JP2007108095A - Method and device for diagnosing member irradiated with neutron - Google Patents

Method and device for diagnosing member irradiated with neutron Download PDF

Info

Publication number
JP2007108095A
JP2007108095A JP2005301188A JP2005301188A JP2007108095A JP 2007108095 A JP2007108095 A JP 2007108095A JP 2005301188 A JP2005301188 A JP 2005301188A JP 2005301188 A JP2005301188 A JP 2005301188A JP 2007108095 A JP2007108095 A JP 2007108095A
Authority
JP
Japan
Prior art keywords
hardness
indentation
load
sample
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005301188A
Other languages
Japanese (ja)
Inventor
Shohei Kawano
昌平 川野
Shigeaki Tanaka
重彰 田中
Hiroshi Sakamoto
博司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005301188A priority Critical patent/JP2007108095A/en
Publication of JP2007108095A publication Critical patent/JP2007108095A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely measure material characteristics of a material irradiated with neutrons by a small sample. <P>SOLUTION: In the diagnosis of a member irradiated with neutrons, a sampling process S1 for sampling a region to be evaluated in a member irradiated with neutrons, a sample working process S2 for working a sample into a measurable shape, a hardness measurement process S3 for measuring indentation depth and load by indenting an indentator to measure the hardness onto the surface of the sample to be measured while increasing the indentation load to find the relation between the indentation depth and load, a hardness analysis process S4 for finding the hardness and the indentation load on the basis of the relation between the indentation depth and load obtained in the hardness measurement process S3, a master curve drawing process S5 for finding the relation between the hardness and mechanical properties of a material equivalent to the sample and a mechanical property evaluation process S6 for evaluating the mechanical properties of the region to be evaluated on the basis of the relation between the hardness and the indentation load found in the hardness analysis process S4 are carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、中性子照射部材診断方法および中性子照射部材診断装置に関する。   The present invention relates to a neutron irradiation member diagnostic method and a neutron irradiation member diagnostic apparatus.

原子力プラントで運転中に中性子照射を受ける材料には、照射脆化などの材料特性の変化が生じる。このため、プラントの健全性に影響を与えないように、材料特性の変化を見越して設計し、また、必要であれば定期的に材料特性の変化を確認する。照射による具体的な材料物性値への影響としては、材料の硬さ及び降伏応力の増加、延性および靭性の低下、さらには応力ひずみ関係として記述される塑性変形抵抗、破壊靭性のようなき裂進展抵抗等の変化として現れる。   Changes in material properties such as irradiation embrittlement occur in materials that receive neutron irradiation during operation in a nuclear power plant. For this reason, design is performed in anticipation of changes in material properties so as not to affect the soundness of the plant, and changes in material properties are periodically confirmed if necessary. Specific effects of material properties due to irradiation include increase in material hardness and yield stress, decrease in ductility and toughness, as well as plastic deformation resistance described as a stress-strain relationship, crack growth such as fracture toughness Appears as a change in resistance.

プラント機器の健全性を精度良く評価するには、上記の材料特性値を正確に知ることが望ましい。例えば、硬さの変化のみで照射損傷を簡易的に推定することはできるが、それに加えて定量的な機械特性の変化が得られれば、機器の構造健全性を精度よく評価でき、機器信頼性の診断が可能になる。   In order to accurately evaluate the soundness of plant equipment, it is desirable to accurately know the material characteristic values. For example, irradiation damage can be easily estimated only by changes in hardness, but in addition to that, if quantitative changes in mechanical properties are obtained, the structural integrity of the equipment can be accurately evaluated, and equipment reliability Can be diagnosed.

材料特性値を知るためには、それぞれの材料特性値に適した試験片の形状、寸法がJIS等の基準に定められており、評価対象部位から知りたい材料特性値に対応した形状、寸法の様々な試験片を採取する必要がある。採取により機器表面部を著しく破壊する場合は、プラント再運転開始前に採取跡を溶接埋め戻し等の補修が必要となる。埋め戻し作業をしない、あるいはできない場合は、試験片採取跡が機器の健全性に及ぼす影響を最小限に抑えるために、採取体積を最小限に抑える必要がある。そのため、特許文献1には、1つの微小な試料に対して複数の測定を行うことが提案されている。   In order to know the material property values, the shape and dimensions of the test piece suitable for each material property value are defined in JIS standards, and the shape and size corresponding to the material property value to be known from the evaluation target part Various specimens need to be collected. If the surface of the equipment is significantly destroyed by sampling, it is necessary to repair the sampling trace by welding backfilling before starting the plant re-operation. If backfilling is not or is not possible, the sampling volume should be kept to a minimum in order to minimize the impact of specimen collection traces on instrument health. Therefore, Patent Document 1 proposes performing a plurality of measurements on one minute sample.

また、特許文献2および特許文献3には、中性子照射損傷を硬さ試験により診断する方法が開示されている。これは、原子力プラントの機器の中性子照射損傷を硬さ試験により求める方法である。測定用押込み圧子の被測定表面への押し込み深さと押込み荷重を用いて計算される硬さ値と当該損傷部位を構成する材料の照射損傷の相関関係を予め定量化しておく。この相関関係(マスターカーブ)に、前記損傷部位で測定された硬さ値を当てはめ照射損傷を評価する。
特開平6−11500号公報 特開2003−294880号公報 特開2005−3370号公報
Patent Documents 2 and 3 disclose a method for diagnosing neutron irradiation damage by a hardness test. This is a method for determining the neutron irradiation damage of nuclear plant equipment by a hardness test. The correlation between the hardness value calculated by using the indentation depth and the indentation load of the measurement indenter into the surface to be measured and the irradiation damage of the material constituting the damaged part is quantified in advance. By applying the hardness value measured at the damaged site to this correlation (master curve), the irradiation damage is evaluated.
JP-A-6-11500 JP 2003-294880 A JP 2005-3370 A

原子力プラントの機器などで、中性子照射を受けた材料の材料特性を把握するためには、そのような材料を実際に採取して測定することが望ましく、実際に供用中の機器から採取する試料はできるだけ小さくする必要がある。特許文献1に開示された方法では、1つの微小な試料に対して、複数の測定を行うことが提案されているが、破壊検査を複数行う方法は開示されていない。また、特許文献2および特許文献3では、1回の硬さ測定から、複数の材料特性を把握する方法が開示されているが、測定精度を高めるためには、複数の試料を用いる必要がある。   In order to grasp the material characteristics of materials that have been irradiated with neutrons, such as in nuclear power plant equipment, it is desirable to actually collect and measure such materials, and samples collected from equipment currently in service are It needs to be as small as possible. In the method disclosed in Patent Document 1, it has been proposed to perform a plurality of measurements on one minute sample, but a method for performing a plurality of destructive inspections is not disclosed. Further, Patent Document 2 and Patent Document 3 disclose a method for grasping a plurality of material characteristics from one hardness measurement, but it is necessary to use a plurality of samples in order to improve measurement accuracy. .

そこで、本発明は、中性子照射を受けた材料の材料特性を、小さな試料で精度よく測定することを目的とする。   Accordingly, an object of the present invention is to accurately measure the material properties of a material that has been irradiated with neutrons with a small sample.

上記目的を達成するため、本発明の中性子照射部材診断方法は、中性子照射を受けた部材の評価対象部位から試料を採取する試料採取工程と、前記試料を測定可能な形状に加工する試料加工工程と、押込み荷重を増加させながら、硬さ測定用押込み圧子を前記試料の被測定表面に押し込み、押込み深さおよび押込み荷重を測定し、押込み深さと押込み荷重との関係を求める硬さ測定工程と、前記硬さ測定工程で求めた押込み深さと押込み荷重との関係に基づいて、硬さと押込み荷重との関係を求める硬さ解析工程と、前記試料と同等の材料の硬さと機械特性との関係を求めるマスターカーブ作成工程と、前記硬さ解析工程で求めた硬さと押込み荷重との関係に基づいて、前記評価対象部位の機械特性を評価する機械特性評価工程と、を有することを特徴とする。   In order to achieve the above object, the method for diagnosing a neutron irradiation member according to the present invention includes a sample collection step for collecting a sample from an evaluation target part of a member that has received neutron irradiation, and a sample processing step for processing the sample into a measurable shape And a hardness measurement step of pressing the hardness measurement indenter into the surface to be measured of the sample while increasing the indentation load, measuring the indentation depth and the indentation load, and determining the relationship between the indentation depth and the indentation load. Based on the relationship between the indentation depth and the indentation load obtained in the hardness measurement step, the hardness analysis step for obtaining the relationship between the hardness and the indentation load, and the relationship between the hardness and mechanical properties of the material equivalent to the sample And a mechanical characteristic evaluation step for evaluating the mechanical characteristics of the evaluation target portion based on the relationship between the hardness obtained in the hardness analysis step and the indentation load. And wherein the door.

また、本発明の中性子照射部材診断装置は、中性子照射を受けた部材の評価対象部位から採取された試料を置く試料台と、硬さ測定用押込み圧子と、前記硬さ測定用押込み圧子の前記試料への押込み荷重を制御して前記試料の被測定表面に押し込み、前記押込み荷重を測定する押込み荷重制御測定手段と、前記硬さ測定用押込み圧子の前記試料への押込み深さを測定する押込み深さ測定手段と、前記押込み荷重および前記押込み深さに基づいて、前記試料の硬さと前記押込み荷重との関係を求める硬さ解析手段と、前記試料の硬さと前記押込み荷重との関係に基づいて、前記試料の機械特性を求める機械特性評価手段と、を有することを特徴とする。   Further, the neutron irradiation member diagnostic apparatus of the present invention is a sample table on which a sample collected from an evaluation target portion of a member that has received neutron irradiation, a hardness indenter, and the hardness measurement indenter. An indentation load control measuring means for controlling the indentation load on the sample to indent the measured surface of the sample and measuring the indentation load, and an indentation for measuring the indentation depth of the indenter for hardness measurement into the sample Based on the relationship between the depth measurement means, the hardness analysis means for obtaining the relationship between the hardness of the sample and the indentation load based on the indentation load and the indentation depth, and the relationship between the hardness of the sample and the indentation load And mechanical property evaluation means for obtaining mechanical properties of the sample.

本発明により、中性子照射を受けた材料の材料特性を、小さな試料で精度よく測定することができる。   According to the present invention, the material characteristics of a material subjected to neutron irradiation can be accurately measured with a small sample.

本発明に係る中性子照射部材の診断方法の実施形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。   An embodiment of a diagnostic method for a neutron irradiation member according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.

[実施形態1]
図2は、本発明の実施形態1の中性子照射部材診断装置の構成図である。中性子照射部材診断装置1は、試料3を置く試料台22、および、試料3に押込まれる硬さ測定用押込み圧子21を有している。硬さ測定用押込み圧子21に負荷される荷重は荷重制御測定器25で制御されるとともに、測定される。硬さ測定用押込み圧子21としては、三角錐型の圧子を用いることにより、高感度の機械特性評価を行うことができる。また、硬さ測定用押込み圧子21の押込み深さは押込み深さ測定器24において測定される。荷重制御測定器25および押込み深さ測定器24の測定結果は解析手段26に送られ、解析手段26の出力は評価手段27に送られる。
[Embodiment 1]
FIG. 2 is a configuration diagram of the neutron irradiation member diagnostic apparatus according to the first embodiment of the present invention. The neutron irradiation member diagnostic apparatus 1 includes a sample stage 22 on which a sample 3 is placed, and a hardness measurement indenter 21 to be pushed into the sample 3. The load applied to the hardness measurement indenter 21 is controlled and measured by the load control measuring instrument 25. As the indenter 21 for hardness measurement, a highly sensitive mechanical property evaluation can be performed by using a triangular pyramid indenter. Further, the indentation depth of the indenter for measuring hardness 21 is measured by an indentation depth measuring device 24. The measurement results of the load control measuring instrument 25 and the indentation depth measuring instrument 24 are sent to the analyzing means 26, and the output of the analyzing means 26 is sent to the evaluating means 27.

図1は、本発明に係る実施形態1の中性子照射部材の検査方法の流れ図である。   FIG. 1 is a flowchart of a method for inspecting a neutron irradiation member according to Embodiment 1 of the present invention.

まず試料採取工程S1において、原子炉内機器などの中性子照射を受けた部材の評価対象部位から試料採取を行い、評価する試料3を取得する。試料採取方法としては、切断刃または放電加工を用いた切削による方法を用いる。また採取する試料形状としては、硬さ測定時に最小限必要な大きさとし、評価対象の機能に影響しない範囲の形状とする。   First, in the sample collection step S1, a sample 3 to be evaluated is obtained by collecting a sample from an evaluation target part of a member that has received neutron irradiation such as in-reactor equipment. As a sampling method, a cutting method using a cutting blade or electric discharge machining is used. Further, the sample shape to be collected is a minimum size required for the hardness measurement, and the shape does not affect the function to be evaluated.

つぎに試料加工工程S2において、試料3を硬さ測定可能な形状とすべく試料加工を行い、試料3の測定表面をアルミナ粉またはダイヤモンドペーストによる研磨、あるいは電解研磨とにより平滑に研磨する。   Next, in the sample processing step S2, sample processing is performed to make the sample 3 into a shape capable of measuring hardness, and the measurement surface of the sample 3 is polished smoothly by polishing with alumina powder or diamond paste, or electrolytic polishing.

その後、硬さ測定工程S3において、試料台22に置かれた試料3の被測定表面に、一定の荷重負荷速度で硬さ測定用押込み圧子21を押込み、押込み荷重と押込み深さの関係を求める。このときの、押込み荷重および押込み深さの時間変化は、それぞれ荷重制御測定器25および押込み深さ測定器24で測定され、解析手段26に送られ、押込み荷重(Pi)と押込み深さ(hi)の関係に変換される。   Thereafter, in the hardness measurement step S3, the indenter for hardness measurement 21 is pushed into the surface to be measured of the sample 3 placed on the sample stage 22 at a constant load load speed, and the relationship between the indentation load and the indentation depth is obtained. . The changes over time in the indentation load and indentation depth at this time are measured by the load control measuring instrument 25 and the indentation depth measuring instrument 24, respectively, and sent to the analysis means 26, where the indentation load (Pi) and the indentation depth (hi). ) Relationship.

図3は、実施形態1での押込み荷重の時間変化と、そのとき得られる測定結果の例を示したもので、(a)は時間と押込み荷重の関係、(b)は時間と押込み深さの関係、(c)は押込み荷重と押込み深さの関係、(d)は押込み荷重と硬さの関係をそれぞれ示す。図3における、P1、P2、…、Pnは時刻t1、t2、…、tnにおける押込み荷重であり、h1、h2、…hnはそのときの押込み深さである。押込み荷重の増加に従い押込み深さも増加し、押込み深さを連続的に計測することにより、測定時間に対する押込み荷重および押込み深さの関係から、図3(c)に示す押込み深さと押込み荷重との関係が得られる。   FIG. 3 shows an example of the time change of the indentation load and the measurement result obtained at that time in the first embodiment, where (a) shows the relationship between time and indentation load, and (b) shows the time and indentation depth. (C) shows the relationship between indentation load and indentation depth, and (d) shows the relationship between indentation load and hardness, respectively. 3, P1, P2,..., Pn are pushing loads at times t1, t2,..., Tn, and h1, h2,. As the indentation load increases, the indentation depth also increases, and by continuously measuring the indentation depth, the relationship between the indentation depth and the indentation load shown in FIG. A relationship is obtained.

つぎに硬さ解析工程S4において、硬さ測定工程S3で得られた押込み深さと押込み荷重との関係に基づいて硬さ解析を行い、硬さと押込み荷重との関係を求める。硬さHは、たとえばHi=k×Pi/hiにより算出する。ここで、kは硬さ測定用押込み圧子21の形状に依存する比例係数である。硬さHiと押込み深さの関係は、たとえば図3(d)のようになる。 Next, in the hardness analysis step S4, hardness analysis is performed based on the relationship between the indentation depth and the indentation load obtained in the hardness measurement step S3, and the relationship between the hardness and the indentation load is obtained. The hardness H is calculated by, for example, Hi = k × Pi / hi 2 . Here, k is a proportionality coefficient that depends on the shape of the indentation indenter 21 for hardness measurement. The relationship between the hardness Hi and the indentation depth is, for example, as shown in FIG.

また、試料採取工程S1、試料加工工程S2、硬さ測定工程S3および硬さ解析工程S4に並行して、マスターカーブ作成工程S5においてマスターカーブを作成しておく。マスターカーブとは、物性値と硬さの関係を定式化したものである。マスターカーブを作成しておく物性値としては、降伏応力、引張強さ、加工硬化指数、一様伸び、破断伸びなどがある。図4は、マスターカーブの例を示したもので、(a)は硬さと降伏応力の関係、(b)は硬さと引張強さの関係、(c)は硬さ荷重曲線の傾きと加工硬化指数の関係、(d)は硬さ荷重曲線の傾きと一様伸びの関係、(e)は硬さ荷重曲線の傾きと破断伸びの関係をそれぞれ示す。なお、マスターカーブ作成工程S5は、試料採取工程S1より前に行っておいてもよい。   A master curve is created in the master curve creation step S5 in parallel with the sample collection step S1, the sample processing step S2, the hardness measurement step S3, and the hardness analysis step S4. The master curve is a formulation of the relationship between physical property values and hardness. Physical property values for creating a master curve include yield stress, tensile strength, work hardening index, uniform elongation, and elongation at break. FIG. 4 shows an example of a master curve, where (a) is the relationship between hardness and yield stress, (b) is the relationship between hardness and tensile strength, and (c) is the slope of the hardness load curve and work hardening. (D) shows the relationship between the slope of the hardness load curve and uniform elongation, and (e) shows the relationship between the slope of the hardness load curve and elongation at break. The master curve creation step S5 may be performed before the sample collection step S1.

つぎに機械特性評価工程S6において、硬さと押込み荷重との関係から機械特性評価を行い、マスターカーブを用いて、降伏応力と引張強さの両方もしくは何れか、または加工硬化指数、一様伸び、破断伸びの全てもしくはいずれかの機械特性値を得る。   Next, in mechanical property evaluation step S6, mechanical property evaluation is performed from the relationship between hardness and indentation load, and using a master curve, yield stress and / or tensile strength, work hardening index, uniform elongation, Obtain all or any mechanical property value of elongation at break.

なお、当然ながら、同様の試料を複数測定する場合には、マスターカーブ作成工程S5を複数回行う必要はなく、試料採取工程S1、試料加工工程S2、硬さ測定工程S3、硬さ解析工程S4および機械特性評価工程S6を繰り返し行えばよい。   Of course, when measuring a plurality of similar samples, it is not necessary to perform the master curve creation step S5 a plurality of times, and the sample collection step S1, the sample processing step S2, the hardness measurement step S3, and the hardness analysis step S4. The mechanical property evaluation step S6 may be repeated.

本実施形態によれば、中性子照射を受けた原子炉内機器などの部材の機械特性を、部材の機能に影響しない程度の大きさの試料を用いて、正確に評価することができる。採取する試料の大きさは、降伏応力、引張強さ、加工硬化指数、一様伸び、破断伸びなどを個別に求める場合に必要とする試験片に比べて小さくすることができる。特に1ヶ所の硬さ測定から複数の押込み荷重と硬さとの関係を測定することができるため、微小な試料から多くの硬さ情報が得られる。したがって、中性子照射を受けた原子炉内機器などの部材に対して安価で高精度の診断を行うことができる。   According to the present embodiment, the mechanical characteristics of a member such as an in-reactor device that has been irradiated with neutrons can be accurately evaluated using a sample having a size that does not affect the function of the member. The size of the sample to be collected can be made smaller than that of a test piece required when individually obtaining yield stress, tensile strength, work hardening index, uniform elongation, breaking elongation, and the like. In particular, since a relationship between a plurality of indentation loads and hardness can be measured from a single hardness measurement, a lot of hardness information can be obtained from a minute sample. Therefore, inexpensive and highly accurate diagnosis can be performed on members such as in-reactor equipment that have received neutron irradiation.

[実施形態2]
実施形態2は、硬さ測定工程S3における押込み荷重の負荷のかけ方が実施形態1と異なっている。
[Embodiment 2]
The second embodiment is different from the first embodiment in how to apply the indentation load in the hardness measurement step S3.

図5は、実施形態2での押込み荷重の時間変化と、そのとき得られる測定結果の例を示したもので、(a)は時間と押込み荷重の関係、(b)は時間と押込み深さの関係、(c)は押込み荷重と押込み深さの関係、(d)は押込み荷重と硬さの関係をそれぞれ示している。   FIG. 5 shows an example of the time change of the indentation load and the measurement result obtained at that time in the second embodiment, where (a) shows the relationship between time and indentation load, and (b) shows the time and indentation depth. (C) shows the relationship between indentation load and indentation depth, and (d) shows the relationship between indentation load and hardness, respectively.

実施形態2の硬さ測定工程S3(図1)では、まず、硬さ測定用押込み圧子を一定の荷重負荷速度で試料の被測定表面に押込み、荷重P1に到達した測定時間t1から測定時間t1’まで押込み荷重をP1に保持する。その後、再び硬さ測定用押込み圧子を一定の荷重負荷速度で試料の被測定表面に押し込んで押込み荷重を増加させ、押込み荷重P2に到達した測定時間t2から測定時間t2’まで押込み荷重をP2に保持する。このようなステップ状の荷重負荷をPnまで繰り返す。この押込み荷重および押込み深さの時間変化は、それぞれ荷重制御測定器25および押込み深さ測定器24で測定され、解析装置26に送られ、押込み荷重(Pi)と押込み深さ(hi)の関係に変換される。   In the hardness measurement step S3 (FIG. 1) of the second embodiment, first, the hardness measurement indenter is pushed into the surface to be measured of the sample at a constant load speed, and the measurement time t1 from the measurement time t1 when the load P1 is reached. Hold the indentation load at P1 until '. Thereafter, the indenter for hardness measurement is again pushed into the surface to be measured at a constant load load speed to increase the indentation load, and the indentation load is changed to P2 from the measurement time t2 when reaching the indentation load P2 to the measurement time t2 ′. Hold. Such a step-like load is repeated up to Pn. The temporal changes in the indentation load and the indentation depth are measured by the load control measuring instrument 25 and the indentation depth measuring instrument 24, respectively, and sent to the analysis device 26, and the relationship between the indentation load (Pi) and the indentation depth (hi). Is converted to

図5(b)は計測される押込み深さの時間変化を示しており、押込み荷重の増加とともに押込み深さが増加する。測定時間t1’、t2’、…、tn’に対応する押込み深さがh1、h2、…、hnであるとすると、測定時間t1’、t2’、…、tn’に対応する押込み荷重(Pi)と押込み深さ(hi)の関係は、図5(c)で示される。   FIG. 5B shows the change over time of the measured indentation depth, and the indentation depth increases as the indentation load increases. If the indentation depths corresponding to the measurement times t1 ′, t2 ′,..., Tn ′ are h1, h2,..., Hn, the indentation loads (Pi corresponding to the measurement times t1 ′, t2 ′,. ) And the indentation depth (hi) are shown in FIG.

解析工程S4では、実施形態1と同様に(式1)によって、それぞれの押込み荷重に対する硬さH1、H2、…、Hnを算出し、図5(d)に示すような硬さ(Hi)と押込み荷重(Pi)との関係を求める。機械特性評価工程S6においても、実施形態1と同様に、硬さ(Hi)と押込み荷重(Pi)との関係、および、マスターカーブ作成工程S5で作成しておいたマスターカーブに基づいて、試料3の機械特性を評価する。この機械特性としては、実施形態1と同様に、降伏応力、引張強さ、加工硬化指数、一様伸び、破断伸びなどが挙げられる。   In the analysis step S4, the hardness H1, H2,..., Hn for each indentation load is calculated by (Equation 1) as in the first embodiment, and the hardness (Hi) as shown in FIG. The relationship with the indentation load (Pi) is obtained. Also in the mechanical property evaluation step S6, as in the first embodiment, the sample is based on the relationship between the hardness (Hi) and the indentation load (Pi) and the master curve created in the master curve creation step S5. 3 mechanical properties are evaluated. Examples of the mechanical characteristics include yield stress, tensile strength, work hardening index, uniform elongation, elongation at break, and the like, as in the first embodiment.

本実施形態では、極めて微小な測定荷重に対する硬さを比較的早い荷重負荷速度で測定する場合、試料の機械特性に起因する硬さの変化を、実施形態1に比較してより正確に測定することができる。   In this embodiment, when the hardness against a very small measurement load is measured at a relatively high load speed, the change in hardness due to the mechanical properties of the sample is measured more accurately than in the first embodiment. be able to.

なお、以上の説明は単なる例示であり、本発明は上述の各実施形態に限定されず、様々な形態で実施することができる。   The above description is merely an example, and the present invention is not limited to the above-described embodiments, and can be implemented in various forms.

本発明の実施形態1の中性子照射部材診断方法を示す流れ図。The flowchart which shows the neutron irradiation member diagnostic method of Embodiment 1 of this invention. 本発明の実施形態1の中性子照射部材診断装置を示す概略図。Schematic which shows the neutron irradiation member diagnostic apparatus of Embodiment 1 of this invention. 本発明の実施形態1で得られる測定結果の例を示したもので、(a)は時間と押込み荷重の関係、(b)は時間と押込み深さの関係、(c)は押込み荷重と押込み深さの関係、(d)は押込み荷重と硬さの関係をそれぞれ示す特性図。The example of the measurement result obtained in Embodiment 1 of this invention is shown, (a) is the relationship between time and indentation load, (b) is the relationship between time and indentation depth, (c) is indentation load and indentation. Depth relationship, (d) is a characteristic diagram showing the relationship between indentation load and hardness. 本発明の実施形態1のマスターカーブの例を示したもので、(a)は硬さと降伏応力の関係、(b)は硬さと引張強さの関係、(c)は硬さ荷重曲線の傾きと加工硬化指数の関係、(d)は硬さ荷重曲線の傾きと一様伸びの関係、(e)は硬さ荷重曲線の傾きと破断伸びの関係をそれぞれ示す特性図。The example of the master curve of Embodiment 1 of this invention is shown, (a) is the relationship between hardness and yield stress, (b) is the relationship between hardness and tensile strength, (c) is the slope of the hardness load curve. (D) is a characteristic diagram showing the relationship between the slope of the hardness load curve and the uniform elongation, and (e) is a characteristic diagram showing the relationship between the slope of the hardness load curve and the elongation at break. 本発明の実施形態2で得られる測定結果の例を示したもので、(a)は時間と押込み荷重の関係、(b)は時間と押込み深さの関係、(c)は押込み荷重と押込み深さの関係、(d)は押込み荷重と硬さの関係をそれぞれ示す特性図。The example of the measurement result obtained by Embodiment 2 of this invention is shown, (a) is the relationship between time and indentation load, (b) is the relationship between time and indentation depth, (c) is indentation load and indentation. Depth relationship, (d) is a characteristic diagram showing the relationship between indentation load and hardness.

符号の説明Explanation of symbols

1…中性子照射部材診断装置、3…試料、21…硬さ測定用押込み圧子、22…試料台、24…押込み深さ測定器、25…押込み荷重制御測定器、26…解析手段、27…評価手段   DESCRIPTION OF SYMBOLS 1 ... Neutron irradiation member diagnostic apparatus, 3 ... Sample, 21 ... Indenter for hardness measurement, 22 ... Sample stand, 24 ... Indentation depth measuring instrument, 25 ... Indentation load control measuring instrument, 26 ... Analyzing means, 27 ... Evaluation means

Claims (12)

中性子照射を受けた部材の評価対象部位から試料を採取する試料採取工程と、
前記試料を測定可能な形状に加工する試料加工工程と、
押込み荷重を増加させながら、硬さ測定用押込み圧子を前記試料の被測定表面に押し込み、押込み深さおよび押込み荷重を測定し、押込み深さと押込み荷重との関係を求める硬さ測定工程と、
前記硬さ測定工程で求めた押込み深さと押込み荷重との関係に基づいて、硬さと押込み荷重との関係を求める硬さ解析工程と、
前記試料と同等の材料の硬さと機械特性との関係を求めるマスターカーブ作成工程と、
前記硬さ解析工程で求めた硬さと押込み荷重との関係に基づいて、前記評価対象部位の機械特性を評価する機械特性評価工程と、
を有することを特徴とする中性子照射部材診断方法。
A sample collection step for collecting a sample from the evaluation target part of the member that has received neutron irradiation;
A sample processing step of processing the sample into a measurable shape;
While increasing the indentation load, the indenter for hardness measurement is pushed into the surface to be measured of the sample, the indentation depth and the indentation load are measured, and the hardness measurement step for obtaining the relationship between the indentation depth and the indentation load;
Based on the relationship between the indentation depth and the indentation load obtained in the hardness measurement step, a hardness analysis step for obtaining the relationship between the hardness and the indentation load;
A master curve creating step for obtaining a relationship between hardness and mechanical properties of the material equivalent to the sample,
Based on the relationship between the hardness and the indentation load obtained in the hardness analysis step, a mechanical property evaluation step for evaluating mechanical properties of the evaluation target part,
The neutron irradiation member diagnostic method characterized by having.
前記硬さ測定工程は、所定の荷重増加速度で押込み荷重を増加させるものであることを特徴とする請求項1記載の中性子照射部材診断方法。   The neutron irradiation member diagnostic method according to claim 1, wherein the hardness measurement step increases the indentation load at a predetermined load increase rate. 前記硬さ測定工程は、所定の荷重増加速度で押込み荷重を増加させて所定の荷重に到達した後、所定の時間前記硬さ測定用押込み圧子を一定の荷重に保持するものであることを特徴とする請求項1記載の中性子照射部材診断方法。   The hardness measuring step increases the indentation load at a predetermined load increasing speed and reaches the predetermined load, and then holds the indenter for hardness measurement at a constant load for a predetermined time. The neutron irradiation member diagnostic method according to claim 1. 前記硬さ測定工程を複数回繰り返すことを特徴とする請求項3記載の中性子照射部材診断方法。   The neutron irradiation member diagnostic method according to claim 3, wherein the hardness measurement step is repeated a plurality of times. 前記硬さ解析工程は、前記測定工程で測定された押込み深さと押込み荷重との関係に基づいて、複数の押込み荷重に対する硬さを求めるものであることを特徴とする請求項1ないし請求項4のいずれか1項記載の中性子照射部材診断方法。   5. The hardness analysis step is to obtain hardness for a plurality of indentation loads based on a relationship between an indentation depth and an indentation load measured in the measurement step. The neutron irradiation member diagnostic method according to any one of the above. 中性子照射を受けた部材の評価対象部位から採取された試料を置く試料台と、
硬さ測定用押込み圧子と、
前記硬さ測定用押込み圧子の前記試料への押込み荷重を制御して前記試料の被測定表面に押し込み、前記押込み荷重を測定する押込み荷重制御測定手段と、
前記硬さ測定用押込み圧子の前記試料への押込み深さを測定する押込み深さ測定手段と、
前記押込み荷重および前記押込み深さに基づいて、前記試料の硬さと前記押込み荷重との関係を求める硬さ解析手段と、
前記試料の硬さと前記押込み荷重との関係に基づいて、前記試料の機械特性を求める機械特性評価手段と、
を有することを特徴とする中性子照射部材診断装置。
A sample stage on which a sample collected from the evaluation target part of the member subjected to neutron irradiation is placed;
Indenter for hardness measurement,
An indentation load control measuring means for controlling the indentation load of the indenter for hardness measurement into the sample to indent the surface to be measured of the sample and measuring the indentation load;
An indentation depth measuring means for measuring an indentation depth of the hardness measurement indenter into the sample;
Hardness analysis means for obtaining a relationship between the hardness of the sample and the indentation load based on the indentation load and the indentation depth;
Based on the relationship between the hardness of the sample and the indentation load, mechanical property evaluation means for obtaining mechanical properties of the sample,
A neutron irradiation member diagnostic apparatus comprising:
前記機械特性評価手段は、さらに前記試料と同等の材料の硬さと機械特性との関係を記憶し、前記試料の硬さと前記押込み荷重との関係、および、前記試料と同等の材料の硬さと機械特性との関係に基づいて、前記試料の機械特性を求めるものであることを特徴とする請求項6記載の中性子照射部材診断装置。   The mechanical property evaluation means further stores the relationship between the hardness of the material equivalent to the sample and the mechanical property, the relationship between the hardness of the sample and the indentation load, and the hardness and machine of the material equivalent to the sample. The neutron irradiation member diagnostic apparatus according to claim 6, wherein mechanical characteristics of the sample are obtained based on a relationship with characteristics. 前記押込み荷重制御測定手段は、押込み荷重を増加させながら硬さ測定用押込み圧子を前記試料の被測定表面に押し込むものであることを特徴とする請求項6または請求項7記載の中性子照射部材診断装置。   8. The neutron irradiation member diagnosis according to claim 6 or 7, wherein the indentation load control measuring means is configured to indent a hardness measurement indenter into the surface to be measured while increasing the indentation load. apparatus. 前記押込み荷重制御測定手段は、所定の荷重増加速度で押込み荷重を増加させるものであることを特徴とする請求項6ないし請求項8のいずれか1項記載の中性子照射部材診断装置。   9. The neutron irradiation member diagnostic apparatus according to claim 6, wherein the indentation load control measurement unit increases the indentation load at a predetermined load increase rate. 前記押込み荷重制御測定手段は、所定の荷重増加速度で押込み荷重を増加させて所定の荷重に到達した後、所定の時間前記硬さ測定用押込み圧子を一定の荷重に保持するものであることを特徴とする請求項6ないし請求項9のいずれか1項記載の中性子照射部材診断装置。   The indentation load control measuring means is configured to increase the indentation load at a predetermined load increasing speed and reach the predetermined load, and then hold the indenter for hardness measurement at a constant load for a predetermined time. The neutron irradiation member diagnostic apparatus according to any one of claims 6 to 9, wherein the neutron irradiation member diagnostic apparatus is characterized. 前記押込み荷重制御測定手段は、所定の荷重増加速度で押込み荷重を増加させて所定の荷重に到達した後、所定の時間前記硬さ測定用押込み圧子を一定の荷重に保持するサイクルを複数回繰り返すことを特徴とする請求項10記載の中性子照射部材診断装置。   The indentation load control measuring means repeats a cycle of holding the indenter for hardness measurement at a constant load a plurality of times after increasing the indentation load at a predetermined load increasing speed and reaching the predetermined load. The neutron irradiation member diagnostic apparatus according to claim 10. 前記押込み深さ測定手段は、複数の押込み荷重に対する複数の押込み深さを測定するものであることを特徴とする請求項6ないし請求項11のいずれか1項記載の中性子照射部材診断装置。   The neutron irradiation member diagnostic apparatus according to any one of claims 6 to 11, wherein the indentation depth measuring means measures a plurality of indentation depths with respect to a plurality of indentation loads.
JP2005301188A 2005-10-17 2005-10-17 Method and device for diagnosing member irradiated with neutron Withdrawn JP2007108095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005301188A JP2007108095A (en) 2005-10-17 2005-10-17 Method and device for diagnosing member irradiated with neutron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005301188A JP2007108095A (en) 2005-10-17 2005-10-17 Method and device for diagnosing member irradiated with neutron

Publications (1)

Publication Number Publication Date
JP2007108095A true JP2007108095A (en) 2007-04-26

Family

ID=38034054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301188A Withdrawn JP2007108095A (en) 2005-10-17 2005-10-17 Method and device for diagnosing member irradiated with neutron

Country Status (1)

Country Link
JP (1) JP2007108095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method
CN104777051A (en) * 2015-03-23 2015-07-15 西南科技大学 Test method for carbon fiber micro-zone relative hardness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101876A (en) * 2008-09-29 2010-05-06 Ihi Corp Material property specification method of elastoplastic material by indentor indentation test
JP2013540275A (en) * 2010-10-22 2013-10-31 セルガード エルエルシー Penetration and / or compression test system and method
CN104777051A (en) * 2015-03-23 2015-07-15 西南科技大学 Test method for carbon fiber micro-zone relative hardness

Similar Documents

Publication Publication Date Title
Arunkumar Overview of small punch test
EP3658868B1 (en) Apparatus and method for performing an impact excitation technique
US11275002B2 (en) Method for detecting mechanoresponse of mechanical component by organic mechanoresponsive luminogen
Rao et al. On characterisation of local stress–strain properties in friction stir welded aluminium AA 5083 sheets using micro-tensile specimen testing and instrumented indentation technique
JP5050873B2 (en) Remaining life evaluation method for machine parts
JP2013083574A (en) Evaluation system of plastic strain and evaluation method thereof
CN104655505B (en) Instrumented-ball-pressing-technology-based residual stress detection method
Arunkumar A review of indentation theory
JP2007108095A (en) Method and device for diagnosing member irradiated with neutron
JP6543019B2 (en) Evaluation method of corrosion fatigue life of steel
Formisano et al. Leeb hardness experimental tests on carpentry steels: Surface treatment effect and empirical correlation with strength
JP2007155540A (en) Method of measuring fracture toughness value of metal material
JP2007057325A (en) Remaining lifetime prediction method
JP4112830B2 (en) Structural material soundness evaluation method and program
CN108107111B (en) Nonlinear ultrasonic detection method for heat-resistant steel component
Li et al. Study on mechanical properties and acoustic emission characteristics of metallic materials under the action of combined tension and torsion
CN113029826A (en) Method for determining fracture performance of metal material by using pre-notched small punch test sample
JP4434631B2 (en) Diagnosis method for neutron irradiated components
JP6430220B2 (en) Structure life diagnosis method and structure life diagnosis apparatus
WO1990010857A1 (en) Field indentation microprobe for structural integrity evaluation
RU2465567C1 (en) Method for determining material strength, and device for its implementation
JP2000171418A (en) Non-destructive estimation method of creep strain quantity of heat-resisting steel
JPH11173970A (en) System for evaluation of sensitization degree of material by accelerated stress corrosion crack test
JP2022138514A (en) Method for determining criterion for evaluating inclusion in steel material by ultrasonic flaw detection
JP2017187400A (en) Residual stress estimation method and residual stress estimation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106