JP2007103089A - Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate - Google Patents

Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate Download PDF

Info

Publication number
JP2007103089A
JP2007103089A JP2005289112A JP2005289112A JP2007103089A JP 2007103089 A JP2007103089 A JP 2007103089A JP 2005289112 A JP2005289112 A JP 2005289112A JP 2005289112 A JP2005289112 A JP 2005289112A JP 2007103089 A JP2007103089 A JP 2007103089A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
electrode
electrode catalyst
transfer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005289112A
Other languages
Japanese (ja)
Other versions
JP5230064B2 (en
Inventor
Rei Hiromitsu
礼 弘光
Yoshikazu Nakagawa
美和 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005289112A priority Critical patent/JP5230064B2/en
Publication of JP2007103089A publication Critical patent/JP2007103089A/en
Application granted granted Critical
Publication of JP5230064B2 publication Critical patent/JP5230064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst layer capable of manufacturing a fuel cell capable of exhausting product water quickly from the electrode catalyst layer, with superb distribution performance of gas and excellent cell performance. <P>SOLUTION: The electrode catalyst layer is for a solid polymer fuel cell. (1) The catalyst layer has a plurality of cracks penetrating in a thickness direction, (2) a width of each crack is narrower at one direction side B than the other direction side A of the catalyst layer, and (3) an aperture ratio of the other direction side A of the catalyst layer is 2 to 50%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電極触媒層、触媒層−電解質膜積層体製造用転写シート及び触媒層−電解質膜積層体に関する。   The present invention relates to an electrode catalyst layer, a transfer sheet for producing a catalyst layer-electrolyte membrane laminate, and a catalyst layer-electrolyte membrane laminate.

燃料電池は、電解質膜の両面に触媒層を配置し、水素等の燃料ガスと空気等の酸化ガスの電気化学反応により発電するシステムである。燃料電池は、発電時に発生するのは水のみであり、従来の内燃機関と異なり、二酸化炭素等の環境負荷ガスを発生しない為、次世代のクリーンエネルギーシステムとして注目されている。   A fuel cell is a system in which a catalyst layer is disposed on both surfaces of an electrolyte membrane, and power is generated by an electrochemical reaction between a fuel gas such as hydrogen and an oxidizing gas such as air. Fuel cells generate only water during power generation and, unlike conventional internal combustion engines, do not generate environmental load gases such as carbon dioxide, and thus are attracting attention as next-generation clean energy systems.

固体高分子形燃料電池は、電解質膜層として水素イオン伝導性高分子電解質膜を用い、その両面に触媒層を配置し、次いでその両面に電極基材を配置し、更にこれらをセパレータで挟んだ構造となっている。電解質膜層の両面に触媒層を配置したものは触媒層−電解質膜積層体と呼ばれ、また、その両面に電極基材を配置したものは、電極−電解質膜積層体と称されている。   A polymer electrolyte fuel cell uses a hydrogen ion conductive polymer electrolyte membrane as an electrolyte membrane layer, a catalyst layer is arranged on both sides thereof, an electrode substrate is arranged on both sides thereof, and these are further sandwiched between separators. It has a structure. A structure in which the catalyst layers are arranged on both sides of the electrolyte membrane layer is called a catalyst layer-electrolyte film laminate, and a structure in which an electrode base material is arranged on both sides is called an electrode-electrolyte film laminate.

この電極の一方に燃料(水素)を、他方に酸化剤(空気)をそれぞれ供給すると、電極(燃料極)触媒上で水素がプロトンと電子とに分かれる。この水素イオンは電解質膜内を通じて、電子は外部回路を通じて、電極(空気極)触媒へ移動する。その触媒上で、酸素、電子及び水素イオンが反応して水が生成される。この生成水は、反応ガスと共にガス流路を通って排水される。また、水素イオンの電解質膜内の移動については電解質膜を高い湿度状態に保つ必要があるため、燃料ガス及び空気は加湿された状態で供給される。   When fuel (hydrogen) is supplied to one of the electrodes and oxidant (air) is supplied to the other, hydrogen is separated into protons and electrons on the electrode (fuel electrode) catalyst. The hydrogen ions move to the electrode (air electrode) catalyst through the electrolyte membrane and the electrons through the external circuit. On the catalyst, oxygen, electrons and hydrogen ions react to produce water. This generated water is drained through the gas flow path together with the reaction gas. Moreover, since it is necessary to keep an electrolyte membrane in a high humidity state about the movement of hydrogen ions in the electrolyte membrane, fuel gas and air are supplied in a humidified state.

これにより、固体高分子形燃料電池は水が過剰に存在し、触媒層中の空隙を閉塞し、ガスの流通性能の低下等が生じる。   As a result, the polymer electrolyte fuel cell has an excess of water, clogs the voids in the catalyst layer, and lowers the gas flow performance.

そこで、水を速やかに触媒層から排出し、ガスの流通性能を向上するために、さまざま方法が提案されている。   Therefore, various methods have been proposed in order to quickly drain water from the catalyst layer and improve the gas distribution performance.

例えば、触媒層を分割して分割触媒部を形成すると共に分割触媒部の間に隙間を設けた燃料電池が提案されている(特許文献1)。   For example, a fuel cell has been proposed in which a catalyst layer is divided to form a divided catalyst portion and a gap is provided between the divided catalyst portions (Patent Document 1).

また、触媒層のガス拡散層と接触する面から、触媒層の内部に向かって燃料ガス又は空気が流通する空隙を有した燃料電池が提案されている(特許文献2)。   Further, a fuel cell having a gap through which fuel gas or air flows from the surface of the catalyst layer in contact with the gas diffusion layer toward the inside of the catalyst layer has been proposed (Patent Document 2).

しかしながら、特許文献1では、分割触媒部の間の隙間が互いに連通している。このため、空気極の三相界面で発生する生成水が隙間を通って特定の部分に集中的に溜まり、ガスの流通性能が局所的に極端に低下する問題がある。また、分割触媒部を小さくしようとした場合には分割触媒部が割れ易くなり、電解質膜から剥離する問題がある。   However, in patent document 1, the clearance gap between division | segmentation catalyst parts is mutually connected. For this reason, there is a problem that the generated water generated at the three-phase interface of the air electrode is concentrated in a specific portion through the gap, and the gas flow performance is extremely reduced locally. In addition, when trying to make the divided catalyst portion small, the divided catalyst portion is liable to break and there is a problem of peeling from the electrolyte membrane.

特許文献2では、触媒層の面内(表面)の空隙を規定することにより、電池性能を制御している。しかしながら、触媒層内に含まれる触媒担持炭素は多孔質であるため、かかる触媒担持炭素自体も空隙を有する。よって、触媒層における空隙は触媒担持炭素の空隙も考慮する必要があり、触媒層の面内の空隙を規定するだけでは、電池性能を制御することは困難である。
特開2003−77480号公報 特開2002−270187号公報
In Patent Document 2, battery performance is controlled by defining an in-plane (surface) void of the catalyst layer. However, since the catalyst-carrying carbon contained in the catalyst layer is porous, the catalyst-carrying carbon itself has voids. Therefore, it is necessary to consider the voids in the catalyst-supporting carbon as the voids in the catalyst layer, and it is difficult to control the battery performance only by defining the voids in the surface of the catalyst layer.
JP 2003-77480 A Japanese Patent Laid-Open No. 2002-270187

従って、本発明は、これら従来技術の問題に鑑みてなされたものであり、生成水を速やかに電極触媒層から排出でき、ガスの良好な流通性能を有し、優れた電池性能を有する燃料電池を製造できる電極触媒層を提供することを主な目的とする。   Accordingly, the present invention has been made in view of these problems of the prior art, and is capable of quickly discharging generated water from the electrode catalyst layer, has a good gas distribution performance, and has excellent battery performance. The main object is to provide an electrode catalyst layer capable of producing

本発明者は、上記従来技術の問題点に鑑み、鋭意研究を重ねた結果、特定の構成を有する電極触媒層を用いることによって上記目的を達成できることを見出し、本発明を完成するに至った。   In light of the problems of the prior art described above, the present inventor has found that the object can be achieved by using an electrode catalyst layer having a specific configuration, and has completed the present invention.

すなわち、本発明は、下記に示す触媒電極層、触媒層−電解質膜積層体製造用転写シート及び触媒層−電解質膜積層体に係る。   That is, the present invention relates to the following catalyst electrode layer, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate.

1.固体高分子形燃料電池用の電極触媒層であって、
1)前記触媒層は、厚み方向に貫通する複数の亀裂を有しており、
2)前記各亀裂の幅は、前記触媒層の一方面側Aより他方面側Bが狭くなっており、
3)前記触媒層の一方面側Aの開口率が2〜50%である、
ことを特徴とする電極触媒層。
1. An electrode catalyst layer for a polymer electrolyte fuel cell,
1) The catalyst layer has a plurality of cracks penetrating in the thickness direction;
2) The width of each crack is such that the other side B is narrower than the one side A of the catalyst layer,
3) The opening ratio of one side A of the catalyst layer is 2 to 50%.
An electrode catalyst layer characterized by the above.

2.一方面側Aの各亀裂の最大幅が0.1〜20μmである、請求項1に記載の電極触媒層。   2. The electrode catalyst layer according to claim 1, wherein the maximum width of each crack on one side A is 0.1 to 20 μm.

3.電極触媒層の厚みが1〜35μmである、請求項1又は2に記載の電極触媒層。   3. The electrode catalyst layer according to claim 1 or 2, wherein the electrode catalyst layer has a thickness of 1 to 35 µm.

4.請求項1〜3のいずれかに記載の電極触媒層が、他方面側Bが転写基材に接するように、前記転写基材上の少なくとも一方面上に積層されてなる、触媒層−電解質膜積層体製造用転写シート。   4). A catalyst layer-electrolyte membrane, wherein the electrode catalyst layer according to any one of claims 1 to 3 is laminated on at least one surface of the transfer substrate such that the other surface side B is in contact with the transfer substrate. Transfer sheet for laminate production.

5.転写基材と電極触媒層との間に離型層が介在されてなる、請求項4に記載の転写シート。   5. The transfer sheet according to claim 4, wherein a release layer is interposed between the transfer substrate and the electrode catalyst layer.

6.請求項1〜3のいずれかに記載の電極触媒層が、一方面側Aが電解質膜に接するように、前記電解質膜の少なくとも一方面上に積層されてなる、触媒層−電解質膜積層体。   6). A catalyst layer-electrolyte membrane laminate, wherein the electrode catalyst layer according to any one of claims 1 to 3 is laminated on at least one surface of the electrolyte membrane so that one surface side A is in contact with the electrolyte membrane.

電極触媒層
本発明の電極触媒層は、
1)前記触媒層は、厚み方向に貫通する複数の亀裂を有しており、
2)前記各亀裂の幅は、前記触媒層の一方面側Aより他方面側Bが狭くなっており、
3)前記触媒層の一方面側Aの開口率が2〜50%である、
ことを特徴とする。
Electrocatalyst layer The electrode catalyst layer of the present invention comprises:
1) The catalyst layer has a plurality of cracks penetrating in the thickness direction;
2) The width of each crack is such that the other side B is narrower than the one side A of the catalyst layer,
3) The opening ratio of one side A of the catalyst layer is 2 to 50%.
It is characterized by that.

本発明の亀裂の平面図の一例を図1に示す。図1のように、本発明は、複数の亀裂が不規則に連続又は不連続に存在している。   An example of a plan view of a crack of the present invention is shown in FIG. As shown in FIG. 1, in the present invention, a plurality of cracks are present irregularly continuously or discontinuously.

本発明の亀裂の断面図の一例を図2に示す。図2のように、本発明の亀裂は実質的に触媒層の一方面側Aより他方面側Bが狭くなっている。(以下、触媒層表面において、亀裂の幅が広い方の表面側を「一方面側A」と、亀裂の幅が狭い方の表面側を「他方面側B」とする。)
本発明の触媒層の一方面側Aの開口率は、2〜50%程度であることを必須とする。好ましくは、3〜40%程度である。なお、本発明の開口率とは、一方面側Aの写真を取り込み、その写真を2値化(白/黒)し、各面積率(%)を算出して決定されるものである。2値化は、写真の色彩を255段階に分割し、0〜50までを触媒層部分、51〜255までを触媒層が存在しない部分(亀裂部分)と判断する。この亀裂部分の面積率を開口率という。写真は、デジタルマイクロスコープによって撮影されたものである。
An example of a cross-sectional view of a crack of the present invention is shown in FIG. As shown in FIG. 2, the crack of the present invention is substantially narrower on the other surface side B than the one surface side A of the catalyst layer. (Hereinafter, on the catalyst layer surface, the surface side with the larger crack width is referred to as “one surface side A”, and the surface side with the narrower crack width is referred to as “other surface side B”.)
It is essential that the opening ratio on one side A of the catalyst layer of the present invention is about 2 to 50%. Preferably, it is about 3 to 40%. The aperture ratio of the present invention is determined by taking a photograph of one side A, binarizing the photograph (white / black), and calculating each area ratio (%). In the binarization, the color of the photograph is divided into 255 stages, and 0 to 50 are determined as catalyst layer portions and 51 to 255 as portions where no catalyst layer exists (cracked portions). The area ratio of the crack portion is called the aperture ratio. The photo was taken with a digital microscope.

上記のような複数の亀裂を有し、かつ特定の開口率を有することにより、本発明の触媒層は、燃料ガス及び空気等のガスの流通性能が向上する。また、一方面側Aで発生する水を他方面側Bに速やかに排出できる。これらにより、本発明の触媒層を用いると、良好な最大出力密度等の優れた電池性能を有する燃料電池を製造できる。   By having a plurality of cracks as described above and a specific opening ratio, the catalyst layer of the present invention improves the flow performance of gas such as fuel gas and air. Further, the water generated on the one side A can be quickly discharged to the other side B. Accordingly, when the catalyst layer of the present invention is used, a fuel cell having excellent battery performance such as a good maximum power density can be produced.

各亀裂の最大幅は、一方面側Aでは、通常0.1μm〜20μm程度、好ましくは1μm〜15μm程度である。他方面側Bでは、通常0.05μm〜15m程度、好ましくは0.5μm〜10μm程度である。   The maximum width of each crack is usually about 0.1 μm to 20 μm, preferably about 1 μm to 15 μm, on one side A. On the other side B, it is usually about 0.05 μm to 15 m, preferably about 0.5 μm to 10 μm.

膜厚は、通常1μm〜35μm程度であり、好ましくは10μm〜25μm程度である。   The film thickness is usually about 1 μm to 35 μm, preferably about 10 μm to 25 μm.

触媒層は、触媒担持炭素粒子及び水素イオン伝導性高分子電解質を含んでいればよい。   The catalyst layer only needs to contain catalyst-supporting carbon particles and a hydrogen ion conductive polymer electrolyte.

触媒としては、例えば、白金、白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群より選ばれる少なくとも一種の金属と白金との合金が挙げられる。   Examples of the catalyst include platinum and a platinum compound. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like.

一般的には、カソード触媒層として用いられる場合は、触媒粒子は白金であり、アノード触媒層として用いられる場合は上述した白金化合物である。   Generally, when used as a cathode catalyst layer, the catalyst particles are platinum, and when used as an anode catalyst layer, the above-described platinum compound.

水素イオン伝導性高分子電解質としては、例えば、パ−フルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。電気陰性度の高いフッ素原子を導入することで、化学的に非常に安定し、スルホン酸基の解離度が高く、高いイオン伝導性が実現できる。このような水素イオン伝導性高分子電解質の具体例としては、デュポン社製の「Nafion」、旭硝子(株)製の「Flemion」、旭化成(株)製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins, more specifically, perfluorocarbon sulfonic acid in which the C—H bond of the hydrocarbon ion-exchange membrane is substituted with fluorine. -Based polymer (PFS-based polymer) and the like. By introducing a fluorine atom having high electronegativity, it is chemically very stable, the dissociation degree of the sulfonic acid group is high, and high ion conductivity can be realized. Specific examples of such a hydrogen ion conductive polymer electrolyte include “Nafion” manufactured by DuPont, “Flemion” manufactured by Asahi Glass Co., Ltd., “Aciplex” manufactured by Asahi Kasei Co., Ltd., and Gore manufactured by Gore. "Gore Select" and so on.

配合割合は、触媒担持炭素粒子1重量部に対して、0.3〜3重量部程度とすればよく、好ましくは0.4〜2重量部である。   The blending ratio may be about 0.3 to 3 parts by weight, preferably 0.4 to 2 parts by weight with respect to 1 part by weight of the catalyst-supporting carbon particles.

触媒層−電解質膜積層体製造用転写シート
本発明の触媒層−電解質膜積層体製造用転写シートは、上述した触媒層が、他方面側B(亀裂の幅が狭い面)が転写基材に接するように、前記転写基材上に積層されている。
Catalyst layer-transfer sheet for manufacturing electrolyte membrane laminate The transfer layer for manufacturing catalyst layer-electrolyte membrane laminate of the present invention is such that the above-mentioned catalyst layer has the other side B (the surface with a narrow crack width) as the transfer substrate. It is laminated | stacked on the said transfer base material so that it may contact | connect.

転写基材としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムを挙げることができる。   Examples of the transfer substrate include polyimide, polyethylene terephthalate, polyparvanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate, etc. A polymer film can be mentioned.

また、例えば、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性樹脂を用いることもできる。   In addition, for example, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroperfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. These heat resistant resins can also be used.

さらに転写基材は、高分子フィルム以外にアート紙、コート紙、軽量コート紙等の塗工紙、ノート用紙、コピー用紙等の非塗工紙であっても良い。   In addition to the polymer film, the transfer substrate may be coated paper such as art paper, coated paper or lightweight coated paper, or non-coated paper such as notebook paper or copy paper.

転写基材の厚さは、取り扱い性及び経済性の観点から通常6〜100μm程度、好ましくは10μm〜35μm程度、より好ましくは10μm〜25μm程度とするのが良い。   The thickness of the transfer substrate is usually about 6 to 100 μm, preferably about 10 μm to 35 μm, more preferably about 10 μm to 25 μm from the viewpoints of handleability and economy.

従って、転写基材としては安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   Therefore, a polymer film that is inexpensive and easily available is preferable as the transfer substrate, and polyethylene terephthalate or the like is more preferable.

本発明において、電極触媒層と転写基材との間に離型層が介在していてもよい。   In the present invention, a release layer may be interposed between the electrode catalyst layer and the transfer substrate.

離型層は、例えば、ワックスから構成される。ワックスとしては、具体的には、石油系ワックス、植物系ワックス、動物系ワックス、鉱物系ワックス、合成系ワックス等を挙げることができる。本発明で用いられるワックスには、例えば、C16〜C32の脂肪酸とアルコールとのエステルが包含される。本発明において、これらワックスは、1種単独で又は2種以上混合して使用される。 The release layer is made of wax, for example. Specific examples of the wax include petroleum wax, plant wax, animal wax, mineral wax, and synthetic wax. The wax used in the present invention includes, for example, an ester of a C 16 -C 32 fatty acid and an alcohol. In the present invention, these waxes are used singly or in combination of two or more.

本発明で用いられるワックスは、好ましくは融点が60〜140℃、より好ましくは融点が60〜100℃の範囲にあるのがよい。   The wax used in the present invention preferably has a melting point of 60 to 140 ° C, more preferably a melting point of 60 to 100 ° C.

本発明において、好ましいワックスは植物系ワックスであり、より好ましいワックスはカルナウバワックス、カンデリラワックス等である。   In the present invention, preferred waxes are plant-based waxes, and more preferred waxes are carnauba wax and candelilla wax.

離型層は、公知のフッ素系樹脂でコーティングされたプラスチックフィルム(例えば、ポリエチレンテレフタレート等のフィルム)からなっていてもよい。   The release layer may be made of a plastic film (for example, a film of polyethylene terephthalate or the like) coated with a known fluorine-based resin.

離型層の厚さは、通常0.1μm〜3μm程度、好ましくは0.5μm〜1μm程度がよい。   The thickness of the release layer is usually about 0.1 μm to 3 μm, preferably about 0.5 μm to 1 μm.

転写基材上に離型層を形成させるに当たっては、所望の層厚になるように、上記ワックスを公知の方法に従い塗布するのがよい。また、塗布作業を容易にするために、ワックスを適当な溶剤に溶解又は分散して溶液又はエマルジョン液の形態で使用してもよい。塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   In forming the release layer on the transfer substrate, the wax is preferably applied according to a known method so as to have a desired layer thickness. In order to facilitate the coating operation, the wax may be dissolved or dispersed in a suitable solvent and used in the form of a solution or an emulsion. The coating method is not particularly limited, and for example, general methods such as knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, and screen printing can be applied.

また、転写基材上に離型層を構成する成分を公知の方法で押出することにより、転写基材上に離型層を形成させることもできる。   Moreover, a release layer can also be formed on a transfer base material by extruding the component which comprises a release layer on a transfer base material by a well-known method.

転写基材上に本発明の電極触媒層を形成させるに当たっては、例えば、(1)触媒担持炭素粒子及び(2)水素イオン伝導性高分子電解質を(3)適当な溶剤に混合し、分散してペースト状にしておき、このペーストを転写基材又は離型層上に塗布すればよい。   In forming the electrode catalyst layer of the present invention on the transfer substrate, for example, (1) catalyst-supporting carbon particles and (2) hydrogen ion conductive polymer electrolyte are mixed and dispersed in (3) a suitable solvent. The paste may be made into a paste and this paste may be applied onto the transfer substrate or the release layer.

(1)触媒担持炭素、(2)水素イオン伝導性高分子電解質、転写基材及び離型層は上述したものが挙げられる。   Examples of (1) catalyst-supporting carbon, (2) hydrogen ion conductive polymer electrolyte, transfer substrate and release layer include those described above.

使用する溶剤としては、例えば、アルコール類、エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物が挙げられる。これらの溶剤の中でも、アルコール類が好ましい。アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、2−ブタノール、t−ブタノール、イソブチルアルコール等の炭素数1〜4の一価アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、グリセリン等の各種の多価アルコール等が挙げられる。これらの溶剤は単独で用いてもよいし、二種以上を混合して用いてもよい。   Examples of the solvent to be used include alcohols, ethers, various dialkyl sulfoxides, water or a mixture thereof. Among these solvents, alcohols are preferable. Examples of alcohols include monohydric alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, t-butanol, and isobutyl alcohol, propylene glycol, ethylene glycol, and diethylene glycol. And various polyhydric alcohols such as glycerin. These solvents may be used alone or in combination of two or more.

ペーストを高粘度にする場合は、多価アルコールが広く使用できる。具体的には、イオン伝導性電解質との相溶性及びペーストとした場合の乾燥効率の観点から、例えば、プロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール等が好ましく、中でもプロピレングリコールが好適である。これらの粘度調整用溶剤は、1種単独で又は2種以上混合して使用される。   When the paste has a high viscosity, polyhydric alcohols can be widely used. Specifically, for example, propylene glycol, ethylene glycol, diethylene glycol, triethylene glycol and the like are preferable from the viewpoint of compatibility with the ion conductive electrolyte and drying efficiency when used as a paste, and propylene glycol is particularly preferable. These viscosity adjusting solvents are used singly or in combination of two or more.

触媒層形成用ペースト組成物中に含まれる上記(1)〜(3)成分の割合は、限定されるものではなく、広い範囲内で適宜選択され得る。   The proportions of the components (1) to (3) contained in the catalyst layer forming paste composition are not limited and can be appropriately selected within a wide range.

例えば、触媒層形成用ペースト組成物中に、(1)の触媒担持炭素粒子を1重量部に対して、(2)成分が0.3〜3重量部(好ましくは0.4〜2重量部)、(3)成分が5〜50重量部程度(好ましくは10〜25重量部)含まれているのがよく、残りが水である。水の割合は、通常、触媒担持炭素粒子に対して、等重量〜10倍重量である。   For example, in the paste composition for forming a catalyst layer, the component (2) is 0.3 to 3 parts by weight (preferably 0.4 to 2 parts by weight) with respect to 1 part by weight of the catalyst-supported carbon particles of (1). ), (3) component is preferably contained in an amount of about 5 to 50 parts by weight (preferably 10 to 25 parts by weight), and the remainder is water. The ratio of water is usually from 10 to 10 times the weight of the catalyst-supporting carbon particles.

ペースト組成物は、上記(1)〜(3)成分を混合することにより、製造される。(1)〜(3)成分の混合順序は、特に制限されない。例えば、(1)成分、(2)成分、(3)成分を順次又は同時に混合し、分散させることにより、ペースト組成物を調製できる。混合には、公知の混合手段を広く適用できる。   The paste composition is produced by mixing the above components (1) to (3). The order of mixing the components (1) to (3) is not particularly limited. For example, a paste composition can be prepared by mixing (1) component, (2) component, and (3) component sequentially or simultaneously and dispersing. For mixing, known mixing means can be widely applied.

ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコータ、バーコーター、スプレー、ディップコータ、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷などの一般的な方法を適用できる。   The method for applying the paste is not particularly limited, and for example, general methods such as knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, and screen printing can be applied. .

上記ペーストを塗布した後、乾燥することにより、本発明の触媒層が形成される。乾燥温度は、ワックスの融点以下が望ましく、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常3分〜2時間程度、好ましくは30分〜1時間程度である。   After applying the paste, the catalyst layer of the present invention is formed by drying. The drying temperature is desirably not higher than the melting point of the wax, and is usually about 40 to 100 ° C, preferably about 60 to 80 ° C. Although depending on the drying temperature, the drying time is usually about 3 minutes to 2 hours, preferably about 30 minutes to 1 hour.

この塗布方法及び乾燥温度等を適宜調製することにより、ペーストが乾燥する際に、厚み方向に貫通し、かつ、幅が、触媒層の一方面側Aより他方面側Bが狭くなっている亀裂が複数生じることとなる。なお、上記方法により作製される転写シートは、亀裂の幅が狭い表面側Bが転写基材に接するように、触媒層が積層されている。   By appropriately adjusting the coating method and the drying temperature, etc., when the paste dries, the crack penetrates in the thickness direction, and the width is narrower on the other side B than the one side A of the catalyst layer. Will occur. The transfer sheet produced by the above method has a catalyst layer laminated so that the surface side B with a narrow crack width is in contact with the transfer substrate.

触媒層−電解質膜積層体
本発明の触媒層−電解質膜積層体は、上記触媒層の一方面側Aが電解質膜に接するように、上記触媒層が当該電解質膜の少なくとも一方面上に積層されてなる。触媒層−電解質膜積層体は、電解質の少なくとも一方面上に、複数個の触媒層(好ましくは同一形状の複数個の触媒層)一定間隔で形成されていてもよい。
Catalyst layer-electrolyte membrane laminate The catalyst layer-electrolyte membrane laminate of the present invention has the catalyst layer laminated on at least one surface of the electrolyte membrane so that one surface side A of the catalyst layer is in contact with the electrolyte membrane. It becomes. The catalyst layer-electrolyte membrane laminate may be formed on at least one surface of the electrolyte with a plurality of catalyst layers (preferably a plurality of catalyst layers having the same shape) at regular intervals.

電解質膜は、公知のものである。電解質膜の膜厚は、通常20μm〜250μm程度、好ましくは、20μm〜80μm程度である。電解質膜の具体例としては、デュポン社製の「Nafion」膜、旭硝子(株)製の「Flemion」膜、旭化成(株)製の「Aciplex」膜、ゴア(Gore)社製の「Gore Select」膜等が挙げられる。   The electrolyte membrane is a known one. The thickness of the electrolyte membrane is usually about 20 μm to 250 μm, preferably about 20 μm to 80 μm. Specific examples of electrolyte membranes include “Nafion” membrane manufactured by DuPont, “Flemion” membrane manufactured by Asahi Glass Co., Ltd., “Aciplex” membrane manufactured by Asahi Kasei Co., Ltd., and “Gore Select” manufactured by Gore. Examples include membranes.

本発明の触媒層が電解質膜積層体の両面に積層されている場合の電極層−電解質膜積層体を図3に示す。図3に示すように、電解質膜が適度な幅の亀裂を有し、かつ亀裂の幅が広い一方面側Aが電解質膜に接合している構造を採用することにより、本発明の電極層−電解質膜積層体は、ガスの流通性能が向上する。また、生成水が触媒層内の特定の局部に留まることなく速やかに外部へ排出する。よって、本発明の電極層−電解質膜積層体を具備した燃料電池は、良好な最大密度出力等の優れた電池性能を発揮できる。   FIG. 3 shows an electrode layer-electrolyte membrane laminate when the catalyst layer of the present invention is laminated on both surfaces of the electrolyte membrane laminate. As shown in FIG. 3, by adopting a structure in which the electrolyte membrane has cracks of an appropriate width and one side A having a wide crack width is joined to the electrolyte membrane, the electrode layer of the present invention The electrolyte membrane laminate improves the gas distribution performance. Further, the generated water is quickly discharged outside without staying at a specific local area in the catalyst layer. Therefore, the fuel cell provided with the electrode layer-electrolyte membrane laminate of the present invention can exhibit excellent battery performance such as good maximum density output.

本発明の触媒層−電解質膜積層体は、例えば本発明転写シートの触媒層面が電解質膜面に対面するように転写シートを配置し、加圧した後、該転写シートの転写基材を触媒層面から剥離することにより製造される。この操作を2回繰り返すことにより、触媒層面が電解質膜の両面に積層された触媒層−電解質膜積層体が製造される。   In the catalyst layer-electrolyte membrane laminate of the present invention, for example, the transfer sheet is arranged so that the catalyst layer surface of the transfer sheet of the present invention faces the electrolyte membrane surface, and after pressurization, the transfer substrate of the transfer sheet is used as the catalyst layer surface. It is manufactured by peeling from. By repeating this operation twice, a catalyst layer-electrolyte membrane laminate in which the catalyst layer surface is laminated on both surfaces of the electrolyte membrane is produced.

加熱プレスの加圧レベルは、転写不良を避けるために、通常0.5〜20MPa程度、好ましくは1〜10MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために加圧面を加熱するのが好ましい。加熱温度は、電解質膜5の破損、変性等を避けるために、通常200℃以下、好ましくは150℃以下がよい。   The pressure level of the heating press is usually about 0.5 to 20 MPa, preferably about 1 to 10 MPa in order to avoid transfer failure. Further, it is preferable to heat the pressing surface during this pressing operation in order to avoid transfer failure. The heating temperature is usually 200 ° C. or lower, preferably 150 ° C. or lower, in order to avoid breakage, modification and the like of the electrolyte membrane 5.

電極−電解質膜接合体
電極−電解質膜接合体は、上記で製造された触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより製造される。
Electrode-electrolyte membrane assembly The electrode-electrolyte membrane assembly is produced by placing an electrode substrate on both sides of the catalyst layer-electrolyte membrane laminate produced above and pressurizing it.

電極基材は、公知であり、燃料極及び空気極を構成する各種の電極基材を使用できる。   The electrode base material is well known, and various electrode base materials constituting the fuel electrode and the air electrode can be used.

加圧レベルは、通常0.1〜100Mpa程度、好ましくは5〜15Mpa程度がよい。この加圧操作の際に加熱するのが好ましく、加圧温度は通常120〜150℃程度でよい。   The pressure level is usually about 0.1 to 100 Mpa, preferably about 5 to 15 Mpa. It is preferable to heat at the time of this pressurization operation, and pressurization temperature may be about 120-150 degreeC normally.

本発明の触媒層によれば、電極触媒層に、厚み方向に貫通する特定の複数の亀裂が形成されているため、ガスの流通性能に優れ、燃料ガス及び酸化剤を速やかに電解質膜表面に供給できる。また、生成水を局部に集中させることなく速やかに外部に排出するため、生成水が電極触媒層の亀裂を閉塞することがなくなる。   According to the catalyst layer of the present invention, a plurality of specific cracks penetrating in the thickness direction are formed in the electrode catalyst layer, so that the gas distribution performance is excellent, and the fuel gas and the oxidant are promptly applied to the electrolyte membrane surface. Can supply. Further, since the generated water is quickly discharged without being concentrated locally, the generated water does not block the cracks in the electrode catalyst layer.

これらにより、本発明の触媒層を具備する燃料電池は、良好な最大出力密度等の優れた電池特性を発揮できる。   By these, the fuel cell which comprises the catalyst layer of this invention can exhibit the outstanding battery characteristics, such as a favorable maximum output density.

以下に実施例を挙げて、本発明をさらに詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to the following embodiment.

実施例1
(1)白金担持触媒(Pt:46.5wt%、田中貴金属工業株式会社製、TEC10E50E)20gをNafion溶液(Dupont製)200g及び2−プロパノール200g(キシダ化学製)に分散させることにより、触媒と電解質との重量比が2/1となる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cmとなるように塗布してこれを85℃で10分間乾燥することにより、本発明のカソード極触媒層用転写シート(カソード極に用いる触媒層−電解質膜積層体製造用転写シート)を形成した。膜厚は15μmであった。2値化による触媒層部分の面積は70.5%、亀裂部分の面積(開口率)は29.5%であった。
Example 1
(1) A platinum-supported catalyst (Pt: 46.5 wt%, Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) 20 g is dispersed in Nafion solution (Dupont) 200 g and 2-propanol 200 g (Kishida Chemical Co.) A catalyst layer forming paste having a weight ratio of 2/1 to the electrolyte was prepared. The above-mentioned paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade so as to be 20 g / cm 2 and dried at 85 ° C. for 10 minutes, whereby the transfer sheet for cathode electrode catalyst layer of the present invention. (Catalyst layer used for cathode electrode-electrolyte membrane laminate transfer sheet) was formed. The film thickness was 15 μm. The area of the catalyst layer portion by binarization was 70.5%, and the area (opening ratio) of the crack portion was 29.5%.

得られた転写シートの触媒層表面(一方面側A)及び断面を走査型顕微鏡(SEM)及びエネルギー分散型蛍光X線分析装置(XDX)を用いて分析した。この結果を図4及び図5に示す。
(2)白金ルテニウム合金担持触媒(PtRu:53.3wt%、田中貴金属工業株式会社製、TEC61E54)20gをNafion溶液(Dupont製)200g及び2−プロパノール200gに分散させることにより、触媒と電解質との重量比が2/1となる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cm塗布してこれを85℃で10分間乾燥することにより、本発明のアノード極触媒層用転写シート(アノード極に用いる触媒層−電解質膜積層体製造用転写シート)を形成した。膜厚は25μmであった。2値化による触媒層部分の面積は60%、亀裂部分の面積(開口率)は40%であった。
The catalyst layer surface (one surface side A) and the cross section of the obtained transfer sheet were analyzed using a scanning microscope (SEM) and an energy dispersive X-ray fluorescence analyzer (XDX). The results are shown in FIGS.
(2) A platinum-ruthenium alloy-supported catalyst (PtRu: 53.3 wt%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC61E54) is dispersed in 200 g of Nafion solution (manufactured by Dupont) and 200 g of 2-propanol. A catalyst layer forming paste having a weight ratio of 2/1 was prepared. The above paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade at 20 g / cm 2 and dried at 85 ° C. for 10 minutes, whereby the anode electrode catalyst layer transfer sheet of the present invention (on the anode electrode) The catalyst layer-transfer sheet for producing an electrolyte membrane laminate used) was formed. The film thickness was 25 μm. The area of the catalyst layer portion by binarization was 60%, and the area (opening ratio) of the crack portion was 40%.

得られた転写シートの触媒層表面(一方面側A)及び断面をSEM及びEDXを用いて分析した。この結果を図6及び図7に示す。
(3) (1)及び(2)で作製したカソード極触媒層用及びアノード極触媒層用転写シートを用い水素イオン伝導性高分子電解質膜(Dupont製)に熱プレスを施して実施例1の触媒層−電解質膜積層体を作製した。
The catalyst layer surface (one side A) and the cross section of the obtained transfer sheet were analyzed using SEM and EDX. The results are shown in FIGS.
(3) Using the cathode electrode catalyst layer and anode electrode catalyst layer transfer sheets prepared in (1) and (2), the hydrogen ion conductive polymer electrolyte membrane (manufactured by Dupont) was hot-pressed, and A catalyst layer-electrolyte membrane laminate was produced.

得られた触媒層−電解質膜積層体のカソード触媒層表面(他方面側B)及びその断面をSEM及びEDXを用いて分析した。この結果を図8及び図9に示す。   The cathode catalyst layer surface (the other side B) of the obtained catalyst layer-electrolyte membrane laminate and the cross section thereof were analyzed using SEM and EDX. The results are shown in FIGS.

得られた触媒層−電解質膜積層体のアノード触媒層表面(他方面側B)及びその断面をSEM及びEDXを用いて分析した。この結果を図10及び図11に示す。   The anode catalyst layer surface (the other side B) of the obtained catalyst layer-electrolyte membrane laminate and the cross section thereof were analyzed using SEM and EDX. The results are shown in FIGS.

実施例2
(1) 白金担持触媒20g(Pt:46.5wt%、田中貴金属工業株式会社製、TEC10E50E)をNafion溶液(Dupont製)200g、3−ブタノール100g及び1−ブタノール100g(キシダ化学製)に分散させることにより、触媒と電解質の比が2/1になる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cmとなるように塗布してこれを85℃で10分間乾燥することにより、本発明のカソード極触媒層用転写シートを形成した。膜厚は15μmであった。2値化による触媒層部分の面積は96%。亀裂部分の面積(開口率)は4%であった。
(2) 白金ルテニウム合金担持触媒20g(PtRu:53.3wt%、田中貴金属工業株式会社製、TEC61E54)をNafion溶液(Dupont製)200g及び2−プロパノール200gに分散させることにより、触媒と電解質との重量比が1/1になる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cmとなるように塗布してこれを85℃で10分間乾燥することにより、本発明のアノード極触媒層用転写シートを形成した。膜厚は15μmであった。2値化による触媒層部分の面積は75%、亀裂部分の面積(開口率)は25%であった。
(3) (1)及び(2)で作製したカソード極触媒層用及びアノード極触媒層用転写シートを用い水素イオン伝導性高分子電解質膜(Dupont製)に熱プレスを施して実施例2の触媒層−電解質膜積層体を作製した。
Example 2
(1) 20 g of platinum-supported catalyst (Pt: 46.5 wt%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) is dispersed in 200 g of Nafion solution (manufactured by Dupont), 100 g of 3-butanol and 100 g of 1-butanol (manufactured by Kishida Chemical). Thus, a catalyst layer forming paste having a catalyst to electrolyte ratio of 2/1 was prepared. The above-mentioned paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade so as to be 20 g / cm 2 and dried at 85 ° C. for 10 minutes, whereby the transfer sheet for cathode electrode catalyst layer of the present invention. Formed. The film thickness was 15 μm. The area of the catalyst layer portion by binarization is 96%. The area (opening ratio) of the crack portion was 4%.
(2) 20 g of platinum-ruthenium alloy-supported catalyst (PtRu: 53.3 wt%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC61E54) is dispersed in 200 g of Nafion solution (manufactured by Dupont) and 200 g of 2-propanol. A catalyst layer forming paste having a weight ratio of 1/1 was prepared. The above-mentioned paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade so as to be 20 g / cm 2 and dried at 85 ° C. for 10 minutes, whereby the transfer sheet for an anode electrode catalyst layer of the present invention. Formed. The film thickness was 15 μm. The area of the catalyst layer portion by binarization was 75%, and the area (opening ratio) of the crack portion was 25%.
(3) Using the cathode electrode catalyst layer and anode electrode catalyst layer transfer sheets prepared in (1) and (2), the hydrogen ion conductive polymer electrolyte membrane (manufactured by Dupont) was hot-pressed, and A catalyst layer-electrolyte membrane laminate was produced.

比較例1
白金担持触媒20g(Pt:46.5wt%、田中貴金属工業株式会社製、TEC10E50E)をNafion溶液(Dupont製)33.35gに分散させることにより、触媒と電解質の比が3/1になる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cmとなるように塗布してこれを85℃で10分間乾燥することにより、比較例1のカソード極触媒層用転写シートを形成した。膜厚は25μmであった。2値化による触媒層部分の面積は40%。亀裂部分の面積(開口率)は60%であった。
Comparative Example 1
A catalyst layer in which the ratio of catalyst to electrolyte is 3/1 by dispersing 20 g of platinum-supported catalyst (Pt: 46.5 wt%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) in 33.35 g of Nafion solution (manufactured by Dupont). A forming paste was prepared. The above paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade so as to be 20 g / cm 2, and dried at 85 ° C. for 10 minutes, thereby transferring the cathode electrode catalyst layer of Comparative Example 1 A sheet was formed. The film thickness was 25 μm. The area of the catalyst layer portion by binarization is 40%. The area (opening ratio) of the crack portion was 60%.

比較例1のカソード極触媒層用転写シート及び実施例1のアノード極触媒層用転写シートを用い、水素イオン伝導性高分子電解質膜(Dupont製)に熱プレスを施して比較例1の触媒層−電解質膜積層体を作製した。   Using the transfer sheet for the cathode electrode catalyst layer of Comparative Example 1 and the transfer sheet for the anode electrode catalyst layer of Example 1, the hydrogen ion conductive polymer electrolyte membrane (manufactured by DuPont) was hot-pressed to produce the catalyst layer of Comparative Example 1. -An electrolyte membrane laminate was prepared.

比較例2
白金ルテニウム合金担持触媒20g(PtRu:53.3wt%、田中貴金属工業株式会社製、TEC61E54)をNafion溶液(Dupont製)33.35g及び2−プロパノール200gに分散させることにより、触媒と電解質との重量比が3/1になる触媒層形成用ペーストを調整した。12μmPETフィルム(東洋紡績株式会社製)に上記ペーストをドクターブレードにて20g/cmとなるように塗布してこれを85℃で10分間乾燥することにより、比較例2のアノード極触媒層用転写シートを形成した。膜厚は25μmであった。2値化による触媒層部分の面積は30%、亀裂部分の面積(開口率)は70%であった。
Comparative Example 2
By dispersing 20 g of platinum-ruthenium alloy-supported catalyst (PtRu: 53.3 wt%, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC61E54) in 33.35 g of Nafion solution (manufactured by Dupont) and 200 g of 2-propanol, the weight of the catalyst and the electrolyte A catalyst layer forming paste having a ratio of 3/1 was prepared. The above paste was applied to a 12 μm PET film (manufactured by Toyobo Co., Ltd.) with a doctor blade so as to be 20 g / cm 2, and this was dried at 85 ° C. for 10 minutes, thereby transferring the anode catalyst layer of Comparative Example 2 A sheet was formed. The film thickness was 25 μm. The area of the catalyst layer portion by binarization was 30%, and the area (opening ratio) of the crack portion was 70%.

比較例2のアノード極触媒層用転写シート及び実施例1のカソード極触媒層用転写シートを用い、水素イオン伝導性高分子電解質膜(Dupont製)に熱プレスを施して比較例2の触媒層−電解質膜積層体を作製した。   Using the anode electrode catalyst layer transfer sheet of Comparative Example 2 and the cathode electrode catalyst layer transfer sheet of Example 1, a hydrogen ion conductive polymer electrolyte membrane (manufactured by Dupont) was hot-pressed to produce a catalyst layer of Comparative Example 2 -An electrolyte membrane laminate was prepared.

試験例1
以上のような方法で作製した実施例1〜2及び比較例1〜2の触媒層−電解質膜積層体を用いて電池を組み立てカソード極に合成空気を、アノード極に高純度水素を導入し、電池性能を測定した。測定結果を図12に示す。
Test example 1
Assembling the batteries using the catalyst layer-electrolyte membrane laminates of Examples 1-2 and Comparative Examples 1-2 produced by the method as described above, introducing synthetic air into the cathode electrode, and introducing high-purity hydrogen into the anode electrode, Battery performance was measured. The measurement results are shown in FIG.

図1は、本発明の電極触媒層の亀裂の平面図を示す。FIG. 1 shows a plan view of a crack in an electrocatalyst layer of the present invention. 図2は、本発明の電極触媒層の亀裂の断面図を示す。FIG. 2 shows a cross-sectional view of a crack in the electrode catalyst layer of the present invention. 図3は、本発明の電極触媒層が電解質膜の両面に積層されている場合の電極層−電解質膜積層体を示すFIG. 3 shows an electrode layer-electrolyte membrane laminate when the electrode catalyst layer of the present invention is laminated on both surfaces of the electrolyte membrane. 図4は、実施例1で得られたカソード極触媒層用転写シートの触媒層表面(一方面側A)のSEM写真を示す。4 shows an SEM photograph of the catalyst layer surface (one surface side A) of the cathode electrode catalyst layer transfer sheet obtained in Example 1. FIG. 図5は、実施例1で得られたカソード極触媒層用転写シートの触媒層の断面のSEM写真を示す。FIG. 5 shows an SEM photograph of a cross section of the catalyst layer of the cathode electrode catalyst layer transfer sheet obtained in Example 1. 図6は、実施例1で得られたアノード極触媒層用転写シートの触媒層表面(一方面側A)のSEM写真を示す。6 shows an SEM photograph of the catalyst layer surface (one side A) of the anode electrode catalyst layer transfer sheet obtained in Example 1. FIG. 図7は、実施例1で得られたアノード極触媒層用転写シートの触媒層の断面のSEM写真を示す。7 shows an SEM photograph of a cross section of the catalyst layer of the anode electrode catalyst layer transfer sheet obtained in Example 1. FIG. 図8は、実施例1で得られたカソード極触媒層−電解質膜積層体表面(他方面側B)のSEM写真を示す。8 shows a SEM photograph of the cathode electrode catalyst layer-electrolyte membrane laminate surface (the other side B) obtained in Example 1. FIG. 図9は、実施例1で得られたカソード極触媒層−電解質膜積層体の断面のSEM写真を示す。FIG. 9 shows a SEM photograph of the cross section of the cathode electrode catalyst layer-electrolyte membrane laminate obtained in Example 1. 図10は、実施例2で得られたアノード極触媒層−電解質膜積層体表面(他方面側B)のSEM写真を示す。10 shows a SEM photograph of the anode electrode catalyst layer-electrolyte membrane laminate surface (the other side B) obtained in Example 2. FIG. 図11は、実施例1で得られたアノード極触媒層−電解質膜積層体の断面のSEM写真を示す。FIG. 11 shows an SEM photograph of a cross section of the anode electrode catalyst layer-electrolyte membrane laminate obtained in Example 1. 図12は、実施例1〜2及び比較例1〜2の電池の電圧−電流密度特性を示す。FIG. 12 shows the voltage-current density characteristics of the batteries of Examples 1-2 and Comparative Examples 1-2.

Claims (6)

固体高分子形燃料電池用の電極触媒層であって、
1)前記触媒層は、厚み方向に貫通する複数の亀裂を有しており、
2)前記各亀裂の幅は、前記触媒層の一方面側Aより他方面側Bが狭くなっており、
3)前記触媒層の一方面側Aの開口率が2〜50%である、
ことを特徴とする電極触媒層。
An electrode catalyst layer for a polymer electrolyte fuel cell,
1) The catalyst layer has a plurality of cracks penetrating in the thickness direction;
2) The width of each crack is such that the other side B is narrower than the one side A of the catalyst layer,
3) The opening ratio of one side A of the catalyst layer is 2 to 50%.
An electrode catalyst layer characterized by the above.
一方面側Aの各亀裂の最大幅が0.1〜20μmである、請求項1に記載の電極触媒層。   The electrode catalyst layer according to claim 1, wherein the maximum width of each crack on one side A is 0.1 to 20 μm. 電極触媒層の厚みが1〜35μmである、請求項1又は2に記載の電極触媒層。   The electrode catalyst layer according to claim 1 or 2, wherein the electrode catalyst layer has a thickness of 1 to 35 µm. 請求項1〜3のいずれかに記載の電極触媒層が、他方面側Bが転写基材に接するように、前記転写基材上の少なくとも一方面上に積層されてなる、触媒層−電解質膜積層体製造用転写シート。   A catalyst layer-electrolyte membrane, wherein the electrode catalyst layer according to any one of claims 1 to 3 is laminated on at least one surface of the transfer substrate such that the other surface side B is in contact with the transfer substrate. Transfer sheet for laminate production. 転写基材と電極触媒層との間に離型層が介在されてなる、請求項4に記載の転写シート。   The transfer sheet according to claim 4, wherein a release layer is interposed between the transfer substrate and the electrode catalyst layer. 請求項1〜3のいずれかに記載の電極触媒層が、一方面側Aが電解質膜に接するように、前記電解質膜の少なくとも一方面上に積層されてなる、触媒層−電解質膜積層体。   A catalyst layer-electrolyte membrane laminate, wherein the electrode catalyst layer according to any one of claims 1 to 3 is laminated on at least one surface of the electrolyte membrane so that one surface side A is in contact with the electrolyte membrane.
JP2005289112A 2005-09-30 2005-09-30 Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate Expired - Fee Related JP5230064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289112A JP5230064B2 (en) 2005-09-30 2005-09-30 Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289112A JP5230064B2 (en) 2005-09-30 2005-09-30 Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate

Publications (2)

Publication Number Publication Date
JP2007103089A true JP2007103089A (en) 2007-04-19
JP5230064B2 JP5230064B2 (en) 2013-07-10

Family

ID=38029840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289112A Expired - Fee Related JP5230064B2 (en) 2005-09-30 2005-09-30 Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate

Country Status (1)

Country Link
JP (1) JP5230064B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243768A (en) * 2007-03-29 2008-10-09 Electric Power Dev Co Ltd Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP2010272356A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Membrane-electrode assembly for fuel cell, method of manufacturing the same, and fuel cell
EP2538477A1 (en) * 2010-03-23 2012-12-26 Panasonic Corporation Membrane electrode assembly with integrated frame and fuel cell
JP2013073892A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Method for manufacturing membrane electrode assembly for fuel cell
JP2013161737A (en) * 2012-02-08 2013-08-19 Toyota Motor Corp Membrane electrode assembly, fuel cell, and method for manufacturing membrane electrode assembly
WO2019189891A1 (en) * 2018-03-30 2019-10-03 凸版印刷株式会社 Catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP2019186193A (en) * 2018-11-27 2019-10-24 凸版印刷株式会社 Catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757738A (en) * 1993-08-10 1995-03-03 Fuji Electric Co Ltd Manufacture of electrode for fuel cell
JPH07176310A (en) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd Electrode and junction body between electrode and ion exchange membrane
JPH08138715A (en) * 1994-11-09 1996-05-31 Fuji Electric Co Ltd Solid polymer fuel cell and manufacture thereof
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2002373664A (en) * 2001-06-18 2002-12-26 Fuji Electric Co Ltd Manufacturing method of electrode for phosphoric acid fuel cell
JP2003068330A (en) * 2001-08-28 2003-03-07 Sharp Corp Solid polymer fuel cell
WO2003077336A1 (en) * 2002-03-14 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method for manufacturing polymer electrolyte type fuel cell
JP2004063167A (en) * 2002-07-26 2004-02-26 Hitachi Ltd Fuel cell and fuel cell system
JP2004288391A (en) * 2003-03-19 2004-10-14 Toyota Motor Corp Manufacturing method of membrane/electrode junction, membrane/electrode junction, and fuel cell
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2005032681A (en) * 2003-07-11 2005-02-03 Matsushita Electric Ind Co Ltd Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2008511102A (en) * 2004-08-18 2008-04-10 バラード パワー システムズ インコーポレイティド Method of making an electrode for an electrochemical fuel cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757738A (en) * 1993-08-10 1995-03-03 Fuji Electric Co Ltd Manufacture of electrode for fuel cell
JPH07176310A (en) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd Electrode and junction body between electrode and ion exchange membrane
JPH08138715A (en) * 1994-11-09 1996-05-31 Fuji Electric Co Ltd Solid polymer fuel cell and manufacture thereof
WO2002027850A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and method for preparation thereof
JP2002270187A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd High polymer electrolyte type fuel cell and manufacturing method therefor
JP2002373664A (en) * 2001-06-18 2002-12-26 Fuji Electric Co Ltd Manufacturing method of electrode for phosphoric acid fuel cell
JP2003068330A (en) * 2001-08-28 2003-03-07 Sharp Corp Solid polymer fuel cell
WO2003077336A1 (en) * 2002-03-14 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method for manufacturing polymer electrolyte type fuel cell
JP2004063167A (en) * 2002-07-26 2004-02-26 Hitachi Ltd Fuel cell and fuel cell system
JP2004288391A (en) * 2003-03-19 2004-10-14 Toyota Motor Corp Manufacturing method of membrane/electrode junction, membrane/electrode junction, and fuel cell
JP2004311057A (en) * 2003-04-02 2004-11-04 Dainippon Printing Co Ltd Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2005032681A (en) * 2003-07-11 2005-02-03 Matsushita Electric Ind Co Ltd Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP2008511102A (en) * 2004-08-18 2008-04-10 バラード パワー システムズ インコーポレイティド Method of making an electrode for an electrochemical fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243768A (en) * 2007-03-29 2008-10-09 Electric Power Dev Co Ltd Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP2010272356A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Membrane-electrode assembly for fuel cell, method of manufacturing the same, and fuel cell
EP2538477A1 (en) * 2010-03-23 2012-12-26 Panasonic Corporation Membrane electrode assembly with integrated frame and fuel cell
EP2538477A4 (en) * 2010-03-23 2013-04-03 Panasonic Corp Membrane electrode assembly with integrated frame and fuel cell
US9859573B2 (en) 2010-03-23 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Membrane electrode assembly with integrated frame and fuel cell
JP2013073892A (en) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd Method for manufacturing membrane electrode assembly for fuel cell
JP2013161737A (en) * 2012-02-08 2013-08-19 Toyota Motor Corp Membrane electrode assembly, fuel cell, and method for manufacturing membrane electrode assembly
WO2019189891A1 (en) * 2018-03-30 2019-10-03 凸版印刷株式会社 Catalyst layer, membrane-electrode assembly, and solid polymer fuel cell
JP2019186193A (en) * 2018-11-27 2019-10-24 凸版印刷株式会社 Catalyst layer, membrane electrode assembly, and solid polymer fuel cell

Also Published As

Publication number Publication date
JP5230064B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5194336B2 (en) Electrode substrate with catalyst layer, method for producing electrode substrate with catalyst layer, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
JP5230064B2 (en) Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
US20060257715A1 (en) Direct oxidation fuel cell and manufacturing method therefor
JP5082239B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2004311057A (en) Paste composition for forming catalyst layer, and transfer sheet for manufacturing catalyst layer-electrolyte film laminate
JP2010205466A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2008159320A (en) Membrane electrode assembly
JP5343298B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5375898B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
US20090104508A1 (en) Membrane electrode assembly for fuel cell, preparing method for same, and fuel cell system including same
JP2006185800A (en) Transfer sheet for manufacturing electrode-polyelectrolyte membrane junction, electrode-polyelectrolyte membrane junction and their manufacturing methods
JP2007103083A (en) Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
US20120183878A1 (en) Manufacturing Method Of Electrode Catalyst Layer, Electrode Catalyst Layer, Membrane Electrode Assembly And Fuel Cell
JP2005317492A (en) Fuel cell, electrode-electrolyte film assembly, electrode substrate with catalyst layer, those process of manufacturing, and transcription sheet
KR101312971B1 (en) Hydrocarbon based polyelectrolyte separation membrane surface-treated with fluorinated ionomer, membrane electrode assembly, and fuel cell
JP4826190B2 (en) Catalyst layer forming paste composition, catalyst layer-electrolyte membrane laminate transfer sheet, and catalyst layer-electrolyte membrane laminate
JP2004164866A (en) Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
US11973230B2 (en) Electrode for membrane-electrode assembly and method of manufacturing same
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
JP4688453B2 (en) Paste composition for forming catalyst layer and catalyst layer transfer sheet
CN104838527B (en) The manufacture method of electrode for fuel cell piece
JP2010033731A (en) Manufacturing method of catalyst layer for solid polymer fuel cell and catalyst layer-electrolyte film laminate
JP2006120508A (en) Solid polymer fuel cell
JP5126292B2 (en) Transfer sheet for producing catalyst layer-electrolyte membrane laminate and method for producing the same
US8481225B2 (en) Membrane electrode assembly, manufacturing method thereof and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees