JP2007111834A - Surface coated carbide cutting tool having hard coating layer displaying excellent wear resistance in high speed deep cutting - Google Patents

Surface coated carbide cutting tool having hard coating layer displaying excellent wear resistance in high speed deep cutting Download PDF

Info

Publication number
JP2007111834A
JP2007111834A JP2005306763A JP2005306763A JP2007111834A JP 2007111834 A JP2007111834 A JP 2007111834A JP 2005306763 A JP2005306763 A JP 2005306763A JP 2005306763 A JP2005306763 A JP 2005306763A JP 2007111834 A JP2007111834 A JP 2007111834A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cutting
thin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005306763A
Other languages
Japanese (ja)
Other versions
JP4770387B2 (en
Inventor
Makoto Nishida
真 西田
Hitoshi Kunugi
斉 功刀
Takeshi Ishii
剛 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005306763A priority Critical patent/JP4770387B2/en
Publication of JP2007111834A publication Critical patent/JP2007111834A/en
Application granted granted Critical
Publication of JP4770387B2 publication Critical patent/JP4770387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer displaying excellent wear resistance in high speed deep cutting. <P>SOLUTION: This cutting tool has the hard coating layer constituted of a lower part layer and an upper part layer on a surface of a cemented carbide base body made of a cemented carbide alloy or cermet. The lower part layer is constituted of a Ti compound layer having total average layer thickness of 0.5 to 15 μm. The upper part layer is constituted of an upper part inner peripheral layer and an upper part outer peripheral layer. The upper part inner peripheral layer satisfies a specified composition formula: (Al<SB>1-X</SB>Cr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>, and is a composite oxide layer of Al and Cr having average layer thickness of 0.5 to 13 μm. The upper part outer peripheral layer is constituted of an alternately multi-laminated layer formed by alternately laminating a thin layer A having average layer thickness of 0.1 to 0.8 μm and a thin layer B having average layer thickness of 0.1 to 0.6 μm and having total average layer thickness of 2 to 10 μm. The thin layer A is constituted of an oxide layer of yttrium (Y), and the thin layer B is constituted of a composite oxide layer of Al and Cr satisfying the specified composition formula (Al<SB>1-X</SB>Cr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>. The hard coating is formed by chemical deposition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層がすぐれた高温硬さ・耐熱性・高温強度を備えるとともに、すぐれた耐熱塑性変形性を示し、したがって、鋼や鋳鉄等を、高送り、高切り込みの高速重切削条件下で切削加工を行なった場合にも、工具刃先における熱塑性変形の発生を防止し、また、これを原因とする偏摩耗、チッピングの発生を抑制することによって、長期に亘ってすぐれた耐摩耗性を発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、化学蒸着により硬質被覆層を形成してなる表面被覆超硬切削工具(以下、被覆超硬工具という)に関するものである。   This invention has excellent high temperature hardness, heat resistance, and high temperature strength, and excellent heat resistance plastic deformation properties. Therefore, high feed and high cutting conditions for high feed and high cutting of steel and cast iron, etc. Even when machining is performed underneath, it prevents the occurrence of thermoplastic deformation at the cutting edge of the tool, and also suppresses the occurrence of uneven wear and chipping caused by this, thereby providing excellent wear resistance over a long period of time. Surface coated carbide cutting tool (hereinafter referred to as coated carbide) formed by forming a hard coating layer by chemical vapor deposition on the surface of a cemented carbide substrate made of tungsten carbide based cemented carbide or titanium carbonitride based cermet Tool).

被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
(a)いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された、0.5〜13μmの平均層厚を有し、AlとCrの相互含有割合を示す組成式:(Al1−XCr)(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物[以下、(Al,Cr)で示す]層からなる上部層、
上記の下部層と上部層で構成された硬質被覆層を形成してなる、被覆超硬工具が知られている。
As a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface,
(A) All of these are Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) formed by chemical vapor deposition. And a Ti compound layer having an overall average layer thickness of 0.5 to 15 μm. Lower layer,
(B) Composition formula formed by chemical vapor deposition and having an average layer thickness of 0.5 to 13 μm and showing a mutual content ratio of Al and Cr: (Al 1-X Cr X ) (however, in atomic ratio, X represents 0.05 to 0.35) and an upper layer composed of a composite oxide of Al and Cr [hereinafter referred to as (Al, Cr) 2 O 3 ] layer;
A coated cemented carbide tool formed by forming a hard coating layer composed of the above lower layer and upper layer is known.

また、上記の従来被覆超硬工具の硬質被覆層を構成する上部層である(Al,Cr)層が、Alによる高温硬さおよび耐熱性と、Crによる高温強度を具備することから、かかる被覆超硬工具を各種の鋼や鋳鉄などの切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。 In addition, the (Al, Cr) 2 O 3 layer, which is the upper layer constituting the hard coating layer of the conventional coated carbide tool, has high-temperature hardness and heat resistance due to Al, and high-temperature strength due to Cr. It is also known that such coated carbide tools exhibit excellent cutting performance when used for cutting various types of steel and cast iron.

さらに、上記の従来被覆超硬工具が、例えば図1に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、図2(a)に概略斜視図で、同(b)に概略平面図で例示される黒鉛製の超硬基体支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、超硬基体を前記超硬基体支持パレットの底面に形成された多数の反応ガス通過穴位置に図示される通りに載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば850〜1050℃の範囲内の所定の温度に加熱した後、まず、硬質被覆層の下部層として、例えば表3に示される形成条件でTi化合物層を形成し、ついで、
(a)反応ガス組成:容量%で(以下、反応ガスの%は容量%を示す)、
AlCl3: 1.43〜2.09 %、
CrCl2: 0.11〜0.77 %、
CO2: 5〜6 %、
HCl: 2〜3 %、
H2:残り、
(b)反応雰囲気温度: 980〜1050 ℃、
(c)反応雰囲気圧力: 10〜20 kPa、
の条件で、上記の(Al,Cr)層からなる上部層を形成することにより製造されることも知られている。
Further, in the above conventional coated carbide tool, for example, as shown in a schematic longitudinal sectional view in FIG. 1, a reaction gas blowing pipe made of stainless steel is erected at the center portion. (A) is a schematic perspective view, and (b) is a schematic plan view illustrating a carbide substrate support pallet made of graphite that is skewered and laminated, and these are heated by a heater through a stainless steel cover. The chemical vapor deposition apparatus having the structure described above is used, and the cemented carbide substrate is placed on the chemical vapor deposition apparatus in a state where the carbide substrate is placed as illustrated in a plurality of reaction gas passage hole positions formed on the bottom surface of the carbide substrate support pallet. After charging and heating the inside of the apparatus with a heater to a predetermined temperature within a range of 850 to 1050 ° C., for example, a Ti compound layer is first formed as a lower layer of the hard coating layer under the formation conditions shown in Table 3, for example. Forming, then
(A) Reaction gas composition: in volume% (hereinafter,% of reaction gas indicates volume%)
AlCl3: 1.43 to 2.09%,
CrCl2: 0.11 to 0.77%,
CO2: 5-6%,
HCl: 2-3%,
H2: The rest
(B) Reaction atmosphere temperature: 980-1050 ° C.,
(C) Reaction atmosphere pressure: 10 to 20 kPa,
It is also known that it is manufactured by forming an upper layer made of the above (Al, Cr) 2 O 3 layer under the above conditions.

また、一般に、上記の従来被覆超硬工具の硬質被覆層を構成するTi化合物層や(Al,Cr)層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとしてCHCNなどの有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開昭54−153758号公報 特開平6−8010号公報
In general, the Ti compound layer and the (Al, Cr) 2 O 3 layer constituting the hard coating layer of the above conventional coated carbide tool have a granular crystal structure, and further the TiCN layer constituting the Ti compound layer For the purpose of improving the strength of the layer itself, chemical vapor deposition is performed at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in an ordinary chemical vapor deposition apparatus. It is also known to have a vertically elongated crystal structure by forming the same.
JP 54-153758 A Japanese Patent Laid-Open No. 6-8010

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件化での切削加工が要求される傾向にあるが、上記の従来被覆超硬工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、これを切刃部への機械的負荷が大きなものとなる高送り、高切り込みの高速重切削条件下での切削加工に用いた場合には、高速切削加工による高い発熱により工具刃先に熱塑性変形が発生し、これにより偏摩耗が生じて、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above conventional coated carbide tools, there are no particular problems when various steels and cast irons are machined under normal conditions. When used for high-feed, high-cut, high-speed heavy cutting conditions where the mechanical load on the blade is large, thermoplastic tool deformation occurs at the tool edge due to high heat generated by high-speed cutting, As a result, uneven wear occurs and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に各種の鋼や鋳鉄等の高送り、高切り込みの高速重切削加工でも、硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記従来の被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(1)下部層がTi化合物層、上部層が(Al,Cr)層からなる上記従来の硬質被覆層上に、例えば、
(a)反応ガス組成(容量%):
YCl: 3.0 %、
CO: 6.5 %、
HCl: 4 %、
: 残り、
(b)反応雰囲気温度:1000 ℃、
(c)反応雰囲気圧力: 7 kPa、
の条件で化学蒸着を行い、従来の硬質被覆層上に、0.1〜0.8μmの平均層厚を有するイットリウムの酸化物(以下、Yで示す)層の薄層を形成すると、該化学蒸着により形成された薄層のY層は熱伝導率が非常に小さいために熱遮断性を有すること。
(2)上記(1)で蒸着形成した平均層厚0.1〜0.8μmの薄層のY層(以下、「薄層A」という)の上に、従来の硬質被覆層の上部層を構成する層である(Al,Cr)層を、
例えば、
(a)反応ガス組成(容量%):
AlCl: 1.8 %、
CrCl: 0.5 %、
CO: 5.5 %、
HCl: 2.2 %、
: 残り、
(b)反応雰囲気温度: 1000 ℃、
(c)反応雰囲気圧力: 10 kPa、
の条件で化学蒸着し、0.1〜0.6μmの平均層厚を有する(Al,Cr)層の薄層(以下、「薄層B」という)を形成し、さらに、この(Al,Cr)層からなる薄層Bと、前記(1)の条件で蒸着形成したY層からなる薄層Aとを、交互に繰り返し積層して、その合計平均層厚が2〜10μmとなるように薄層Aと薄層Bとの交互積層構造からなる交互多重積層を形成すると、該交互多重積層は、(Al,Cr)層からなる薄層Bの有するすぐれた高温硬さ、耐熱性、高温強度を備えると同時に、薄膜Aの有する熱遮断性をも具備するようになること、
(3)前記交互多重積層は、薄層Bの有するすぐれた高温硬さ、耐熱性、高温強度を損なうことなく、薄層Aの有するすぐれた熱遮断効果をも備えることから、鋼、鋳鉄等の高速重切削加工における高い熱発生が生じた場合であっても、前記交互多重積層のすぐれた熱遮断作用によって超硬基体への熱の伝播は低減され、一方、切削時に発生した熱が切り屑により持ち去られる効果が促進され、そのため、工具刃先の熱塑性変形の発生が抑制されることになり、結果として、偏摩耗の発生を防止できるとともに、チッピングの発生を防止できること。
以上(1)〜(3)に示される研究結果を得たのである。
In view of the above, the inventors of the present invention are coated carbides that exhibit excellent wear resistance with a hard coating layer, especially in high-feed, high-cut high-speed heavy cutting of various steels and cast irons. As a result of conducting research, focusing on the hard coating layer that constitutes the above conventional coated carbide tool in order to develop a tool,
(1) On the above conventional hard coating layer in which the lower layer is a Ti compound layer and the upper layer is an (Al, Cr) 2 O 3 layer, for example,
(A) Reaction gas composition (volume%):
YCl 3 : 3.0%,
CO 2 : 6.5%,
HCl: 4%,
H 2 : remaining,
(B) Reaction atmosphere temperature: 1000 ° C.
(C) Reaction atmosphere pressure: 7 kPa,
The thin film of the yttrium oxide (hereinafter referred to as Y 2 O 3 ) layer having an average layer thickness of 0.1 to 0.8 μm is formed on the conventional hard coating layer under the conditions of The thin Y 2 O 3 layer formed by chemical vapor deposition has a very low thermal conductivity, and therefore has a thermal barrier property.
(2) On a thin Y 2 O 3 layer (hereinafter referred to as “thin layer A”) having an average layer thickness of 0.1 to 0.8 μm formed by vapor deposition in (1) above, a conventional hard coating layer (Al, Cr) 2 O 3 layer that is a layer constituting the upper layer,
For example,
(A) Reaction gas composition (volume%):
AlCl 3 : 1.8%,
CrCl 2 : 0.5%,
CO 2 : 5.5%,
HCl: 2.2%,
H 2 : remaining,
(B) Reaction atmosphere temperature: 1000 ° C.,
(C) Reaction atmosphere pressure: 10 kPa,
Chemical vapor deposition was performed to form a thin (Al, Cr) 2 O 3 layer (hereinafter referred to as “thin layer B”) having an average layer thickness of 0.1 to 0.6 μm. A thin layer B composed of Al, Cr) 2 O 3 layers and a thin layer A composed of Y 2 O 3 layers formed by vapor deposition under the condition (1) are alternately and repeatedly stacked, and the total average layer thickness When the alternate multiple stack composed of the alternate stack structure of the thin layers A and B is formed so that the thickness becomes 2 to 10 μm, the alternate multiple stack is formed of the thin layer B composed of (Al, Cr) 2 O 3 layers. Having excellent high-temperature hardness, heat resistance, and high-temperature strength, as well as having a thermal barrier property of the thin film A,
(3) Since the above-described alternate multi-layering has the excellent heat shielding effect of the thin layer A without impairing the high temperature hardness, heat resistance, and high temperature strength of the thin layer B, steel, cast iron, etc. Even when high heat generation in high-speed heavy cutting occurs, heat transfer to the carbide substrate is reduced by the excellent heat shielding action of the alternate multi-layer, while the heat generated during cutting is cut off. The effect of being carried away by scrap is promoted, and therefore, the occurrence of thermoplastic deformation of the tool edge is suppressed, and as a result, the occurrence of uneven wear can be prevented and the occurrence of chipping can be prevented.
The research results shown in (1) to (3) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、硬質被覆層を形成してなる被覆超硬工具(表面被覆超硬切削工具)において、
(a)前記硬質被覆層は、超硬基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、
組成式:(Al1−XCr)2O3(ただし、原子比で、Xは0.05〜0.35を示す)を満足し、かつ、0.5〜13μmの平均層厚を有するAlとCrの複合酸化物((Al,Cr))層からなり、
(e)上記上部内周層を被覆する上部外周層は、0.1〜0.8μmの平均層厚を有する薄層Aと、0.1〜0.6μmの平均層厚を有する薄層Bとを交互に積層して形成された、2〜10μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、イットリウム(Y)の酸化物層からなり、
(g)上記薄層Bは、
組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物((Al,Cr))層からなり、
前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に化学蒸着により形成してなる、高速重切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具(表面被覆超硬切削工具)に特徴を有するものである。
This invention was made based on the above research results, and in a coated carbide tool (surface coated carbide cutting tool) formed by forming a hard coating layer on the surface of a carbide substrate,
(A) The hard coating layer is composed of a lower layer covering the surface of the carbide substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is
The compositional formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.05 to 0.35 in atomic ratio) and Al having an average layer thickness of 0.5 to 13 μm It consists of a complex oxide ((Al, Cr) 2 O 3 ) layer of Cr,
(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.1 to 0.8 μm and a thin layer B having an average layer thickness of 0.1 to 0.6 μm. Formed by alternately laminating and having an alternating multiple lamination having a total average layer thickness of 2 to 10 μm,
(F) The thin layer A is composed of an oxide layer of yttrium (Y),
(G) The thin layer B is
A composite oxide of (Al, Cr) 2 that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X represents 0.05 to 0.35 in atomic ratio). O 3 ) layer,
The hard coating layer is formed by chemical vapor deposition on the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet. It is characterized by a coated carbide tool (surface coated carbide cutting tool) that exhibits

つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(1)下部層(Ti化合物層)
Ti化合物層は、基本的には上部層の上部内周層を構成する(Al,Cr)層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、超硬基体と上記上部内周層((Al,Cr)層)のいずれにも強固に密着し、よって硬質被覆層の超硬基体に対する密着性を向上させる作用を有するが、その合計平均層厚が0.5μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、切削時の発生熱によって偏摩耗の原因となる熱塑性変形を起し易くなることから、その合計平均層厚を0.5〜15μmと定めた。
(2)上部内周層((Al,Cr)層)
上記した通り上部内周層を構成する(Al,Cr)層(従来硬質被覆層における上部層に相当)におけるAl成分は高温硬さおよび耐熱性、同Cr成分は高温強度を向上させるが、AlとCr成分の相互含有割合を示す組成式:(Al1−XCr)で、X値が原子比で(以下同じ)0.35を越えると、相対的にAlの含有割合が低くなることから、層自体の高温硬さおよび耐熱性の低下は避けられず、これが摩耗促進の原因となり、一方、X値が0.05未満になると、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、X値を0.05〜0.35と定めた。
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(1) Lower layer (Ti compound layer)
The Ti compound layer basically exists as the lower layer of the (Al, Cr) 2 O 3 layer that constitutes the upper inner peripheral layer of the upper layer, and the high temperature strength of the hard coating layer by the excellent high temperature strength possessed by itself. In addition to contributing to the improvement, it firmly adheres to both the carbide substrate and the upper inner peripheral layer ((Al, Cr) 2 O 3 layer), thereby improving the adhesion of the hard coating layer to the carbide substrate. However, if the total average layer thickness is less than 0.5 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 15 μm, the cause of uneven wear is caused by heat generated during cutting. Therefore, the total average layer thickness was determined to be 0.5 to 15 μm.
(2) Upper inner peripheral layer ((Al, Cr) 2 O 3 layer)
As described above, the Al component in the (Al, Cr) 2 O 3 layer (corresponding to the upper layer in the conventional hard coating layer) constituting the upper inner peripheral layer improves the high temperature hardness and heat resistance, and the Cr component improves the high temperature strength. Is a composition formula showing the mutual content ratio of Al and Cr components: (Al 1-X Cr X ), and when the X value exceeds 0.35 in terms of atomic ratio (hereinafter the same), the Al content ratio is relatively The lowering of the high-temperature hardness and heat resistance of the layer itself is unavoidable because it becomes lower, which causes wear promotion. On the other hand, when the X value is less than 0.05, the lowering of the high-temperature strength of the layer itself is avoided. As a result, chipping and the like are likely to occur, so the X value was set to 0.05 to 0.35.

また、その平均層厚が0.5μm未満では、所望の耐摩耗性を長期に亘って確保することができず、一方その平均層厚が13μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜13μmと定めた。
(3)上部外周層(薄層Aと薄層Bとからなる交互多重積層)
(Al,Cr)層からなる上部内周層は、高温硬さ、耐熱性、高温強度にすぐれるものの、切刃部への機械的負荷が大きなものとなる鋼、鋳鉄等の高送り、高切り込みでの高速重切削加工において発生する高熱に対しては、熱塑性変形の発生を防止するのに十分な熱遮断性を確保することができないことから、上部内周層上に、熱遮断性にすぐれるY層からなる薄層Aと、(Al,Cr)層からなる薄層Bとの交互多重積層を設けることにより、上部内周層の備える高温硬さ、耐熱性、高温強度の諸特性を特段低下させることなく、耐熱塑性変形性の改善を図った。つまり、薄層Aと薄層Bの交互多重積層からなる上部外周層は、鋼、鋳鉄等の高送り、高切り込み条件下での高速重切削加工において、超硬基体への熱の伝播を防ぎ、切削時に発生した熱が切り屑によって持ち去られる効果を促進することにより、工具刃先の熱塑性変形の発生を抑制する。
Further, if the average layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured over a long period of time, while if the average layer thickness exceeds 13 μm, chipping tends to occur. The average layer thickness was set to 0.5 to 13 μm.
(3) Upper outer peripheral layer (alternate multiple lamination consisting of thin layer A and thin layer B)
The upper inner peripheral layer made of (Al, Cr) 2 O 3 layer is excellent in high temperature hardness, heat resistance and high temperature strength, but is high in steel, cast iron, etc. with a large mechanical load on the cutting edge. For high heat generated in high-speed heavy cutting with feed and high depth of cut, it is not possible to ensure sufficient heat insulation to prevent the occurrence of thermoplastic deformation. High temperature hardness provided in the upper inner peripheral layer by providing an alternating multiple lamination of a thin layer A composed of a Y 2 O 3 layer having excellent barrier properties and a thin layer B composed of an (Al, Cr) 2 O 3 layer The heat-resistant plastic deformation was improved without deteriorating the characteristics of heat resistance and high-temperature strength. In other words, the upper outer peripheral layer consisting of alternating multiple layers of thin layers A and B prevents the propagation of heat to the carbide substrate in high-speed heavy cutting with high feed and high cutting conditions such as steel and cast iron. By promoting the effect that heat generated during cutting is carried away by the chips, the occurrence of thermoplastic deformation of the tool edge is suppressed.

薄層Aと薄層Bの交互多重積層(上部外周層)が、所定の熱遮断性、耐熱塑性変形性を備え、その結果として、所定の耐チッピング、耐摩耗性を発揮するためには、薄層Aは、少なくとも0.1μmの厚さが必要とされ、これ未満の厚さでは高速重切削加工において必要とされる熱遮断性、耐熱塑性変形性を発揮することができず、また、その厚みは0.8μm以下であれば、上部外周層の高温硬さ、耐熱性、高温強度の低下を招くことなく十分な熱遮断効果をもたらすことができることから、薄層Aの平均層厚を0.1〜0.8μmに定めた。また、薄層Bの平均層厚が0.1μm未満の場合には、上部外周層に最小限必要とされる高温硬さ、耐熱性、高温強度を維持することができず、一方、交互積層する薄層Bの平均層厚が0.6μmを超えるような場合には、上部外周層の全体層厚に占める薄層Bの割合が多いため、薄層Aによる熱遮断効果が十分に期待できなくなることから、薄層Bの平均層厚を0.1〜0.6μmに定めた。   In order to exhibit the predetermined chipping resistance and wear resistance as a result of the alternating multiple lamination (upper outer peripheral layer) of the thin layer A and the thin layer B having a predetermined heat shielding property and heat plastic deformation property, The thin layer A is required to have a thickness of at least 0.1 μm, and if it is less than this thickness, it cannot exhibit the thermal barrier properties and heat-resistant plastic deformation properties required in high-speed heavy cutting, If the thickness is 0.8 μm or less, the high temperature hardness, heat resistance, and high temperature strength of the upper outer peripheral layer can be brought about without causing a sufficient heat shielding effect. It was set to 0.1 to 0.8 μm. In addition, when the average layer thickness of the thin layer B is less than 0.1 μm, the minimum required high temperature hardness, heat resistance, and high temperature strength cannot be maintained for the upper outer peripheral layer. When the average layer thickness of the thin layer B exceeds 0.6 μm, since the ratio of the thin layer B to the total thickness of the upper outer peripheral layer is large, the heat blocking effect by the thin layer A can be sufficiently expected. Therefore, the average layer thickness of the thin layer B was set to 0.1 to 0.6 μm.

そして、薄層Aと薄層Bを、それぞれ前記所定平均層厚の薄層として交互に積層することにより、薄層Aと薄層Bの交互多重積層からなる上部外周層は、すぐれた熱遮断性、耐熱塑性変形性を有し、かつ、所定の高温硬さ、耐熱性、高温強度を具備したあたかも一つの層であるかのように機能する。ただ、上部外周層(交互多重積層)の合計平均層厚が2μm未満では、自身のもつすぐれた熱遮断性、耐熱塑性変形性と所定の高温硬さ、耐熱性、高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その合計平均層厚が10μmを越えると、チッピングが発生し易くなることから、その合計平均層厚を2〜10μmと定めた。   Then, by alternately laminating the thin layer A and the thin layer B as the thin layers having the predetermined average layer thickness, the upper outer peripheral layer composed of the alternating multiple lamination of the thin layer A and the thin layer B is excellent in heat shielding. It functions as if it is a single layer having a predetermined high temperature hardness, heat resistance, and high temperature strength. However, if the total average layer thickness of the upper outer peripheral layer (alternate multiple layers) is less than 2 μm, the hard coating layer has its own excellent thermal barrier properties, heat-resistant plastic deformation properties, predetermined high temperature hardness, heat resistance, and high temperature strength. It cannot be applied over a long period of time, resulting in a short tool life. On the other hand, if the total average layer thickness exceeds 10 μm, chipping tends to occur. Therefore, the total average layer thickness is set to 2 to 10 μm.

この発明の被覆超硬工具は、硬質被覆層を、超硬基体を覆う下部層、該下部層を覆う上部内周層、該上部内周層を覆う上部外周層で構成し、かつ、該上部外周層を薄層A(Y層)と薄層B((Al,Cr)層)との交互多重積層として構成することにより、硬質被覆層の下部層(Ti化合物層)および上部内周層((Al,Cr)層)の具備する高温硬さ、耐熱性、高温強度の諸特性を何ら損なうことなくこれを維持したままで、硬質被覆層がさらにすぐれた熱遮断性、耐熱塑性変形性をも保持することになるので、各種の鋼、鋳鉄等の通常条件の切削加工に用いることができるばかりか、特に、切刃部への機械的負荷が大きなものとなる鋼、鋳鉄等の高送り、高切り込み条件の高速重切削加工においても、下部層であるTi化合物層の具備するすぐれた層間密着性および高温強度と相俟って、工具刃先における熱塑性変形の発生防止が図られ、また、これを原因とする偏摩耗の発生が抑制されることによって、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するのである。 In the coated carbide tool of the present invention, the hard coating layer is composed of a lower layer covering the carbide substrate, an upper inner circumferential layer covering the lower layer, an upper outer circumferential layer covering the upper inner circumferential layer, and the upper portion. The lower layer (Ti compound layer) of the hard coating layer is formed by configuring the outer peripheral layer as an alternating multiple lamination of the thin layer A (Y 2 O 3 layer) and the thin layer B ((Al, Cr) 2 O 3 layer). In addition, the hard coating layer was further improved while maintaining the high temperature hardness, heat resistance, and high temperature strength characteristics of the upper inner peripheral layer ((Al, Cr) 2 O 3 layer) without any loss. Since it also retains thermal barrier properties and heat-resistant plastic deformability, it can be used for cutting under normal conditions such as various steels and cast irons, and especially has a large mechanical load on the cutting edge. Even in high-speed heavy cutting with high feed and high cutting conditions for steel, cast iron, etc., the lower layer Combined with the excellent interlayer adhesion and high temperature strength of a certain Ti compound layer, it is possible to prevent the occurrence of thermoplastic deformation in the tool edge, and to suppress the occurrence of uneven wear caused by this. The hard coating layer exhibits excellent chipping resistance, and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TiN粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A1〜A10を形成した。 As raw material powders, WC powder, TiC powder, TiN powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under the holding conditions, and after sintering, the cutting edge portion was subjected to honing of R: 0.07, and the carbide bases A1 to A10 made of WC-base cemented carbide having ISO standard CNMG120408 chip shape Formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B1〜B6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 and ISO standard TiCN-based cermet carbide substrates B1 to B6 having a chip shape of CNMG120408 were formed.

上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、図1に示される化学蒸着装置内に、第2図に示される超硬基体支持パレットの位置決め穴に載置した状態で装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される通常の条件にて、表6に示される組み合わせおよび目標平均層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。   Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and then placed in the chemical vapor deposition apparatus shown in FIG. 1 and the carbide substrate support pallet shown in FIG. First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010). In the normal conditions shown in Table 6 above, the combinations shown in Table 6 and the Ti compound layer with the target average layer thickness are applied to the hard coating layer. Vapor deposition was formed as the lower layer.

つぎに、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)層を硬質被覆層の上部内周層として蒸着形成した。 Next, an (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 4 was formed by vapor deposition as the upper inner peripheral layer of the hard coating layer.

その後、表5に示される条件で、かつ同じく表6に示される目標平均層厚のY層を、硬質被覆層の上部外周層の薄層Aとして蒸着形成し、ついで、表4に示される条件で、かつ同じく表6に示される目標平均層厚の(Al,Cr)層を、硬質被覆層の上部外周層の薄層Bとして蒸着形成した。薄層Aと薄層Bの蒸着形成は、上部外周層の目標合計平均層厚に達するまで、交互に繰り返し行い、本発明表面被覆超硬切削工具である本発明表面被覆超硬スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。 Thereafter, the Y 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 5 was vapor-deposited as a thin layer A of the upper outer peripheral layer of the hard coating layer. (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown was deposited as a thin layer B of the upper outer peripheral layer of the hard coating layer. The vapor deposition of the thin layer A and the thin layer B is alternately repeated until the target total average layer thickness of the upper outer peripheral layer is reached, and the surface-coated carbide throwaway tip of the present invention which is the surface-coated carbide cutting tool of the present invention ( Hereinafter, the coated carbide chips of the present invention were produced.

また、比較の目的で、これら超硬基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した後、同じくそれぞれ図1,2に示される通常の化学蒸着装置に装入し、表7に示されるTi化合物層を硬質被覆層の下部層として蒸着形成した(なお、表7に示される従来被覆超硬工具1〜16の下部層(Ti化合物層)は、本発明被覆超硬工具1〜16のそれぞれと同じにしてあるので、下部層の具体的な形成条件、目標平均層厚は、表3、表6に示されているとおりである)。   For comparison purposes, these carbide substrates A1 to A10 and B1 to B6 were ultrasonically cleaned in acetone and dried, and then charged into the normal chemical vapor deposition apparatus shown in FIGS. The Ti compound layer shown in Table 7 was vapor-deposited as the lower layer of the hard coating layer (Note that the lower layer (Ti compound layer) of the conventional coated carbide tools 1 to 16 shown in Table 7 was coated with the present invention. Since it is the same as each of the hard tools 1-16, the specific formation conditions of the lower layer and the target average layer thickness are as shown in Tables 3 and 6.

次に、表4に示される条件で、かつ同じく表7に示される目標平均層厚の(Al,Cr)層を硬質被覆層の上部層として下部層(Ti化合物層)の表面に蒸着形成し、従来表面被覆超硬切削工具としての従来表面被覆超硬スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。 Next, the (Al, Cr) 2 O 3 layer having the target average layer thickness shown in Table 7 under the conditions shown in Table 4 is used as the upper layer of the hard coating layer on the surface of the lower layer (Ti compound layer). The conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated carbide tips) 1 to 16 as conventional surface-coated carbide cutting tools were produced by vapor deposition.

つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材:JIS・S25Cの丸棒、
切削速度: 550 m/min.、
切り込み: 5.0 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での炭素鋼の乾式連続高速高切り込み切削加工試験(通常の切削速度は250m/min.,通常の切り込み量は2.0mm)、
被削材:JIS・SCM415の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 450 m/min.、
切り込み: 4.5 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)での合金鋼の乾式断続高速高切り込み切削加工試験(通常の切削速度は250m/min.,通常の切り込み量は1.5mm)、
被削材:JIS・FC200の丸棒、
切削速度: 550 m/min.、
切り込み: 2.5 mm、
送り: 0.7 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速高送り切削加工試験(通常の切削速度は300m/min.,通常の送りは0.3mm/rev.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, the coated carbide chips 1 to 16 of the present invention and the conventional coated carbide chip 1 in the state in which each of the various coated carbide chips is screwed to the tip of the tool steel tool with a fixing jig. About ~ 16
Work material: JIS / S25C round bar,
Cutting speed: 550 m / min. ,
Cutting depth: 5.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed, high-cut cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 250 m / min, normal cutting amount is 2.0 mm),
Work material: JIS / SCM415 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 450 m / min. ,
Cutting depth: 4.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Dry intermittent high-speed high-cut cutting test of alloy steel under the following conditions (referred to as cutting condition B) (normal cutting speed is 250 m / min, normal cutting amount is 1.5 mm),
Work material: JIS / FC200 round bar,
Cutting speed: 550 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.7 mm / rev. ,
Cutting time: 5 minutes,
The dry continuous high-speed, high-feed cutting test (normal cutting speed is 300 m / min., Normal feed is 0.3 mm / rev.) Of cast iron under the above conditions (referred to as cutting condition C). However, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

Figure 2007111834
Figure 2007111834

この結果得られた本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16の硬質被覆層を構成する各層について、その組成を、オージェ分光分析装置を用いて測定したところ、いずれのTi化合物層、(Al,Cr)層も目標組成と実質的に同じ組成を示し、各層の層厚も目標平均層厚と実質的に同じ値を示した。さらに、本発明被覆超硬チップ1〜16の硬質被覆層の上部外周層の薄層Aを構成するY層についても、目標平均層厚と実質的に同じ値を示すY層が形成されていることが確認された。 About each layer which comprises the hard coating layer of this invention coated carbide | carbonized_material chip | tip 1-16 obtained as a result of this and the conventional coated carbide | carbonized_material chip | tip 1-16, when the composition was measured using the Auger spectroscopic analyzer, The Ti compound layer and the (Al, Cr) 2 O 3 layer also showed substantially the same composition as the target composition, and the layer thickness of each layer also showed substantially the same value as the target average layer thickness. Furthermore, for the Y 2 O 3 layer constituting the thin layer A of the upper outer peripheral layer of the hard coating layer of the present invention coated carbide inserts 1 to 16, Y 2 O 3 representing the target average layer thickness substantially the same value It was confirmed that a layer was formed.

表8に示される結果から、硬質被覆層の上部層が、上部内周層((Al,Cr)層)と、薄層A(Y層)及び薄層B((Al,Cr)層)の交互多重積層からなる上部外周層とで構成されている本発明被覆超硬チップ1〜16は、いずれも鋼、鋳鉄などの切削加工を、切刃部への機械的負荷が大きなものとなる高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐熱塑性変形性、耐チッピング性を発揮し、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の上部層が、(Al,Cr)層のみからなる従来被覆超硬チップ1〜16においては、特に前記上部層の熱遮断性、耐熱塑性変形性不足が原因して、チッピングが発生し易く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 8, the upper layer of the hard coating layer is the upper inner peripheral layer ((Al, Cr) 2 O 3 layer), the thin layer A (Y 2 O 3 layer), and the thin layer B ((Al , Cr) 2 O 3 layers), and the coated carbide chips 1 to 16 of the present invention, which are composed of the upper outer peripheral layer composed of alternating multiple layers, all cut steel, cast iron, etc. Even when performed under heavy cutting conditions such as high cutting and high feed, where the mechanical load is large, the hard coating layer exhibits excellent heat-resistant plastic deformation and chipping resistance, and excellent wear resistance for a long time. In the conventional coated cemented carbide chips 1 to 16 in which the upper layer of the hard coating layer is composed of only the (Al, Cr) 2 O 3 layer, in particular, the thermal barrier property of the upper layer, Chipping is likely to occur due to insufficient heat-resistant plastic deformation, and the service life is shortened in a relatively short time. Rukoto is clear.

上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこと、特に鋼、鋳鉄などを、高切り込みや高送りなどの高速重切削条件で切削加工を行なった場合にも、すぐれた耐熱塑性変形性を呈し、偏摩耗を生じることなく良好な耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cemented carbide tool of the present invention cuts steel, cast iron and the like under high-speed heavy cutting conditions such as high cutting and high feed as well as cutting under normal conditions. Even in this case, it exhibits excellent heat plastic deformation, exhibits good chipping resistance without causing uneven wear, and exhibits excellent wear resistance over a long period of time. In addition, it can sufficiently satisfy the labor-saving and energy-saving of cutting, and further the cost reduction.

被覆超硬工具を構成する硬質被覆層を形成するのに用いた化学蒸着装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the chemical vapor deposition apparatus used in forming the hard coating layer which comprises a coated carbide tool. 化学蒸着装置の構造部材である超硬基体支持パレットを示し、(a)が概略斜視図、(b)が概略平面図である。The cemented carbide substrate support pallet which is a structural member of a chemical vapor deposition apparatus is shown, (a) is a schematic perspective view, (b) is a schematic plan view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、硬質被覆層を形成してなる表面被覆超硬切削工具において、
(a)前記硬質被覆層は、超硬基体の表面を被覆する下部層と、該下部層の表面を被覆する上部層からなり、
(b)上記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2種以上で構成され、かつ0.5〜15μmの合計平均層厚を有するTi化合物層からなり、
(c)上記下部層の表面を被覆する上部層は、上部内周層と、該上部内周層を被覆する上部外周層とからなり、
(d)上記上部内周層は、
組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足し、かつ、0.5〜13μmの平均層厚を有するAlとCrの複合酸化物層からなり、
(e)上記上部内周層を被覆する上部外周層は、0.1〜0.8μmの平均層厚を有する薄層Aと、0.1〜0.6μmの平均層厚を有する薄層Bとを交互に積層して形成された、2〜10μmの合計平均層厚を有する交互多重積層からなり、
(f)上記薄層Aは、イットリウム(Y)の酸化物層からなり、
(g)上記薄層Bは、
組成式:(Al1−XCr(ただし、原子比で、Xは0.05〜0.35を示す)を満足するAlとCrの複合酸化物層からなり、
前記硬質被覆層を、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に化学蒸着により形成してなる、高速重切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬切削工具。
In a surface-coated carbide cutting tool in which a hard coating layer is formed on the surface of a cemented carbide substrate composed of a tungsten carbide-based cemented carbide alloy or a titanium carbonitride-based cermet,
(A) The hard coating layer is composed of a lower layer covering the surface of the carbide substrate and an upper layer covering the surface of the lower layer,
(B) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and 0.5 to Consisting of a Ti compound layer having a total average layer thickness of 15 μm,
(C) The upper layer covering the surface of the lower layer is composed of an upper inner peripheral layer and an upper outer peripheral layer covering the upper inner peripheral layer,
(D) The upper inner circumferential layer is
Composition formula: (Al 1-X Cr X ) 2 O 3 (wherein X is 0.05 to 0.35 in atomic ratio) and has an average layer thickness of 0.5 to 13 μm It consists of a complex oxide layer of Al and Cr,
(E) The upper outer peripheral layer covering the upper inner peripheral layer includes a thin layer A having an average layer thickness of 0.1 to 0.8 μm and a thin layer B having an average layer thickness of 0.1 to 0.6 μm. Formed by alternately laminating and having an alternating multiple lamination having a total average layer thickness of 2 to 10 μm,
(F) The thin layer A is composed of an oxide layer of yttrium (Y),
(G) The thin layer B is
It consists of a composite oxide layer of Al and Cr that satisfies the composition formula: (Al 1-X Cr X ) 2 O 3 (where X is 0.05 to 0.35 in atomic ratio),
The hard coating layer is formed by chemical vapor deposition on the surface of a cemented carbide substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and the hard coating layer has excellent wear resistance by high-speed heavy cutting. Surface coated carbide cutting tool that demonstrates
JP2005306763A 2005-10-21 2005-10-21 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting Expired - Fee Related JP4770387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306763A JP4770387B2 (en) 2005-10-21 2005-10-21 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306763A JP4770387B2 (en) 2005-10-21 2005-10-21 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2007111834A true JP2007111834A (en) 2007-05-10
JP4770387B2 JP4770387B2 (en) 2011-09-14

Family

ID=38094476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306763A Expired - Fee Related JP4770387B2 (en) 2005-10-21 2005-10-21 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4770387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011919A (en) * 2021-03-05 2022-09-06 株洲钻石切削刀具股份有限公司 Composite coated cutting tool containing multi-period oxide layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192870A (en) * 1987-01-20 1988-08-10 バレナイト・インコーポレイテッド Extremely thin stratified oxide coating and method
JP2000129445A (en) * 1998-10-27 2000-05-09 Sumitomo Electric Ind Ltd Wear resistant coating film, its production and wear resistant member
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
JP2005028484A (en) * 2003-07-10 2005-02-03 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in chipping resistance under heavy cutting condition
JP2005125411A (en) * 2003-10-21 2005-05-19 Mitsubishi Materials Corp Cutting tool made of surface coated cermet in which hard coating layer exert excellent chipping resistance in heavy cutting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192870A (en) * 1987-01-20 1988-08-10 バレナイト・インコーポレイテッド Extremely thin stratified oxide coating and method
JP2000129445A (en) * 1998-10-27 2000-05-09 Sumitomo Electric Ind Ltd Wear resistant coating film, its production and wear resistant member
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
JP2005028484A (en) * 2003-07-10 2005-02-03 Mitsubishi Materials Kobe Tools Corp Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in chipping resistance under heavy cutting condition
JP2005125411A (en) * 2003-10-21 2005-05-19 Mitsubishi Materials Corp Cutting tool made of surface coated cermet in which hard coating layer exert excellent chipping resistance in heavy cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011919A (en) * 2021-03-05 2022-09-06 株洲钻石切削刀具股份有限公司 Composite coated cutting tool containing multi-period oxide layer
CN115011919B (en) * 2021-03-05 2024-02-13 株洲钻石切削刀具股份有限公司 Composite coated cutting tool containing multiple periodic oxide layers

Also Published As

Publication number Publication date
JP4770387B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP2009083008A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP4770387B2 (en) Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007075968A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP3978779B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4048364B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2007075969A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting of hard-to-cut material
JP3922141B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007130708A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting
JP2007111835A (en) Surface-coated carbide cutting tool having carbide coating layer of excellent chipping resistance in heavy cutting
JP2007144555A (en) Surface coated cutting tool having hard coated layer which can show excellent chipping resistance in high speed intermittent cutting
JP2007130741A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance in heavy cutting for material hard to cut
JP3922132B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP2010274330A (en) Surface coated cutting tool
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP2007136653A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP3922128B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance and wear resistance under high-speed heavy cutting conditions.
JP2007044788A (en) Surface coated cemented carbide cutting tool having hard coating layer displaying excellent chipping resistance in heavy cutting
JP3900526B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2007054907A (en) Cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed cutting work for hard cutting material
JP2007130709A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting of highly viscous workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees