JP2007100118A - Method for manufacturing steel material to be hot-dip galvanized, and steel material to be hot-dip galvanized - Google Patents

Method for manufacturing steel material to be hot-dip galvanized, and steel material to be hot-dip galvanized Download PDF

Info

Publication number
JP2007100118A
JP2007100118A JP2005287451A JP2005287451A JP2007100118A JP 2007100118 A JP2007100118 A JP 2007100118A JP 2005287451 A JP2005287451 A JP 2005287451A JP 2005287451 A JP2005287451 A JP 2005287451A JP 2007100118 A JP2007100118 A JP 2007100118A
Authority
JP
Japan
Prior art keywords
phosphorus
slab
steel material
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287451A
Other languages
Japanese (ja)
Other versions
JP4734073B2 (en
Inventor
Takehiko Fuji
健彦 藤
Kenichi Yamamoto
研一 山本
Jun Tanaka
純 田中
Hiroshi Harada
寛 原田
Wataru Ohashi
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005287451A priority Critical patent/JP4734073B2/en
Publication of JP2007100118A publication Critical patent/JP2007100118A/en
Application granted granted Critical
Publication of JP4734073B2 publication Critical patent/JP4734073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel material to be hot-dip galvanized, which imparts excellent powdering resistance to the steel material and inhibits a problem from occurring on the surface layer of a slab after the slab is rolled and hot-dip plated; and to provide the steel material obtained by the manufacturing method. <P>SOLUTION: The method for manufacturing the steel material 1 to be hot-dip galvanized comprises: a heating step of melting a zone between the surface and 4 mm deep layer therefrom of the continuously cast steel slab 2, by using one or both of induction heating and plasma heating; and a surface modification step of adding phosphor or a phosphorus alloy into a melt zone 5 melted in the heating step so that the concentration of phosphor in the melt zone 5 can be 0.02% or higher, to form a phosphor-concentrated region 3 on the surface layer of the slab 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,優れた耐パウダリング性を維持するとともに,圧延時のめっき割れも防止することが可能な溶融亜鉛めっき用鋼材の製造方法および該製造方法により得られる溶融亜鉛めっき用鋼材に関する。   The present invention relates to a method for manufacturing a hot dip galvanizing steel material that can maintain excellent powdering resistance and prevent plating cracking during rolling, and a hot dip galvanizing steel material obtained by the manufacturing method.

Cが0.003質量%以下で,更にTiあるいはNbを添加してCとNを固定した鋼はIF鋼(Interstitial free鋼)と呼ばれ,自動車用鋼板等として広く用いられている。IF鋼は,冷間圧延後に溶融亜鉛めっきを施すことが多い。Tiを用いてCとNを固定したIF鋼は,溶融亜鉛めっきに際して,めっき層と下地となるIF鋼との界面に,加工性に有害なΓ相が生成し易く,このために,溶融亜鉛めっき後の成形加工に際して,溶融亜鉛めっき層が粉状または塊状となって剥離する,いわゆるパウダリング現象が発生し易い。この現象が生じると,剥離部分の耐食性が劣化したり,剥離しためっき片により該鋼板自体に疵が生じたりするといった問題がある。   Steel having C of 0.003% by mass or less and further adding Ti or Nb to fix C and N is called IF steel (Interstitial free steel) and is widely used as a steel plate for automobiles. IF steel is often hot dip galvanized after cold rolling. The IF steel, in which C and N are fixed using Ti, tends to generate a Γ phase that is harmful to workability at the interface between the plating layer and the underlying IF steel during hot dip galvanization. During the forming process after plating, a so-called powdering phenomenon in which the hot dip galvanized layer peels off in the form of powder or lump tends to occur. When this phenomenon occurs, there is a problem that the corrosion resistance of the peeled portion deteriorates or the steel plate itself is wrinkled by the peeled strip.

このパウダリング現象は,CとNの固定のためにTiとNbを併用することにより解消するが,Nbを用いないでTiのみを使用して,パウダリングを低減防止することができると,2種の元素を使用しなくても1種の元素で足りるために,品質管理上または工程管理上極めて好ましい。   This powdering phenomenon is eliminated by using Ti and Nb together for fixing C and N. However, if only Ti is used without using Nb, powdering can be reduced and prevented. Even if one kind of element is not used, one kind of element is sufficient, which is very preferable in terms of quality control or process control.

このようにTiのみを使用してパウダリング現象を防止する方法としては,溶鋼中にPを含有させることにより,表面近傍(表面から10mmまで)はPが高濃度(0.020質量%以上)でかつ表面近傍よりも内部はPが低濃度であるIF鋼板を製造する方法がある(例えば,特許文献1を参照)。この方法では,連続鋳造時の潤滑剤中にリンを混入させ,潤滑剤の溶鋼顕熱による溶融の際に,リンが鋼中に移動し鋳型内の溶鋼のプール内のリン濃度が上昇する。したがって,鋳型内におけるリンの拡散を抑制できればプール上部の溶鋼のみリン濃度が高い状態となり,上部の溶鋼が固まってできる鋳片表層のみリン濃度を高くすることができる。   As a method for preventing the powdering phenomenon by using only Ti in this way, by containing P in the molten steel, the P concentration is high (0.020 mass% or more) in the vicinity of the surface (up to 10 mm from the surface). In addition, there is a method of manufacturing an IF steel sheet having a lower concentration of P in the interior than in the vicinity of the surface (see, for example, Patent Document 1). In this method, phosphorus is mixed in the lubricant during continuous casting, and when the lubricant is melted by sensible heat of molten steel, phosphorus moves into the steel and the phosphorus concentration in the pool of molten steel in the mold increases. Therefore, if the diffusion of phosphorus in the mold can be suppressed, only the molten steel at the top of the pool has a high phosphorus concentration, and the phosphorus concentration can be increased only in the slab surface layer formed by solidification of the molten steel at the top.

また,Pを添加する別の方法として,鋳型内のパウダー層にP成分を添加し,鋳片の表層部のP含有量を高める方法がある(例えば,特許文献2を参照)。この方法では,P成分を添加する事により,Pの含有量が高いフラックスを凝固シェルと鋳型壁との間の隙間に流入させる。このPの高いフラックス中のPは凝固シェル中に拡散し,表面から4〜6mmの鋳片の表層部にPの含有量が0.02〜0.05質量%のPの濃化層を形成する。   Further, as another method of adding P, there is a method of adding a P component to the powder layer in the mold to increase the P content in the surface layer portion of the slab (for example, see Patent Document 2). In this method, by adding the P component, a flux having a high P content is caused to flow into the gap between the solidified shell and the mold wall. P in the flux with high P diffuses into the solidified shell and forms a P enriched layer with a P content of 0.02 to 0.05 mass% on the surface layer of the slab 4 to 6 mm from the surface. To do.

また,本発明者らは,これらの従来の方法を改良するために,鋳片の表層を,誘導加熱,プラズマ加熱のいずれか一方または双方により溶融させ,溶融した鋼鋳片の表層部分に,添加元素もしくはその合金を添加する溶融改質方法を提案している(特許文献3を参照)。   Further, in order to improve these conventional methods, the present inventors melted the surface layer of the slab by one or both of induction heating and plasma heating, and in the surface layer portion of the molten steel slab, A melt reforming method in which an additive element or an alloy thereof is added has been proposed (see Patent Document 3).

特開2000−273581号公報JP 2000-273581 A 特開昭61−266163号公報JP 61-266163 A 特開2004−195512号公報JP 2004-195512 A

しかしながら,特許文献1に記載された方法では,溶鋼中でのリンの拡散速度が速いこと,潤滑剤から溶鋼へのリンの移動を制御することが難しいこと(特に,鋳造条件が変わると凝固速度も変化し,溶鋼流動も変化するので拡散速度も変化する)から,鋳片のリンの富化層の厚みが鋳片周方向にも鋳造方向にも安定しがたいという問題があった。このため,不要でかつ材料の局所的な機械的性質を変化させてしまう内部のリン濃度が上昇するという問題があった。   However, in the method described in Patent Document 1, the diffusion rate of phosphorus in the molten steel is high, and it is difficult to control the movement of phosphorus from the lubricant to the molten steel (especially when the casting conditions change, the solidification rate). And the flow rate of the molten steel also changes, so that the diffusion rate also changes). Therefore, the thickness of the phosphorus-enriched layer of the slab is difficult to stabilize in both the slab circumferential direction and the casting direction. For this reason, there is a problem that the internal phosphorus concentration which is unnecessary and changes the local mechanical properties of the material increases.

また,特許文献2に開示しているような,潤滑剤内に元素を混入させる方法では,潤滑剤を通じて添加するために元素成分の付加範囲が安定しないことや,熱源の不足により量が限られる等の問題があった。より詳細には,連続鋳造時には,水冷した鋳型に溶鋼を注入し凝固させていくために,溶鋼は凝固を開始する温度(液相線温度)より5℃程度わずかに高い温度となっている。すなわち,新たに添加した元素を鋼の液相線温度まで高め,さらに溶融潜熱に相当する熱量を供給する余裕がない。   In addition, in the method of mixing elements into the lubricant as disclosed in Patent Document 2, the amount of element components added through the lubricant is not stable, and the amount is limited due to insufficient heat sources. There was a problem such as. More specifically, during continuous casting, molten steel is poured into a water-cooled mold and solidified, so that the molten steel is slightly higher than the temperature at which solidification starts (liquidus temperature) by about 5 ° C. That is, there is no room to raise the newly added element to the liquidus temperature of steel and to supply a heat quantity corresponding to the latent heat of fusion.

また,リン自身は鋼材そのものの性質に対しては必ずしも必要なものではない。したがって,熱間圧延までに酸化スケールとして除去される4mm未満程度の薄い極表層に存在していれば十分機能を発揮し問題ないものであるが,上記方法では原理上その厚みは4〜6mm程度となる。そのため,酸化スケールとして除去することができず,Pの添加により表面の硬い鋼材となるため加工性が悪化すること,加熱時や圧延時に割れが生じること等,鋼材の性質(例えば,伸び,降伏応力,強度,靭性,溶接性など)に害を与えるおそれがある,という問題もあった。   Moreover, phosphorus itself is not necessarily required for the properties of the steel material itself. Therefore, if it exists in a thin extreme surface layer of less than about 4 mm that is removed as an oxide scale by hot rolling, it will function satisfactorily, but the above method has a thickness of about 4 to 6 mm in principle. It becomes. Therefore, it cannot be removed as an oxide scale, and the addition of P results in a steel material with a hard surface, so that the workability deteriorates and cracking occurs during heating and rolling (for example, elongation, yield) Stress, strength, toughness, weldability, etc.).

さらに,特許文献3の方法は,確かに上記特許文献1,2の問題点を解決しているが,上記特許文献1〜3に開示されている技術は,性質の異なる新たな複合鋼材の製造を目的としたものであり,本発明が対象とする表面処理鋼材の欠点を解消するような,界面状態を変化させることを目的としていない。より詳細には,特許文献3の方法は,プラズマ溶融処理の際に種々の元素を添加する技術に関するものであるが,上記方法におけるリンの添加効果は,リン添加による鋼の機械的強度の向上,すなわち,表面のみ機械的強度が高い鋼材の製造を目的としたものである。   Furthermore, the method of Patent Document 3 certainly solves the problems of Patent Documents 1 and 2, but the techniques disclosed in Patent Documents 1 to 3 described above produce new composite steel materials with different properties. The purpose of the present invention is not to change the interface state so as to eliminate the drawbacks of the surface-treated steel material to which the present invention is directed. More specifically, the method of Patent Document 3 relates to a technique for adding various elements during the plasma melting process, but the effect of adding phosphorus in the above method is to improve the mechanical strength of steel by adding phosphorus. In other words, the purpose is to produce steel with high mechanical strength only on the surface.

そこで,本発明は,このような問題に鑑みてなされたもので,その目的は,圧延後の溶融亜鉛めっき処理の際に発生する界面問題を抑制することにより,優れた耐パウダリング性を維持できるとともに,加熱・圧延時の割れも防止することが可能な,新規かつ改良された溶融亜鉛めっき用鋼材の製造方法および該製造方法により得られる溶融亜鉛めっき用鋼材を提供することにある。   Accordingly, the present invention has been made in view of such problems, and the object thereof is to maintain excellent powdering resistance by suppressing interface problems that occur during hot dip galvanizing after rolling. Another object of the present invention is to provide a new and improved method for producing a hot-dip galvanizing steel material capable of preventing cracking during heating and rolling, and a hot-dip galvanizing steel material obtained by the production method.

本発明者らは,上記課題を解決するために鋭意研究を重ねた結果,誘導加熱またはプラズマ加熱のいずれか一方または双方を用いて鋼の鋳片表層の一部にリンまたはリン合金を溶着させることにより,優れた耐パウダリング性を維持したまま,加熱・圧延工程時の割れ(母材金属の表面割れ)も防止することができ,さらに,Nbを添加せずに安価に溶融亜鉛めっき用鋼材を製造できることを見出し,この知見に基づいて本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors deposit phosphorus or a phosphorus alloy on a part of a steel slab surface layer by using either one or both of induction heating and plasma heating. This makes it possible to prevent cracking during the heating and rolling process (surface cracking of the base metal) while maintaining excellent powdering resistance, and for hot dip galvanization at low cost without adding Nb. The present inventors have found that a steel material can be manufactured, and have completed the present invention based on this knowledge.

すなわち,本発明によれば,鋼の連続鋳造鋳片の表面から4mm未満までを誘導加熱またはプラズマ加熱のいずれか一方または双方を用いて溶融する加熱工程と,上記加熱工程により溶融した溶融部に該溶融部におけるリン濃度が0.02質量%以上となるようにリンまたはリン合金を添加して,鋳片の表層部にリンの濃化領域を形成する表面改質工程と,を含む溶融亜鉛めっき用鋼材の製造方法が提供される。   That is, according to the present invention, a heating process in which the surface of a continuous cast slab of steel is less than 4 mm is melted by using one or both of induction heating and plasma heating, and a molten part melted by the heating process is provided. A surface modification step in which phosphorus or a phosphorus alloy is added so that the phosphorus concentration in the molten portion is 0.02% by mass or more to form a phosphorus concentrated region in the surface layer portion of the slab. A method for producing a steel for plating is provided.

ここで,リンを添加する溶融部の厚みを鋳片の表面から4mm未満としているのは,パウダリング現象を防止するためのリンは,酸化スケールとして除去される程度の厚みを有する極表層に含まれていれば十分その機能を発揮することができ,その厚みは通常,4mm未満であるからである。また,溶融部が表面から4mm以上の厚みを有する場合には,母材となる鋼特性にとって有害となる。具体的には,加熱時や圧延時に割れが生じたり,リンを添加すると鋼の強度が上がることで逆に鋼材の加工性が低下したりするため,好ましくない。このような観点から,リンの濃化領域の厚みは,好ましくは,表面から3.5mm以内であり,さらに好ましくは,表面から3mm以内である。   Here, the thickness of the molten part to which phosphorus is added is set to be less than 4 mm from the surface of the slab. Phosphorus for preventing powdering phenomenon is included in the extreme surface layer having a thickness enough to be removed as an oxide scale. This is because the function can be sufficiently exhibited if it is, and the thickness is usually less than 4 mm. Further, when the melted portion has a thickness of 4 mm or more from the surface, it is detrimental to the steel characteristics as a base material. Specifically, cracking occurs during heating or rolling, and adding phosphorus increases the strength of the steel and conversely decreases the workability of the steel material, which is not preferable. From this point of view, the thickness of the phosphorous concentration region is preferably within 3.5 mm from the surface, and more preferably within 3 mm from the surface.

また,溶融部におけるリン濃度を0.02質量%以上としているのは,0.02質量%未満では,パウダリングを低減するという効果が少ないことが,サンプル評価の結果判明しているからである。なお,溶融部におけるリン濃度は,0.06%以下であることが好ましい。リン濃度が0.02質量%以上0.06質量%以下であれば,パウダリングを低減させるという効果は十分であり,0.06%を超えても格別な利益はないことがサンプル評価の結果判明しているからである。   Moreover, the phosphorus concentration in the melted portion is set to 0.02% by mass or more because it has been found as a result of sample evaluation that the effect of reducing powdering is small if it is less than 0.02% by mass. . In addition, it is preferable that the phosphorus concentration in a fusion | melting part is 0.06% or less. As a result of sample evaluation, if the phosphorus concentration is 0.02% by mass or more and 0.06% by mass or less, the effect of reducing powdering is sufficient, and if it exceeds 0.06%, there is no particular benefit. This is because it is known.

このように,本発明に係る溶融亜鉛めっき用鋼材の製造方法によれば,耐パウダリング性を維持したまま,加熱・圧延工程時の割れも防止することが可能な溶融亜鉛めっき用鋼材を製造することができる。また,上記製造方法によれば,Nbを使用する必要がないので,安価に溶融亜鉛めっき用鋼材を製造することができる。   Thus, according to the method for manufacturing a hot dip galvanizing steel material according to the present invention, a hot dip galvanizing steel material that can prevent cracking during the heating and rolling process while maintaining the powdering resistance is manufactured. can do. Moreover, according to the said manufacturing method, since it is not necessary to use Nb, the steel material for hot dip galvanization can be manufactured cheaply.

また,上記課題を解決するために,本発明によれば,表層部にリンの濃化領域を有する溶融亜鉛めっき用鋼材であって,上記リンの濃化領域の厚みは,鋼材表面から4mm未満であり,上記リンの濃化領域におけるリン濃度は,0.02質量%以上であることを特徴とする,溶融亜鉛めっき用鋼材が提供される。   In order to solve the above-mentioned problems, according to the present invention, a steel material for hot dip galvanizing having a phosphorus-concentrated region in the surface layer portion, and the thickness of the phosphorus-concentrated region is less than 4 mm from the steel surface. Thus, a steel material for hot dip galvanizing is provided, wherein the phosphorus concentration in the phosphorus concentration region is 0.02% by mass or more.

このように,リンの濃化領域の厚みを鋼材の表面から4mm未満に抑えることにより,めっき層と鋼材との界面における粒成長を抑制して,加熱・圧延工程時の割れを防止することができる。また,リンの濃化領域におけるリン濃度が0.02質量%以上であることにより,耐パウダリングにも優れる。   In this way, by suppressing the thickness of the phosphorous concentration region to less than 4 mm from the surface of the steel material, it is possible to suppress grain growth at the interface between the plating layer and the steel material and to prevent cracking during the heating / rolling process. it can. Further, since the phosphorus concentration in the phosphorus concentration region is 0.02% by mass or more, the powdering resistance is also excellent.

本発明によれば,鋼の連続鋳造鋳片の表層4mm未満を選択的に溶融改質処理することにより,優れた耐パウダリング性を維持するとともに,加熱・圧延工程時の割れを防止して,成形加工性に優れた溶融亜鉛めっき用鋼材を製造することが可能な,溶融亜鉛めっき用鋼材の製造方法および該製造方法により得られる溶融亜鉛めっき用鋼材を提供することができる。   According to the present invention, by selectively melt-modifying a surface layer of less than 4 mm of a continuous cast slab of steel, excellent powdering resistance is maintained and cracking during the heating and rolling process is prevented. Thus, it is possible to provide a method for producing a hot dip galvanizing steel material that is capable of producing a hot dip galvanizing steel material that is excellent in forming processability, and a hot dip galvanizing steel material obtained by the production method.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(本発明の一実施形態に係る溶融亜鉛めっき用鋼材の製造方法)
図1および図2に基づいて,本発明の一実施形態に係る溶融亜鉛めっき用鋼材1の製造方法について詳細に説明する。なお,図1は,本実施形態に係る表層部にリンの濃化領域3を有する溶融亜鉛めっき用鋼材1の例を示す斜視図であり,図2は,本実施形態に係る表層部にリンの濃化領域3を有する溶融亜鉛めっき用鋼材1の製造方法を説明するための模式的な断面図である。
(Method for producing a steel material for hot dip galvanizing according to an embodiment of the present invention)
Based on FIG. 1 and FIG. 2, the manufacturing method of the steel material 1 for hot dip galvanizing which concerns on one Embodiment of this invention is demonstrated in detail. FIG. 1 is a perspective view showing an example of a hot dip galvanizing steel material 1 having a phosphorus-concentrated region 3 in the surface layer portion according to this embodiment, and FIG. 2 shows a phosphorus layer in the surface layer portion according to this embodiment. It is typical sectional drawing for demonstrating the manufacturing method of the steel materials 1 for hot dip galvanization which has the following 3 concentration area | regions.

本実施形態に係る溶融亜鉛めっき用鋼材の製造方法は,誘導加熱またはプラズマ加熱のいずれか一方または双方を用いて,鋼の連続鋳造鋳片の表面から4mm未満までを選択的に溶融する加熱工程と,加熱工程により溶融した溶融部に該溶融部におけるリン濃度が0.02質量%以上となるようにリンまたはリン合金を添加することにより鋳片の表層部にリンの濃化領域を形成する表面改質工程と,を含むことを特徴とする。   The method for producing a steel material for hot dip galvanizing according to the present embodiment is a heating process in which one or both of induction heating and plasma heating are used to selectively melt the surface of a continuously cast slab of steel to less than 4 mm. And adding phosphorus or a phosphorus alloy so that the phosphorus concentration in the melted part is 0.02% by mass or more in the melted part melted by the heating process, thereby forming a phosphorus enriched region in the surface layer part of the slab And a surface modification step.

本発明においては,鋳片の一部を部分的に改質してリンの濃化領域を形成する位置は,鋳片等における任意の位置であって,本発明に係る溶融亜鉛めっき用鋼材が最終的に加工される加工製品に合わせて選択されるものである。例えば,本実施形態においては,図1に示すように,鋳片2の両面の一定の厚みを有する表層部全体をリンまたはリン合金の添加部,すなわち,リンの濃化領域3としている。リンの濃化領域を形成する位置は,これ以外にも,例えば,鋳片中央部の両面における一定幅及び一定厚みの領域をリンまたはリン合金の添加部としたものや,鋳片の四隅部の一定範囲及び一定厚みの領域をリンまたはリン合金の添加部としたもの等が考えられる。   In the present invention, the position where a part of the slab is partially modified to form the phosphorus enriched region is an arbitrary position in the slab or the like, and the hot dip galvanized steel material according to the present invention is It is selected according to the processed product to be finally processed. For example, in the present embodiment, as shown in FIG. 1, the entire surface layer portion having a certain thickness on both sides of the slab 2 is used as an addition portion of phosphorus or a phosphorus alloy, that is, a phosphorus concentration region 3. In addition to this, the position where the phosphorus enrichment region is formed may be, for example, a region having a constant width and a constant thickness on both sides of the slab center, where phosphorus or phosphorus alloy is added, or four corners of the slab. In this case, a region having a certain range and a certain thickness may be added with phosphorus or a phosphorus alloy.

また,本実施形態において,リンを添加して部分的に改質処理を行う溶融部を鋳片の表面から4mm未満の厚みを有する領域としているのは,パウダリング現象を防止するためのリンは,酸化スケールとして除去される程度の厚みを有する極表層に含まれていれば十分その機能を発揮することができ,その厚みは通常,4mm未満であるからである。また,リンの濃化領域(すなわち,リン含有量の多い領域)が,表面から4mm以上の厚みを有する場合には,目的とする複合鋼材(本実施形態では,一部にリンの濃化領域を有する鋼材)の製造において,母材となる鋼特性にとって有害となる。具体的には,加熱時や圧延時にめっき割れが生じたり,リンを添加すると鋼の強度が上がることで逆に鋼材の加工性が低下したりするため,好ましくない。このような観点から,リンの濃化領域の厚みは,好ましくは,表面から3.5mm以内であり,さらに好ましくは,表面から3mm以内である。ただし,上記厚みが表面から1mm未満の場合には,通常の加熱および圧延工程で表面が酸化して失われてしまうため,通常は1mm以上である。   Further, in this embodiment, the molten part that is partially reformed by adding phosphorus is a region having a thickness of less than 4 mm from the surface of the slab. The phosphorus for preventing the powdering phenomenon is This is because the function can be sufficiently exerted as long as it is contained in the extreme surface layer having a thickness that can be removed as an oxide scale, and the thickness is usually less than 4 mm. Further, when the phosphorus concentration region (that is, the region containing a large amount of phosphorus) has a thickness of 4 mm or more from the surface, the target composite steel material (in this embodiment, a portion of the phosphorus concentration region). In the production of steel materials having a slag, it is detrimental to the properties of the base steel. Specifically, plating cracks occur during heating or rolling, and addition of phosphorus is undesirable because it increases the strength of the steel and conversely decreases the workability of the steel material. From this point of view, the thickness of the phosphorous concentration region is preferably within 3.5 mm from the surface, and more preferably within 3 mm from the surface. However, when the thickness is less than 1 mm from the surface, the surface is oxidized and lost in a normal heating and rolling process, and is usually 1 mm or more.

また,本実施形態の方法は,鋳片2の表層の一部にリンまたはリン合金を溶着させることで,溶融亜鉛めっき用鋼材1を製造するためのものであるが,鋳片2の表層の一部を溶融させる方法について,以下に説明する。   The method of the present embodiment is for manufacturing the hot dip galvanized steel 1 by welding phosphorus or a phosphorus alloy to a part of the surface layer of the slab 2. The method for melting a part will be described below.

鋼鋳片2の表層の一部,本実施形態の場合には,図1に示したリンの濃化領域3に相当する表面から4mm未満の厚みを有する領域を溶融させる方法としては,誘導加熱単独,プラズマ加熱単独,誘導加熱とプラズマ加熱の併用のいずれを用いても良い。   As a method for melting a part of the surface layer of the steel slab 2, in the case of this embodiment, a region having a thickness of less than 4 mm from the surface corresponding to the phosphorous concentration region 3 shown in FIG. Either alone, plasma heating alone, or a combination of induction heating and plasma heating may be used.

誘導加熱単独で行う場合は,リンまたはリン合金を,粒子またはワイヤーやシート状の形態で鋳片表層の溶融部に添加できる。具体的には,連続鋳造機で得られた鋳片は,切断後,溶融処理場に輸送される。鋳片は,輸送後,予め定められた溶融対象となる鋳片の一部,すなわち,リンの濃化領域を形成するための溶融部およびその周辺の加熱部を加熱可能なように配置された電磁誘導コイルにより加熱溶融される(電磁誘導コイルは,例えば,数〜数十kHzの周波数の高周波を発生させている)。次いで,溶融された溶融部に,粒子またはワイヤーやシート状の形態のリンまたはリン合金を添加して溶融合金化処理する。   When induction heating is performed alone, phosphorus or a phosphorus alloy can be added to the molten portion of the slab surface layer in the form of particles, wires, or sheets. Specifically, the slab obtained by the continuous casting machine is transported to the melting treatment plant after cutting. The slab was arranged so that after transportation, a part of the slab to be melted in advance, that is, a molten part for forming a phosphorus-enriched region and its surrounding heating part could be heated. It is heated and melted by the electromagnetic induction coil (the electromagnetic induction coil generates a high frequency with a frequency of several to several tens of kHz, for example). Next, particles, wires, or sheet-like phosphorus or phosphorus alloy is added to the melted molten part to perform a melt alloying process.

電磁誘導コイルは,鋳片の溶融部で電磁力により溶融部分を内面に向かって電磁力によって押さえつけることにより安定した溶融部表面を作り,その後再度冷却され凝固する。このように溶融対象部位が鋳片のエッジ部を含む領域であっても,安定した溶融部が得られる。この溶融部は鋳片の移動によって徐々に凝固し安定したリンの濃化領域を形成する。   The electromagnetic induction coil forms a stable melted part surface by pressing the melted part toward the inner surface by electromagnetic force in the melted part of the slab, and then cooled again and solidifies. In this way, a stable melted portion can be obtained even if the melted target region is a region including the edge portion of the slab. The molten portion is gradually solidified by the movement of the slab and forms a stable phosphorus concentration region.

この方法によれば,鋳片の一部の溶融部の温度を液相線温度(鋳片は鉄以外に他の成分を含むため,融点のように1つの温度では溶融状態が決まらず,凝固が始まる温度を固相線温度,全て液体となる温度を液相線温度と呼ぶ。以下同じ)よりもわずかに高い温度に保持し,添加後に急速に冷却凝固させることにより,凝固組織を小さくでき,結晶粒のサイズを小さくすることができる。これにより,リン元素の溶融処理部内での均一性が増し,また圧延時にも,結晶粒が細かくなることにより圧延時の応力が分散されて割れなどの欠陥を生じにくくなるという利点がある。   According to this method, the temperature of the melted part of the slab is set at the liquidus temperature (since the slab contains other components in addition to iron, the melting state is not determined at one temperature, such as the melting point, and solidification occurs. The solidification temperature is called the solidus temperature, the temperature at which all the liquid becomes liquid is called the liquidus temperature, and so on. , The crystal grain size can be reduced. As a result, the uniformity of the phosphorus element in the melt-processed portion is increased, and also during rolling, the crystal grains become finer, so that the stress during rolling is dispersed and defects such as cracks are less likely to occur.

また,鋳片の一部の溶融部にリンまたはリン合金を添加して溶着させる場合,鋳片の酸化を防止することが好ましいため,誘導コイルは,雰囲気ガス容器内で不活性なガス雰囲気(例えばアルゴン,窒素等)で溶融改質するのが好ましく,さらにより確実に酸化を防止するためには,不活性なガス雰囲気中に約2モル%程度の水素を含んで溶融改質することが好ましい。   In addition, when phosphorus or a phosphorus alloy is added and welded to a part of the molten portion of the slab, it is preferable to prevent oxidation of the slab, so that the induction coil has an inert gas atmosphere ( (For example, argon, nitrogen, etc.) are preferably melt-modified, and in order to prevent oxidation more reliably, it is preferable to melt-modify by containing about 2 mol% of hydrogen in an inert gas atmosphere. preferable.

また,上記方法を用いた場合,誘導コイルが発生させる磁場と,導体である鋳片に誘導した電流との相互作用により,溶融部には電磁力が作用する。この電磁力はピンチ力と呼ばれ,溶融部を圧縮する作用があり,溶融部表面の安定化に寄与する。   When the above method is used, an electromagnetic force acts on the melted portion due to the interaction between the magnetic field generated by the induction coil and the current induced in the slab, which is a conductor. This electromagnetic force is called a pinch force and has the effect of compressing the melted part, contributing to stabilization of the melted part surface.

また,上記方法は,連続鋳造機端,すなわち連続鋳造後の鋳片が水平に移動している際に,あるいは連続鋳造機内,すなわち鋳片が垂直に移動している際にも,適用することができる。   The above method is also applicable when the end of the continuous casting machine, that is, the slab after continuous casting is moving horizontally, or in the continuous casting machine, that is, when the slab is moving vertically. Can do.

また,プラズマ加熱単独で行う場合は,プラズマ内にリンまたはリン合金を供給し,鋼の溶融した部分に供給することで鋳片表層の一部の溶融部に添加できる。プラズマは,一般に軸対称な形をしているため,連続的に鋳片の表面を処理するには,プラズマトーチを鋳片の幅方向にスキャンさせる方法か,あるいは,特開昭54−142154号公報に記載されたようなプラズマを鋳片の幅方向に電磁力を使って扁平な往復運動させる方法等を用いることができる。また,場合によっては,鋳片の幅方向全体にわたって複数本のプラズマトーチを配置しておき,予め定められている鋳片の溶融対象箇所に対応するトーチのみを稼動させるようにすることもできる。   When plasma heating is performed alone, phosphorus or a phosphorus alloy can be supplied into the plasma and supplied to the molten portion of the steel, so that it can be added to a part of the molten portion of the slab surface layer. Since the plasma is generally axisymmetric, in order to continuously treat the surface of the slab, a method of scanning the plasma torch in the width direction of the slab or JP-A-54-142154 is disclosed. For example, a method of causing a flat reciprocating motion of plasma in the width direction of a slab using electromagnetic force as described in the publication can be used. In some cases, a plurality of plasma torches may be disposed over the entire width direction of the slab, and only the torch corresponding to a predetermined melting target portion of the slab may be operated.

連続鋳造機で得られた鋳片は,切断後,溶融処理場に輸送され,リンまたはリン合金をプラズマに供給することで,プラズマで鋳片の表層の一部を溶融しながら,リンまたはリン合金を鋳片の溶融部に供給することで溶着される。その後,再度冷却され凝固する。   The slab obtained by the continuous casting machine is transported to the melting processing site after cutting, and phosphorus or phosphorus alloy is supplied to the plasma, so that a part of the surface layer of the slab is melted by the plasma while phosphorus or phosphorus is melted. It is welded by supplying the alloy to the molten part of the slab. Then it is cooled again and solidifies.

この方法でも,鋳片の一部の溶融部の温度を液相線温度よりもわずかに高い温度に保持し,添加後に急速に冷却凝固させることにより,凝固組織を小さくでき,結晶粒のサイズを小さくすることができる。これにより,リン元素の溶融処理部内での均一性が増し,また,圧延時にも結晶粒が細かいことにより圧延時の応力の集中が避けられ,割れなどの欠陥を生じにくくなるという利点がある。   Even in this method, the temperature of the molten part of the slab is maintained at a temperature slightly higher than the liquidus temperature, and the solidification structure can be reduced by rapidly cooling and solidifying after the addition. Can be small. As a result, the uniformity of the phosphorus element in the melt-processed portion is increased, and the concentration of stress during rolling can be avoided because the crystal grains are fine during rolling, and defects such as cracks are less likely to occur.

また,鋳片の一部の溶融部にリンまたはリン合金を添加して溶着させる場合,鋳片の酸化を防止することが好ましいため,チャンバー内のガス雰囲気は上記と同様に,不活性なガス雰囲気であることが好ましい。   In addition, when phosphorus or a phosphorus alloy is added and welded to a part of the molten portion of the slab, it is preferable to prevent the slab from being oxidized. An atmosphere is preferable.

次に,図2に基づいて,誘導加熱とプラズマ加熱を併用して行う場合について説明する。   Next, a case where induction heating and plasma heating are used in combination will be described with reference to FIG.

連続鋳造機で連続鋳造を完了した鋳片は,切断後,溶融処理場に輸送される。鋳片は,図2に示すように,溶融処理の対象部位である鋳片2の一部を選択的に加熱溶融するように配置された電磁誘導コイル11により加熱される。さらに,リンまたはリン合金をプラズマトーチ12からのプラズマ13に供給することで,鋳片2の一部の溶融部5にリンまたはリン合金を添加して溶着させる。リンまたはリン合金は,プラズマ13に供給する以外に,粒子またはワイヤーやシート状の形態で供給する等,通常の供給方法で添加してもよい。   The slab that has been continuously cast by the continuous casting machine is transported to the melt processing plant after cutting. As shown in FIG. 2, the slab is heated by an electromagnetic induction coil 11 arranged so as to selectively heat and melt a part of the slab 2 that is a target part of the melting process. Furthermore, phosphorus or a phosphorus alloy is supplied to the plasma 13 from the plasma torch 12 so that phosphorus or a phosphorus alloy is added and welded to a part of the molten portion 5 of the slab 2. In addition to supplying the plasma or phosphorus alloy to the plasma 13, it may be added by a normal supply method such as supply in the form of particles, wires or sheets.

上記方法を用いた場合,電磁誘導コイル11が発生させる磁場14と,導体である鋳片2に誘導した電流との相互作用により,溶融部5には電磁力が作用する。この電磁力はピンチ力と呼ばれ,溶融部5を圧縮する作用があり,電磁力により溶融部5を内面に向かって電磁力によって押さえつけることにより溶融部5表面の安定化に寄与する。その後,再度冷却されることにより凝固し,安定したリン濃化領域3を形成することができる。   When the above method is used, an electromagnetic force acts on the melted part 5 due to the interaction between the magnetic field 14 generated by the electromagnetic induction coil 11 and the current induced in the slab 2 as a conductor. This electromagnetic force is called a pinch force and has an action of compressing the melted part 5 and contributes to stabilization of the surface of the melted part 5 by pressing the melted part 5 toward the inner surface by the electromagnetic force. Then, it is solidified by being cooled again, and the stable phosphorus concentration area | region 3 can be formed.

このように,誘導加熱とプラズマ加熱を併用した場合でも,得られる部分的に改質した鋳片2の溶融部5の温度を液相線温度よりもわずかに高い温度に保持し,添加後に急速に冷却凝固させることにより,凝固組織を小さくでき,結晶粒のサイズを小さくすることができる。これにより,リン元素の溶融処理部内での均一性が増し,また,圧延時にも割れなどの欠陥を生じにくくなるという利点がある。   Thus, even when induction heating and plasma heating are used in combination, the temperature of the melted portion 5 of the resulting partially modified slab 2 is maintained at a temperature slightly higher than the liquidus temperature, and rapidly after the addition. By cooling and solidifying, the solidified structure can be reduced and the size of the crystal grains can be reduced. As a result, there is an advantage that the uniformity of the phosphorus element in the melt-treated portion is increased, and defects such as cracks are less likely to occur during rolling.

また,鋳片2の表層の溶融部5にリンまたはリン合金を添加して溶着させる場合,鋳片2の酸化を防止することが好ましいため,雰囲気ガス容器15内のガス雰囲気は,上記と同様に不活性なガス雰囲気16とすることが好ましい。さらに,電磁誘導コイル11による電磁力は上述した通りに作用する。   In addition, when phosphorus or a phosphorus alloy is added and welded to the melted portion 5 of the surface layer of the slab 2, it is preferable to prevent oxidation of the slab 2, so that the gas atmosphere in the atmosphere gas container 15 is the same as described above. The gas atmosphere 16 is preferably inert. Furthermore, the electromagnetic force by the electromagnetic induction coil 11 acts as described above.

また,リン合金については,リン元素の複数成分の合金であれば特に規定するものではないが,通常は,フェロリンその他合金鉄等が用いられる。   The phosphorus alloy is not particularly specified as long as it is a multi-component alloy of phosphorus element, but ferroline or other alloy iron is usually used.

また,誘導加熱とプラズマ加熱の双方を併用する場合の別の形態として,誘導加熱により鋳片の表層と併せて,粒子またはワイヤーやシートの形で鋳片の表層部に添加したリンまたはリン合金を予熱し,その後,添加したリンまたはリン合金をプラズマ加熱により溶融合金化させる方法を用いても良い。   Another form of using both induction heating and plasma heating is phosphorus or a phosphorus alloy added to the surface of the slab in the form of particles, wire, or sheet in combination with the surface of the slab by induction heating. Alternatively, a method may be used in which the added phosphorus or phosphorus alloy is melt-alloyed by plasma heating.

この方法では,誘導加熱は単に予熱機能として使用し,その後のプラズマ加熱でリンまたはリン合金を溶融合金化させるものであり,プラズマで一般に加熱溶融するには添加元素またはその合金の形状がパウダー状であり,プラズマ内に吹き込むのが一般的であるのに対し,この方法の場合には添加元素もしくはその合金の形状にかかわらず実施できるという利点がある。   In this method, induction heating is simply used as a preheating function, and phosphorus or a phosphorus alloy is melted and alloyed by subsequent plasma heating. In general, the shape of an additive element or its alloy is powdery for heating and melting with plasma. However, this method has an advantage that it can be carried out regardless of the shape of the additive element or its alloy.

以上説明したように,本実施形態に係る溶融亜鉛めっき用鋼材の製造方法によれば,耐パウダリング性を維持したまま,加熱・圧延工程時の割れも防止することが可能な溶融亜鉛めっき用鋼材を製造することができる。また,上記製造方法によれば,Nbを使用する必要がないので,安価に溶融亜鉛めっき用鋼材を製造することができる。また,このようにして製造された溶融亜鉛めっき用鋼材は,自動車や家庭用電気製品向けの鋼材など種々の用途に活用することができる。   As described above, according to the method of manufacturing a hot dip galvanizing steel material according to the present embodiment, for hot dip galvanizing, which can prevent cracking during the heating and rolling process while maintaining the powdering resistance. Steel can be manufactured. Moreover, according to the said manufacturing method, since it is not necessary to use Nb, the steel material for hot dip galvanization can be manufactured cheaply. Moreover, the steel material for hot dip galvanization manufactured in this way can be utilized for various uses, such as steel materials for automobiles and household electrical products.

以下,上記方法により製造された溶融亜鉛めっき用鋼材1について説明する。   Hereinafter, the hot dip galvanizing steel 1 manufactured by the above method will be described.

本実施形態に係る溶融亜鉛めっき用鋼材1は,表層部にリンの濃化領域3を有し,リンの濃化領域3の厚みは,鋼材1の表面から4mm未満であり,リンの濃化領域3におけるリン濃度は,0.02質量%以上であることを特徴としている。   The steel material 1 for hot dip galvanizing according to the present embodiment has a phosphorus concentration region 3 in the surface layer portion, and the thickness of the phosphorus concentration region 3 is less than 4 mm from the surface of the steel material 1, The phosphorus concentration in the region 3 is characterized by 0.02% by mass or more.

このように,リンの濃化領域3の厚みを鋼材1の表面から4mm未満に抑えることにより,めっき層と鋼材1との界面における粒成長を抑制して,加熱・圧延工程時の割れを防止することができる。また,リンの濃化領域3におけるリン濃度が0.02質量%以上であることにより,耐パウダリングにも優れる。   In this way, by suppressing the thickness of the phosphorus enriched region 3 to less than 4 mm from the surface of the steel material 1, grain growth at the interface between the plating layer and the steel material 1 is suppressed, and cracking during the heating and rolling process is prevented. can do. Further, since the phosphorus concentration in the phosphorus concentration region 3 is 0.02% by mass or more, the powdering resistance is also excellent.

ここで,溶融部におけるリン濃度を0.02質量%以上としているのは,0.02質量%未満では,パウダリングを低減するという効果が少ないことが,サンプル評価の結果判明しているからである(特許文献1を参照)。   Here, the phosphorus concentration in the melted portion is set to 0.02% by mass or more because it has been found from the sample evaluation that the effect of reducing powdering is small if it is less than 0.02% by mass. Yes (see Patent Document 1).

また,溶融部におけるリン濃度は,0.06%以下であることが好ましい。リン濃度が0.02質量%以上0.06質量%以下であれば,パウダリングを低減させるという効果は十分であり,0.06%を超えても格別な利益はないことがサンプル評価の結果判明しているからである(特許文献1を参照)。   Moreover, it is preferable that the phosphorus concentration in a fusion | melting part is 0.06% or less. As a result of sample evaluation, if the phosphorus concentration is 0.02% by mass or more and 0.06% by mass or less, the effect of reducing powdering is sufficient, and if it exceeds 0.06%, there is no particular benefit. This is because it has been found (see Patent Document 1).

次に,実施例を挙げて本発明をさらに詳細に説明するが,本発明が下記実施例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to the following Example.

板幅,1150mm,板厚,250mmの鋳片を連続鋳造後,図2に示す装置を用いて誘導加熱及びプラズマ溶融処理により表層3mmの溶融深さで0.05質量%のリンを添加した。この際,誘導加熱は,出力を20kHz,鋳片温度を1200℃,ガス雰囲気をアルゴンとして行った。また,プラズマ溶融処理は,出力を30kW/本,ガス雰囲気をアルゴンとして,送り速度1m/minで行った。この鋳片は,通常用いられる方法により板厚4mmの熱延鋼板に熱間圧延し,その後0.8mmに冷間圧延した。冷間圧延で得られた各板には更に連続溶融亜鉛めっきラインで45g/mの溶融亜鉛めっき層を形成することにより,溶融亜鉛めっき鋼板を得た。 After continuously casting a slab having a plate width of 1150 mm, a plate thickness, and 250 mm, 0.05 mass% phosphorus was added at a melting depth of 3 mm on the surface layer by induction heating and plasma melting treatment using the apparatus shown in FIG. At this time, induction heating was performed with an output of 20 kHz, a slab temperature of 1200 ° C., and a gas atmosphere of argon. The plasma melting treatment was performed at a feed rate of 1 m / min with an output of 30 kW / bar and a gas atmosphere of argon. This slab was hot-rolled to a hot-rolled steel plate having a thickness of 4 mm by a commonly used method, and then cold-rolled to 0.8 mm. On each plate obtained by cold rolling, a hot dip galvanized steel sheet was obtained by forming a hot dip galvanized layer of 45 g / m 2 on a continuous hot dip galvanizing line.

また,得られた溶融亜鉛めっき鋼板に対し,耐パウダリング性の評価を行った。耐パウダリング性は,溶融亜鉛めっき鋼板についての90°V曲げ−曲げ戻し試験後の剥離テープを,蛍光X線を用いて剥離亜鉛強度を測定することにより評価した。その結果,得られた製品は,剥離幅が2mm以下で良好であった。   In addition, the obtained hot-dip galvanized steel sheet was evaluated for powdering resistance. The powdering resistance was evaluated by measuring the peel zinc strength of the release tape after the 90 ° V bending-bending test on the hot dip galvanized steel sheet using fluorescent X-rays. As a result, the obtained product was good with a peel width of 2 mm or less.

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,優れた耐パウダリング性を維持するとともに,圧延時のめっき割れも防止することが可能な溶融亜鉛めっき鋼材の製造方法および該製造方法により得られる溶融亜鉛めっき鋼材に適用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a hot dip galvanized steel material manufacturing method capable of maintaining excellent powdering resistance and preventing plating cracking during rolling, and a hot dip galvanized steel material obtained by the manufacturing method. .

本発明の一実施形態に係る表層部にリンの濃化領域を有する溶融亜鉛めっき用鋼材の例を示す斜視図である。It is a perspective view which shows the example of the steel material for hot dip galvanization which has the concentration area | region of phosphorus in the surface layer part which concerns on one Embodiment of this invention. 本発明の一実施形態に係る表層部にリンの濃化領域を有する溶融亜鉛めっき用鋼材の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the steel material for hot dip galvanization which has the concentration area | region of phosphorus in the surface layer part which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 溶融亜鉛めっき用鋼材
2 鋳片
3 リン濃化領域
4 加熱部
5 溶融部
11 電磁誘導コイル
12 プラズマトーチ
13 プラズマ
14 磁場
15 雰囲気ガス容器
16 不活性なガス雰囲気
F 移動方向
DESCRIPTION OF SYMBOLS 1 Steel material for hot dip galvanization 2 Cast slab 3 Phosphorous concentration area 4 Heating part 5 Melting part 11 Electromagnetic induction coil 12 Plasma torch 13 Plasma 14 Magnetic field 15 Atmospheric gas container 16 Inert gas atmosphere F Movement direction

Claims (2)

鋼の連続鋳造鋳片の表面から4mm未満までを,誘導加熱またはプラズマ加熱のいずれか一方または双方を用いて溶融する加熱工程と,
前記加熱工程により溶融した溶融部に該溶融部におけるリン濃度が0.02質量%以上となるようにリンまたはリン合金を添加して,前記鋳片の表層部にリンの濃化領域を形成する表面改質工程と,
を含むことを特徴とする,溶融亜鉛めっき用鋼材の製造方法。
A heating step of melting the surface of the continuous cast slab of steel to less than 4 mm using one or both of induction heating and plasma heating;
Phosphorus or a phosphorus alloy is added to the melted portion melted by the heating step so that the phosphorus concentration in the melted portion is 0.02% by mass or more, thereby forming a phosphorus enriched region in the surface layer portion of the slab. Surface modification process,
A method for producing a steel material for hot dip galvanizing, comprising:
表層部にリンの濃化領域を有する溶融亜鉛めっき用鋼材であって,
前記リンの濃化領域の厚みは,鋼材表面から4mm未満であり,前記リンの濃化領域におけるリン濃度は,0.02質量%以上であることを特徴とする,溶融亜鉛めっき用鋼材。

A steel material for hot dip galvanization having a phosphorus-enriched region in the surface layer,
A steel material for hot dip galvanizing, wherein the phosphorus concentration region has a thickness of less than 4 mm from the steel surface, and the phosphorus concentration in the phosphorus concentration region is 0.02% by mass or more.

JP2005287451A 2005-09-30 2005-09-30 Manufacturing method of hot dip galvanized steel Active JP4734073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287451A JP4734073B2 (en) 2005-09-30 2005-09-30 Manufacturing method of hot dip galvanized steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287451A JP4734073B2 (en) 2005-09-30 2005-09-30 Manufacturing method of hot dip galvanized steel

Publications (2)

Publication Number Publication Date
JP2007100118A true JP2007100118A (en) 2007-04-19
JP4734073B2 JP4734073B2 (en) 2011-07-27

Family

ID=38027348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287451A Active JP4734073B2 (en) 2005-09-30 2005-09-30 Manufacturing method of hot dip galvanized steel

Country Status (1)

Country Link
JP (1) JP4734073B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097056A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Method for melting surface layer of steel cast slab, and apparatus for melting surface layer of steel cast slab
JP2009095879A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Apparatus for surface melting treatment and starting method for surface melting treatment
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266168A (en) * 1985-05-20 1986-11-25 Toshiba Mach Co Ltd Exhaust valve for metallic mold
JPH10280093A (en) * 1997-04-10 1998-10-20 Nippon Steel Corp Steel sheet for galvannealing
JP2000273581A (en) * 1999-03-24 2000-10-03 Nippon Steel Corp Continuously cast slab of extra-low carbon steel and production thereof
JP2001279411A (en) * 2000-03-29 2001-10-10 Kawasaki Steel Corp Manufacturing method for galvanized steel sheet
JP2004195512A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab, reformed cast slab, and processed product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266168A (en) * 1985-05-20 1986-11-25 Toshiba Mach Co Ltd Exhaust valve for metallic mold
JPH10280093A (en) * 1997-04-10 1998-10-20 Nippon Steel Corp Steel sheet for galvannealing
JP2000273581A (en) * 1999-03-24 2000-10-03 Nippon Steel Corp Continuously cast slab of extra-low carbon steel and production thereof
JP2001279411A (en) * 2000-03-29 2001-10-10 Kawasaki Steel Corp Manufacturing method for galvanized steel sheet
JP2004195512A (en) * 2002-12-18 2004-07-15 Nippon Steel Corp Surface layer reforming method for steel cast slab, reformed cast slab, and processed product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097056A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Method for melting surface layer of steel cast slab, and apparatus for melting surface layer of steel cast slab
JP2009095879A (en) * 2007-10-19 2009-05-07 Nippon Steel Corp Apparatus for surface melting treatment and starting method for surface melting treatment
JP2009255140A (en) * 2008-04-18 2009-11-05 Nippon Steel Corp Surface melting treatment apparatus of cast steel slab

Also Published As

Publication number Publication date
JP4734073B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
TWI394183B (en) Non - directional electromagnetic steel cast slab and its manufacturing method
US7282103B2 (en) Iron-base amorphous alloy thin strip excellent in soft magnetic properties, iron core manufactured by using said thin strip, and mother alloy for producing rapidly cooled and solidified thin strip
Huang et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating
CN104334308B (en) The manufacture method of electric arc welded structural element
JP2019505670A (en) High-strength hot-dip galvanized steel with excellent plating properties and manufacturing method thereof
JP5811841B2 (en) Method for producing Si-containing high-strength galvannealed steel sheet
JP4656088B2 (en) Continuous casting slab of steel having equiaxed dendrite on surface layer and method for continuous casting
JP4734073B2 (en) Manufacturing method of hot dip galvanized steel
JP4858295B2 (en) Continuous casting method of high strength steel with finely dispersed precipitates and slab for high strength steel
JP3902544B2 (en) Steel slab surface modification method, modified slab and processed product
JP5454132B2 (en) Surface melting method, surface modified steel slab, processed product
JP2011214102A (en) Method for manufacturing galvannealed steel sheet excellent in plating adhesion
JP3771899B2 (en) Method for surface modification of steel slab containing copper, modified slab and processed product
JP2008208425A (en) Method for reforming surface layer of steel slab, surface-reformed steel slab, and worked product
JP5063942B2 (en) Manufacturing method of hot-dip aluminized steel sheet
KR20170087857A (en) Amorphous alloy ribbon and method for manufacturing same
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP2010058145A (en) Method for reforming surface layer of cast steel billet
JP6728934B2 (en) Continuous casting method for molten steel
JP5223426B2 (en) Surface-treated steel with excellent magnetic properties and method for producing the same
JP5142215B2 (en) Steel continuous casting method
JP4299719B2 (en) Manufacturing method and processed product of steel material with partially different components
JP2007144438A (en) Cast slab for grain oriented silicon steel sheet and method for producing the same
JP2006312174A (en) Continuous casting method for molten metal
JPH04314844A (en) Steel material excellent in toughness at low temperature and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4734073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350