JP2007103685A - Laser diode stem - Google Patents

Laser diode stem Download PDF

Info

Publication number
JP2007103685A
JP2007103685A JP2005291858A JP2005291858A JP2007103685A JP 2007103685 A JP2007103685 A JP 2007103685A JP 2005291858 A JP2005291858 A JP 2005291858A JP 2005291858 A JP2005291858 A JP 2005291858A JP 2007103685 A JP2007103685 A JP 2007103685A
Authority
JP
Japan
Prior art keywords
heat sink
laser diode
stem
metal base
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291858A
Other languages
Japanese (ja)
Other versions
JP2007103685A5 (en
Inventor
Akira Okuno
晃 奥野
Yoshiharu Komori
喜春 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2005291858A priority Critical patent/JP2007103685A/en
Publication of JP2007103685A publication Critical patent/JP2007103685A/en
Publication of JP2007103685A5 publication Critical patent/JP2007103685A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser diode stem capable of preventing degradation of efficiency by selectively using a highly thermally conductive material enhancing heat dissipation so as to cope with heat generation of a diode element to be mounted. <P>SOLUTION: The laser diode stem is provided with an eyelet 10, in which a pair of leads 16 is hermetically sealed to a through-hole 13 of a metal base 12 via glass 14, and an MICC heat sink 20 brazed to the metal base 12. The heat sink 20 is composed by using a highly thermally conductive carbon single material 22 of which the crystal orientation face has heat conductivity of 450-500 W/(m K). The heat sink 20 becomes a mounting base for the diode element and exerts satisfactory heat dissipation effects. A metal impregnated carbon material (MICC) as the highly thermally conductive carbon material is formed by baking carbon powder or a carbon fiber after solidifying it, and by impregnating the baked carbon powder or the baked carbon fiber with a metal such as Cu or Al. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、熱伝導性が高く放熱性が良好なヒートシンクをダイオード素子用搭載台に使用したレーザダイオード用ステムに関する。   The present invention relates to a laser diode stem in which a heat sink having high thermal conductivity and good heat dissipation is used for a diode element mounting base.

高出力の光半導体素子を搭載するステムにおいては、熱放散を図るために銅材等の熱伝導率の高い材料によって形成されたヒートシンクを鉄材等によって形成されたアイレットの上面に設けることが知られている。その場合、ヒートシンクのアイレット上への固着方法として、工数および構成部品数を可及的に減少しうる製造方法が特許文献1に開示されている。一方、レーザダイオードはその強力なエネルギーを利用する各種装置に使用されるが、その高出力化ダイオード素子の搭載に対応するために、素子マウント部材の金属ベース部材への取り付け方法が特許文献2に開示される。ここでは、ヒートシンクの取付構造の改良方法として、レーザダイオード用ステムにおいて、金属ベースに対するヒートシンクのろう付けについての改善方法が提案されている。一般的には、レーザダイオードはダイオード素子を搭載するステムに組み込んだ後、樹脂キャップ等のカバー材でパッケージ化され保護されるが、ステムには電源供給用リードや接地用リードが設けられ、機器の配線基板等に接続して使用される。さらに、ヒートシンク用材料として、熱伝導率150W/(m・K)以上の炭素基金属複合材料の使用が特許文献3に記載されている。
特開平10−116943号公報 特開2001−185799号公報 特開2001−058255号公報
In a stem equipped with a high-output optical semiconductor element, it is known that a heat sink formed of a material having high thermal conductivity such as copper is provided on the upper surface of an eyelet formed of iron or the like in order to dissipate heat. ing. In that case, Patent Document 1 discloses a manufacturing method capable of reducing the number of man-hours and the number of components as much as possible as a method of fixing the heat sink onto the eyelet. On the other hand, laser diodes are used in various devices that use their powerful energy. In order to cope with the mounting of high-power diode elements, Patent Document 2 discloses a method for attaching an element mount member to a metal base member. Disclosed. Here, as a method for improving the heat sink mounting structure, there has been proposed a method for improving the brazing of the heat sink to the metal base in the laser diode stem. In general, a laser diode is incorporated into a stem on which a diode element is mounted, and then packaged and protected by a cover material such as a resin cap. However, the stem is provided with a power supply lead and a ground lead. It is used by being connected to a wiring board or the like. Furthermore, Patent Document 3 describes the use of a carbon-based metal composite material having a thermal conductivity of 150 W / (m · K) or more as a heat sink material.
Japanese Patent Application Laid-Open No. 10-116943 JP 2001-185799 A JP 2001-058255 A

ところで、強力なエネルギーを放出するレーザダイオードの高出力化に対応するには、従来の銅材のヒートシンクでは熱放散が不十分な状態であり、レーザダイオード用ステムとしてのヒートシンクの対策が望まれていた。すなわち、より強力なレーザ光を得るためのパワーアップと、その効率化ではより有効な放熱性改善策が必要とされている。更に、熱伝導性が優れたヒートシンクの使用による性能の向上と共に、高出力化と小型化による温度上昇に伴う効率の低下の阻止など、発熱源となるダイオード素子に対するヒートシンクの改善が要請されている。   By the way, in order to cope with the higher output of laser diodes that emit powerful energy, conventional heat sinks of copper materials are inadequate in heat dissipation, and countermeasures for heat sinks as laser diode stems are desired. It was. That is, more effective heat dissipation improvement measures are required for powering up and obtaining more efficient laser light. Furthermore, there is a demand for improvements in heat sinks for diode elements that generate heat, such as improving performance through the use of heat sinks with excellent thermal conductivity, and preventing reduction in efficiency due to temperature increases due to higher output and smaller size. .

したがって、この発明は上記欠点に鑑みて提案されたものであリ、ダイオード素子の搭載基台に熱伝導性が極めて良好な材料を選択し、これを使用して放熱性の向上が図れることのできる新規かつ改良されたレーザダイオード用ステムの提供を目的とする。   Therefore, the present invention has been proposed in view of the above-mentioned drawbacks, and a material having extremely good thermal conductivity is selected for the mounting base of the diode element, and this can be used to improve heat dissipation. The object is to provide a new and improved stem for a laser diode.

本発明によれば、金属ベースにガラスを介してリードを気密封着した気密端子と、この金属ベースにろう付けしたヒートシンクと具備するレーザダイオード用ステムにおいて、ヒートシンクは、好ましくは結晶配向面の熱伝導率450W/(m・K)以上の炭素複合材または金属含浸炭素材から選ばれる高熱伝導カーボン材からなり、これにダイオード素子を搭載することを特徴とするレーザダイオード用ステムを開示する。なお、ヒートシンクは、搭載するダイオード素子との間に銅材を介在した合体ヒートシンクとして利用することも、放熱効果の改善に有効であることが判明した。具体的に、金属含浸炭素材(以下MICCと呼ぶ)、MICC−銅ハイブリッド材あるいはMICC−アルミニウムハイブリッド材などの複合材がヒートシンクの材料として有効であり、これをレーザダイオード用ステムに放熱部材として用い、極めて顕著にレーザ効率を向上させることを知見した。特に、金属含浸炭素複合材のMICCは高熱伝導であるのみならず低熱膨張、低弾性で軽量材料であって半導体材料の発熱対策に有効な材料であり、アイレットである金属ベース上への固着を容易確実にする。同時に、搭載されるダイオード素子の発熱に対処するため、放熱性を高める高熱伝導材料を選択使用して効率の低下を阻止したレーザダイオード用ステムを提供する。   According to the present invention, in a laser diode stem comprising a hermetic terminal in which a lead is hermetically sealed to a metal base via glass, and a heat sink brazed to the metal base, the heat sink is preferably a heat of crystal orientation plane. Disclosed is a laser diode stem comprising a high thermal conductivity carbon material selected from a carbon composite material having a conductivity of 450 W / (m · K) or more and a metal-impregnated carbon material, on which a diode element is mounted. It has been found that using a heat sink as a combined heat sink in which a copper material is interposed between the mounted diode element is also effective in improving the heat dissipation effect. Specifically, a composite material such as a metal-impregnated carbon material (hereinafter referred to as MICC), MICC-copper hybrid material, or MICC-aluminum hybrid material is effective as a heat sink material, and this is used as a heat dissipation member for a laser diode stem. It has been found that the laser efficiency is improved remarkably. In particular, the MICC of the metal-impregnated carbon composite is not only highly heat-conductive, but also has a low thermal expansion, low elasticity, and a lightweight material that is an effective material for heat generation of semiconductor materials. Easy to make sure. At the same time, in order to cope with the heat generation of the mounted diode element, a laser diode stem is provided in which a decrease in efficiency is prevented by selectively using a high heat conductive material that enhances heat dissipation.

すなわち、本発明のレーザダイオード用ステムは、金属ベースにその貫通孔でガラスを介して一対のリードを気密封着したアイレットと、この金属ベースに銀ろう付けしたMICC材のヒートシンクとを具備し、ヒートシンクには結晶配向面の熱伝導率450〜500W/(m・K)の金属含浸炭素材からなる高熱伝導カーボン材を使用して構成する。なお、結晶配向面とは黒鉛結晶面と平行な面であり、炭素繊維の長軸方向等を言う。これに対して、結晶面垂直方向である黒鉛結晶面と垂直な方向や炭素繊維の断面方向の熱伝導率は、通常結晶配向面に比べて小さくなる。したがって、高熱伝導カーボン材の配置にはこの点を注意する必要があり、熱放散に有利な状態で配置したヒートシンクはダイオード素子の搭載台となり、放熱効果を有効に発揮して効率低下を阻止する。また、金属含浸炭素材はカーボン粉末あるいはカーボン繊維を固めて焼成し、CuまたはAl等の金属を含浸させたものである。 That is, the laser diode stem of the present invention includes an eyelet in which a pair of leads are hermetically sealed to a metal base through a glass with a through hole, and a heat sink made of MICC material brazed with silver to the metal base, The heat sink is configured by using a high thermal conductivity carbon material made of a metal-impregnated carbon material having a thermal conductivity of 450 to 500 W / (m · K) in the crystal orientation plane. The crystal orientation plane is a plane parallel to the graphite crystal plane and refers to the long axis direction of the carbon fiber. On the other hand, the thermal conductivity in the direction perpendicular to the graphite crystal plane, which is the direction perpendicular to the crystal plane, and in the cross-sectional direction of the carbon fiber is smaller than that in the normal crystal orientation plane. Therefore, it is necessary to pay attention to this point in the arrangement of the high thermal conductivity carbon material, and the heat sink arranged in an advantageous state for heat dissipation becomes a mounting base for the diode element, effectively radiating the heat and preventing a decrease in efficiency. . The metal-impregnated carbon material is obtained by solidifying and firing carbon powder or carbon fiber and impregnating a metal such as Cu or Al.

本発明は、ダイオード素子を搭載するヒートシンクには高熱伝導カーボン材の単体または複合材を使用するので、その放熱性が大きく向上し効率の向上が図れる。たとえば、従来の銅製ヒートシンクでは熱伝導率が380W/(m・K)程度が限界であったが、本発明で使用する高熱伝導カーボン材の結晶配向面の熱伝導率は450W/(m・K)以上で略500W/(m・K)である。さらに、このような炭素複合材が金属ベースに銀ろう付けされ、高い放熱性が確保され高出力化に適したレーザダイオード用ステムを提供する。特に、放熱性の良いMICCまたはその複合材をダイオードペレットの搭載基板に使用するのでダイオード素子の発熱を直に吸収して放熱体へ伝導して温度上昇を抑止して効率低下を阻止する。加えて、素子マウントに対しての材料特性が半導体部品にマッチしているので、製造面での処理加工性が改良され量産化やローコスト化にも大きく寄与するなど工業的価値が高められる。   In the present invention, since a single heat conductive carbon material or a composite material is used for the heat sink on which the diode element is mounted, the heat dissipation is greatly improved and the efficiency can be improved. For example, a conventional copper heat sink has a limit of about 380 W / (m · K), but the thermal conductivity of the crystal orientation surface of the high thermal conductivity carbon material used in the present invention is 450 W / (m · K). ) Above, it is about 500 W / (m · K). Furthermore, such a carbon composite material is silver-brazed to a metal base to provide a laser diode stem that ensures high heat dissipation and is suitable for high output. In particular, since MICC having a good heat dissipation property or a composite material thereof is used for the mounting substrate of the diode pellet, the heat generated by the diode element is directly absorbed and conducted to the heat radiating body to suppress the temperature rise and prevent the efficiency drop. In addition, since the material characteristics for the element mount match the semiconductor parts, the processability on the manufacturing side is improved, and the industrial value is greatly increased, such as contributing greatly to mass production and low cost.

本発明の実施態様は、金属ベースの貫通孔にガラスを介して一対のリードを気密封着したアイレットと、この金属ベースにろう付けした放熱部材のヒートシンクとを具備するレーザダイオード用ステムにおいて、前記ヒートシンクは結晶配向面の熱伝導率450W/(m・K)以上の炭素複合材または金属含浸炭素材からなる高熱伝導カーボン材を使用し、ダイオード素子を搭載することを特徴とするレーザダイオード用ステムである。ここで、ヒートシンクは搭載するダイオード素子との間に銅材を介在して合体ヒートシンクとしても良い。具体的に、ヒートシンクは金属ベースの所定位置に、一例として一対のリードを気密封着したガラスの封着温度以上の融点を有する銀ろう付けで組立配置され、前記一対のリードの先端部は潰しによる平坦部を形成すると共に、金属ベースの内面にはダイオード素子が搭載されるヒートシンクの近傍にモニタ用受光素子を搭載する傾斜面を形成し、かつ金属ベースの外面には接地用リードが固着されたレーザダイオード用ステムを開示する。ダイオード素子は高熱伝導カーボン材のヒートシンクに接して搭載され、ワイヤボンディングにより一対のリードと接続する構造のレーザダイオード用ステムである。ここで、高熱伝導カーボン材としては金属含浸炭素材またはその複合材の使用が好ましく、例えば、カーボン粉末あるいはカーボン繊維を固めて焼成し、CuまたはAl等の金属を含浸させ、または粉末焼成させた材料である。熱伝導はカーボンの二次元結晶面の格子振動で伝わり結晶配向面の熱伝導率450W/(m・K)以上という高い熱伝導性を示す。結晶配向面の熱伝導率とは、物質内に温度差があると温度の高い部分から低い部分へ熱移動が起るが、この熱移動の起りやすさを表わす係数であり、単位長あたり1℃の温度差があるとき単位時間に単位面積を移動する熱量である。したがって、結晶配向面の熱伝導率の単位はJ・m/(s・m2・℃)またはW/(m・K)で示される。高熱伝導カーボン材は焼成方法や含浸金属の違いにより若干の相違がある。また、熱膨張係数は6〜10ppm/℃でコバー金属材やSi、GaAs等の半導体の熱膨張係数と非常に近く、ヤング率は低い。したがって、カーボン材の上に金属、Si、GaAs等の半導体と接合しても接合界面に発生する歪が小さく、長期間に渡り信頼性の高い接合ができる。   According to an embodiment of the present invention, there is provided a laser diode stem comprising: an eyelet having a pair of leads hermetically sealed via a glass in a through hole of a metal base; and a heat sink of a heat dissipation member brazed to the metal base. A laser diode stem characterized in that the heat sink uses a high thermal conductivity carbon material made of a carbon composite material or a metal-impregnated carbon material having a crystal orientation plane thermal conductivity of 450 W / (m · K) or more, and is mounted with a diode element. It is. Here, the heat sink may be a combined heat sink by interposing a copper material between the mounted diode element. Specifically, the heat sink is assembled and arranged at a predetermined position on the metal base by silver brazing having a melting point equal to or higher than the sealing temperature of the glass in which a pair of leads are hermetically sealed, and the tip ends of the pair of leads are crushed. In addition, a flat surface is formed on the inner surface of the metal base, an inclined surface for mounting the light receiving element for monitoring is formed in the vicinity of the heat sink on which the diode element is mounted, and a ground lead is fixed to the outer surface of the metal base. A stem for a laser diode is disclosed. The diode element is a stem for a laser diode that is mounted in contact with a heat sink made of a high thermal conductivity carbon material and is connected to a pair of leads by wire bonding. Here, it is preferable to use a metal-impregnated carbon material or a composite material thereof as the high thermal conductivity carbon material. For example, carbon powder or carbon fiber is hardened and fired, impregnated with a metal such as Cu or Al, or powder fired. Material. The heat conduction is transmitted by the lattice vibration of the two-dimensional crystal plane of carbon, and shows a high thermal conductivity of 450 W / (m · K) or more in the crystal orientation plane. The thermal conductivity of the crystal orientation plane is a coefficient representing the ease with which heat transfer occurs when there is a temperature difference in the material, and the heat transfer occurs from a high temperature portion to a low temperature portion. The amount of heat that moves a unit area per unit time when there is a temperature difference of ° C. Therefore, the unit of thermal conductivity of the crystal orientation plane is represented by J · m / (s · m2 · ° C.) or W / (m · K). High thermal conductivity carbon materials have some differences depending on the firing method and impregnated metal. Further, the coefficient of thermal expansion is 6 to 10 ppm / ° C., which is very close to the coefficient of thermal expansion of a semiconductor such as a cover metal material, Si, or GaAs, and the Young's modulus is low. Therefore, even when bonded to a semiconductor such as metal, Si, or GaAs on a carbon material, distortion generated at the bonding interface is small, and highly reliable bonding can be performed over a long period of time.

以下、本発明の第1の実施態様であるMICCヒートシンクのレーザダイオード用ステムについて、図1(a)(b)および(c)を参照しつつ説明する。レーザダイオード用ステムは、金属ベース12の貫通孔13にガラス14を介して一対のリード16を気密封着したアイレット10と、この金属ベース12に銀ろう付けしたMICCヒートシンク20とを具備するレーザダイオード用ステムである。すなわち、放熱部材のMICCヒートシンク20は結晶配向面の熱伝導率450〜500W/(m・K)の高熱伝導カーボン単一材21を使用し、ここにダイオード素子を搭載するレーザダイオード用ステムである。ヒートシンク20の金属含浸炭素材(MICC)は、カーボン粉末あるいはカーボン繊維を固めて焼成し、CuまたはAl等の金属を含浸させたものである。熱伝導はカーボンの二次元結晶面の格子振動で伝わり高い熱伝導性を示す。   The laser diode stem of the MICC heat sink according to the first embodiment of the present invention will be described below with reference to FIGS. 1 (a), (b) and (c). The laser diode stem includes a laser diode including an eyelet 10 in which a pair of leads 16 are hermetically sealed in a through hole 13 of a metal base 12 through a glass 14 and a MICC heat sink 20 brazed with silver on the metal base 12. Stem. That is, the MICC heat sink 20 as a heat radiating member is a laser diode stem that uses a single high thermal conductivity carbon material 21 having a thermal conductivity of 450 to 500 W / (m · K) in the crystal orientation plane, and on which a diode element is mounted. . The metal-impregnated carbon material (MICC) of the heat sink 20 is obtained by solidifying and firing carbon powder or carbon fiber and impregnating a metal such as Cu or Al. Heat conduction is transmitted by lattice vibration of the two-dimensional crystal plane of carbon, and exhibits high thermal conductivity.

第2の実施態様は、図2に示されるように、合体ヒートシンク22は銅(Cu)がMICCと一体化して構成されたものであり、銅材23がMICC材24上に固着され、ダイオード素子の搭載台として従来同様の銅を介在したレーザダイオード用ステムである。なお、この実施例は合体ヒートシンク22以外の構成は実施例1と同様であり、同一部分には同じ符号を付して詳細な説明を省略する。ここで、上述する実施例に使用する高熱伝導カーボン材は、高熱伝導である他に弾性率が小さい低弾性と低熱膨張という特性を有し、かつ強度が強く軽量で加工性に優れており、低コスト材料として機械的強度が大きく加工上の不具合もなく安定した性能を発揮できる。また、ダイオード素子の発熱による温度上昇を抑止して効率を改善する製品を提供する。   In the second embodiment, as shown in FIG. 2, the united heat sink 22 is formed by integrating copper (Cu) with MICC, and the copper material 23 is fixed on the MICC material 24, so that the diode element is formed. This is a stem for a laser diode in which copper is interposed as a conventional mounting base. In this embodiment, the configuration other than the united heat sink 22 is the same as that of the first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted. Here, the high thermal conductivity carbon material used in the above-mentioned examples has the characteristics of low elasticity and low thermal expansion with a low elastic modulus in addition to high thermal conductivity, and is strong and lightweight and excellent in workability. As a low-cost material, it has high mechanical strength and can exhibit stable performance without processing problems. Further, the present invention provides a product that improves the efficiency by suppressing the temperature rise due to the heat generation of the diode element.

本発明に係る実施例1のレーザダイオード用ステムの概要を示し、図1(a)は平面図、図1(b)は図1(a)のA−A線に沿った断面図、および図1(c)は図1(a)のB−B線に沿った断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The outline | summary of the stem for laser diodes of Example 1 which concerns on this invention is shown, FIG. 1 (a) is a top view, FIG.1 (b) is sectional drawing along the AA line of FIG. 1 (c) is a cross-sectional view taken along line BB in FIG. 1 (a). 同じく実施例2のレーザダイオード用ステムの概要を示す要部断面図である。FIG. 6 is a cross-sectional view of a principal part showing an outline of a stem for a laser diode of Example 2 in the same manner.

符号の説明Explanation of symbols

10…アイレット、 12…金属ベース、 13…貫通孔、 14…ガラス、
16…リード、 20…ヒートシンク、 21…高熱伝導カーボン単一材、
22…合体ヒートシンク、 23…銅材、 24…MICC材
10 ... Eyelet, 12 ... Metal base, 13 ... Through-hole, 14 ... Glass,
16 ... Lead, 20 ... Heat sink, 21 ... High thermal conductivity carbon single material,
22 ... Combined heat sink, 23 ... Copper material, 24 ... MICC material

Claims (5)

金属ベースの貫通孔にガラスを介して一対のリードを気密封着したアイレットと、この金属ベースにろう付けしたヒートシンクとを具備するレーザダイオード用ステムにおいて、前記ヒートシンクは高熱伝導カーボン材が使用され、ダイオード素子を搭載することを特徴とするレーザダイオード用ステム。 In a laser diode stem comprising an eyelet in which a pair of leads are hermetically sealed through glass in a through hole of a metal base, and a heat sink brazed to the metal base, the heat sink is made of a high thermal conductivity carbon material, A stem for a laser diode, which is equipped with a diode element. 金属ベースの貫通孔にガラスを介して一対のリードを気密封着したアイレットと、この金属ベースにろう付けしたヒートシンクとを具備するレーザダイオード用ステムにおいて、前記ヒートシンクは高熱伝導カーボン材と銅材との合材から成り、前記銅材面上にダイオード素子を搭載することを特徴とするレーザダイオード用ステム。 In a laser diode stem comprising an eyelet in which a pair of leads are hermetically sealed via a glass in a through hole of a metal base, and a heat sink brazed to the metal base, the heat sink includes a high thermal conductivity carbon material and a copper material. A laser diode stem, comprising a diode element mounted on the copper material surface. 前記高熱伝導カーボン材は結晶配向面の熱伝導率450W/(m・K)以上の炭素複合材または金属含浸炭素材であることを特徴とする請求項1または2に記載のレーザダイオード用ステム。 3. The laser diode stem according to claim 1, wherein the high thermal conductivity carbon material is a carbon composite material or a metal-impregnated carbon material having a crystal orientation plane thermal conductivity of 450 W / (m · K) or more. 前記金属ベースの内面には前記ヒートシンクが所定位置にろう付け配置され、前記金属ベースの外面には接地用リードが固着され、かつ前記一対のリードの先端部は潰しによる平坦部を形成したことを特徴とする請求項3に記載のレーザダイオード用ステム。 The heat sink is brazed and arranged at a predetermined position on the inner surface of the metal base, a grounding lead is fixed to the outer surface of the metal base, and the tip portion of the pair of leads forms a flat portion by crushing. The stem for a laser diode according to claim 3, 前記ヒートシンクはリードとガラスの封着温度以上の融点を有する銀ろう付けで配置され、その近傍にモニタ用受光素子を搭載するようにした傾斜面が形成されたことを特徴とする請求項4に記載のレーザダイオード用ステム。
5. The heat sink according to claim 4, wherein the heat sink is disposed by silver brazing having a melting point equal to or higher than a sealing temperature of the lead and the glass, and an inclined surface on which a light receiving element for monitoring is mounted is formed in the vicinity thereof. The stem for a laser diode as described.
JP2005291858A 2005-10-05 2005-10-05 Laser diode stem Pending JP2007103685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291858A JP2007103685A (en) 2005-10-05 2005-10-05 Laser diode stem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291858A JP2007103685A (en) 2005-10-05 2005-10-05 Laser diode stem

Publications (2)

Publication Number Publication Date
JP2007103685A true JP2007103685A (en) 2007-04-19
JP2007103685A5 JP2007103685A5 (en) 2008-10-23

Family

ID=38030323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291858A Pending JP2007103685A (en) 2005-10-05 2005-10-05 Laser diode stem

Country Status (1)

Country Link
JP (1) JP2007103685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041197B2 (en) 2012-05-10 2015-05-26 Mitsubishi Electric Corporation Semiconductor device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107185A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Photo electron device
JPH09321190A (en) * 1996-05-29 1997-12-12 Tonen Corp Heat sink
JPH11145548A (en) * 1997-11-05 1999-05-28 Nec Eng Ltd Package for semiconductor laser and manufacture of ground lead
JP2000294868A (en) * 1999-02-04 2000-10-20 Furukawa Electric Co Ltd:The Semiconductor laser module and peltier module used for the same
JP2001144361A (en) * 1999-11-10 2001-05-25 Furukawa Electric Co Ltd:The Package for optical semiconductor element
JP2002076501A (en) * 2000-09-05 2002-03-15 Sumitomo Electric Ind Ltd Production method for optical semiconductor module
JP2002109774A (en) * 2000-10-02 2002-04-12 Ricoh Co Ltd Optical pickup
JP2003069127A (en) * 2001-08-28 2003-03-07 Kyocera Corp Package for accommodating optical semiconductor element and optical semiconductor device
JP2003218440A (en) * 2002-01-25 2003-07-31 Kyocera Corp Package for housing optical semiconductor element and optical semiconductor device
JP2003304027A (en) * 2002-04-12 2003-10-24 Kyocera Corp Package for housing optical semiconductor element
JP2004031900A (en) * 2002-05-09 2004-01-29 Rohm Co Ltd Semiconductor laser, manufacturing method thereof, and optical pickup device
JP2005045234A (en) * 2003-07-09 2005-02-17 Sumitomo Electric Ind Ltd Light emitting module
JP2005235864A (en) * 2004-02-17 2005-09-02 Hamamatsu Photonics Kk Optical semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107185A (en) * 1986-10-24 1988-05-12 Hitachi Ltd Photo electron device
JPH09321190A (en) * 1996-05-29 1997-12-12 Tonen Corp Heat sink
JPH11145548A (en) * 1997-11-05 1999-05-28 Nec Eng Ltd Package for semiconductor laser and manufacture of ground lead
JP2000294868A (en) * 1999-02-04 2000-10-20 Furukawa Electric Co Ltd:The Semiconductor laser module and peltier module used for the same
JP2001144361A (en) * 1999-11-10 2001-05-25 Furukawa Electric Co Ltd:The Package for optical semiconductor element
JP2002076501A (en) * 2000-09-05 2002-03-15 Sumitomo Electric Ind Ltd Production method for optical semiconductor module
JP2002109774A (en) * 2000-10-02 2002-04-12 Ricoh Co Ltd Optical pickup
JP2003069127A (en) * 2001-08-28 2003-03-07 Kyocera Corp Package for accommodating optical semiconductor element and optical semiconductor device
JP2003218440A (en) * 2002-01-25 2003-07-31 Kyocera Corp Package for housing optical semiconductor element and optical semiconductor device
JP2003304027A (en) * 2002-04-12 2003-10-24 Kyocera Corp Package for housing optical semiconductor element
JP2004031900A (en) * 2002-05-09 2004-01-29 Rohm Co Ltd Semiconductor laser, manufacturing method thereof, and optical pickup device
JP2005045234A (en) * 2003-07-09 2005-02-17 Sumitomo Electric Ind Ltd Light emitting module
JP2005235864A (en) * 2004-02-17 2005-09-02 Hamamatsu Photonics Kk Optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041197B2 (en) 2012-05-10 2015-05-26 Mitsubishi Electric Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US9559491B2 (en) Laser diode with cooling along even the side surfaces
KR100536115B1 (en) Power semiconductor device
JP4646166B2 (en) Light source consisting of a laser diode module
JP2008300476A (en) Power module
JP2005303242A (en) Electro-optical conversion module with cooling function
CN108604768B (en) Semiconductor laser device and method for manufacturing the same
JP4690536B2 (en) Light source consisting of laser diode module
JP2008300379A (en) Power module
KR101236470B1 (en) Substrate and semiconductor device package using the same
US10748836B2 (en) Semiconductor laser module and method for manufacturing the same
US7567599B2 (en) Semiconductor laser diode device with thermal conductive encapsulating resin and method for manufacturing the same
JP2021090078A (en) Package for housing optical semiconductor element, and optical semiconductor device
JP6094197B2 (en) Power module
JP6667149B1 (en) Semiconductor laser light source device
JP2007103685A (en) Laser diode stem
JP2011103353A (en) Light emitting module
JP4662526B2 (en) Laser diode module
JP2008243877A (en) Power module and its manufacturing method
JP2006086391A (en) Led package
JP2008147592A (en) Semiconductor laser device
JP2008091369A (en) Electronic component package
JP2008306033A (en) Optical module
JP4872394B2 (en) Heat sink and semiconductor device provided with the heat sink
JP2010098144A (en) Lead frame and semiconductor device
JP2005079386A (en) Power semiconductor application apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124