JP2007099788A - Composition for semiconductive vulcanized rubber, its vulcanized rubber material and vulcanized rubber member - Google Patents

Composition for semiconductive vulcanized rubber, its vulcanized rubber material and vulcanized rubber member Download PDF

Info

Publication number
JP2007099788A
JP2007099788A JP2005287375A JP2005287375A JP2007099788A JP 2007099788 A JP2007099788 A JP 2007099788A JP 2005287375 A JP2005287375 A JP 2005287375A JP 2005287375 A JP2005287375 A JP 2005287375A JP 2007099788 A JP2007099788 A JP 2007099788A
Authority
JP
Japan
Prior art keywords
rubber
parts
weight
semiconductive
vulcanized rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287375A
Other languages
Japanese (ja)
Other versions
JP4941875B2 (en
Inventor
Yasushi Hamura
康 羽村
Yasuo Matoba
康夫 的場
Toshiyuki Funayama
俊幸 船山
Toyoji Otaka
豊史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2005287375A priority Critical patent/JP4941875B2/en
Publication of JP2007099788A publication Critical patent/JP2007099788A/en
Application granted granted Critical
Publication of JP4941875B2 publication Critical patent/JP4941875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a composition for semiconductive vulcanized rubber, which controls rise in viscosity in blending an unvulcanized material, exhibits excellent compression set resistance and abrasion resistance and small variation of volume resistivity even in an environmental variation of the circumference, a vulcanized rubber and a member obtained by vulcanizing the composition. <P>SOLUTION: The composition for vulcanized rubber and the composition for semiconductive vulcanized rubber comprise (A) 100 parts wt. of epichlorohydrin-based rubber, (B) 0.1-8.0 parts wt. of a halogenoalkoxysilane represented by general formula (I) (R<SP>1</SP>-O)<SB>3</SB>-Si-R<SP>2</SP>-X (three R<SP>1</SP>s each may be mutually the same or different and a 1-5C hydrocarbon group; R<SP>2</SP>is a 1-9C hydrocarbon group; X is a halogen atom), (C) 5-<40 parts wt. of a silicic acid-containing inorganic filler, (D) 0.5-20 parts wt. of zinc oxide and (E) 0.2-10 parts wt. of a vulcanizing agent composed of a thiourea and/or sulfur. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、コピー機、プリンター等に使用される電子写真用プロセスの現像、帯電、転写などの半導電性ローラーまたはベルトに用いられる加硫ゴム用組成物、および該組成物を加硫してなる加硫ゴム材料、および該加硫ゴム材料を使用する加硫ゴム部材に関する。   The present invention relates to a composition for vulcanized rubber used for a semiconductive roller or belt for development, charging, transfer, etc. of an electrophotographic process used in a copying machine, a printer, and the like, and vulcanizing the composition. And a vulcanized rubber member using the vulcanized rubber material.

近年、コピー機、プリンター等に使用される電子写真用プロセスの現像、帯電、転写において、コロナ放電に代表される非接触帯電方式、非接触転写方式から、ゴムローラーを用いた接触帯電法式、接触転写方式の採用が拡大されつつある。   In recent years, in the development, charging, and transfer of electrophotographic processes used in copiers, printers, etc., contact charging method using rubber rollers, contact, from non-contact charging method and non-contact transfer method represented by corona discharge The adoption of the transfer method is expanding.

前記ゴムローラーに使用されるゴム材料としては、体積抵抗率が10〜1012Ωcm程度の半導電領域の体積抵抗率を有し、高温高湿度下と低温低湿度下との体積抵抗率の変動幅が小さいこと、すなわち、周囲の環境条件の変化によっても安定した体積抵抗率を示すことが要求されている。 The rubber material used for the rubber roller has a volume resistivity of a semiconductive region with a volume resistivity of about 10 5 to 10 12 Ωcm, and has a volume resistivity under high temperature and high humidity and low temperature and low humidity. It is required that the fluctuation range is small, that is, a stable volume resistivity is exhibited even by changes in ambient environmental conditions.

更に、前記ゴムローラーは画像形成時に感光体等と接触するため、ゴムとしての十分な弾性を有し、かつ、耐圧縮永久歪性、耐磨耗性に優れたゴム材料が必要とされる。   Further, since the rubber roller is in contact with a photoreceptor or the like during image formation, a rubber material having sufficient elasticity as rubber and excellent in compression set resistance and wear resistance is required.

また、前記ゴムローラーの製造過程において、未加硫ゴムの加工性や保存安定性、加硫物を研磨する際の研磨粉の付着低減も要求されている。   In addition, in the process of manufacturing the rubber roller, the workability and storage stability of the unvulcanized rubber and the reduction of the adhesion of the abrasive powder when polishing the vulcanized product are also required.

ゴムに半導電領域の体積抵抗率を発現させる方法として、カーボンブラックのような電子伝導性粒子を添加する方法があげられる。しかしながら、カーボンブラックにより導電性を発現させる場合は、わずかな添加量の差異やカーボンブラックの分散不良等により体積抵抗率が大きく変化してしまう問題がある。また、印加電圧により体積抵抗率の変動が大きいという問題も含んでいる。   As a method of developing the volume resistivity of the semiconductive region in the rubber, a method of adding electron conductive particles such as carbon black can be given. However, when the conductivity is expressed by the carbon black, there is a problem that the volume resistivity is greatly changed due to a slight difference in the amount of addition or poor dispersion of the carbon black. Another problem is that the volume resistivity varies greatly depending on the applied voltage.

一方、エピクロルヒドリンゴムのようなイオン伝導性を有したゴムを用いることにより、前述したカーボンブラックのような電子伝導系の問題点は改善される。しかしながら、イオン伝導系の特性を活かすためには、導電機構に影響のない充填剤を用いる必要がある。導電機構に影響のない充填剤は、一般的にゴム組成物への補強効果が弱いため、加硫物の磨耗性が悪化してしまう問題点がある。   On the other hand, by using a rubber having ion conductivity such as epichlorohydrin rubber, the problems of the electron conduction system such as carbon black described above are improved. However, in order to take advantage of the characteristics of the ion conduction system, it is necessary to use a filler that does not affect the conduction mechanism. Fillers that do not affect the conductive mechanism generally have a weak reinforcing effect on the rubber composition, so that there is a problem that the wearability of the vulcanizate is deteriorated.

磨耗性の改善のために、エピクロルヒドリンゴムにシリカなどの補強性に優れた充填剤を添加する方法がある。しかしながら、シリカの添加部数の増大とともに未加硫ゴムの粘度が上昇し、加工性の悪化を招くだけでなく、圧縮永久歪性の悪化や、高温高湿度環境下と低温低湿度環境下との体積抵抗率の変動幅が大きくなってしまう問題がある。   In order to improve the wear resistance, there is a method of adding a filler having excellent reinforcing properties such as silica to epichlorohydrin rubber. However, the viscosity of the unvulcanized rubber increases with an increase in the number of parts added to silica, which not only deteriorates the workability but also deteriorates the compression set, the high temperature / high humidity environment and the low temperature / low humidity environment. There is a problem that the fluctuation range of the volume resistivity becomes large.

特開2000-302921では、エピクロルヒドリンゴムを主体とするゴム100重量部に対して、40重量部以上100重量部以下の末端水酸基がマスクされたシリカを配合する方法が開示されている。該公報の目的は、ゴム部材の剛性を上げることにより、画像乱れ防止と蛇行抑制とを両立できる導電性ベルトを提供することである。しかしながら、開示された内容は、剛性特性を上げることによる改善であり、本発明におけるゴム組成物およびゴム部材としては剛直すぎて適用され難く、環境変動による体積抵抗率の変動幅の縮小や圧縮永久歪、磨耗性の改善についての示唆もなされていない。   Japanese Patent Application Laid-Open No. 2000-302921 discloses a method of blending silica having masked terminal hydroxyl groups of 40 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of rubber mainly composed of epichlorohydrin rubber. The purpose of this publication is to provide a conductive belt capable of achieving both image disturbance prevention and meandering suppression by increasing the rigidity of a rubber member. However, the disclosed content is an improvement by increasing the rigidity characteristics, and is too rigid to be applied as the rubber composition and the rubber member in the present invention. There is no suggestion about improvement of strain and wear.

特開平9-59434では、電気抵抗が104〜1012Ωであるポリマーに、シランカップリング剤またはシリル化剤を添加することにより、印加電圧および環境の変化に対して電気抵抗が安定した導電性ゴム組成物を提供する方法が開示されている。しかしながら、本発明に用いられるハロゲノアルコキシシランは、開示されたシランカップリング剤の一般式から誘導されるものとは全く異なる化合物である。また、該公報では、高温高湿度環境下での電気抵抗が低下することを抑制することにより、電気抵抗の環境変動を小さくする方法が記載されている。しかしながら、本発明では、中温中湿度環境下と低温低湿度環境下の体積抵抗率を下げる(とりわけ低温低湿度環境下での体積抵抗率の上昇を抑制する)ことにより体積抵抗率の変動幅を小さくしており、体積抵抗率の変動幅を小さくする方法が根本的に異なる。更に、該公報には、圧縮永久歪率や磨耗性、研磨粉の付着等の諸物性の改善については何ら記載がなく、開示された内容から同様の効果が得られるとの示唆もなされていない。 In JP-A-9-59434, by adding a silane coupling agent or a silylating agent to a polymer having an electric resistance of 10 4 to 10 12 Ω, the electric resistance is stabilized with respect to changes in applied voltage and environment. A method for providing a conductive rubber composition is disclosed. However, the halogenoalkoxysilanes used in the present invention are completely different compounds than those derived from the general formula of the disclosed silane coupling agents. In addition, this publication describes a method for reducing the environmental fluctuation of the electrical resistance by suppressing the electrical resistance from decreasing in a high temperature and high humidity environment. However, in the present invention, the volume resistivity fluctuation range is reduced by lowering the volume resistivity in an intermediate temperature / humidity environment and in a low temperature / humidity environment (in particular, suppressing an increase in volume resistivity in a low temperature / humidity environment). The method of reducing the volume resistivity is fundamentally different. Furthermore, the publication does not describe any improvement in physical properties such as compression set rate, wear resistance, and adhesion of abrasive powder, and does not suggest that similar effects can be obtained from the disclosed contents. .

特開昭61-266458では、エピクロルヒドリン系ゴムに、含水珪酸、シランカップリング剤、特定の加硫剤として含複素環ポリチオール類またはその誘導体を添加することにより、耐酸敗ガソリン性に優れたゴム組成物を提供する方法が開示されている。しかしながら、該公報における特定の加硫剤をエピクロルヒドリン系ゴムに用いる時には、受酸剤として酸化マグネシウム、水酸化カルシウム等を併用しなければならないことは当業者において公知の事実である。酸化マグネシウム、水酸化カルシウムは吸湿性の高い化合物であるため、エピクロルヒドリン系ゴムに添加すると未加硫物の保存安定性が悪化し粘度上昇が起こる、また、環境変動による体積抵抗率の変動が大きくなるという問題がある。また、本発明に用いられる酸化亜鉛を該公報における特定の加硫剤の受酸剤として用いても、加硫速度が大幅に遅くなるため、実用上使用されることはない。更に、該公報には、磨耗性、研磨粉の付着等の諸物性の改善については何ら記載がなく、開示された内容から同様の効果が得られるとの示唆もなされていない。   In JP-A-61-266458, a rubber composition having excellent resistance to spoilage gasoline by adding hydrous silicic acid, a silane coupling agent, a heterocyclic polythiol containing a specific vulcanizing agent or a derivative thereof to epichlorohydrin rubber. A method of providing an article is disclosed. However, when a specific vulcanizing agent in the publication is used for epichlorohydrin rubber, it is a fact known to those skilled in the art that magnesium oxide, calcium hydroxide and the like must be used together as an acid acceptor. Magnesium oxide and calcium hydroxide are highly hygroscopic compounds, so when added to epichlorohydrin rubber, the storage stability of the unvulcanized product deteriorates and the viscosity increases, and the volume resistivity fluctuates greatly due to environmental fluctuations. There is a problem of becoming. Moreover, even if the zinc oxide used in the present invention is used as an acid acceptor for the specific vulcanizing agent in this publication, the vulcanization rate is greatly reduced, so that it is not practically used. Furthermore, the publication does not describe any improvement in physical properties such as wear and adhesion of abrasive powder, and does not suggest that similar effects can be obtained from the disclosed contents.

特開平2000−302921号公報JP 2000-302921 A 特開平9−59434号公報Japanese Patent Laid-Open No. 9-59434 特開昭61−266458号公報JP-A 61-266458

上記実情に鑑み、本発明の目的は、エピクロルヒドリン系ゴムの未加硫物の粘度上昇が抑制され、優れた耐圧縮永久歪性、耐磨耗性を示し、周囲の環境変動に対しても体積抵抗率の変動が小さい半導電性加硫ゴム用組成物およびその半導電性加硫ゴム用組成物を加硫してなる半導電性ゴム材料からなるローラーやゴムベルトを提供するところにある。   In view of the above circumstances, the object of the present invention is to suppress an increase in the viscosity of an unvulcanized epichlorohydrin rubber, exhibit excellent compression set resistance, wear resistance, and volume even with respect to surrounding environmental fluctuations. It is an object of the present invention to provide a composition for semiconductive vulcanized rubber having a small variation in resistivity and a roller or rubber belt made of a semiconductive rubber material obtained by vulcanizing the composition for semiconductive vulcanized rubber.

本発明者等は種々研究の結果、
(A)エピクロルヒドリン系ゴム 100重量部
(B)一般式(I)で表されるハロゲノアルコキシシラン 0.1重量部〜8.0重量部
(R1−O)3−Si−R2−X (I)
(式中、3個のRは互いに同一でも異なっていてもよく、炭素数1〜5の炭化水素基、Rは炭素数1〜9の炭化水素基、Xはハロゲン原子)
(C)珪酸を有する無機充填剤 5重量部〜40重量部未満
(D)酸化亜鉛 0.5〜20重量部
(E)チオウレア類および/または硫黄からなる加硫剤 0.2重量部〜10重量部を含有する組成物を用いることにより、上述の目的を達成することを見出し本発明を完成したものである。
As a result of various studies, the present inventors have
(A) Epichlorohydrin rubber 100 parts by weight (B) Halogenoalkoxysilane represented by general formula (I) 0.1 part by weight to 8.0 part by weight
(R 1 -O) 3 -Si-R 2 -X (I)
(In the formula, three R 1 s may be the same as or different from each other, a hydrocarbon group having 1 to 5 carbon atoms, R 2 is a hydrocarbon group having 1 to 9 carbon atoms, and X is a halogen atom).
(C) Inorganic filler having silicic acid 5 parts by weight to less than 40 parts by weight (D) Zinc oxide 0.5 to 20 parts by weight (E) A vulcanizing agent comprising thioureas and / or sulfur 0.2 parts by weight to 10 parts by weight The present invention has been completed by finding that the above-mentioned object is achieved by using the composition.

以下、本発明の構成につき詳細に説明する。
本発明に用いられるエピクロルヒドリン系ゴム(A)としては、エピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−アリルグリシジルエーテル共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体、エピクロルヒドリン−プロピレンオキサイド共重合体、エピクロルヒドリン−プロピレンオキサイド−アリルグリシジルエーテル三元共重合体、エピクロルヒドリン−エチレンオキサイド−プロピレンオキサイド−アリルグリシジルエーテル四元共重合体が挙げられる。中でも、エピクロルヒドリン単独重合体、エピクロルヒドリン−エチレンオキサイド共重合体、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体が好適である。エピクロルヒドリン系ゴムは、ゴム自身が半導電性を有したポリマー材料であるため、コピー機、プリンター等に使用される電子写真用プロセスの帯電、現像、転写などのローラやベルトに好適である。
Hereinafter, the configuration of the present invention will be described in detail.
As the epichlorohydrin rubber (A) used in the present invention, an epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, epichlorohydrin-allyl glycidyl ether copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer, Examples include epichlorohydrin-propylene oxide copolymer, epichlorohydrin-propylene oxide-allyl glycidyl ether terpolymer, and epichlorohydrin-ethylene oxide-propylene oxide-allyl glycidyl ether quaternary copolymer. Among these, epichlorohydrin homopolymer, epichlorohydrin-ethylene oxide copolymer, and epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer are preferable. Epichlorohydrin rubber is a polymer material having semiconductivity itself, and is therefore suitable for rollers and belts for charging, developing, transferring and the like in electrophotographic processes used in copying machines, printers and the like.

本発明の対象となるエピクロルヒドリン系ゴム(A)の成分組成は通常、エピクロルヒドリン−エチレンオキサイド共重合体では、エピクロルヒドリン成分が5mol%〜70mol%、エチレンオキサイド成分が30mol%〜95mol%であり、好ましくはエピクロルヒドリン成分が10mol%〜60mol%、エチレンオキサイド成分が40mol%〜90mol%であり、またエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル三元共重合体では、エピクロルヒドリン成分が5mol%〜75mol%、エチレンオキサイド成分が20mol%〜90mol%、アリルグリシジルエーテル成分が1mol%〜10mol%であり、好ましくはエピクロルヒドリン成分が10mol%〜65mol%、エチレンオキサイド成分が30mol%〜85mol%、アリルグリシジルエーテル成分が2mol%〜8mol%である。成分組成中のエチレンオキサイド成分の含有量が増加するほど、半導電性の向上、すなわち体積抵抗率の低下がみられる。   The component composition of the epichlorohydrin rubber (A) that is the subject of the present invention is usually an epichlorohydrin-ethylene oxide copolymer, in which the epichlorohydrin component is 5 mol% to 70 mol%, and the ethylene oxide component is 30 mol% to 95 mol%, preferably The epichlorohydrin component is 10 mol% to 60 mol%, the ethylene oxide component is 40 mol% to 90 mol%, and the epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer has an epichlorohydrin component of 5 mol% to 75 mol% and an ethylene oxide component of 20 mol% to 90 mol%, allyl glycidyl ether component is 1 mol% to 10 mol%, preferably epichlorohydrin component is 10 mol% to 65 mol%, ethylene The oxide component is 30 mol% to 85 mol%, and the allyl glycidyl ether component is 2 mol% to 8 mol%. As the content of the ethylene oxide component in the component composition increases, the semiconductivity is improved, that is, the volume resistivity is decreased.

上記、エピクロルヒドリン系ゴムの製造方法としては公知の重合法を採用できる。特に本出願人の米国特許第3,773,694号明細書に記載の有機錫−リン酸エステル縮合物を重合触媒とする方法は、重合物が高収率で得られるので好ましい。即ち、上記触媒の存在下で脂肪族又は芳香族炭化水素を溶媒として重合温度10〜70℃で5〜15時間重合させることにより、重合収率90%以上で製品を得ることができる。これ等のエピクロルヒドリン系ゴムの分子量範囲は100℃におけるムーニー粘度表示で30〜200のものが好ましく用いられる。   As a method for producing the epichlorohydrin rubber, a known polymerization method can be employed. In particular, the method using the organotin-phosphate ester condensate described in US Pat. No. 3,773,694 of the present applicant as a polymerization catalyst is preferable because the polymer can be obtained in a high yield. That is, a product can be obtained with a polymerization yield of 90% or more by polymerizing at a polymerization temperature of 10 to 70 ° C. for 5 to 15 hours using an aliphatic or aromatic hydrocarbon as a solvent in the presence of the catalyst. The molecular weight range of these epichlorohydrin rubbers is preferably 30 to 200 in terms of Mooney viscosity at 100 ° C.

本発明に用いられる一般式(I)で表されるハロゲノアルコキシシラン(B)としては、
(R1−O)3−Si−R2−X (I)
(式中、3個のRは互いに同一でも異なっていてもよく、炭素数1〜5の炭化水素基、Rは炭素数1〜9の炭化水素基、Xはハロゲン原子)
3個のRは互いに同一でも異なっていてもよく、炭素数1〜5の直鎖状ないしは分枝上の炭化水素基であれば特に限定されないが、特に―CH2基、―CH2―CH2基またはこれらの組み合わせが好ましい。Rは炭素数1〜9の直鎖状ないしは分枝上の炭化水素基であれば特に限定されないが、特に―CH2―基、―CH2CH2―基、―CH2CH2CH2―基、―CH2CH2−Ph−CH2―基(Phはフェニレン基)などが好ましい。Xはハロゲン原子であり、塩素、臭素、ヨウ素などが例示される。具体的な例示をすれば、クロロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、クロロプロピルジメトキモノエトキシシシラン、クロロプロピルジエトキモノメトキシシシランなどが好適である。
As the halogenoalkoxysilane (B) represented by the general formula (I) used in the present invention,
(R 1 -O) 3 -Si-R 2 -X (I)
(In the formula, three R 1 s may be the same as or different from each other, a hydrocarbon group having 1 to 5 carbon atoms, R 2 is a hydrocarbon group having 1 to 9 carbon atoms, and X is a halogen atom).
Three R 1 s may be the same or different from each other, and are not particularly limited as long as they are straight-chain or branched hydrocarbon groups having 1 to 5 carbon atoms, but in particular —CH 2 groups, —CH 2 — CH 2 groups or combinations thereof are preferred. R 2 is not particularly limited as long as it is a straight chain or branched hydrocarbon group having 1 to 9 carbon atoms, and in particular, —CH 2 — group, —CH 2 CH 2 — group, —CH 2 CH 2 CH 2 A —group, —CH 2 CH 2 —Ph—CH 2 — group (Ph is a phenylene group) and the like are preferable. X is a halogen atom, and examples thereof include chlorine, bromine and iodine. Specifically, chloropropyltrimethoxysilane, chloropropyltriethoxysilane, chloropropyldimethoxymonoethoxysilane, chloropropyldiethoxymonomethoxysilane and the like are suitable.

本発明に用いられるハロゲノアルコキシシラン(B)の配合割合は、エピクロルヒドリン系ゴム(A)100重量部に対して、0.1重量部〜8.0重量部、好ましくは0.2重量部〜5.0重量部、更に好ましくは0.3重量部〜3.0重量部が用いられる。この範囲未満の配合量では、本発明における耐圧縮永久歪性、耐摩耗性の効果が不十分となり、未加硫物の粘度上昇も起こりやすくなる。また、低温低湿度環境下での体積抵抗率の上昇を抑制する効果が小さくなる。一方、この範囲を超えると、未反応の(B)成分が析出する可能性があり、感光体を汚染する問題がある。   The proportion of halogenoalkoxysilane (B) used in the present invention is 0.1 to 8.0 parts by weight, preferably 0.2 to 5.0 parts by weight, more preferably 100 parts by weight of epichlorohydrin rubber (A). 0.3 parts by weight to 3.0 parts by weight are used. If the amount is less than this range, the effects of compression set resistance and wear resistance in the present invention are insufficient, and the viscosity of the unvulcanized product is likely to increase. Moreover, the effect which suppresses the raise of the volume resistivity in a low temperature low humidity environment becomes small. On the other hand, if it exceeds this range, there is a possibility that unreacted component (B) may be precipitated, and there is a problem of contaminating the photoreceptor.

本発明に用いられる珪酸を有する無機充填剤(C)としては、湿式法シリカ、乾式法シリカ、珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等が挙げられ、これらの群から1種または2種以上の組み合わせで用いて良いが、特に湿式法シリカ、乾式法シリカが好ましい。   Examples of the inorganic filler (C) having silicic acid used in the present invention include wet method silica, dry method silica, aluminum silicate, calcium silicate, magnesium silicate, and the like, and one or more combinations from these groups However, wet method silica and dry method silica are particularly preferable.

本発明に用いられる珪酸を有する無機充填剤(C)の配合割合は、エピクロルヒドリン系ゴム(A)100重量部に対して、5重量部〜40重量部未満が用いられ、好ましくは、7重量部〜30重量部が用いられる。この範囲未満の配合量では本発明における耐圧縮永久歪性、耐摩耗性の効果が不十分となり、一方この範囲を超えると得られた加硫物が剛直になりすぎて実用的なゴム物性が得られないからである。   The blending ratio of the inorganic filler (C) having silicic acid used in the present invention is 5 parts by weight to less than 40 parts by weight with respect to 100 parts by weight of the epichlorohydrin rubber (A), preferably 7 parts by weight. ~ 30 parts by weight are used. If the blending amount is less than this range, the effects of compression set resistance and wear resistance in the present invention are insufficient. On the other hand, if the blending amount exceeds this range, the resulting vulcanizate becomes too rigid and has practical rubber physical properties. It is because it cannot be obtained.

本発明の半導電性加硫ゴム用組成物において用いられる酸化亜鉛(D)は、エピクロルヒドリン系ゴムの受酸剤として作用するものである。酸化亜鉛をエピクロルヒドリン系ゴムに添加した場合は未加硫物の保存安定性が悪化し粘度上昇が起こる、あるいは環境変動による体積抵抗率の変動が大きくなるという問題が起こりにくい。   Zinc oxide (D) used in the composition for semiconductive vulcanized rubber of the present invention acts as an acid acceptor for epichlorohydrin rubber. When zinc oxide is added to the epichlorohydrin rubber, the storage stability of the unvulcanized product is deteriorated and the viscosity is increased, or the problem that the volume resistivity fluctuates greatly due to environmental fluctuations hardly occurs.

酸化亜鉛(D)の量は、エピクロルヒドリン系ゴム100重量部に対して0.5〜20重量部、好ましくは1〜10重量部である。この範囲未満の配合量では加硫が不十分となり、一方この範囲を超えると加硫物が剛直になりすぎて実用的なゴム物性が得られなくなる。   The amount of zinc oxide (D) is 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of epichlorohydrin rubber. If the blending amount is less than this range, the vulcanization becomes insufficient. On the other hand, if the blending amount exceeds this range, the vulcanizate becomes too rigid and practical rubber physical properties cannot be obtained.

また、本発明における効果を大きく逸脱しない範囲内で、エピクロルヒドリン系ゴムの公知の受酸剤を本発明で用いられる酸化亜鉛(D)との組み合わせで用いても良い。   In addition, a known acid acceptor of epichlorohydrin rubber may be used in combination with zinc oxide (D) used in the present invention within a range not greatly deviating from the effect in the present invention.

公知の受酸剤としては、周期表第(II)族金属酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第(IV)族金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩等、および下記一般式(II)で示される合成ハイドロタルサイト、および一般式(III)で示されるLi-Al系包接化合物が挙げられる。
MgZny AlZ (OH)2(x+y)+3Z-2 CO3・wH2O (II)
(xとyは0〜10の実数、ただしx+y=1〜10、zは1〜5の実数、wは0〜10の実数を表す)
〔Al2 Li(OH)6n X・mH2O (III)
(式中Xは、無機または有機のアニオンであり、nはアニオンXの価数であり、mは3以下の数)
Known acid acceptors include periodic table group (II) metal oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, periodic table group (IV). Metal oxide, basic carbonate, basic carboxylate, basic phosphite, basic sulfite, etc., and synthetic hydrotalcite represented by the following general formula (II), and general formula (III) Li-Al-based inclusion compounds represented by
Mg x Zn y Al Z (OH) 2 (x + y) + 3Z-2 CO 3 · wH 2 O (II)
(X and y are real numbers of 0 to 10, where x + y = 1 to 10, z is a real number of 1 to 5, and w is a real number of 0 to 10)
[Al 2 Li (OH) 6 ] n X · mH 2 O (III)
(Wherein X is an inorganic or organic anion, n is the valence of anion X, and m is a number of 3 or less)

受酸剤の具体的な例としては、マグネシア、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、生石灰、消石灰、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、酸化錫、塩基性亜リン酸錫をあげることができる。   Specific examples of the acid acceptor include magnesia, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, quicklime, slaked lime, calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, Examples thereof include calcium phosphate, tin oxide, and basic tin phosphite.

本発明におけるチオウレア類および/または硫黄からなる加硫剤(E)において、チオウレア類としてはエチレンチオウレア、1,3−ジエチルチオウレア等があげれれる。チオウレア類および/または硫黄からなる加硫剤は、通常、エピクロルヒドリン系ゴム100重量部に対して0.2〜10重量部、好ましくは0.5〜5重量部が用いられる。この範囲未満の配合量では架橋が不十分となり、一方この範囲を超えると得られた加硫物が剛直になりすぎて実用的なゴム物性が得られないからである。   In the vulcanizing agent (E) comprising thioureas and / or sulfur in the present invention, examples of the thioureas include ethylene thiourea and 1,3-diethylthiourea. The vulcanizing agent comprising thioureas and / or sulfur is usually used in an amount of 0.2 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of epichlorohydrin rubber. If the amount is less than this range, crosslinking is insufficient, while if it exceeds this range, the resulting vulcanizate becomes too rigid and practical rubber physical properties cannot be obtained.

また、本発明における効果を大きく逸脱しない範囲内で、エピクロルヒドリン系ゴムの公知の加硫剤を本発明で用いられるチオウレア類および/または硫黄からなる加硫剤(E)との組み合わせで用いても良い。   In addition, a known vulcanizing agent for epichlorohydrin rubber may be used in combination with the thiourea and / or sulfur vulcanizing agent (E) used in the present invention within a range not greatly deviating from the effect of the present invention. good.

エピクロルヒドン系ゴムの塩素原子の反応性を利用する公知の加硫剤、例えば、ポリアミン類(エチレンジアミン、ヘキサメチレンジアミン等が例示される)、チアジアゾール類(2,5−ジメルカプト−1,3,4−チアジアゾール等が例示される)、メルカプトトリアジン類(2,4,6−トリメルカプト−1,3,5−トリアジン等が例示される)、ピラジン類(ピラジン-2,3-ジチオカーボネート等が例示される)、キノキサリン類(6-メチルキノキサリン-2,3-ジチオカーボネート等が例示される)等や、側鎖二重合結合の反応性を利用する公知の加硫剤、例えば、有機過酸化物(tert−ブチルヒドロパーオキサイド等が例示される)、モルホリンポリスルフィド類(モルホリンジスルフィド等が例示される)、チオラムポリスルフィド類(テトラメチルチウラムジスルフィド等が例示される)等が挙げられる。これらの加硫剤は単独であるいは2種以上併用して用いられる。   Known vulcanizing agents utilizing the reactivity of the chlorine atom of epichlorohydrone rubber, such as polyamines (such as ethylenediamine and hexamethylenediamine), thiadiazoles (2,5-dimercapto-1,3,4-) Thiadiazole and the like), mercaptotriazines (such as 2,4,6-trimercapto-1,3,5-triazine) and pyrazines (such as pyrazine-2,3-dithiocarbonate) ), Quinoxalines (such as 6-methylquinoxaline-2,3-dithiocarbonate), etc., and known vulcanizing agents that utilize the reactivity of side chain bipolymer bonds, such as organic peroxides ( tert-butyl hydroperoxide and the like), morpholine polysulfides (exemplified morpholine disulfide and the like), thioram polysulfides (tetramethylthiura) And the like. These vulcanizing agents may be used alone or in combination of two or more.

また、加硫剤と共に公知の促進剤(加硫促進剤)および遅延剤を本発明による加硫ゴム用組成物に添加することもできる。加硫促進剤の例としては、1級、2級、3級アミン、該アミンの有機酸塩もしくはその付加物、アルデヒドアンモニア系促進剤、アルデヒドアミン系促進剤、グアニジン系促進剤、チアゾール系促進剤、スルフェンアミド系促進剤、チウラム系促進剤、ジチオカルバミン酸系促進剤、1、8-ジアザビシクロ(5,4,0)ウンデセン−7及びその弱酸塩、1,5−ジアザビシクロ(4,3,0)ノネン−5、6−ジブチルアミノ1,8−ジアザビシクロ(5,4,0)ウンデセン−7及びその弱酸塩、第4級アンモニウム化合物等を挙げることができる。また、遅延剤としては、N−シクロヘキサンチオフタルイミド等を挙げることができる。   Also, known accelerators (vulcanization accelerators) and retarders can be added together with the vulcanizing agent to the vulcanized rubber composition according to the present invention. Examples of vulcanization accelerators include primary, secondary, tertiary amines, organic acid salts of the amines or their adducts, aldehyde ammonia accelerators, aldehyde amine accelerators, guanidine accelerators, thiazole accelerators. Agent, sulfenamide accelerator, thiuram accelerator, dithiocarbamic acid accelerator, 1,8-diazabicyclo (5,4,0) undecene-7 and its weak acid salt, 1,5-diazabicyclo (4,3, 0) Nonene-5,6-dibutylamino 1,8-diazabicyclo (5,4,0) undecene-7 and its weak acid salts, quaternary ammonium compounds and the like can be mentioned. Examples of the retarder include N-cyclohexanethiophthalimide.

1級、2級、3級アミンとしては、特に炭素数5〜20の脂肪族または環式脂肪酸の第1、第2もしくは第3アミンが好ましく、このようなアミンの代表例は、n−ヘキシルアミン、オクチルアミン、ジブチルアミン、トリブチルアミン、ヘキサメチレンジアミンなどである。   As the primary, secondary and tertiary amines, primary, secondary or tertiary amines of aliphatic or cyclic fatty acids having 5 to 20 carbon atoms are particularly preferred, and typical examples of such amines are n-hexyl. Amine, octylamine, dibutylamine, tributylamine, hexamethylenediamine and the like.

上記アミンと塩を形成する有機酸としては、カルボン酸、カルバミン酸、2−メルカプトベンゾチアゾール、ジチオリン酸等が例示される。また上記アミンと付加物を形成する物質としては、アルコール類、オキシム類等が例示される。アミンの有機酸塩もしくは付加物の具体例としては、n−ブチルアミン・酢酸塩、ヘキサメチレンジアミン・カルバミン酸塩、2−メルカプトベンゾチアゾールのジシクロヘキシルアミン塩等が挙げられる。   Examples of the organic acid that forms a salt with the amine include carboxylic acid, carbamic acid, 2-mercaptobenzothiazole, and dithiophosphoric acid. Examples of the substance that forms an adduct with the amine include alcohols and oximes. Specific examples of the organic acid salt or adduct of amine include n-butylamine / acetate, hexamethylenediamine / carbamate, dicyclohexylamine salt of 2-mercaptobenzothiazole, and the like.

アルデヒドアンモニア系促進剤の例としては、ヘキサメチレンテトラミン、アセトアルデヒドとアンモニアの反応生成物等が挙げられる。アルデヒドアミン系促進剤の例としては、アミンと少なくとも1種の炭素数1〜7のアルデヒドとの縮合生成物であり、このようなアミンの例としては、アニリン、ブチルアミン等が挙げられる。これらのなかで、アニリンと少なくとも1種の炭素数1〜7のアルデヒドとの縮合生成物が好ましい。具体例としては、アニリンとブチルアルデヒドの縮合物、アニリンとヘプタアルデヒドの縮合物、アニリンとアセトアルデヒドおよびブチルアルデヒドの縮合物などがある。   Examples of the aldehyde ammonia accelerator include hexamethylenetetramine, a reaction product of acetaldehyde and ammonia, and the like. Examples of aldehyde amine accelerators are condensation products of an amine and at least one aldehyde having 1 to 7 carbon atoms. Examples of such amines include aniline and butylamine. Among these, a condensation product of aniline and at least one aldehyde having 1 to 7 carbon atoms is preferable. Specific examples include a condensate of aniline and butyraldehyde, a condensate of aniline and heptaldehyde, a condensate of aniline, acetaldehyde and butyraldehyde.

グアニジン系促進剤の例としては、ジフェニルグアニジン、ジトリルグアニジン等が挙げられる。   Examples of guanidine accelerators include diphenyl guanidine and ditolyl guanidine.

チアゾール系促進剤の例としては、2―メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、2―メルカプトベンゾチアゾールの亜鉛塩等が挙げられる。   Examples of thiazole accelerators include 2-mercaptobenzothiazole, dibenzothiazyl disulfide, zinc salt of 2-mercaptobenzothiazole, and the like.

スルフェンアミド系加硫促進剤の具体例としては、N−エチル−2−ベンゾチアジルスルフェンアミド、N−t−ブチル−2−ベンゾチアジルスルフェンアミド、N,N−ジ−シクロヘキシル−2−ベンゾチアジルスルフェンアミド、などが挙げられる。   Specific examples of the sulfenamide vulcanization accelerator include N-ethyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide, N, N-di-cyclohexyl- 2-benzothiazylsulfenamide and the like.

チウラム系加硫促進剤の具体例としては、テトラメチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。   Specific examples of the thiuram vulcanization accelerator include tetramethyl thiuram disulfide, tetramethyl thiuram monosulfide, tetraethyl thiuram disulfide, tetrabutyl thiuram disulfide, dipentamethylene thiuram tetrasulfide and the like.

ジチオカルバミン酸系促進剤の例としては、ペンタメチレンジチオカルバミン酸ピペリジン塩、ジメチルジチオカルバミン酸亜鉛、ジメチルカルバミン酸銅等が挙げられる。   Examples of the dithiocarbamate accelerator include pentamethylene dithiocarbamate piperidine salt, zinc dimethyldithiocarbamate, copper dimethylcarbamate and the like.

上記、加硫促進剤および遅延剤は、無機充填剤、オイル、ポリマー等に予備分散させた形で使用しても良い。これらの加硫促進剤および遅延剤は単独で用いてもよいし、2種類以上の組み合わせで用いてもよい。加硫促進剤または遅延剤の量は、エピクロルヒドン系ゴム100重量部に対してそれぞれ0〜10重量部、好ましくは0.1〜5重量部である。   The above vulcanization accelerator and retarder may be used in a form preliminarily dispersed in an inorganic filler, oil, polymer or the like. These vulcanization accelerators and retarders may be used alone or in combination of two or more. The amount of the vulcanization accelerator or retarder is 0 to 10 parts by weight, preferably 0.1 to 5 parts by weight, based on 100 parts by weight of epichlorohydrone rubber.

また、本発明の半導電性加硫ゴム用組成物は、当該技術分野で通常使用される他の添加剤、例えば滑剤、老化防止剤、充填剤、補強剤、可塑剤、加工助剤、顔料、発泡剤等を任意に配合できる。   In addition, the composition for semiconductive vulcanized rubber of the present invention includes other additives usually used in the technical field, such as lubricants, anti-aging agents, fillers, reinforcing agents, plasticizers, processing aids, pigments. A foaming agent and the like can be arbitrarily blended.

更に本発明の特性が失われない範囲で、当該技術分野で通常行われているゴム、樹脂等とのブレンドを行うことも可能である。本発明に用いられるゴムを例示すれば、ブタジエンゴム、スチレン−ブタジエンゴム、イソプレンゴム、天然ゴム、アクリロニトリル−ブタジエンゴム、アクリロニトリル−ブタジエン−イソプレンゴム、エチレン−プロピレン−ジエンゴム等が挙げられ、また樹脂を例示すれば、PMMA(ポリメタクリル酸メチル)樹脂、PS(ポリスチレン)樹脂、PUR(ポリウレタン)樹脂、PVC(ポリ塩化ビニル)樹脂、EVA(エチレン/酢酸ビニル)樹脂、AS(スチレン/アクリロニトリル)樹脂、PE(ポリエチレン)樹脂等が挙げられる。   Furthermore, blending with rubber, resin, etc., which is usually performed in the technical field, is also possible within the range where the characteristics of the present invention are not lost. Examples of the rubber used in the present invention include butadiene rubber, styrene-butadiene rubber, isoprene rubber, natural rubber, acrylonitrile-butadiene rubber, acrylonitrile-butadiene-isoprene rubber, ethylene-propylene-diene rubber, and resin. For example, PMMA (polymethyl methacrylate) resin, PS (polystyrene) resin, PUR (polyurethane) resin, PVC (polyvinyl chloride) resin, EVA (ethylene / vinyl acetate) resin, AS (styrene / acrylonitrile) resin, Examples include PE (polyethylene) resin.

更に、本発明の半導電性加硫ゴム用組成物において、導電付与剤として、アルカリ金属塩やアルカリ土類金属塩などの金属塩、カチオン種が一般式(IV)で表され、

Figure 2007099788
(式中、R3、R4、R5およびR6はそれぞれ同一でも異なっていてもよく、炭素原子数1〜18のアルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシ基あるいは主鎖がポリオキシエチレン鎖もしくはポリオキシプロピレン鎖で、末端にアルキル基、アルケニル基、アリール基、シクロアルキル基、アルコキシ基、水酸基を有する基である。)
アニオン種が過塩素酸イオンのような無機酸イオン、または、塩化物イオンのようなハロゲンイオンなどを有した第四級アンモニウム塩などを任意に添加してよい。 Furthermore, in the composition for a semiconductive vulcanized rubber of the present invention, as a conductivity-imparting agent, a metal salt such as an alkali metal salt or an alkaline earth metal salt, a cationic species is represented by the general formula (IV),
Figure 2007099788
(Wherein R 3 , R 4 , R 5 and R 6 may be the same or different, each having 1 to 18 carbon atoms, alkyl group, alkenyl group, aryl group, cycloalkyl group, alkoxy group or main chain) Is a group having a polyoxyethylene chain or a polyoxypropylene chain and having an alkyl group, an alkenyl group, an aryl group, a cycloalkyl group, an alkoxy group or a hydroxyl group at the terminal.
A quaternary ammonium salt having an anionic species such as an inorganic acid ion such as perchlorate ion or a halogen ion such as chloride ion may be optionally added.

これら導電付与剤となる塩において、カチオン種としては、例えば、Li、Na、K、Be、Mg、Ca、Baや遷移金属であるFe、Ni、Cu、Zn及びAg金属の陽イオンや、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム、テトラプロピルアンモニウム、オクタデシルトリメチルアンモニウム、ドデシルトリメチルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、トリメチル2−(2−メトキシプロキシ)エチルアンモニウム、ジメチルドデシル2−(2−ヒドロキシエトキシ)エチルアンモニウム、ジメチルオクタデシル2−(2−ヒドロキシエトキシ)エチルアンモニウム等の第四級アンモニウムイオン、テトラメチルホスホニウム、テトラプロピルホスホニウム等のホスホニウムイオンが挙げられる。また、アニオン種としては、例えば、塩素イオン、臭素イオン、ヨウ素イオン、酢酸イオン、硫酸イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6−、PF6−、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン等が挙げられ、これら任意の組み合わせから選ばれた化合物が導電付与剤として挙げられる。 In these salts that serve as the conductivity-imparting agent, examples of the cation species include Li, Na, K, Be, Mg, Ca, Ba, transition metals such as Fe, Ni, Cu, Zn, and Ag metal cations, tetra Methylammonium, tetraethylammonium, tetrabutylammonium, tetrapropylammonium, octadecyltrimethylammonium, dodecyltrimethylammonium, trimethylphenylammonium, benzyltrimethylammonium, trimethyl2- (2-methoxyproxy) ethylammonium, dimethyldodecyl-2- (2-hydroxy) Quaternary ammonium ions such as ethoxy) ethylammonium, dimethyloctadecyl 2- (2-hydroxyethoxy) ethylammonium, tetramethylphosphonium, tetrapropylphospho Phosphonium ions such Honiumu like. Examples of the anion species include chlorine ions, bromine ions, iodine ions, acetate ions, sulfate ions, perchlorate ions, thiocyanate ions, tetrafluoroborate ions, nitrate ions, AsF 6− , PF 6− , Examples include stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, and the like, and compounds selected from any combination thereof are listed as the conductivity-imparting agent.

導電付与剤の量は、エピクロルヒドリン系ゴム100重量部に対して0〜10重量部、例えば0〜5重量部である。   The amount of the conductivity-imparting agent is 0 to 10 parts by weight, for example, 0 to 5 parts by weight with respect to 100 parts by weight of epichlorohydrin rubber.

本発明の組成物の配合方法としては、従来ポリマー加工の分野において利用されている任意の手段、例えばミキシングロール、バンバリーミキサー、各種ニーダー類等を利用することができる。また、本発明に用いられるハロゲノアルコキシシラン(B)と珪酸を有する無機充填剤(C)とは、あらかじめ両者を混ぜ合わせ添加する方法や別々に添加する方法があるが、特に限定されない。   As a method for blending the composition of the present invention, any means conventionally used in the field of polymer processing, for example, a mixing roll, a Banbury mixer, various kneaders, and the like can be used. Further, the halogenoalkoxysilane (B) and the inorganic filler (C) having silicic acid used in the present invention include a method in which both are mixed and added in advance or a method in which they are added separately, but there is no particular limitation.

本発明の組成物は、通常100〜250℃に加熱することで加硫物とすることができる。加硫時間は温度によって異なるが、0.5〜300分の間で行われるのが普通である。加硫成型の方法としては、金型による圧縮成型、射出成型、スチーム缶、エアーバス、赤外線、あるいはマイクロウェーブによる加熱等任意の方法を用いることができる。   The composition of this invention can be normally made into a vulcanizate by heating at 100-250 degreeC. The vulcanization time varies depending on the temperature, but it is usually between 0.5 and 300 minutes. As a method of vulcanization molding, any method such as compression molding using a mold, injection molding, steam can, air bath, infrared ray, or heating using microwaves can be used.

本発明における磨耗性の改善とは、JIS K 6264に記載のアクロン磨耗試験機を用いた試験において、磨耗容量(cm3/1000回転)の絶対値が小さく、磨耗粉の付着が少ないことを言う。 The improvement of the wear resistance of the present invention, in a test using the Akron abrasion tester according to JIS K 6264, the absolute value of the wear volume (cm 3/1000 rotations) is small, means that less adhesion of wear powder .

本発明によれば、エピクロルヒドリン系ゴムの未加硫物の粘度上昇が抑制され、優れた耐圧縮永久歪性、耐磨耗性を示し、周囲の環境変動に対しても体積抵抗率の変動が小さい半導電性加硫ゴム用組成物およびその半導電性加硫ゴム用組成物を加硫してなる半導電性加硫物が得られる。従って、その加硫物は、コピー機、プリンター等の電子写真プロセスに使用される半導電性ゴムローラー、ゴムベルト等に広く応用可能である。特に帯電、現像または転写用のローラーに好適である。   According to the present invention, an increase in viscosity of an unvulcanized epichlorohydrin rubber is suppressed, and excellent compression set resistance and wear resistance are exhibited. Volume resistivity varies even with surrounding environmental variations. A small semiconductive vulcanized rubber composition and a semiconductive vulcanizate obtained by vulcanizing the semiconductive vulcanized rubber composition are obtained. Therefore, the vulcanizate can be widely applied to semiconductive rubber rollers, rubber belts and the like used in electrophotographic processes such as copying machines and printers. It is particularly suitable for a roller for charging, developing or transferring.

以下、本発明を実施例、比較例により具体的に説明する。但し、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples without departing from the gist thereof.

実施例1〜3、比較例1〜3
表1に示す各材料をニーダーおよびオープンロールで混練し、未加硫ゴムシートを作製した。得られた未加硫ゴムシートを用い、JIS K6300に定めるムーニースコーチ試験を行った。また同じく得られた未加硫ゴムシートを170℃で15分プレス加硫し、2mm厚の加硫物を得た。得られた加硫物を用い、引張試験の評価を行った。各評価試験は順にJIS K 6251に記載の方法に準じて行った。
Examples 1-3, Comparative Examples 1-3
Each material shown in Table 1 was kneaded with a kneader and an open roll to produce an unvulcanized rubber sheet. The Mooney scorch test defined in JIS K6300 was performed using the obtained unvulcanized rubber sheet. Similarly, the obtained unvulcanized rubber sheet was press vulcanized at 170 ° C. for 15 minutes to obtain a vulcanized material having a thickness of 2 mm. The tensile test was evaluated using the obtained vulcanizate. Each evaluation test was performed in accordance with the method described in JIS K 6251 in order.

圧縮永久歪試験は次のように行った。得られた上記未加硫ゴムシートを試験片作製用金型を用いて170℃で20分プレス加硫し、直径約29mm、高さ約12.5mmの円柱状試験片加硫物を得た。得られた加硫物を用い、JIS K 6262記載の方法に準じて試験を行った。   The compression set test was performed as follows. The obtained unvulcanized rubber sheet was press vulcanized at 170 ° C. for 20 minutes using a test piece preparation mold to obtain a vulcanized columnar test piece having a diameter of about 29 mm and a height of about 12.5 mm. . Using the obtained vulcanizate, a test was conducted according to the method described in JIS K 6262.

体積抵抗率の測定は次のように行った。加硫ゴムシート(厚さ2mm)および絶縁抵抗計(三菱油化(株)製 ハイレスタHP)を低温低湿度環境(10℃×15%RH)、中温中湿度環境(23℃×50%RH)、高温高湿度環境(35℃×85%RH)の環境条件下に設定した恒温恒湿槽中に入れ、24時間以上放置した後、10V印可し、1分後の値を読みとった。また、体積抵抗率の環境依存性は、低温低湿度環境(A)での体積抵抗率を高温高湿度環境(B)での体積抵抗率で除した値で定義する。   The volume resistivity was measured as follows. Vulcanized rubber sheet (thickness 2 mm) and insulation resistance meter (Hiresta HP, manufactured by Mitsubishi Yuka Co., Ltd.), low temperature and low humidity environment (10 ° C x 15% RH), medium temperature and medium humidity environment (23 ° C x 50% RH) The sample was placed in a constant temperature and humidity chamber set at high temperature and high humidity (35 ° C. x 85% RH), allowed to stand for 24 hours or more, 10 V was applied, and the value after 1 minute was read. The environmental dependency of the volume resistivity is defined by a value obtained by dividing the volume resistivity in the low temperature and low humidity environment (A) by the volume resistivity in the high temperature and high humidity environment (B).

磨耗性試験はアクロン磨耗試験機を用いて次のように行った。得られた上記未加硫ゴムシートを試験片作製用金型を用いて170℃で20分プレス加硫し、直径約63.5mm、厚さ約12.7mm、中心孔約12.7mmのリング状試験片加硫物を得た。得られた加硫物を用い、JIS K 6264に記載のA-2法に準じて試験を行った。なお、試験片と磨耗輪との傾角は15°、磨耗輪に掛けた荷重は4.5kg、試験片の回転速度は100回/分とし、試験後の磨耗粉の付着の有無を目視にて行った。   The abrasion test was performed as follows using an Akron abrasion tester. The obtained unvulcanized rubber sheet was press vulcanized at 170 ° C for 20 minutes using a test piece preparation mold, and a ring-shaped test piece having a diameter of about 63.5 mm, a thickness of about 12.7 mm, and a center hole of about 12.7 mm A vulcanizate was obtained. Using the obtained vulcanizate, a test was conducted according to the method A-2 described in JIS K 6264. In addition, the inclination angle between the test piece and the wear wheel is 15 °, the load applied to the wear wheel is 4.5 kg, the rotation speed of the test piece is 100 times / minute, and the presence or absence of wear powder after the test is visually observed. It was.

各試験方法より得られた実施例および比較例の試験結果を表2に示す。各表中、Vmは最低粘度、tはJIS K6300のムーニースコーチ試験に定めるムーニースコーチ時間、M100、はJIS K6251の引張試験試験に定める100%伸び時の引張応力、TbはJIS K6251の引張試験試験に定める引張強さ、EbはJIS K6251の引張試験試験に定める伸び、HsはJIS K6253の硬さ試験に定める硬さをそれぞれ意味する。 Table 2 shows the test results of Examples and Comparative Examples obtained by each test method. In each table, Vm minimum viscosity, t 5 Mooney scorch time specified in Mooney scorch test JIS K6300, M 100, tensile stress at 100% elongation stipulated in tensile test test JIS K6251, Tb is tensile JIS K6251 Tensile strength defined in the test test, Eb means elongation defined in the tensile test test of JIS K6251, and Hs means hardness defined in the hardness test of JIS K6253.

各環境下での体積抵抗率を第1図〜第3図に示す。   The volume resistivity under each environment is shown in FIGS.

Figure 2007099788
Figure 2007099788

Figure 2007099788
Figure 2007099788

各実施例と比較例との比較により明らかなように、実施例1〜3では、未加硫物の粘度上昇が抑制され、圧縮永久歪率性の改善された半導電性加硫物が得られることがわかる。磨耗性に関しても実施例1〜3は研磨時に磨耗粉付着が起こらない。また、図1〜図3から明らかなように、実施例1〜3では、中温中湿度環境下および低温低湿度環境下での体積抵抗率が低く、とりわけ低温低湿度環境下での体積抵抗率の上昇が抑制され、その結果、環境変動による体積抵抗率の変動幅も小さい。一方比較例1〜3では上述の特性のすべてをバランスよく満たしているものはない。   As is clear from the comparison between each example and the comparative example, in Examples 1 to 3, a semiconductive vulcanizate having an improved compression set was obtained in which the increase in viscosity of the unvulcanized product was suppressed. I understand that Regarding the wear resistance, in Examples 1 to 3, no abrasion powder adheres during polishing. In addition, as apparent from FIGS. 1 to 3, in Examples 1 to 3, the volume resistivity is low in an intermediate temperature / humidity environment and in a low temperature / low humidity environment, and in particular, the volume resistivity in a low temperature / low humidity environment. As a result, the volume resistivity fluctuation due to environmental fluctuation is small. On the other hand, Comparative Examples 1 to 3 do not satisfy all the above characteristics in a well-balanced manner.

本発明によれば、未加硫物の粘度上昇が抑制され、優れた耐圧縮永久歪性、耐磨耗性を示し、周囲の環境変動に対しても体積抵抗率の変動が小さい半導電性加硫ゴム用組成物およびその半導電性加硫ゴム用組成物を加硫してなる半導電性加硫ゴム材料が得られる。その加硫物は半導電性加硫ゴム材料として、コピー機、プリンター等の半導電性ゴムローラーや半導電性ゴムベルト等に広く応用可能である。   According to the present invention, the increase in the viscosity of the unvulcanized product is suppressed, excellent compression set resistance and wear resistance are exhibited, and the semiconductivity is small in the volume resistivity variation with respect to the surrounding environmental variation. A semiconductive vulcanized rubber material obtained by vulcanizing the vulcanized rubber composition and the semiconductive vulcanized rubber composition is obtained. The vulcanized product can be widely applied as a semiconductive vulcanized rubber material to a semiconductive rubber roller, a semiconductive rubber belt or the like of a copying machine or a printer.

実施例1、比較例1について、各環境下での体積抵抗率の変化を示す。About Example 1 and the comparative example 1, the change of the volume resistivity in each environment is shown. 実施例2、比較例2について、各環境下での体積抵抗率の変化を示す。About Example 2 and Comparative Example 2, the change of the volume resistivity in each environment is shown. 実施例3、比較例3について、各環境下での体積抵抗率の変化を示す。About Example 3 and the comparative example 3, the change of the volume resistivity in each environment is shown.

Claims (6)

下記(A)〜(E)成分を含有することを特徴とする半導電性加硫ゴム用組成物。
(A)エピクロルヒドリン系ゴム 100重量部
(B)一般式(I)で表されるハロゲノアルコキシシラン 0.1重量部〜8.0重量部
(R1−O)3−Si−R2−X (I)
(式中、3個のRは互いに同一でも異なっていてもよく、炭素数1〜5の炭化水素基、Rは炭素数1〜9の炭化水素基、Xはハロゲン原子)
(C)珪酸を有する無機充填剤 5重量部〜40重量部未満
(D)酸化亜鉛 0.5〜20重量部
(E)チオウレア類および/または硫黄からなる加硫剤 0.2重量部〜10重量部
A composition for a semiconductive vulcanized rubber comprising the following components (A) to (E):
(A) Epichlorohydrin rubber 100 parts by weight (B) Halogenoalkoxysilane represented by general formula (I) 0.1 part by weight to 8.0 part by weight
(R 1 -O) 3 -Si-R 2 -X (I)
(In the formula, three R 1 s may be the same as or different from each other, a hydrocarbon group having 1 to 5 carbon atoms, R 2 is a hydrocarbon group having 1 to 9 carbon atoms, and X is a halogen atom).
(C) Inorganic filler having silicic acid 5 parts by weight to less than 40 parts by weight (D) Zinc oxide 0.5 to 20 parts by weight (E) A vulcanizing agent comprising thioureas and / or sulfur 0.2 parts by weight to 10 parts by weight
珪酸を有する無機充填剤(C)が、湿式法シリカまたは乾式法シリカよりなる群から選ばれる少なくとも1種の無機充填剤であることを特徴とする請求項1に記載の半導電性加硫ゴム用組成物。   The semiconductive vulcanized rubber according to claim 1, wherein the inorganic filler (C) having silicic acid is at least one inorganic filler selected from the group consisting of wet process silica or dry process silica. Composition. 請求項1および2に記載の半導電性加硫ゴム用組成物を加硫してなる半導電性ローラーまたはベルト用ゴム材料。   A rubber material for a semiconductive roller or belt obtained by vulcanizing the composition for a semiconductive vulcanized rubber according to claim 1 or 2. 10℃/15%RH環境下での体積抵抗率を35℃/85%RH環境下での体積抵抗率で除した値が100.0以下であることを特徴とする請求項3に記載の半導電性ローラーまたはベルト用ゴム材料。   The semiconductivity according to claim 3, wherein a value obtained by dividing the volume resistivity in a 10 ° C / 15% RH environment by the volume resistivity in a 35 ° C / 85% RH environment is 100.0 or less. Rubber material for roller or belt. 請求項3および4に記載の半導電性ローラーまたはベルト用ゴム材料をJIS K 6264に記載のアクロン磨耗試験機で磨耗した時の磨耗容積が2.0(cm3/1000回転)以下であり、かつ、その磨耗粉が試験片に付着しないことを特徴とする半導電性加硫ゴム材料。 Wear volume when the semiconductive roller or belt rubber material according to claim 3 and 4 were worn by Akron abrasion tester according to JIS K 6264 is not less 2.0 (cm 3/1000 rotations) or less, A semiconductive vulcanized rubber material characterized in that the abrasion powder does not adhere to the test piece. 請求項3〜5に記載の半導電性ローラーまたはベルト用ゴム材料を使用することを特徴とするコピー機、プリンター等の電子写真用プロセスに使用される半導電性ゴムローラーまたはゴムベルト。   A semiconductive rubber roller or rubber belt for use in an electrophotographic process such as a copying machine or a printer, wherein the semiconductive roller or belt rubber material according to claim 3 is used.
JP2005287375A 2005-09-30 2005-09-30 Semiconductive vulcanized rubber composition, vulcanized rubber material, and vulcanized rubber member Active JP4941875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287375A JP4941875B2 (en) 2005-09-30 2005-09-30 Semiconductive vulcanized rubber composition, vulcanized rubber material, and vulcanized rubber member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287375A JP4941875B2 (en) 2005-09-30 2005-09-30 Semiconductive vulcanized rubber composition, vulcanized rubber material, and vulcanized rubber member

Publications (2)

Publication Number Publication Date
JP2007099788A true JP2007099788A (en) 2007-04-19
JP4941875B2 JP4941875B2 (en) 2012-05-30

Family

ID=38027054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287375A Active JP4941875B2 (en) 2005-09-30 2005-09-30 Semiconductive vulcanized rubber composition, vulcanized rubber material, and vulcanized rubber member

Country Status (1)

Country Link
JP (1) JP4941875B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027050A (en) * 2010-07-20 2012-02-09 Oki Data Corp Image forming apparatus
WO2013051689A1 (en) * 2011-10-07 2013-04-11 ダイソー株式会社 Semi-conductive rubber composition
JP2014189607A (en) * 2013-03-27 2014-10-06 Daiso Co Ltd Flexible rubber composition and vulcanizate thereof
CN107250272A (en) * 2015-02-17 2017-10-13 株式会社大阪曹达 Vibration-proof rubber composition and its crosslinked
CN109212927A (en) * 2017-06-29 2019-01-15 富士施乐株式会社 Conductive member, charging unit, transfer device, handle box and image forming apparatus
JP2019012100A (en) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 Conductive member, charging device, transfer device, process cartridge, and image forming apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959434A (en) * 1995-06-14 1997-03-04 Sumitomo Rubber Ind Ltd Conductive rubber composition
JPH11172050A (en) * 1997-12-16 1999-06-29 Sumitomo Rubber Ind Ltd Rubber composition
JP2001343839A (en) * 2000-05-31 2001-12-14 Toyo Tire & Rubber Co Ltd Semiconductive rubber raw material composition, method for manufacturing semiconductive rubber raw material composition and semiconductive seamless belt
JP2003280401A (en) * 2002-03-20 2003-10-02 Ricoh Co Ltd Transferring/separating device and image forming apparatus using it
JP2004204040A (en) * 2002-12-25 2004-07-22 Toyobo Co Ltd Thermoplastic polyester elastomer film with high weatherability
JP2004210882A (en) * 2002-12-27 2004-07-29 Polyplastics Co Fire-retardant resin composition
JP2004300192A (en) * 2003-03-28 2004-10-28 Mitsubishi Chemicals Corp Propylene resin composition and molded product thereof
JP2005062695A (en) * 2003-08-19 2005-03-10 Suzuka Fuji Xerox Co Ltd Elastomer composition for elastic member of electrophotographic apparatus
JP2005162918A (en) * 2003-12-04 2005-06-23 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition for precision molding and its molded article
JP2005179648A (en) * 2003-11-27 2005-07-07 Daicel Chem Ind Ltd Reinforcing agent for recycled resin and molding method using it
JP2005232210A (en) * 2004-02-17 2005-09-02 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition
JP2005232445A (en) * 2004-01-23 2005-09-02 Daiso Co Ltd Additive for rubber, and rubber composition using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959434A (en) * 1995-06-14 1997-03-04 Sumitomo Rubber Ind Ltd Conductive rubber composition
JPH11172050A (en) * 1997-12-16 1999-06-29 Sumitomo Rubber Ind Ltd Rubber composition
JP2001343839A (en) * 2000-05-31 2001-12-14 Toyo Tire & Rubber Co Ltd Semiconductive rubber raw material composition, method for manufacturing semiconductive rubber raw material composition and semiconductive seamless belt
JP2003280401A (en) * 2002-03-20 2003-10-02 Ricoh Co Ltd Transferring/separating device and image forming apparatus using it
JP2004204040A (en) * 2002-12-25 2004-07-22 Toyobo Co Ltd Thermoplastic polyester elastomer film with high weatherability
JP2004210882A (en) * 2002-12-27 2004-07-29 Polyplastics Co Fire-retardant resin composition
JP2004300192A (en) * 2003-03-28 2004-10-28 Mitsubishi Chemicals Corp Propylene resin composition and molded product thereof
JP2005062695A (en) * 2003-08-19 2005-03-10 Suzuka Fuji Xerox Co Ltd Elastomer composition for elastic member of electrophotographic apparatus
JP2005179648A (en) * 2003-11-27 2005-07-07 Daicel Chem Ind Ltd Reinforcing agent for recycled resin and molding method using it
JP2005162918A (en) * 2003-12-04 2005-06-23 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition for precision molding and its molded article
JP2005232445A (en) * 2004-01-23 2005-09-02 Daiso Co Ltd Additive for rubber, and rubber composition using the same
JP2005232210A (en) * 2004-02-17 2005-09-02 Sumitomo Chemical Co Ltd Liquid crystal polyester resin composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027050A (en) * 2010-07-20 2012-02-09 Oki Data Corp Image forming apparatus
WO2013051689A1 (en) * 2011-10-07 2013-04-11 ダイソー株式会社 Semi-conductive rubber composition
KR20140077180A (en) * 2011-10-07 2014-06-23 다이소 가부시키가이샤 Semi-conductive rubber composition
KR101918614B1 (en) 2011-10-07 2019-02-08 가부시키가이샤 오사카소다 Semi-conductive rubber composition
JP2014189607A (en) * 2013-03-27 2014-10-06 Daiso Co Ltd Flexible rubber composition and vulcanizate thereof
JPWO2016133075A1 (en) * 2015-02-17 2017-11-24 株式会社大阪ソーダ Anti-vibration rubber composition and cross-linked product thereof
KR20170118076A (en) * 2015-02-17 2017-10-24 가부시키가이샤 오사카소다 Composition for rubber vibration insulator, and crosslinked object obtained therefrom
EP3260499A4 (en) * 2015-02-17 2018-10-17 Osaka Soda Co. Ltd. Composition for rubber vibration insulator, and crosslinked object obtained therefrom
CN107250272A (en) * 2015-02-17 2017-10-13 株式会社大阪曹达 Vibration-proof rubber composition and its crosslinked
KR102368397B1 (en) * 2015-02-17 2022-02-25 가부시키가이샤 오사카소다 Composition for rubber vibration insulator, and crosslinked object obtained therefrom
CN109212927A (en) * 2017-06-29 2019-01-15 富士施乐株式会社 Conductive member, charging unit, transfer device, handle box and image forming apparatus
JP2019012100A (en) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 Conductive member, charging device, transfer device, process cartridge, and image forming apparatus
JP2019012101A (en) * 2017-06-29 2019-01-24 富士ゼロックス株式会社 Conductive member, charging device, transfer device, process cartridge, and image forming apparatus

Also Published As

Publication number Publication date
JP4941875B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5061641B2 (en) Rubber composition and vulcanized rubber molded body
JP4116043B2 (en) Rubber roller for image forming device
JP5660453B2 (en) Semiconductive rubber composition and vulcanized product thereof
JP4941875B2 (en) Semiconductive vulcanized rubber composition, vulcanized rubber material, and vulcanized rubber member
JP2007224215A (en) Semiconductive rubber composition, crosslinkable rubber composition and rubber-crosslinked product
US8735503B2 (en) Composition for semiconductive rubber, crosslinked rubber product, and semiconductive parts
JP2007098896A (en) Laminate for semiconductive rubber roller
JP4883476B2 (en) Halogen-containing elastomer vulcanizing composition
CN105301927A (en) Semiconductive roller
JP2000063656A (en) Semiconductive material
JP2008007597A (en) Rubber composition and vulcanized rubber-molded article
JP5582343B2 (en) Semiconductive rubber material
JP3948064B2 (en) Rubber composition
JP2000017118A (en) Electroconductive rubber composition and electroconductive roll
JP5093636B2 (en) Semiconductive vulcanized rubber composition
JP4085731B2 (en) Vulcanized rubber composition and vulcanized rubber material
JP4154781B2 (en) Semiconductive rubber material
JP2007009224A (en) Rubber composition
JP5024849B2 (en) Laminate for semiconductive rubber roller
JPWO2015133610A1 (en) Method for producing rubber composition
JP4565425B2 (en) Composition for semiconductive vulcanized rubber excellent in flame retardancy and vulcanized rubber member thereof
WO2019130950A1 (en) Semi-electroconductive rubber composition
US10795277B2 (en) Charging member for electrophotographic apparatus
JP2001261955A (en) Composition for semiconductive vulcanized rubber
JP2000204237A (en) Semiconductive rubber material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4941875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350