保持器のポケット間隔を狭くしなければならないが、そのためには保持器のピッチ円を大きくして外輪側にできるだけ寄せる必要がある。   As a countermeasure for short life due to this surface-origin separation, reduction of the maximum surface pressure is a direct and effective solution. In order to reduce the maximum surface pressure, the bearing dimensions are changed, or if the bearing dimensions are not changed, the number of rollers of the bearing is increased. In order to increase the number of rollers without reducing the roller diameter, the pocket interval of the cage must be narrowed. For this purpose, it is necessary to enlarge the pitch circle of the cage and bring it closer to the outer ring side as much as possible.

保持器を外輪内径面に接するまで寄せた例として、図13に記載の円すいころ軸受がある(特許文献6参照)。この円すいころ軸受61は保持器62の小径側環状部62aの外周面と大径側環状部62bの外周面を外輪63内径面と摺接させて保持器62をガイドし、保持器62の柱部62cの外径面に引きずりトルクを抑制するため凹所64を形成して、柱部62cの外径面と外輪63の軌道面63aの非接触状態を維持するようにしている。保持器62は、小径側環状部62aと、大径側環状部62bと、小径側環状部62aと大径側環状部62bとを軸方向に繋ぎ外径面に凹所64が形成された複数の柱部62cとを有する。そして柱部62c相互間に円すいころ65を転動自在に収容するための複数のポケットが設けられている。小径側環状部62aには、内径側に一体に延びたつば部62dが設けられている。図13の円すいころ軸受は、保持器62の強度向上を図るもので、保持器62の柱部62cの周方向幅を大きくするために保持器62を外輪63の内径面に接するまで寄せた例である。
特開平09−32858号公報(第3図) 特開平11−201149号公報(第2図) 特開平09−096352号公報 特開平11−0210765公報 特開2003−343552号公報 特開2003−28165号公報
As an example in which the cage is brought into contact with the inner surface of the outer ring, there is a tapered roller bearing shown in FIG. 13 (see Patent Document 6). The tapered roller bearing 61 guides the cage 62 by sliding the outer peripheral surface of the small-diameter side annular portion 62 a and the outer peripheral surface of the large-diameter side annular portion 62 b with the inner surface of the outer ring 63. In order to suppress drag torque on the outer diameter surface of the portion 62c, a recess 64 is formed to maintain a non-contact state between the outer diameter surface of the column portion 62c and the raceway surface 63a of the outer ring 63. The retainer 62 includes a plurality of small-diameter-side annular portions 62a, large-diameter-side annular portions 62b, small-diameter-side annular portions 62a, and large-diameter-side annular portions 62b that are axially connected to each other so that a recess 64 is formed on the outer diameter surface. Column part 62c. A plurality of pockets are provided between the column portions 62c for accommodating the tapered rollers 65 in a rollable manner. The small-diameter-side annular portion 62a is provided with a collar portion 62d that extends integrally on the inner-diameter side. The tapered roller bearing of FIG. 13 is intended to improve the strength of the cage 62, and is an example in which the cage 62 is brought into contact with the inner diameter surface of the outer ring 63 in order to increase the circumferential width of the column portion 62c of the cage 62. It is.
JP 09-32858 A (FIG. 3) JP-A-11-2011149 (FIG. 2) JP 09-096352 A Japanese Patent Laid-Open No. 11-0210765 JP 2003-343552 A JP 2003-28165 A

特許文献1及び特許文献2に記載のように、潤滑油が保持器の外径側と内径側とに分かれて軸受内部へ流入する円すいころ軸受では、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、トルク損失が大きくなることが分かった。この理由は、以下のように考えられる。   As described in Patent Document 1 and Patent Document 2, in the tapered roller bearing in which the lubricating oil is divided into the outer diameter side and the inner diameter side of the cage and flows into the bearing, it flows from the inner diameter side of the cage to the inner ring side. It has been found that torque loss increases as the proportion of lubricating oil increases. The reason is considered as follows.

すなわち、保持器の外径側から外輪側へ流入する潤滑油は、外輪の内径面には障害物がないので、その軌道面に沿って円すいころの大径側へスムーズに通過して軸受内部から流出するが、保持器の内径側から内輪側へ流入する潤滑油は、内輪の外径面には大つばがあるので、その軌道面に沿って円すいころの大径側へ通過したときに大つばで堰き止められ、軸受内部に滞留しやすくなる。このため、保持器の内径側から内輪側へ流入する潤滑油の割合が多くなると、軸受内部に滞留する潤滑油の量が多くなり、この滞留する潤滑油が軸受回転に対する流動抵抗となってトルク損失が増大するものと考えられる。   That is, the lubricating oil flowing from the outer diameter side of the cage to the outer ring side smoothly passes to the large diameter side of the tapered roller along the raceway surface because there is no obstacle on the inner diameter surface of the outer ring. The lubricating oil flowing out from the inner diameter side of the cage to the inner ring side has a large brim on the outer diameter surface of the inner ring, so when it passes along the raceway surface to the larger diameter side of the tapered roller It is blocked by a large brim and tends to stay inside the bearing. For this reason, when the ratio of the lubricating oil flowing from the inner diameter side to the inner ring side of the cage increases, the amount of the lubricating oil staying inside the bearing increases, and this staying lubricating oil becomes a flow resistance against the bearing rotation and generates torque. Loss is considered to increase.

したがって、軸受内部に潤滑油が流入する円すいころ軸受における潤滑油の流動抵抗によるトルク損失を低減させる必要がある。以上が低トルク化のために油の流動抵抗を減少させる方法であるが、大幅な低トルク化を行うためには、転がり粘性抵抗が低下するように軸受諸元を変更することが必要である。しかしながら、従来の低トルク化手法(特許文献3〜5参照)では、定格荷重を低下させない低トルク化は可能であるが、軸受剛性はいくらか低下する。   Therefore, it is necessary to reduce torque loss due to flow resistance of the lubricating oil in the tapered roller bearing in which the lubricating oil flows into the bearing. The above is a method for reducing the flow resistance of oil to reduce torque, but in order to significantly reduce torque, it is necessary to change the bearing specifications so that the rolling viscous resistance decreases. . However, in the conventional torque reduction method (see Patent Documents 3 to 5), torque reduction without reducing the rated load is possible, but the bearing rigidity is somewhat reduced.

特許文献6に記載の円すいころ軸受61では、保持器62を外輪63の内径面に接するまで外径に寄せて保持器62の柱部62cの周方向幅を大きくしている。また、保持器62の柱部62cに凹所64があるので、板厚が必然的に薄くなって保持器62の剛性が低下し、軸受61の組立て時の応力によって保持器62が変形したり、軸受61の回転中に保持器62が変形したりする等の可能性もある。   In the tapered roller bearing 61 described in Patent Literature 6, the circumferential width of the column portion 62 c of the cage 62 is increased by moving the cage 62 toward the outside diameter until it comes into contact with the inside diameter surface of the outer ring 63. Further, since the recesses 64 are provided in the column portion 62c of the cage 62, the plate thickness is inevitably thinned, the rigidity of the cage 62 is reduced, and the cage 62 is deformed by the stress when the bearing 61 is assembled. There is also a possibility that the cage 62 is deformed while the bearing 61 is rotating.

一方、特許文献6に記載の円すいころ軸受61以外の従来の典型的な保持器付き円すいころ軸受は、図8のように外輪71と保持器72との接触を避けた上で、保持器72の柱幅を確保し、適切な保持器72の柱強度と円滑な回転を得るために、次式で定義されるころ係数γ(ころの充填率)を、通常0.94以下にして設計している。   On the other hand, a conventional typical tapered roller bearing with a cage other than the tapered roller bearing 61 described in Patent Document 6 avoids contact between the outer ring 71 and the cage 72 as shown in FIG. The roller coefficient γ (roller filling rate) defined by the following equation is usually designed to be 0.94 or less in order to secure the column width of the cylinder and to obtain appropriate column strength of the cage 72 and smooth rotation. ing.

ころ係数γ=(Z・DA)/(π・PCD)
ここで、Z:ころ本数、DA:ころ平均径、PCD:ころピッチ円径。
Roller coefficient γ = (Z · DA) / (π · PCD)
Here, Z: number of rollers, DA: roller average diameter, PCD: roller pitch circle diameter.

本発明は、負荷容量のアップと軌道面の面圧過大による早期破損を防止するとともに、デファレンシャルの小型化、超寿命化に寄与し、かつ軸受剛性を低下させることなく、低トルク化を実現することを目的とする。   The present invention prevents premature damage due to an increase in load capacity and excessive surface pressure on the raceway surface, contributes to reducing the differential size and extending the service life, and lowering the torque without reducing the bearing rigidity. For the purpose.

この発明のデファレンシャル用円すいころ軸受は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とを備えた円すいころ軸受において、ころ係数γが0.94を越え、保持器が、円すいころの小径端面側で連なる小環状部と、円すいころの大径端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状のポケットが形成され、ポケットの狭幅側の柱部に切欠きを設けたことを特徴とするものである。   A tapered roller bearing for a differential according to the present invention includes an inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage that holds the tapered rollers at a predetermined circumferential interval. In the tapered roller bearing provided, the roller coefficient γ exceeds 0.94, and the cage includes a small annular portion that is continuous on the small diameter end surface side of the tapered roller, a large annular portion that is continuous on the large diameter end surface side of the tapered roller, and these A trapezoidal pocket consisting of a plurality of pillars that connect the annular parts, with the narrow part of the tapered roller containing the small diameter side and the wide part containing the large diameter side between the adjacent pillar parts. Is formed, and a notch is provided in the narrow pillar portion of the pocket.

ころ係数γ(ころの充填率)は(ころ本数×ころ平均径)/(π×PCD)で表されるパラメータであって、ころ平均径が一定とした場合、γの値が大きいほどころ本数が多いことを意味する。従来の典型的な保持器付き円すいころ軸受では、ころ係数γを、通常0.94以下にして設計しているので、ころ係数γが0.94を越えるということは、従来と比較して、ころ充填率ひいては軸受剛性が高いことを意味する。   The roller coefficient γ (roller filling ratio) is a parameter represented by (number of rollers × roller average diameter) / (π × PCD). When the average roller diameter is constant, the larger the value of γ, the greater the number of rollers. It means that there are many. In a conventional typical tapered roller bearing with a cage, the roller coefficient γ is usually designed to be 0.94 or less, so that the roller coefficient γ exceeds 0.94, This means that the roller filling rate and thus the bearing rigidity is high.

ところで、図16は円すいころ軸受においてころピッチ径(PCD)を変化させたときの剛性比(−●−)およびトルク比(−○−)を表したものである。図16に示すように、PCDを小さくすると軸受のトルクは大幅に低下するが、軸受剛性はあまり低下しないことが、ころの弾性変形量を計算確認した結果として得られた。そこで、ころ本数を減らさないか増加させつつPCDを小さくすれば、剛性を低下させずにトルクを低減させることができる。   FIG. 16 shows the rigidity ratio (-●-) and torque ratio (-o-) when the roller pitch diameter (PCD) is changed in the tapered roller bearing. As shown in FIG. 16, when the PCD is reduced, the bearing torque is greatly reduced, but the bearing rigidity is not lowered so much as a result of calculating and confirming the elastic deformation amount of the roller. Therefore, if the PCD is reduced while the number of rollers is not reduced or increased, the torque can be reduced without reducing the rigidity.

本発明では、ころ係数γが0.94を越えるようにすることによって、ころ本数を増加させつつころPCDを小さくできる。これにより、軸受剛性を低下させることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするばかりでなく、軌道面の最大面圧を低下させることができる。   In the present invention, the roller PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. Thereby, low torque can be realized without reducing the bearing rigidity. In addition, increasing the number of rollers not only increases the load capacity, but also reduces the maximum surface pressure of the raceway surface.

また、保持器の台形状のポケットの狭幅側の柱部に切欠きを設けることにより、次のような作用が得られる。すなわち、保持器の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができる。   Moreover, the following effect | action is acquired by providing a notch in the column part by the side of the narrow side of the trapezoid shaped pocket of a holder | retainer. That is, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch.

請求項2の発明は、請求項1の円すいころ軸受において、ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とするものである。このような構成を採用することにより、保持器の内径側から内輪側へ流入する潤滑油をこの切欠きからも外輪側へ逃がしてやることができる。   According to a second aspect of the present invention, in the tapered roller bearing according to the first aspect, a notch is also provided in the small annular portion on the narrow side of the pocket. By adopting such a configuration, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be released from the notch to the outer ring side.

請求項3の発明は、請求項1または2の円すいころ軸受において、ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とするものである。   According to a third aspect of the present invention, in the tapered roller bearing of the first or second aspect, a notch is provided in at least a column portion on the wide side of the pocket.

請求項4の発明は、請求項3の円すいころ軸受において、ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠きの合計面積よりも広くしたことを特徴とするものである。   According to a fourth aspect of the present invention, in the tapered roller bearing of the third aspect, the total area of the notches provided on the narrow side of the pocket is made wider than the total area of the notches provided on the wide side of the pocket. It is what.

請求項5の発明は、請求項1ないし4のいずれかの円すいころ軸受において、保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの上限を小つばの外径寸法の2.0%としたことを特徴とするものである。   According to a fifth aspect of the present invention, in the tapered roller bearing according to any one of the first to fourth aspects, a radially inwardly facing outer diameter surface of the small collar of the inner ring is provided on the outer side in the axial direction of the small annular portion of the cage. A collar is provided, and the upper limit of the clearance between the inner diameter surface of the collar and the outer diameter surface of the small collar of the inner ring is set to 2.0% of the outer diameter dimension of the small collar.

請求項6の発明は、請求項1ないし5のいずれかの円すいころ軸受において、少なくとも円すいころの表面に、微小凹形形状のくぼみをランダムに無数に設け、このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし、かつ、Sk値を−1.6以下としたことを特徴とするものである。   According to a sixth aspect of the present invention, in the tapered roller bearing according to any one of the first to fifth aspects, an infinite number of minute concave concaves are randomly provided on at least the surface of the tapered roller, and the surface roughness of the surface provided with the concaves is provided. The parameter Ryni is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is −1.6 or less.

パラメータRyniは、基準長毎最大高さの平均値、すなわち、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定した値である(ISO 4287:1997)。また、Sk値は粗さ曲線のひずみ度、すなわち、粗さの凹凸分布の非対称性を表す値であり(ISO 4287:1997)、ガウス分布のように対称な分布ではSk値は0に近くなり、凹凸の凸部を削除した場合は負の値、逆に凹部を削除した場合は正の値となる。Sk値のコントロールは、バレル研磨機の回転速度、加工時間、ワーク投入量、研磨チップの種類と大きさ等を選ぶことにより行うことができ、Sk値を−1.6以下とすることにより、無数の微小凹形形状のくぼみに満遍なく潤滑油を保持することができる。   The parameter Ryni is the average value of the maximum height for each reference length, that is, the reference length is extracted from the roughness curve in the direction of the average line, and the interval between the peak line and the valley bottom line of this extracted part is set to the vertical line of the roughness curve. It is a value measured in the direction of magnification (ISO 4287: 1997). The Sk value is a value representing the degree of distortion of the roughness curve, that is, the asymmetry of the roughness unevenness distribution (ISO 4287: 1997), and the Sk value is close to 0 in a symmetric distribution such as a Gaussian distribution. When the concave and convex portions are deleted, a negative value is obtained. Conversely, when the concave portions are deleted, a positive value is obtained. The Sk value can be controlled by selecting the rotational speed of the barrel polishing machine, the processing time, the workpiece input amount, the type and size of the polishing tip, etc., and by setting the Sk value to −1.6 or less, Lubricating oil can be held evenly in innumerable minute concave recesses.

この発明によれば、ころ係数γが0.94を越えるようにすることによって、ころ本数を増加させつつこのPCDを小さくできる。これにより、軸受剛性を低下させることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするばかりでなく、軌道面の最大面圧を低下させることができるため、過酷潤滑条件下での極短寿命での表面起点剥離を防止することができる。したがって、デファレンシャルの小型化、長寿命化に貢献できる。   According to the present invention, the PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. Thereby, low torque can be realized without reducing the bearing rigidity. In addition, increasing the number of rollers not only increases the load capacity, but also reduces the maximum surface pressure of the raceway surface, thus preventing surface-origin separation with an extremely short life under severe lubrication conditions. be able to. Therefore, it is possible to contribute to miniaturization and long life of the differential.

また、保持器の台形状ポケットの狭幅側の柱部に切欠きを設けることにより、保持器の内径側から内輪側へ流入した潤滑油を、この切欠きを通して外輪側へ速やかに逃がすことができるため、内輪の軌道面に沿って大つばに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失が低減する。   In addition, by providing a notch in the narrow pillar portion of the trapezoidal pocket of the cage, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side can be quickly released to the outer ring side through this notch. As a result, the amount of lubricating oil reaching the large collar along the raceway surface of the inner ring is reduced, the amount of lubricating oil remaining in the bearing is reduced, and torque loss due to the flow resistance of the lubricating oil is reduced.

前記ポケットの狭幅側の小環状部にも切欠きを設けることにより、保持器の内径側から内輪側へ流入する潤滑油をこの小環状部の切欠きからも外輪側へ逃がし、内輪の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   By providing a notch also in the small annular part on the narrow side of the pocket, the lubricating oil flowing from the inner diameter side of the cage to the inner ring side is released from the notch of the small annular part to the outer ring side, and the inner ring raceway It is possible to further reduce the torque loss due to the flow resistance of the lubricating oil by reducing the amount of lubricating oil reaching the large brim along the surface.

前記ポケットの広幅側の少なくとも柱部に切欠きを設けることにより、円すいころをバランスよく柱部に摺接させることができる。   By providing a notch in at least the column portion on the wide side of the pocket, the tapered roller can be slidably contacted with the column portion in a balanced manner.

前記ポケットの狭幅側に設けた切欠きの合計面積を、台形状ポケットの広幅側に設けた切欠きの合計面積よりも広くすることによっても、内輪の軌道面に沿って大つばまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   Even by making the total area of the notches provided on the narrow side of the pocket larger than the total area of the notches provided on the wide side of the trapezoidal pocket, it can reach a large brim along the raceway surface of the inner ring. It is possible to further reduce torque loss due to the flow resistance of the lubricating oil by reducing the amount of the lubricating oil.

前記保持器の小環状部の輪方向外側に、内輪の小つばの外径面に対向させた径方向内向きのつばを設け、この対向させた小環状部のつばの内径面と内輪の小つばの外径面との隙間を、内輪の小つばの外径寸法の2.0%以下とすることにより、保持器の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によるトルク損失をより低減することができる。   A radially inward flange is provided on the outer side of the small annular portion of the cage in the radial direction so as to face the outer diameter surface of the small collar of the inner ring. By setting the clearance between the outer diameter surface of the collar to 2.0% or less of the outer diameter of the small collar of the inner ring, the amount of lubricating oil flowing from the inner diameter side of the cage to the inner ring side is reduced, and the lubricating oil Torque loss due to the flow resistance can be further reduced.

少なくとも前記円すいころの表面に、微小凹形形状のくぼみをランダムに無数に設け、このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし、かつ、Sk値を−1.6以下とすることにより、円すいころの表面に満遍なく潤滑油を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円すいころと内外輪との接触部を十分に潤滑することができる。   At least the surface of the tapered roller is provided with an infinite number of minute concave concaves, the surface roughness parameter Ryni of the surface provided with the concaves is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is Even if the amount of lubricating oil staying in the bearing is reduced by holding the lubricating oil evenly on the surface of the tapered roller by setting it to -1.6 or less, the contact portion between the tapered roller and the inner and outer rings is sufficiently lubricated. can do.

以下、図面に従ってこの発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(A)(B)に示す実施の形態の円すいころ軸受1は、デファレンシャル用であって、内輪2と、外輪3と、円すいころ4と、保持器5とで構成されている。内輪2は外周に円すい状の軌道面2aを有し、外輪3は内周に円すい状の軌道面3aを有する。複数の円すいころ4が、内輪2の軌道面2aと外輪3の軌道面3aとの間に転動自在に介在させてある。円すいころ4は保持器5に形成されたポケット内に収容されている。各円すいころ4は、内輪2の軌道面2aの両側に設けた小つば2bと大つば2cとで軸方向への移動を規制されている。 The tapered roller bearing 1 according to the embodiment shown in FIGS. 1A and 1B is for a differential, and includes an inner ring 2, an outer ring 3, a tapered roller 4, and a cage 5. The inner ring 2 has a conical track surface 2a on the outer periphery, and the outer ring 3 has a conical track surface 3a on the inner periphery. A plurality of tapered rollers 4 are interposed between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3 so as to be freely rollable. The tapered roller 4 is accommodated in a pocket formed in the cage 5. Each tapered roller 4 is restricted from moving in the axial direction by a small brim 2 b and a large brim 2 c provided on both sides of the raceway surface 2 a of the inner ring 2.

保持器5は、円すいころ4の小径端面側で連なる小環状部6と、円すいころ4の大径端面側で連なる大環状部7と、これらの小環状部6と大環状部7を連結する複数の柱部8とを含んでいる。そして、図2に示すように、隣り合った柱部8間にポケット9が形成される。保持器5のポケット9は台形状で、円すいころ4の小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる。ポケット9の狭幅側と広幅側には、それぞれ両側の柱部8に2つずつ、外径側から内径側まで切り通した切欠き10a、10bが設けてある。各切欠き10a、10bの寸法は、いずれも深さ1.0mm、幅4.6mmとされている。なお、図面に例示した切欠き10a、10bは、保持器5の半径方向に切り通した溝の形態をしているが、保持器5の内径側と外径側を連絡して潤滑油の円滑な通過を許容することができる限り、形状や寸法は任意である。   The cage 5 connects the small annular part 6 connected on the small diameter end face side of the tapered roller 4, the large annular part 7 connected on the large diameter end face side of the tapered roller 4, and the small annular part 6 and the large annular part 7. A plurality of column portions 8 are included. Then, as shown in FIG. 2, a pocket 9 is formed between the adjacent column portions 8. The pocket 9 of the cage 5 has a trapezoidal shape, and the portion for storing the small diameter side of the tapered roller 4 is the narrow side, and the portion for storing the large diameter side is the wide side. On the narrow side and wide side of the pocket 9, two notches 10 a and 10 b that are cut from the outer diameter side to the inner diameter side are provided in each of the column portions 8 on both sides. Each notch 10a, 10b has a depth of 1.0 mm and a width of 4.6 mm. The notches 10a and 10b illustrated in the drawings are in the form of grooves cut in the radial direction of the cage 5, but the inner diameter side and the outer diameter side of the cage 5 are connected to make the lubricating oil smooth. As long as the passage can be allowed, the shape and dimensions are arbitrary.

図3および図4に保持器5の変形例を示す。図3に示す変形例は、ポケット9の狭幅側の小環状部6にも切欠き10cを設けたものである。そして、狭幅側の3つの切欠き10a、10cの合計面積が、広幅側の2つの切欠き10bの合計面積よりも広くなっている。なお、切欠き10cは深さ1.0mm、幅5.7mmとしてある。   3 and 4 show a modified example of the cage 5. In the modification shown in FIG. 3, a notch 10 c is also provided in the small annular portion 6 on the narrow side of the pocket 9. The total area of the three notches 10a and 10c on the narrow side is wider than the total area of the two notches 10b on the wide side. The notch 10c has a depth of 1.0 mm and a width of 5.7 mm.

図4に示す変形例は、狭幅側の柱部8の各切欠き10aの深さが1.5mmと広幅側の柱部8の各切欠き10bよりも深く、狭幅側の各切欠き10aの合計面積が、広幅側の各切欠き10bの合計面積よりも広くなっている。   In the modification shown in FIG. 4, the depth of each notch 10a of the narrow column portion 8 is 1.5 mm, which is deeper than each notch 10b of the wide column portion 8, and each notch on the narrow side. The total area of 10a is wider than the total area of the notches 10b on the wide side.

図5に示すように、保持器5の小環状部6の軸方向外側には、内輪2の小つば2bの外径面に対向させた径方向内向きのつば11が設けてあり、このつば11の内径面と内輪2の小つば2bの外径面との間のすきまδは、小つば2bの外径寸法の2.0%以下に狭く設定してある。   As shown in FIG. 5, a radially inward flange 11 is provided on the outer side in the axial direction of the small annular portion 6 of the cage 5 so as to face the outer diameter surface of the small collar 2b of the inner ring 2. The clearance δ between the inner diameter surface of 11 and the outer diameter surface of the small collar 2b of the inner ring 2 is set narrowly to 2.0% or less of the outer diameter dimension of the small collar 2b.

また、図示は省略するが、円すいころ4の全表面には微小凹形形状のくぼみがランダムに無数に設けてある。このくぼみを設けた表面は、面粗さパラメータRyniが0.4μm≦Ryni≦1.0μm、かつ、Sk値が−1.6以下としてある。   Although not shown in the figure, the entire surface of the tapered roller 4 is provided with an infinite number of minute concave concaves. The surface provided with the indentation has a surface roughness parameter Ryni of 0.4 μm ≦ Ryni ≦ 1.0 μm and a Sk value of −1.6 or less.

デファレンシャルケース41(図12参照)はシール部材で密封され、内部にており潤滑油が貯留される。このため、デファレンシャル用円すいころ軸受1はこの潤滑油の油浴に下部が漬かった状態で回転する。   The differential case 41 (see FIG. 12) is sealed with a seal member, and the lubricating oil is stored inside. For this reason, the differential tapered roller bearing 1 rotates with its lower part immersed in this lubricating oil bath.

各円すいころ軸受1が高速で回転してその下部が油浴に漬かると、図5に矢印で示すように、油浴の潤滑油が円すいころ4の小径側から保持器5の外径側と内径側とに分かれて軸受内部へ流入し、保持器5の外径側から外輪3へ流入した潤滑油は、外輪3の軌道面3aに沿って円すいころ4の大径側へ通過して軸受内部から流出する。一方、保持器5の内径側から内輪2側へ流入する潤滑油は、保持器5の外径側から流入する潤滑油よりも遥かに少なく、かつ、このすきまδから流入する潤滑油の大半は、ポケット9の狭幅側の柱部8に設けた切欠き10aを通過して、保持器5の外径側へ移動する。したがって、そのまま内輪2の軌道面2aに沿って大つば2cに至る潤滑油の量は非常に少なくなり、軸受内部に滞留する潤滑油の量を減らすことができる。   When each tapered roller bearing 1 rotates at high speed and its lower part is immersed in an oil bath, the lubricating oil in the oil bath is moved from the small diameter side of the tapered roller 4 to the outer diameter side of the cage 5 as shown by arrows in FIG. Lubricating oil that flows into the bearing divided into the inner diameter side and flows into the outer ring 3 from the outer diameter side of the retainer 5 passes along the raceway surface 3a of the outer ring 3 to the larger diameter side of the tapered roller 4 and then the bearing. Escape from inside. On the other hand, the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring 2 side is far less than the lubricating oil flowing from the outer diameter side of the cage 5, and most of the lubricating oil flowing from this clearance δ is Then, it passes through the notch 10 a provided in the column portion 8 on the narrow side of the pocket 9 and moves to the outer diameter side of the cage 5. Therefore, the amount of the lubricating oil that reaches the large collar 2c along the raceway surface 2a of the inner ring 2 becomes very small, and the amount of the lubricating oil staying inside the bearing can be reduced.

保持器5は、例えばPPS、PEEK、PA、PPA、PAI等のスーパーエンプラで一体成形される。保持器に、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。また、これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。   The cage 5 is integrally formed with a super engineering plastic such as PPS, PEEK, PA, PPA, or PAI. By using engineering plastics with excellent mechanical strength, oil resistance and heat resistance for the cage, the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than that of steel plate cages. Therefore, in combination with the effect of the lubricating oil present in the bearing, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. In addition, these resins are lighter and have a smaller coefficient of friction than steel plates, and are therefore suitable for reducing torque loss and cage wear at the start of the bearing.

エンジニアリング・プラスチックは、汎用エンジニアリング・プラスチックとスーパー・エンジニアリング・プラスチックを含む。以下に代表的なものを掲げるが、これらはエンジニアリング・プラスチックの例示であって、エンジニアリング・プラスチックが以下のものに限定されるものではない。   Engineering plastics include general purpose engineering plastics and super engineering plastics. Typical examples are listed below, but these are examples of engineering plastics, and engineering plastics are not limited to the following.

〔汎用エンジニアリング・プラスチック〕ポリカーボネート(PC)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m−PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF−PET)、超高分子量ポリエチレン(UHMW−PE) [General-purpose engineering plastics] Polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF) -PET), ultra high molecular weight polyethylene (UHMW-PE)

〔スーパー・エンジニアリング・プラスチック〕ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、ポリベンズイミダゾール(PBI)、ポリメチルベンテン(TPX)、ポリ1,4−シクロヘキサンジメチレンテレフタレート(PCT)、ポリアミド46(PA46)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド11,12 (PA11,12)、フッ素樹脂、ポリフタルアミド(PPA) [Super Engineering Plastics] Polysulfone (PSF), Polyethersulfone (PES), Polyphenylene sulfide (PPS), Polyarylate (PAR), Polyamideimide (PAI), Polyetherimide (PEI), Polyetheretherketone ( PEEK), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), polybenzimidazole (PBI), polymethylbenten (TPX), poly1,4-cyclohexanedimethylene terephthalate (PCT), polyamide 46 (PA46), polyamide 6T (PA6T), polyamide 9T (PA9T), polyamide 11,12 (PA11,12), fluororesin, polyphthalamide (PPA)

なお、保持器材料の例としてPPS、PEEK、PA、PPA、PAI等のスーパーエンプラを挙げたが、必要に応じて、強度増強のため、これら樹脂材料またはその他のエンジニアリング・プラスチックに、ガラス繊維または炭素繊維などを配合したものを使用してもよい。   Although examples of cage materials include super engineering plastics such as PPS, PEEK, PA, PPA, PAI, etc., if necessary, these resin materials or other engineering plastics may be made of glass fiber or What mix | blended carbon fiber etc. may be used.

円すいころ軸受1は、ころ係数γがγ>0.94となっている。ころ係数γはころの充填率を表し、次式で定義される。
ころ係数γ=(Z・DA)/(π・PCD)
ここに、
Z:ころ本数
DA:ころ平均径
PCD:ころピッチ径。
The tapered roller bearing 1 has a roller coefficient γ of γ> 0.94. The roller coefficient γ represents the filling rate of the roller and is defined by the following equation.
Roller coefficient γ = (Z · DA) / (π · PCD)
here,
Z: Number of rollers DA: Roller average diameter PCD: Roller pitch diameter.

柱面5aの窓角θは、図6に示すように下限窓角θminが55°であり、図7に示すように上限窓角θmaxが80°である。窓角とは、一つのころの周面に当接する柱部の案内面のなす角度をいう。下限窓角θminを55°以上としたのは、ころとの良好な接触状態を確保するためであり、窓角55°未満ではころとの接触状態が悪くなる。すなわち、窓角を55°以上とすると、保持器強度を確保した上でγ>0.94として、かつ、良好な接触状態を確保できるのである。また、上限窓角θmaxを80°以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の樹脂材であっても円滑な回転が得られなくなる危険性が生じるからである。   As for the window angle θ of the column surface 5a, the lower limit window angle θmin is 55 ° as shown in FIG. 6, and the upper limit window angle θmax is 80 ° as shown in FIG. The window angle refers to an angle formed by the guide surface of the column portion that abuts on the peripheral surface of one roller. The reason why the lower limit window angle θmin is set to 55 ° or more is to ensure a good contact state with the roller, and when the window angle is less than 55 °, the contact state with the roller is deteriorated. That is, when the window angle is 55 ° or more, the cage strength is secured and γ> 0.94 and a good contact state can be secured. Further, the upper limit window angle θmax is set to 80 ° or less. If the upper limit window angle θmax is larger than 80 °, the pressing force in the radial direction increases, and there is a risk that smooth rotation cannot be obtained even with a self-lubricating resin material. Because.

比較のために従来の技術に言及するならば、図8に示すように、保持器が外輪から離間している典型的な保持器付き円すいころ軸受では、窓角は大きくても約50°である。図8のように外輪71と保持器72との接触を避けた上で、保持器72の柱幅を確保し、適切な保持器72の柱強度と円滑な回転を得るために、ころ係数γを通常0.94以下にして設計している。なお、図8で符号73は円すいころ、74は柱面、75は内輪である。   For comparison, referring to the prior art, as shown in FIG. 8, in a typical tapered roller bearing with a cage in which the cage is spaced from the outer ring, the window angle is about 50 ° at most. is there. As shown in FIG. 8, in order to avoid contact between the outer ring 71 and the cage 72, to secure the column width of the cage 72 and to obtain appropriate column strength and smooth rotation of the cage 72, the roller coefficient γ Is normally designed to be 0.94 or less. In FIG. 8, reference numeral 73 is a tapered roller, 74 is a column surface, and 75 is an inner ring.

この発明によれば、ころ係数γが0.94を越えるようにすることによって、ころ本数を増加させつつこのPCDを小さくできる。これにより、軸受剛性を低下させることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするばかりでなく、軌道面の最大面圧を低下させることができるため、過酷潤滑条件下での極短寿命での表面起点剥離を防止することができる。したがって、デファレンシャルの小型化、長寿命化に貢献できる。   According to the present invention, the PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. Thereby, low torque can be realized without reducing the bearing rigidity. In addition, increasing the number of rollers not only increases the load capacity, but also reduces the maximum surface pressure of the raceway surface, thus preventing surface-origin separation with an extremely short life under severe lubrication conditions. be able to. Therefore, it is possible to contribute to miniaturization and long life of the differential.

また、保持器5の台形状のポケット9の狭幅側の柱部8に切欠き10を設けることにより、保持器5の内径側から内輪側へ流入した潤滑油を、この切欠き10を通して外輪側へ速やかに逃がすことができるため、内輪2の軌道面2aに沿って大つば2cに至る潤滑油の量が少なくなり、軸受内部に滞留する潤滑油の量が減少して、潤滑油の流動抵抗によるトルク損失が低減する。   Further, by providing a notch 10 in the narrow pillar portion 8 of the trapezoidal pocket 9 of the cage 5, the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side is passed through the notch 10 to the outer ring. Since the amount of lubricating oil reaching the collar 2c along the raceway surface 2a of the inner ring 2 is reduced, the amount of lubricating oil staying inside the bearing is reduced, and the flow of lubricating oil is reduced. Torque loss due to resistance is reduced.

前記ポケット9の狭幅側の小環状部6にも切欠き10cを設けることにより、保持器5の内径側から内輪側へ流入する潤滑油をこの小環状部6の切欠き10cからも外輪3側へ逃がし、内輪2の軌道面2aに沿って大つば2cまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   By providing a notch 10 c also in the small annular portion 6 on the narrow side of the pocket 9, the lubricating oil flowing from the inner diameter side of the cage 5 to the inner ring side can be supplied from the notch 10 c of the small annular portion 6 to the outer ring 3. The amount of lubricating oil that escapes to the side and reaches the collar 2c along the raceway surface 2a of the inner ring 2 can be further reduced, and torque loss due to the flow resistance of the lubricating oil can be further reduced.

前記ポケット9の広幅側の少なくとも柱部8に切欠き10bを設けることにより、円すいころ4をバランスよく柱部に摺接させることができる。   By providing the notch 10b in at least the column portion 8 on the wide side of the pocket 9, the tapered roller 4 can be brought into sliding contact with the column portion in a balanced manner.

前記ポケット9の狭幅側に設けた切欠き10aの合計面積を、台形状のポケット9の広幅側に設けた切欠き10bの合計面積よりも広くすることによっても、内輪2の軌道面に沿って大つば2cまで到る潤滑油の量をより少なくして、潤滑油の流動抵抗によるトルク損失をさらに低減することができる。   The total area of the notches 10a provided on the narrow side of the pocket 9 can be made larger than the total area of the notches 10b provided on the wide side of the trapezoidal pocket 9 along the raceway surface of the inner ring 2. Thus, the amount of the lubricating oil reaching the largest collar 2c can be reduced, and the torque loss due to the flow resistance of the lubricating oil can be further reduced.

前記保持器5の小環状部6の輪方向外側に、内輪2の小つば2bの外径面に対向させた径方向内向きのつば11を設け、この対向させた小環状部6のつば11の内径面と内輪2の小つば2bの外径面とのすきまδを、内輪2の小つば2cの外径寸法の2.0%以下とすることにより、保持器5の内径側から内輪側へ流入する潤滑油の量を少なくし、潤滑油の流動抵抗によるトルク損失をより低減することができる。   A radially inward flange 11 facing the outer diameter surface of the small collar 2b of the inner ring 2 is provided on the outer side in the ring direction of the small annular section 6 of the cage 5, and the collar 11 of the opposed small annular section 6 is provided. By setting the clearance δ between the inner diameter surface of the inner ring 2 and the outer diameter surface of the small collar 2b of the inner ring 2 to 2.0% or less of the outer diameter dimension of the small collar 2c of the inner ring 2, the inner diameter side of the cage 5 The amount of lubricating oil flowing into the engine can be reduced, and torque loss due to the flow resistance of the lubricating oil can be further reduced.

少なくとも前記円すいころ4の表面に、微小凹形形状のくぼみをランダムに無数に設け、このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし、かつ、Sk値を−1.6以下とすることにより、円すいころ4の表面に満遍なく潤滑油を保持させて、軸受内部に滞留する潤滑油の量を減らしても、円すいころ4と内外輪2、3との接触部を十分に潤滑することができる。   At least the surface of the tapered roller 4 is provided with an infinite number of minute concave recesses, and the surface roughness parameter Ryni of the surface provided with these recesses is 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value Even if the amount of the lubricating oil staying inside the bearing is reduced by keeping the lubricating oil evenly on the surface of the tapered roller 4 by reducing the value to −1.6 or less, the tapered roller 4 and the inner and outer rings 2, 3 The contact portion can be sufficiently lubricated.

図9に軸受の寿命試験の結果を示す。同図中、「軸受」欄の「比較例1」が保持器と外輪とが離れた典型的な従来の円すいころ軸受(図9)、「実施例1」がこの発明の円すいころ軸受のうち従来品に対してころ係数γのみをγ>0.94とした円すいころ軸受、「実施例2」がころ係数γをγ>0.94とし、かつ、窓角を55°〜80°の範囲にしたこの発明の円すいころ軸受である。試験は、過酷潤滑、過大負荷条件下で行なった。同図より明らかなように、「実施例1」は「比較例」の2倍以上の長寿命となる。さらに、「実施例2」の軸受はころ係数が「実施例1」と同じ0.96であるが、寿命時間は「実施例1」の約5倍以上にもなる。なお、「比較例1」、「実施例1」および「実施例2」の寸法はφ45×φ81×16(単位mm)、ころ本数は24本(「比較例1」)、27本(「実施例1」、「実施例2」)、油膜パラメータΛ=0.2である。   FIG. 9 shows the result of the bearing life test. In the same figure, “Comparative Example 1” in the “Bearing” column is a typical conventional tapered roller bearing (FIG. 9) in which the cage and the outer ring are separated, and “Example 1” is a tapered roller bearing of the present invention. A tapered roller bearing in which only the roller coefficient γ is γ> 0.94 with respect to the conventional product, “Example 2” has a roller coefficient γ> γ> 0.94, and a window angle is in the range of 55 ° to 80 °. This is a tapered roller bearing of the present invention. The test was conducted under severe lubrication and overload conditions. As can be seen from the figure, “Example 1” has a lifetime that is at least twice that of “Comparative Example”. Furthermore, the bearing of “Example 2” has a roller coefficient of 0.96 which is the same as that of “Example 1”, but the life time is about five times or more that of “Example 1”. The dimensions of “Comparative Example 1”, “Example 1”, and “Example 2” are φ45 × φ81 × 16 (unit mm), and the number of rollers is 24 (“Comparative Example 1”) and 27 (“Implementation”). Example 1 ”,“ Example 2 ”), and the oil film parameter Λ = 0.2.

図10および図11に示す変形例は、エンジニアリング・プラスチックで一体成形した保持器5の柱部8の外径面に、外輪3の軌道面3a側に向けて凸状を成す突起部5bを形成したものである。その他は前述した保持器5と同じである。この突起部5bは図10に示すように柱部8の横断方向の断面輪郭形状が円弧状を成している。この円弧状の曲率半径R2は外輪3の軌道面3aの半径R1より小さく形成されている。これは突起部5bと外輪3の軌道面3aとの間に良好な楔状油膜が形成されるようにするためであり、望ましくは突起部5bの曲率半径R2は外輪3の軌道面3aの半径R1の70〜90%程度に形成するとよい。70%未満であると楔状油膜の入口開き角度が大きくなりすぎて却って動圧が低下する。90%を超えると楔状油膜の入口角度が小さくなりすぎて同様に動圧が低下する。また、突起部5bの横幅W2は望ましくは柱部8の横幅W1の50%以上となるように形成する(W2≧0.5×W)。50%未満では良好な楔状油膜を形成するための充分な突起部5bの高さが確保できなくなるためである。なお、外輪3の軌道面3aの半径R1は大径側から小径側へと連続的に変化しているので、突起部5bの曲率半径R2もそれに合わせて大環状部7の大きな曲率半径R2から小環状部6の小さな曲率半径R2へと連続的に変化するようにする。 In the modification shown in FIGS. 10 and 11, a protruding portion 5 b that is convex toward the raceway surface 3 a side of the outer ring 3 is formed on the outer diameter surface of the column portion 8 of the cage 5 that is integrally formed of engineering plastic. It is a thing. The rest is the same as the cage 5 described above. As shown in FIG. 10, the protruding portion 5b has a cross-sectional contour shape in the transverse direction of the column portion 8 forming an arc shape. This arc-shaped curvature radius R 2 is formed smaller than the radius R 1 of the raceway surface 3 a of the outer ring 3. This is so that good wedge oil film is formed between the raceway surface 3a of the protrusion 5b and the outer ring 3, preferably the radius of curvature R 2 of the projecting portion 5b is the radius of the raceway surface 3a of the outer ring 3 it may be formed in about 70% to 90% of R 1. If it is less than 70%, the opening angle of the wedge-shaped oil film becomes too large, and the dynamic pressure decreases. If it exceeds 90%, the inlet angle of the wedge-shaped oil film becomes too small, and the dynamic pressure similarly decreases. Further, the lateral width W 2 of the protruding portion 5b is desirably formed to be 50% or more of the lateral width W 1 of the column portion 8 (W 2 ≧ 0.5 × W). This is because if it is less than 50%, it is impossible to ensure a sufficient height of the protrusion 5b for forming a good wedge-shaped oil film. Since the radius R 1 of the raceway surface 3a of the outer ring 3 continuously changes from the large diameter side to the small diameter side, the curvature radius R 2 of the projection portion 5b is correspondingly increased. It continuously changes from R 2 to a small radius of curvature R 2 of the small annular portion 6.

図10および図11の円すいころ軸受1は以上のように構成されているため、軸受1が回転して保持器5が回転し始めると、外輪軌道面と保持器5の突起部5bとの間に楔状油膜が形成される。この楔状油膜は軸受1の回転速度にほぼ比例した動圧を発生するので、保持器5のピッチ径(PCD)を従来よりも大きくして外輪3の軌道面3aに近接させても、軸受1を大きな摩耗ないしトルク損失を生じることなく回転させることが可能となり、無理なくころ本数を増加させることが可能となる。   Since the tapered roller bearing 1 of FIGS. 10 and 11 is configured as described above, when the bearing 1 rotates and the cage 5 starts to rotate, the space between the outer ring raceway surface and the protrusion 5b of the cage 5 is increased. A wedge-shaped oil film is formed. Since this wedge-shaped oil film generates a dynamic pressure substantially proportional to the rotational speed of the bearing 1, the bearing 1 can be used even if the pitch diameter (PCD) of the cage 5 is made larger than that of the conventional and close to the raceway surface 3 a of the outer ring 3. Can be rotated without causing great wear or torque loss, and the number of rollers can be increased without difficulty.

実施例として、図2に示した保持器を用いた円すいころ軸受(実施例A)と、図3に示した保持器を用いた円すいころ軸受(実施例B)を用意した。また、比較例として、ポケットに切欠きのない保持器を用いた円すいころ軸受(比較例A)と、図15(A)、(B)に示した保持器を用いた円すいころ軸受(比較例B、C)を用意した。なお、各円すいころ軸受は、寸法が外径100mm、内径45mm、幅27.25mmであり、ポケットの切欠き以外の部分は同じである。   As examples, a tapered roller bearing (Example A) using the cage shown in FIG. 2 and a tapered roller bearing (Example B) using the cage shown in FIG. 3 were prepared. Moreover, as a comparative example, a tapered roller bearing (Comparative Example A) using a cage without a notch in the pocket and a tapered roller bearing (Comparative Example) using the cage shown in FIGS. 15 (A) and 15 (B). B, C) were prepared. Each tapered roller bearing has an outer diameter of 100 mm, an inner diameter of 45 mm, and a width of 27.25 mm, and the portions other than the pocket notch are the same.

実施例と比較例の円すいころ軸受について、縦型トルク試験機を用いたトルク測定試験を行った。試験条件は以下のとおりである。
アキシアル荷重:300kgf
回転速度:300〜2000rpm(100rpmピッチ)
潤滑条件:油浴潤滑(潤滑油:75W−90)
About the tapered roller bearing of an Example and a comparative example, the torque measurement test using the vertical torque tester was done. The test conditions are as follows.
Axial load: 300kgf
Rotational speed: 300-2000 rpm (100 rpm pitch)
Lubrication condition: oil bath lubrication (lubricating oil: 75W-90)

図14に試験結果を示す。同図のグラフの縦軸は、ポケットに切欠きのない保持器を用いた比較例Aのトルクに対するトルク低減率を表す。ポケットの柱部中央部に切欠きを設けた比較例Bや、ポケットの小環状部と大環状部に切欠きを設けた比較例Cも、トルク低減効果が認められるが、ポケットの狭幅部側の柱部に切欠きを設けた実施例Aは、これらの比較例よりも優れたトルク低減効果が認められ、狭幅側の小環状部にも切欠きを設け、狭幅側の切欠きの合計面積を広幅側のそれよりも広くした実施例Bは、さらに優れたトルク低減効果が認められる。   FIG. 14 shows the test results. The vertical axis of the graph in the figure represents the torque reduction rate with respect to the torque of Comparative Example A using a cage not having a notch in the pocket. Although the comparative example B in which a notch is provided in the central portion of the pocket portion and the comparative example C in which a notch is provided in the small annular portion and the large annular portion of the pocket have a torque reducing effect, the narrow width portion of the pocket Example A, in which a notch is provided in the column on the side, shows a torque reduction effect superior to those of these comparative examples, and a notch on the narrow side is provided with a notch in the small annular portion on the narrow side. In Example B in which the total area of each of these is wider than that on the wide side, a further excellent torque reduction effect is recognized.

また、試験の最高回転速度である2000rpmにおけるトルク低減率は、実施例Aが9.5%、実施例Bが11.5%であり、デファレンシャルにおける高速回転での使用条件でも優れたトルク低減効果を得ることができる。なお、比較例Bと比較例Cの回転速度2000rpmにおけるトルク低減率は、それぞれ8.0%と6.5%である。   In addition, the torque reduction rate at 2000 rpm, which is the maximum rotation speed of the test, is 9.5% in Example A and 11.5% in Example B. Excellent torque reduction effect even under the use conditions at high speed rotation in the differential Can be obtained. In addition, the torque reduction rate in the rotational speed 2000rpm of the comparative example B and the comparative example C is 8.0% and 6.5%, respectively.

この発明の実施の形態の円すいころ軸受を示し、(A)は横断面図であり、(B)は縦断面図である。The tapered roller bearing of embodiment of this invention is shown, (A) is a cross-sectional view, (B) is a longitudinal cross-sectional view. 図1の円すいころ軸受における保持器の展開平面図である。FIG. 2 is a developed plan view of a cage in the tapered roller bearing of FIG. 1. 保持器の変形例を示す図2と類似の展開平面図である。It is an expanded top view similar to FIG. 2 which shows the modification of a holder | retainer. 保持器の別の変形例を示す図2と類似の展開平面図である。It is an expanded top view similar to FIG. 2 which shows another modification of a holder | retainer. 図1(B)の部分拡大図である。It is the elements on larger scale of FIG.1 (B). 窓角が下限の円すいころ軸受の部分拡大断面図である。It is a partial expanded sectional view of the tapered roller bearing whose window angle is a lower limit. 窓角が上限の円すいころ軸受の部分拡大断面図である。It is a partial expanded sectional view of the tapered roller bearing whose window angle is an upper limit. 従来の技術を示す円すいころ軸受の部分拡大断面図である。It is a partial expanded sectional view of the tapered roller bearing which shows the prior art. 軸受の寿命試験の結果を示す図である。It is a figure which shows the result of the lifetime test of a bearing. 保持器の変形例を示す円すいころ軸受の部分横断面図である。It is a partial cross-sectional view of the tapered roller bearing which shows the modification of a holder | retainer. 図10の軸受における保持器の柱部の拡大断面図である。It is an expanded sectional view of the pillar part of the holder | retainer in the bearing of FIG. デファレンシャルの断面図である。It is sectional drawing of a differential. 保持器を外輪側に寄せた従来の円すいころ軸受の断面図である。It is sectional drawing of the conventional tapered roller bearing which brought the cage | basket toward the outer ring | wheel side. トルク測定試験の結果を示すグラフである。It is a graph which shows the result of a torque measurement test. A、Bは、それぞれ従来の技術を示す保持器の展開平面図である。A and B are the expansion | deployment top views of the holder | retainer which respectively show the prior art. 円すいころ軸受においてころピッチ径(PCD)を変化させたときの剛性比およびトルク比の変化を表す線図である。It is a diagram showing the change of rigidity ratio and torque ratio when changing a roller pitch diameter (PCD) in a tapered roller bearing.

符号の説明Explanation of symbols

1 軸受
2 内輪
2a 軌道面
2b 小つば
2c 大つば
3 外輪
3a 軌道面
5 保持器
5a 柱面
5b 突起部
6 小環状部
7 大環状部
8 柱部
9 ポケット
10a、10b、10c
11 つば
DESCRIPTION OF SYMBOLS 1 Bearing 2 Inner ring 2a Raceway surface 2b Small brim 2c Large brim 3 Outer ring 3a Raceway surface 5 Cage 5a Pillar surface 5b Projection part 6 Small annular part 7 Large annular part 8 Pillar part 9 Pocket 10a, 10b, 10c
11 collar

Claims (6)

内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とを備えた円すいころ軸受において、
ころ係数γが0.94を越え、
保持器が、円すいころの小径端面側で連なる小環状部と、円すいころの大径端面側で連なる大環状部と、これらの環状部を連結する複数の柱部とからなり、隣接する柱部間に、円すいころの小径側を収納する部分が狭幅側、大径側を収納する部分が広幅側となる台形状のポケットが形成され、
ポケットの狭幅側の柱部に切欠きを設けたことを特徴とするデファレンシャル用円すいころ軸受。
In a tapered roller bearing comprising an inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage that holds the tapered rollers at a predetermined circumferential interval,
Roller coefficient γ exceeds 0.94,
The cage is composed of a small annular portion that is continuous on the small diameter end surface side of the tapered roller, a large annular portion that is continuous on the large diameter end surface side of the tapered roller, and a plurality of column portions that connect these annular portions, and adjacent column portions. In between, a trapezoidal pocket is formed in which the portion that stores the small diameter side of the tapered roller is the narrow side, and the portion that stores the large diameter side is the wide side,
A tapered roller bearing for a differential, wherein a notch is provided in a column portion on the narrow side of the pocket.
ポケットの狭幅側の小環状部にも切欠きを設けたことを特徴とする請求項1のデファレンシャル用円すいころ軸受。 2. The differential tapered roller bearing according to claim 1, wherein a notch is also provided in the small annular portion on the narrow side of the pocket. ポケットの広幅側の少なくとも柱部に切欠きを設けたことを特徴とする請求項1または2のデファレンシャル用円すいころ軸受。 The tapered roller bearing for a differential according to claim 1 or 2, wherein a notch is provided in at least a column portion on the wide side of the pocket. ポケットの狭幅側に設けた切欠きの合計面積を、ポケットの広幅側に設けた切欠きの合計面積よりも広くしたことを特徴とする請求項3のデファレンシャル用円すいころ軸受。 4. The differential tapered roller bearing according to claim 3, wherein a total area of the notches provided on the narrow side of the pocket is made larger than a total area of the notches provided on the wide side of the pocket. 保持器の小環状部の軸方向外側に、内輪の小つばの外径面に対向させた径方向内向きのつばを設け、前記つばの内径面と内輪の小つばの外径面との間のすきまの上限を小つばの外径寸法の2.0%としたことを特徴とする請求項1ないし4のいずれかのデファレンシャル用円すいころ軸受。 Provided radially inwardly facing the outer diameter surface of the small collar of the inner ring on the outer side in the axial direction of the small annular portion of the cage, between the inner diameter surface of the collar and the outer diameter surface of the inner ring small collar The differential tapered roller bearing according to any one of claims 1 to 4, wherein the upper limit of the clearance is 2.0% of the outer diameter of the small collar. 少なくとも円すいころの表面に、微小凹形形状のくぼみをランダムに無数に設け、このくぼみを設けた表面の面粗さパラメータRyniを0.4μm≦Ryni≦1.0μmとし、かつ、Sk値を−1.6以下としたことを特徴とする請求項1ないし5のいずれかのデファレンシャル用円すいころ軸受。 At least the surface of the tapered roller is provided with an infinite number of minute concave recesses, the surface roughness parameter Ryni of the surface provided with the recesses is set to 0.4 μm ≦ Ryni ≦ 1.0 μm, and the Sk value is − The tapered roller bearing for a differential according to any one of claims 1 to 5, characterized by being 1.6 or less.
JP2005305772A 2005-09-16 2005-10-20 Tapered roller bearings for differential Active JP4987277B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005305772A JP4987277B2 (en) 2005-10-20 2005-10-20 Tapered roller bearings for differential
PCT/JP2006/318353 WO2007032470A1 (en) 2005-09-16 2006-09-15 Conical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305772A JP4987277B2 (en) 2005-10-20 2005-10-20 Tapered roller bearings for differential

Publications (2)

Publication Number Publication Date
JP2007113690A true JP2007113690A (en) 2007-05-10
JP4987277B2 JP4987277B2 (en) 2012-07-25

Family

ID=38096067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305772A Active JP4987277B2 (en) 2005-09-16 2005-10-20 Tapered roller bearings for differential

Country Status (1)

Country Link
JP (1) JP4987277B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH0932858A (en) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd Conical roller bearing
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2005069421A (en) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd Conical roller bearing
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126841U (en) * 1974-04-04 1975-10-17
JPS5593727U (en) * 1978-12-22 1980-06-28
JPH0932858A (en) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd Conical roller bearing
JPH11201149A (en) * 1998-01-12 1999-07-27 Koyo Seiko Co Ltd Tapered roller bearing
JP2002235752A (en) * 2001-02-07 2002-08-23 Nsk Ltd Cage for roller bearing
JP2005069421A (en) * 2003-08-27 2005-03-17 Koyo Seiko Co Ltd Conical roller bearing
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Also Published As

Publication number Publication date
JP4987277B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP2005188738A (en) Tapered roller bearing
WO2006003793A1 (en) Tapered roller bearing
JP2008051272A (en) Wheel bearing device
JP5005209B2 (en) Tapered roller bearing
JP4975293B2 (en) Tapered roller bearings
JP2008051308A (en) Wheel bearing device
JP4987277B2 (en) Tapered roller bearings for differential
JP5031219B2 (en) Tapered roller bearing
JP4717574B2 (en) Tapered roller bearing
JP2006022824A (en) Tapered roller bearing for differential
JP5031220B2 (en) Tapered roller bearing
JP2007127219A (en) Tapered roller bearing for differential
JP2008051274A (en) Wheel bearing device
JP2008051278A (en) Wheel bearing device
JP4987278B2 (en) Tapered roller bearing for transmission
JP2007120575A (en) Tapered roller bearing
JP4994638B2 (en) Tapered roller bearing
JP4987280B2 (en) Tapered roller bearing
JP2007120577A (en) Tapered roller bearing
JP2008051275A (en) Wheel bearing device
JP4994630B2 (en) Tapered roller bearings
WO2016204220A1 (en) Tapered roller bearing and planet bearing device
JP2008051220A (en) Wheel bearing device
JP2008051219A (en) Wheel bearing device
JP4994636B2 (en) Tapered roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250