JP2007090811A - Member of fiber-reinforced plastic and manufacturing method of the same - Google Patents

Member of fiber-reinforced plastic and manufacturing method of the same Download PDF

Info

Publication number
JP2007090811A
JP2007090811A JP2005286340A JP2005286340A JP2007090811A JP 2007090811 A JP2007090811 A JP 2007090811A JP 2005286340 A JP2005286340 A JP 2005286340A JP 2005286340 A JP2005286340 A JP 2005286340A JP 2007090811 A JP2007090811 A JP 2007090811A
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
nonwoven fabric
plastic member
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005286340A
Other languages
Japanese (ja)
Inventor
Kenta Yasui
賢太 安井
Toshiya Kamae
俊也 釜江
Shiro Honda
史郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005286340A priority Critical patent/JP2007090811A/en
Publication of JP2007090811A publication Critical patent/JP2007090811A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic member that is lightweight, superior in mechanical characteristics such as strengths and modulus of elasticity, and has a smooth surface even on a complicatedly curved surface, and to provide its manufacturing method. <P>SOLUTION: The fiber-reinforced plastic member has the constituent [B], arranged on at least one surface of the constituent [A]. Here, the [A] has as a volumetric content (Vf) for the reinforcing fiber of 30-85%, and the [B] contains a nonwoven fabric of a reinforcing fiber which satisfies the expressions εB≥5 and S≥4, when the tensile elongation at break is defined as εB (%) and the tensile strength as S (MPa) and has as a volumetric content (Vf) of the reinforcing fiber of 1-30%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量であり強度や弾性率などの機械特性が優れ、なおかつ、平滑な表面を有する強化繊維プラスチック部材に関するものである。また、軽量であり、強度や弾性率などの機械特性が優れ、なおかつ、平面および3次元曲面を有する意匠表面が平滑な強化繊維プラスチック部材と、強化繊維プラスチック部材の製造法に関するものである。   The present invention relates to a reinforced fiber plastic member that is lightweight, has excellent mechanical properties such as strength and elastic modulus, and has a smooth surface. The present invention also relates to a reinforced fiber plastic member that is lightweight, has excellent mechanical properties such as strength and elastic modulus, and has a smooth design surface having a flat surface and a three-dimensional curved surface, and a method for producing the reinforced fiber plastic member.

ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維およびボロン繊維などの強化繊維と、マトリックス樹脂とからなる繊維強化プラスチックは、軽量であり、強度や弾性率などの機械特性が優れるため、航空機部材、自動車部材、鉄道車両部材、船舶部材、およびスポーツ用品用途および自動車用途などに広く用いられている。   Fiber reinforced plastic made of glass fiber, carbon fiber, aramid fiber, alumina fiber and boron fiber and matrix resin is lightweight and has excellent mechanical properties such as strength and elastic modulus. It is widely used for members, railway vehicle members, marine members, sports goods and automobiles.

また自動車部材、特にユーザーが直接目にすることが多いフード、ルーフ、トランクリッド、ドアなどの外板部材に繊維強化プラスチック部材を用いる場合、軽量であり、強度や弾性率などの機械特性が優れることに加え、意匠面には、写像が鮮明に映し出される様な、平滑な表面を有することが求められる。   In addition, when fiber reinforced plastic members are used for automobile parts, especially outer panels such as hoods, roofs, trunk lids, and doors that are often seen directly by users, they are lightweight and have excellent mechanical properties such as strength and elastic modulus. In addition, the design surface is required to have a smooth surface on which the mapping is clearly projected.

繊維強化プラスチック部材では、平滑な表面が得られにくいという問題がある。これは使用するマトリクス樹脂に硬化収縮、および成形後の冷却過程における熱収縮といった体積収縮があるためである。すなわち、繊維強化プラスチックの成形の際に、例えば織物、編み物といった凹凸を有する強化繊維基材を用いた場合、織物、編み物などの凹部におけるマトリックス樹脂の表層厚みが、他の部分における表層厚みより大きくなる。マトリックス樹脂の厚み方向の硬化収縮率および熱収縮率は、樹脂のどの部分でも一定であるため、このような表層厚みの差があると、凹部における厚み方向の収縮量が他の部分より大きくなる。この結果、繊維強化プラスチック部材の表面に凹凸が生じる。   A fiber reinforced plastic member has a problem that it is difficult to obtain a smooth surface. This is because the matrix resin to be used has volume shrinkage such as curing shrinkage and heat shrinkage in the cooling process after molding. That is, when forming a fiber reinforced plastic, for example, when a reinforced fiber base material having irregularities such as woven fabric or knitted fabric is used, the surface layer thickness of the matrix resin in the concave portion of the woven fabric or knitted fabric is larger than the surface layer thickness in other portions. Become. Since the curing shrinkage rate and thermal shrinkage rate in the thickness direction of the matrix resin are constant in any part of the resin, if there is such a difference in the surface layer thickness, the shrinkage amount in the thickness direction in the recesses is greater than in other parts. . As a result, irregularities occur on the surface of the fiber-reinforced plastic member.

このような問題に対して、意匠面となる表層の樹脂層に厚みを設け、表層の樹脂層に剛性を持たせることで、強化基材の凹部にある部分のマトリクス樹脂が収縮しても表層に凹凸が発生しないようにする方法が知られている。   For such a problem, even if the matrix resin in the concave portion of the reinforced substrate contracts, the surface layer is provided with a thickness on the surface resin layer that becomes the design surface, and the surface resin layer has rigidity. There is known a method for preventing unevenness from occurring on the surface.

例えば1つ目の方法として、サーフェスフィルム、あるいはサーフェスマテリアルと呼ばれる熱硬化性樹脂組成物からなるフィルムを用いる方法がある。この方法は、サーフェスフィルム、あるいはサーフェスマテリアルを意匠面となる側に配置し、硬化させ、表面層を形成する方法である。(特許文献1)。   For example, as a first method, there is a method using a surface film or a film made of a thermosetting resin composition called a surface material. This method is a method in which a surface film or surface material is disposed on the side to be a design surface and cured to form a surface layer. (Patent Document 1).

ところが上記の方法では、自動車のドア取手などの曲率の大きい3次元曲面に対しては、意匠面となる側に配置する上記サーフェスフィルムの屈曲性および伸縮性が不十分であることから、賦形時にしわが発生しやすい。その結果、表層の樹脂層の厚み差が生じ、表面凹凸が発生してしまう。   However, in the above method, the three-dimensional curved surface having a large curvature, such as a door handle of an automobile, is shaped by the insufficient flexibility and stretchability of the surface film disposed on the design surface side. Sometimes wrinkles are likely to occur. As a result, the thickness difference of the resin layer of the surface layer occurs, and surface unevenness occurs.

二つ目の方法としては、意匠面となる繊維強化プラスチックの最外層に有機繊維、天然繊維などからなる不織布を配置する方法がある(特許文献2)。   As a second method, there is a method in which a non-woven fabric made of organic fiber, natural fiber, or the like is disposed on the outermost layer of fiber reinforced plastic serving as a design surface (Patent Document 2).

これは上記不織布を成形型表面に配置し、引き続き成形型内に繊維強化基材をセットし、液状の硬化型樹脂液を注入することを特徴とする。繊維強化プラスチックの最外層に使用する基材として、ポリエステル繊維、ポリ塩化ビニル繊維、ポリプロピレン繊維、アクリル繊維、芳香族ポリアミド繊維などの合成繊維、スフや人絹などの半合成繊維、綿、羊毛などの天然繊維、などからなる伸張回復率に優れた不織布を使用する。   This is characterized in that the non-woven fabric is placed on the surface of the mold, a fiber-reinforced base material is subsequently set in the mold, and a liquid curable resin liquid is injected. Synthetic fibers such as polyester fiber, polyvinyl chloride fiber, polypropylene fiber, acrylic fiber, and aromatic polyamide fiber, semi-synthetic fibers such as sufu and human silk, cotton, wool, etc. A non-woven fabric made of natural fibers, etc., which has an excellent stretch recovery rate.

ところがこの方法では、3次元曲面に対する賦形性は優れるものの、最外層の繊維強化プラスチック層の剛性が十分ではなく、表面凹凸を軽減する効果としては不十分である。   However, in this method, although the formability with respect to the three-dimensional curved surface is excellent, the rigidity of the outermost fiber-reinforced plastic layer is not sufficient, and the effect of reducing the surface unevenness is insufficient.

3つ目の方法として、ゲルコートと呼ばれる液状の熱硬化性樹脂組成物を用いる方法がある。この方法では、不飽和ポリエステル樹脂、ビニルエステル樹脂などからなる液状の樹脂組成物を、噴霧器などを用いて所定の厚さになるように型に吹き付け、硬化させ、意匠面となる側に予め表面層を形成した後、繊維強化プラスチック部材を成形する(特許文献3、4)。   As a third method, there is a method using a liquid thermosetting resin composition called a gel coat. In this method, a liquid resin composition composed of an unsaturated polyester resin, a vinyl ester resin, or the like is sprayed onto a mold so as to have a predetermined thickness using a sprayer or the like, and is cured in advance on the surface to be a design surface. After forming the layer, a fiber-reinforced plastic member is molded (Patent Documents 3 and 4).

ところが、この方法では、表面層の剛性が十分ではなく、表面凹凸を軽減する効果としては不十分であり、表面の凹凸を低減する効果を発現するために表面層の厚みを十分取ることが必要となる。表面層の厚みを十分に取ることは、表面層および繊維強化プラスチック部材の重量増加につながり、繊維強化プラスチックの軽量性が損なわれる。   However, in this method, the rigidity of the surface layer is not sufficient, and the effect of reducing the surface unevenness is insufficient, and it is necessary to take a sufficient thickness of the surface layer in order to express the effect of reducing the surface unevenness It becomes. Taking a sufficient thickness of the surface layer leads to an increase in the weight of the surface layer and the fiber-reinforced plastic member, and the lightness of the fiber-reinforced plastic is impaired.

このように、繊維強化プラスチック部材の特徴を損なうことなく、複雑な3次元曲面においても平滑な表面を有する繊維強化プラスチック部材を得ることができる技術は、これまで見出されていなかった。
英国特許第2379633号明細書 特開平6−143305号公報 特開平8−207149号公報 特開2003−48263号公報
Thus, no technique has been found so far that can obtain a fiber-reinforced plastic member having a smooth surface even in a complicated three-dimensional curved surface without impairing the characteristics of the fiber-reinforced plastic member.
British Patent No. 2379633 JP-A-6-143305 JP-A-8-207149 JP 2003-48263 A

本発明の目的は、かかる従来技術の背景に鑑み、軽量であるという繊維強化プラスチックの特徴を損なうことなく、平滑な表面を有する繊維強化プラスチック部材を得ることができる技術を提供せんとするものである。   An object of the present invention is to provide a technique capable of obtaining a fiber-reinforced plastic member having a smooth surface without impairing the feature of the fiber-reinforced plastic that is lightweight in view of the background of the prior art. is there.

本発明は、上記課題を解決するため、次のような手段を採用するものである。すなわち、本発明の繊維強化プラスチック部材は、
(1)繊維強化プラスチック本体層[A]の少なくとも片面に、繊維強化プラスチック表面層[B]を配設した繊維強化プラスチック部材であって、各構成要素が以下を満たす繊維強化プラスチック部材。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
(2)繊維強化プラスチック本体層[A]の少なくとも片面に、低弾性率層[C]を介して繊維強化プラスチック表面層[B]を配設した繊維強化プラスチック部材であって、各構成要素が以下を満たす繊維強化プラスチック部材。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5 である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
[C]引張弾性率が、0.1〜500MPa
(3)構成要素[A]に含まれる強化繊維が炭素繊維および/またはガラス繊維を含む前記(1)または(2)のいずれかに記載の繊維強化プラスチック部材。
(4)構成要素[A]に含まれる強化繊維が織物形態および/または編み物形態である前記(1)〜(3)のいずれかに記載の繊維強化プラスチック部材。
(5)構成要素[B]に含まれる強化繊維不織布が、炭素繊維不織布である前記(1)〜(4)のいずれかに記載の繊維強化プラスチック部材。
(6)前記強化繊維不織布に含まれる強化繊維の繊維長が1〜50mmである前記(1)〜(5)のいずれかに記載の繊維強化プラスチック部材
(7)構成要素[B]に含まれる強化繊維不織布が、蛇行した強化繊維によって形成されている前記(1)〜(6)のいずれかに記載の強化繊維プラスチック部材。
(8)前記強化繊維不織布に含まれる強化繊維の断面形状が楕円形状を有する前記(1)〜(7)のいずれかに記載の繊維強化プラスチック部材。
(9)前記強化繊維不織布に含まれる強化繊維が繊維状バインダーによって結着されている前記(1)〜(8)のいずれかに記載の繊維強化プラスチック部材。
(10)前記強化繊維不織布の繊維目付が1〜200(g/m)である前記(1)〜(9)のいずれかに記載の繊維強化プラスチック部材。
(11)前記強化繊維不織布に含まれる強化繊維がピッチ系炭素繊維を含む前記(1)〜(10)のいずれかに記載の強化繊維プラスチック部材。
(12)構成要素[C]がエラストマーを含むことを特徴とする前記(1)〜(11)のいずれかに記載の繊維強化プラスチック部材。
(13)表面粗さが1.00μm以下であることを特徴とする、前記(1)〜(12)のいずれかに記載の繊維強化プラスチック部材。
(14)強化繊維の織物および/または編み物の両面または片面に引張破断伸び(%)εB≧5である強化繊維不織布を配設し、液状の熱硬化性樹脂組成物を含浸させ、加熱して硬化させることにより前記(1)〜(13)のいずれかに記載の繊維強化プラスチック部材を得る繊維強化プラスチック部材の製造法。
(15)次の構成要素「A1」の両面または片面に構成要素[B1]を配設し、加圧加熱することにより、前記(1)〜(13)のいずれかに記載の繊維強化プラスチックを得る繊維強化プラスチック部材の製造法。
「A1]強化繊維に未硬化の熱硬化性樹脂組成物を含浸させたプリプレグ
[B1]引張破断伸びをεB(%)としたとき、εB≧5引張強さである強化繊維不織布に、未硬化の熱硬化性樹脂を含む樹脂組成物を含浸させたシート
(16)次の構成要素「A2」の両面および片面に、構成要素[B2]を配設し加圧加熱することにより、前記(1)〜(13)のいずれかに記載の繊維強化プラスチックを得る繊維強化プラスチック部材の製造法。
[A2]シートモールディングコンパウンド(SMC)
[B2]引張破断伸びをεB(%)としたとき、εB≧5である強化繊維不織布に、未硬化の熱硬化性樹脂を含む樹脂組成物を含浸させたシート
In order to solve the above problems, the present invention employs the following means. That is, the fiber-reinforced plastic member of the present invention is
(1) A fiber-reinforced plastic member in which a fiber-reinforced plastic surface layer [B] is disposed on at least one surface of the fiber-reinforced plastic main body layer [A], and each component satisfies the following.
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%
(2) A fiber reinforced plastic member in which a fiber reinforced plastic surface layer [B] is disposed on at least one surface of the fiber reinforced plastic main body layer [A] via a low elastic modulus layer [C]. A fiber-reinforced plastic member that meets the following requirements.
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%
[C] Tensile elastic modulus is 0.1 to 500 MPa
(3) The fiber-reinforced plastic member according to any one of (1) and (2), wherein the reinforcing fiber included in the component [A] includes carbon fiber and / or glass fiber.
(4) The fiber-reinforced plastic member according to any one of (1) to (3), wherein the reinforcing fibers contained in the component [A] are in a woven form and / or a knitted form.
(5) The fiber-reinforced plastic member according to any one of (1) to (4), wherein the reinforcing fiber nonwoven fabric contained in the component [B] is a carbon fiber nonwoven fabric.
(6) The fiber length of the reinforcing fiber contained in the reinforcing fiber nonwoven fabric is 1 to 50 mm, and is contained in the fiber reinforced plastic member (7) component [B] according to any one of (1) to (5). The reinforcing fiber plastic member according to any one of (1) to (6), wherein the reinforcing fiber nonwoven fabric is formed of meandering reinforcing fibers.
(8) The fiber-reinforced plastic member according to any one of (1) to (7), wherein a cross-sectional shape of the reinforcing fiber included in the reinforcing fiber nonwoven fabric has an elliptical shape.
(9) The fiber-reinforced plastic member according to any one of (1) to (8), wherein the reinforcing fibers contained in the reinforcing fiber nonwoven fabric are bound by a fibrous binder.
(10) The fiber-reinforced plastic member according to any one of (1) to (9), wherein the fiber basis weight of the reinforcing fiber nonwoven fabric is 1 to 200 (g / m 2 ).
(11) The reinforcing fiber plastic member according to any one of (1) to (10), wherein the reinforcing fibers included in the reinforcing fiber nonwoven fabric include pitch-based carbon fibers.
(12) The fiber-reinforced plastic member according to any one of (1) to (11), wherein the constituent element [C] includes an elastomer.
(13) The fiber-reinforced plastic member according to any one of (1) to (12), wherein the surface roughness is 1.00 μm or less.
(14) A reinforcing fiber nonwoven fabric having tensile elongation at break (%) εB ≧ 5 is arranged on both sides or one side of a woven fabric and / or knitted fabric of reinforcing fiber, impregnated with a liquid thermosetting resin composition, and heated. A method for producing a fiber-reinforced plastic member, wherein the fiber-reinforced plastic member according to any one of (1) to (13) is obtained by curing.
(15) The fiber reinforced plastic according to any one of (1) to (13) is formed by disposing the component [B1] on both sides or one side of the next component “A1” and heating under pressure. A method for producing a fiber-reinforced plastic member.
[A1] Prepreg of reinforcing fiber impregnated with uncured thermosetting resin composition [B1] Reinforced fiber nonwoven fabric with εB ≧ 5 tensile strength when tensile elongation at break is εB (%) Sheet (16) impregnated with a resin composition containing the thermosetting resin of (1) The constituent element [B2] is placed on both sides and one side of the following constituent element “A2” and heated under pressure (1) )-(13) The manufacturing method of the fiber reinforced plastic member which obtains the fiber reinforced plastic in any one of.
[A2] Seat molding compound (SMC)
[B2] A sheet obtained by impregnating a reinforcing fiber nonwoven fabric with εB ≧ 5 with a resin composition containing an uncured thermosetting resin when the tensile elongation at break is εB (%)

本発明の繊維強化プラスチック部材は、軽量であり、強度や弾性率などの機械特性が優れ、なおかつ、平滑な表面を有しており、自動車の外板などに有用に用いることができる。   The fiber-reinforced plastic member of the present invention is lightweight, has excellent mechanical properties such as strength and elastic modulus, has a smooth surface, and can be usefully used for an automobile outer plate and the like.

本発明は、軽量であるという繊維強化プラスチック部材の特徴を損なうことなく、複雑な三次元曲面であっても平滑な表面を有する繊維強化プラスチック部材を得るために、繊維強化プラスチック本体層[A]の少なくとも片面に、繊維強化プラスチック表面層[B]を配設し、かつ各構成要素が以下を満たすことを特徴とする。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5、である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
また構成要素[A]の片面のみに構成要素[B]を配設した場合には、もう片面には構成要素[B]と異なる層や部材を配置してもよい。
本発明の構成要素[A]は、強化繊維とマトリックス樹脂とを含む、繊維強化プラスチックである。
In order to obtain a fiber-reinforced plastic member having a smooth surface even with a complicated three-dimensional curved surface without impairing the characteristics of the fiber-reinforced plastic member that is lightweight, the present invention provides a fiber-reinforced plastic body layer [A]. The fiber-reinforced plastic surface layer [B] is disposed on at least one surface of each of the above, and each component satisfies the following.
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%.
When the component [B] is disposed only on one side of the component [A], a layer or member different from the component [B] may be disposed on the other side.
The constituent element [A] of the present invention is a fiber reinforced plastic containing reinforcing fibers and a matrix resin.

構成要素[A]の強化繊維としては、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維およびボロン繊維などが挙げられる。なかでも、高強度、高弾性率であるという特性を有するガラス繊維、炭素繊維を用いることがより好ましく、軽量であることから炭素繊維、ガラス繊維を用いることがさらに好ましい。   Examples of the reinforcing fiber of the constituent element [A] include glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. Especially, it is more preferable to use the glass fiber and carbon fiber which have the characteristics of high strength and a high elastic modulus, and it is further more preferable to use carbon fiber and a glass fiber since it is lightweight.

構成要素[A]の繊維体積含有率は、軽量でありながら、高強度、高弾性率であるという優れた特性を有する繊維強化プラスチックが得られることから、30〜85%であることが好ましく、40〜85%であればより好ましく、50〜60%であればさらに好ましい。得られる繊維強化プラスチック部材の強度、弾性率が不十分である場合がある。85%よりも大きいと、強化繊維同士が接触、擦過し、強度が低下する場合がある。   The fiber volume content of the constituent element [A] is preferably 30 to 85% because a fiber reinforced plastic having excellent properties of high strength and high elastic modulus is obtained while being lightweight. It is more preferable if it is 40 to 85%, and it is more preferable if it is 50 to 60%. The strength and elastic modulus of the obtained fiber reinforced plastic member may be insufficient. If it is larger than 85%, the reinforcing fibers may come into contact with each other and rub against each other, resulting in a decrease in strength.

なお、ここでの繊維体積含有率は、ASTM D 3171に準拠して求める。   Here, the fiber volume content is determined in accordance with ASTM D 3171.

構成要素[A]に含まれる強化繊維の形態の具体例としては、取り扱い性に優れることからマット、織物および編み物の形態のものを用いることが好ましい。   As a specific example of the form of the reinforcing fiber contained in the constituent element [A], it is preferable to use a form of mat, woven fabric or knitted fabric because of excellent handleability.

構成要素[A]のマトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いることができる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂およびフェノール樹脂などが挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリスルホン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリエーテルイミド、ポリエーテルスルホンおよびポリエーテルケトンなどが挙げられる。なかでも、耐熱性、機械特性とのバランスが優れることから、熱硬化性樹脂を用いることが好ましい。熱硬化性樹脂のなかでも、耐熱性、機械特性とのバランスが特に優れ、硬化収縮が小さいという特徴を有することから、エポキシ樹脂を用いることが好ましい。また、マトリックス樹脂として熱硬化性樹脂、熱可塑性樹脂のいずれかをそれぞれ単独で使用しても良いし、配合して用いても良い。   As the matrix resin of the component [A], either a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include unsaturated polyester resins, vinyl ester resins, epoxy resins, and phenol resins. Examples of the thermoplastic resin include polyethylene, polypropylene, polyamide, polyamideimide, polycarbonate, polysulfone, polyacetal, polyphenylene ether, polyphenylene sulfide, polyarylate, polyetherimide, polyethersulfone, and polyetherketone. Among these, it is preferable to use a thermosetting resin because of excellent balance between heat resistance and mechanical properties. Among thermosetting resins, it is preferable to use an epoxy resin because it has a particularly excellent balance between heat resistance and mechanical properties and small curing shrinkage. Further, any one of a thermosetting resin and a thermoplastic resin may be used alone as the matrix resin, or they may be blended and used.

本発明における構成要素[B]は、強化繊維とマトリクス樹脂からなる繊維強化プラスチック層であり、引張破断伸び(%)εB≧5である強化繊維不織布を含み、その強化繊維の体積含有率(Vf)が1〜30%にある繊維強化プラスチック表面層である。なお引張破断伸び、および引張強さとは、強化繊維不織布形態におけるものであり、そこに含まれる強化繊維の特性ではない。   The component [B] in the present invention is a fiber reinforced plastic layer composed of reinforced fibers and a matrix resin, and includes a reinforced fiber nonwoven fabric having a tensile elongation at break (%) εB ≧ 5, and the volume content (Vf) of the reinforced fibers. ) Is a fiber reinforced plastic surface layer in 1 to 30%. Note that the tensile elongation at break and the tensile strength are in the form of a reinforcing fiber nonwoven fabric and are not the characteristics of the reinforcing fibers contained therein.

本発明者らは構成要素[B]に含まれる強化繊維不織布として、上述の不織布自体が伸び、変形することが可能なものを用いることに着想した。すなわち、意匠面への賦形の際に不織布を伸ばしながら配置することができるため、不織布にしわが発生せず、複雑な三次元曲面においても平滑な表面を得ることが可能となった。つまり、構成要素[B]に含まれる強化繊維不織布の引張破断伸び(%)εBが5%より小さいと、該強化繊維不織布を意匠面となる側に配置する際に該強化繊維不織布の屈曲性および伸縮性が不十分となり、賦形時にしわが発生し、その結果、表層に厚み差が生じ、新たな表面凹凸が発生してしまうということを見出し、本発明に想到したものである。
本発明における構成要素[B]のマトリクス樹脂としては熱硬化性樹脂、熱可塑性樹脂のいずれも用いることができる。
The present inventors have conceived of using, as the reinforcing fiber nonwoven fabric contained in the component [B], the above-mentioned nonwoven fabric itself that can stretch and deform. That is, since the nonwoven fabric can be arranged while being stretched during shaping on the design surface, wrinkles are not generated in the nonwoven fabric, and a smooth surface can be obtained even on a complicated three-dimensional curved surface. That is, if the tensile elongation at break (%) εB of the reinforcing fiber nonwoven contained in the constituent element [B] is less than 5%, the flexibility of the reinforcing fiber nonwoven is placed when the reinforcing fiber nonwoven is disposed on the design surface side. Further, the present inventors have found that the stretchability is insufficient, wrinkles are generated during shaping, and as a result, a difference in thickness occurs in the surface layer and new surface irregularities are generated, and the present invention has been conceived.
As the matrix resin of the component [B] in the present invention, either a thermosetting resin or a thermoplastic resin can be used.

構成要素[B]のマトリックス樹脂に含まれる熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂およびフェノール樹脂などが挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリカーボネート、ポリスルホン、ポリアセタール、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリエーテルイミド、ポリエーテルスルホンおよびポリエーテルケトンなどが挙げられる。なかでも、耐熱性、機械特性が優れる点から熱硬化性樹脂を用いることが好ましく、硬化収縮が小さいことから、エポキシ樹脂を用いることがさらに好ましい。また、マトリックス樹脂として熱硬化性樹脂、熱可塑性樹脂のいずれかをそれぞれ単独で使用しても良いし、配合して用いても良い。   Examples of the thermosetting resin contained in the matrix resin of the component [B] include unsaturated polyester resins, vinyl ester resins, epoxy resins, and phenol resins. Examples of the thermoplastic resin include polyethylene, polypropylene, polyamide, polyamideimide, polycarbonate, polysulfone, polyacetal, polyphenylene ether, polyphenylene sulfide, polyarylate, polyetherimide, polyethersulfone, and polyetherketone. Especially, it is preferable to use a thermosetting resin from the point which is excellent in heat resistance and a mechanical characteristic, and it is further more preferable to use an epoxy resin from hardening shrinkage | contraction being small. Further, any one of a thermosetting resin and a thermoplastic resin may be used alone as the matrix resin, or they may be blended and used.

構成要素[B]に用いる熱硬化性樹脂および/または熱可塑性樹脂は、構成要素[A]のマトリックス樹脂と同一であれば、成形が容易となることから好ましい。   If the thermosetting resin and / or the thermoplastic resin used for the component [B] is the same as the matrix resin of the component [A], it is preferable because molding is easy.

本発明における構成要素[B]に含まれる強化繊維不織布の引張強さは4MPa以上であることが好ましい。4MPa以下であると、意匠曲面への配置の際に加えた引張方向の張力によって不織布自体が破断する場合がある。   The tensile strength of the reinforcing fiber nonwoven contained in the component [B] in the present invention is preferably 4 MPa or more. If it is 4 MPa or less, the nonwoven fabric itself may break due to the tension in the tensile direction applied during the placement on the design curved surface.

本発明における構成要素[B]の繊維体積含有率は、1〜30%であることが必要である。また、10〜30%であればさらに好ましい。繊維体積含有率が1%よりも小さいと強化繊維の偏在が起こり、効果にムラが生じる。また30%よりも大きいと、構成要素[B]の重量が過度に大きくなり、繊維強化プラスチック部材の重量が増加し、軽量であるという繊維強化プラスチックの特徴が損なわれてしまうだけでなく、マトリックス樹脂の含浸性が低下し、プラスチック層内部および外部に樹脂未含浸部が生じ、表面平滑性の低下や強度の低下の原因となる。   The fiber volume content of the component [B] in the present invention needs to be 1 to 30%. Moreover, 10 to 30% is more preferable. If the fiber volume content is less than 1%, the reinforcing fibers are unevenly distributed, resulting in uneven effects. On the other hand, if it is larger than 30%, the weight of the component [B] becomes excessively large, the weight of the fiber reinforced plastic member is increased, and the feature of the fiber reinforced plastic such as light weight is impaired. The impregnation property of the resin is lowered, and a resin non-impregnated portion is formed inside and outside the plastic layer, which causes a reduction in surface smoothness and a strength.

本発明における構成要素[B]に含まれる強化繊維不織布は、軽量であり、得られる繊維強化プラスチック表面層が高強度、高弾性率であるという優れた特性を有することから、炭素繊維不織布であることが好ましい。炭素繊維ではない不織布を用いると、得られる繊維強化プラスチックの弾性率が不十分であり、本体層(構成要素[A])のマトリクス樹脂の収縮によって表面凹凸が生じる。またこの凹凸を軽減するためにさらに表面層の厚みをとる必要があり、繊維強化プラスチックの特性である軽量性が損なわれる。   The reinforcing fiber nonwoven fabric contained in the component [B] in the present invention is a carbon fiber nonwoven fabric because it is lightweight and has an excellent characteristic that the resulting fiber-reinforced plastic surface layer has high strength and high elastic modulus. It is preferable. When a non-carbon fiber non-woven fabric is used, the resulting fiber-reinforced plastic has an insufficient elastic modulus, and surface irregularities are caused by contraction of the matrix resin of the main body layer (component [A]). Moreover, in order to reduce this unevenness, it is necessary to further increase the thickness of the surface layer, and the lightness that is a characteristic of the fiber-reinforced plastic is impaired.

上記強化繊維不織布に使用される強化繊維の繊維長は、1〜50mmであることが好ましく、10〜40mmであることがより好ましく、10〜20mmであることがさらに好ましい。1mmより短いと、不織布を構成する強化繊維の結着が弱く、取り扱いにくい不織布となる。50mmより大きいと、不織布表面に凹凸ができる場合があり、かかる場合には表層のマトリクス樹脂の収縮によって表面凹凸が発生してしまうことがある。   The fiber length of the reinforcing fiber used for the reinforcing fiber nonwoven fabric is preferably 1 to 50 mm, more preferably 10 to 40 mm, and still more preferably 10 to 20 mm. When shorter than 1 mm, the binding of the reinforcing fibers constituting the nonwoven fabric is weak, and the nonwoven fabric is difficult to handle. If it is larger than 50 mm, unevenness may be formed on the surface of the nonwoven fabric, and in such a case, surface unevenness may occur due to shrinkage of the surface layer matrix resin.

上記強化繊維不織布に使用される強化繊維は、適度に伸び、複雑曲面にしわ、を発生することなく賦形できる特徴を有することから、蛇行した強化繊維で構成されていることことが好ましく、さらに繊維強化プラスチック層が高強度、高弾性率であるという優れた特性を有することからピッチ系炭素繊維が好ましく用いられる。ここでは、使用する強化繊維の単糸において、無張力状態での単糸の両端間の直線距離(l)と、張力をかけ、形状が変化しない直線状になるまで伸ばした時の両端間の直線距離(m)との比(l/m)が3/4以下になる状態であることが好ましく、1/2以下であることがより好ましい。4/5よりも大きいと、強化繊維不織布の引張破断伸びが不十分であり、複雑な三次元曲面に賦形する際にしわが発生する場合がある。   The reinforcing fiber used for the reinforcing fiber nonwoven fabric has a characteristic that it can be shaped without causing wrinkles on a moderately curved and complicated curved surface. Therefore, the reinforcing fiber is preferably composed of meandering reinforcing fibers. Pitch-based carbon fibers are preferably used because the fiber-reinforced plastic layer has excellent properties such as high strength and high elastic modulus. Here, in the single yarn of the reinforcing fiber to be used, the linear distance (l) between both ends of the single yarn in a non-tension state, and between the two ends when the tension is applied and stretched to a linear shape that does not change in shape. The ratio (l / m) to the linear distance (m) is preferably 3/4 or less, and more preferably 1/2 or less. If it is greater than 4/5, the tensile break elongation of the reinforcing fiber nonwoven fabric is insufficient, and wrinkles may occur when forming into a complicated three-dimensional curved surface.

また、上記強化繊維不織布に使用される強化繊維が繊維方向に蛇行する形状を有するために、強化繊維の断面形状を楕円形状に加工したものも使用できる。ここでは、楕円の最も径の小さい部分(短軸とする)a(nm)と最も径の大きい部分(長軸とする)b(nm)とすると、繊維断面の短軸/長軸の比a/bが2/3以下になる状態であることが好ましい。2/3よりも大きいと、強化繊維が真円状に近くなり、強化繊維を繊維方向に蛇行加工させることが困難になるため、それによって強化繊維不織布の引張破断伸びが不十分となり、複雑な三次元曲面に賦形する際にしわ等が発生する場合がある。   In addition, since the reinforcing fibers used in the reinforcing fiber nonwoven fabric have a shape meandering in the fiber direction, those obtained by processing the cross-sectional shape of the reinforcing fibers into an elliptical shape can also be used. Here, the short axis / long axis ratio a of the fiber cross section is assumed to be a portion having the smallest diameter (short axis) a (nm) and a portion having the largest diameter (major axis) b (nm). It is preferable that / b is 2/3 or less. If it is larger than 2/3, the reinforcing fibers become almost circular, and it becomes difficult to meander the reinforcing fibers in the fiber direction. Wrinkles and the like may occur when forming a three-dimensional curved surface.

構成要素[B]に含まれる強化繊維不織布の目付は繊維強化プラスチック層が軽量でかつ高強度、高弾性率を有するという優れた特性を有することから1〜200(g/m)であることが好ましく、30〜50(g/m)であることがさらに好ましい。1(g/m)より小さいと、繊維強化プラスチック層の繊維体積含有率(%)が不十分であり、表面層に十分な剛性が得られない。ひいては本体層(構成要素[A])のマトリクス樹脂の収縮によって表面凹凸が生じてしまう。200(g/m)より大きいと、繊維強化プラスチック層の内部および外部に樹脂未含浸部が生じやすく、表面平滑性の低下や強度の低下の原因になる場合がある。 The basis weight of the reinforced fiber nonwoven fabric contained in the component [B] is 1 to 200 (g / m 2 ) because the fiber reinforced plastic layer has excellent properties such as light weight, high strength, and high elastic modulus. It is more preferable that it is 30-50 (g / m < 2 >). If it is less than 1 (g / m 2 ), the fiber volume content (%) of the fiber reinforced plastic layer is insufficient, and sufficient rigidity cannot be obtained for the surface layer. As a result, the surface unevenness is caused by the shrinkage of the matrix resin of the main body layer (component [A]). If it is larger than 200 (g / m 2 ), a resin non-impregnated part tends to be generated inside and outside the fiber reinforced plastic layer, which may cause a decrease in surface smoothness and a decrease in strength.

構成要素[B]に含まれる強化繊維不織布は、適度な伸びを有する特性を持つため、使用される強化繊維が繊維状バインダーを介して結着し、強化繊維と繊維状バインダーからなる編み目構造をとることが好ましい。繊維状バインダーを用いない場合、強化繊維同士が一点で接着し、強化繊維不織布の伸びが不十分となり、複雑な三次元曲面に賦形する際にしわ、重なり等が発生する場合がある。   The reinforcing fiber nonwoven fabric contained in the component [B] has a property of having an appropriate elongation, and therefore, the reinforcing fiber used is bound through a fibrous binder, and has a stitch structure composed of the reinforcing fiber and the fibrous binder. It is preferable to take. When the fibrous binder is not used, the reinforcing fibers are bonded to each other at one point, the elongation of the reinforcing fiber nonwoven fabric becomes insufficient, and wrinkles, overlaps and the like may occur when forming a complicated three-dimensional curved surface.

上記繊維状バインダーには熱可塑性樹脂が好ましく用いられる。   A thermoplastic resin is preferably used for the fibrous binder.

上記繊維状バインダーに使用する熱可塑性樹脂の具体例としては、ポリアミド、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリウレタン、ポリ塩化ビニルなどが挙げられる。なかでも炭素繊維との接着性が良く強化繊維不織布の加工性に優れ、また強化繊維不織布の引張強度を十分に保つことができることから、ポリエチレンテレフタレートが好ましく用いられる。   Specific examples of the thermoplastic resin used for the fibrous binder include polyamide, polyethylene terephthalate, polyethylene, polypropylene, polyacrylonitrile, polyurethane, and polyvinyl chloride. Among these, polyethylene terephthalate is preferably used because of its good adhesion to carbon fibers and excellent processability of the reinforced fiber nonwoven fabric and the sufficient tensile strength of the reinforced fiber nonwoven fabric.

本発明における構成要素[B]に含まれる強化繊維不織布の製造法は特に限定されるものではないが、繊維密度が適度に高く、表面の平滑なものが得られることから、湿式抄紙法によって製造されたものがより好ましい。   Although the manufacturing method of the reinforced fiber nonwoven fabric contained in the component [B] in the present invention is not particularly limited, it is produced by a wet papermaking method because the fiber density is moderately high and a smooth surface can be obtained. More preferred is.

本発明における構成要素[B]に含まれる強化繊維不織布は、適度に伸び、自動車のドアの取手部などといった曲率の高い三次元曲面においても不織布にしわ、などが生じることなく配置できる優れた特徴を有するため、下記の条件(1)を満たす半径r(mm)の球体の表面に対してしわを作ることなく賦形可能であり、また賦型面と構成要素[B]が隙間を作ることなく賦形可能であることが好ましい。   The reinforcing fiber nonwoven fabric included in the component [B] in the present invention is an excellent feature that can be arranged without causing wrinkles or the like on a three-dimensional curved surface with a high degree of curvature, such as a handle of an automobile door. Therefore, it is possible to shape the surface of a sphere having a radius r (mm) satisfying the following condition (1) without creating wrinkles, and the forming surface and the component [B] create a gap. It is preferable that it can be shaped without any problems.

20≦r・・・(1)
本発明の別の様態として、繊維強化プラスチック本体層[A]の少なくとも片面に、低弾性率層[C]を介して繊維強化プラスチック表面層[B]を配設したものであって、各構成要素が以下を満たすものもある。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
[C]引張弾性率が、0.1〜500MPa
構成要素[A]に含まれる強化繊維の形態として織物、編み物などを用いる場合、その凹部におけるマトリックス樹脂の収縮により生じる応力を緩和する層として構成要素[C]を用いることができる。そして、応力を緩和する層として特定の性質を有する低弾性率層を用いることにより、表面の凹みを低減し、より平滑な表面を得ることができる。
20 ≦ r (1)
As another aspect of the present invention, a fiber reinforced plastic surface layer [B] is disposed on at least one surface of the fiber reinforced plastic main body layer [A] via a low elastic modulus layer [C]. Some elements satisfy the following:
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%
[C] Tensile elastic modulus is 0.1 to 500 MPa
When a woven fabric, a knitted fabric, or the like is used as the form of the reinforcing fiber included in the component [A], the component [C] can be used as a layer that relieves stress caused by the shrinkage of the matrix resin in the concave portion. Then, by using a low elastic modulus layer having specific properties as a layer for relieving stress, surface dents can be reduced and a smoother surface can be obtained.

構成要素[B]層の厚みは、50〜500μmであることが好ましく、100〜400μmであればより好ましく、200〜400μmであればさらに好ましい。50μmより小さいと、表面層の剛性が不十分となり、構成要素[A]に含まれる強化繊維に織物、編み物などを用いる場合、その凹部におけるマトリックス樹脂の収縮により生じる応力により表面凹凸が生じる場合がある。500μmより大きいと、表面層の重量が増加し、繊維強化プラスチックの特性である軽量性が損なわれる。   The thickness of the component [B] layer is preferably 50 to 500 μm, more preferably 100 to 400 μm, and even more preferably 200 to 400 μm. If it is less than 50 μm, the surface layer has insufficient rigidity, and when using woven fabric, knitted fabric or the like for the reinforcing fiber contained in the constituent element [A], surface unevenness may occur due to stress generated by contraction of the matrix resin in the recess. is there. When it is larger than 500 μm, the weight of the surface layer increases, and the lightness that is a characteristic of the fiber-reinforced plastic is impaired.

構成要素[B]は、引張弾性率が1000〜30000MPaであること好ましく、5000〜30000MPaであればより好ましい。1000MPaより小さいと、構成要素[B]の剛性が不十分であり、構成要素[A]に含まれる強化繊維に織物、編み物などを用いる場合、その凹部におけるマトリックス樹脂の収縮により生じる応力により表面凹凸が生じる場合がある。あるいは、表面凹凸が生じないようにするために、構成要素[B]が十分な厚みを有する必要があり、それゆえ表面層の重量が増加し、軽量であるという繊維強化プラスチック特性が損なわれてしまう。30000MPaより大きいと、仕上げ工程において、構成要素[B]をサンディングなどの処理をする際に、作業性が悪くなる。   Component [B] preferably has a tensile modulus of 1000 to 30000 MPa, more preferably 5000 to 30000 MPa. When the pressure is less than 1000 MPa, the rigidity of the component [B] is insufficient, and when using woven fabric, knitted fabric, or the like for the reinforcing fiber contained in the component [A], surface unevenness is caused by stress caused by the shrinkage of the matrix resin in the recess. May occur. Alternatively, in order to prevent surface irregularities, the component [B] needs to have a sufficient thickness, which increases the weight of the surface layer and impairs the fiber-reinforced plastic properties of being lightweight. End up. When it is larger than 30000 MPa, workability deteriorates when the component [B] is subjected to processing such as sanding in the finishing step.

本発明における構成要素[C]は引張弾性率が0.1〜500MPaである低弾性率層であり、0.1〜100MPaである低弾性率層であることがより好ましく、0.1〜50MPaであればさらに好ましい。構成要素[C]の引張弾性率が0.1MPaより小さいと、[C]層が容易に変形するため、[B]層が剥離しやすくなる。500MPaより大きいと、応力を緩和する効果が不十分であり、平滑な表面を得ることができない。   Component [C] in the present invention is a low elastic modulus layer having a tensile elastic modulus of 0.1 to 500 MPa, more preferably a low elastic modulus layer of 0.1 to 100 MPa, and 0.1 to 50 MPa. More preferably. When the tensile modulus of the constituent element [C] is smaller than 0.1 MPa, the [C] layer is easily deformed, so that the [B] layer is easily peeled off. If it is greater than 500 MPa, the effect of relaxing the stress is insufficient and a smooth surface cannot be obtained.

本発明における構成要素[C]としては適度に低弾性率であることから、エラストマーを用いることが好ましい。   As the component [C] in the present invention, it is preferable to use an elastomer since it has a moderately low elastic modulus.

エラストマーの具体例としては、天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム、水素化ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、エチレン酢酸ビニルゴム、アクリルゴム、ポリエーテルウレタンゴム、ポリエステルウレタンゴム、シリコーンゴム、フッ素ゴム、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどが挙げられる。なかでも、エラストマーとしては、0℃付近から100℃付近の比較的広い温度範囲で安定して使用できることからアクリロニトリルブタジエンゴム、水素化ニトリルゴム、エチレンプロピレンゴム、シリコーンゴム、フッ素ゴムから選ばれる少なくとも1種類が好ましく用いられる。 本発明の繊維強化プラスチック部材は、少なくとも片面の表面粗さが、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましく、さらには0.2μm以下であることが好ましい。   Specific examples of elastomers include natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, acrylonitrile butadiene rubber, hydrogenated nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene vinyl acetate rubber, acrylic rubber, polyether urethane rubber, polyester urethane rubber, Examples thereof include silicone rubber, fluororubber, polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. Among these, as the elastomer, since it can be stably used in a relatively wide temperature range from about 0 ° C. to about 100 ° C., at least one selected from acrylonitrile butadiene rubber, hydrogenated nitrile rubber, ethylene propylene rubber, silicone rubber, and fluoro rubber is used. Kinds are preferably used. The fiber reinforced plastic member of the present invention has a surface roughness of at least one surface of preferably 1.0 μm or less, more preferably 0.5 μm or less, and further preferably 0.2 μm or less.

表面粗さは接触式の表面粗さ計を用いる。5cm×2cmサイズにカットした測定サンプルの、任意の3箇所〜5箇所を選び、検出針を測定スピード2mm/s、測定距離は10mmで接触させ、表面凹凸形状のプロファイルを得た。表面凹凸のプロファイルは、凹凸の高さが十分に認識できるように縦方向に5000〜20000倍、横方向に10倍して、凹凸形状の幅(凹凸の凹部から凸部までの高さ)を各プロファイルにつき3箇所、合計15カ所定規で計測し、平均値を求め、倍率から実測値を算出した。   For the surface roughness, a contact type surface roughness meter is used. Arbitrary 3 to 5 locations of the measurement sample cut to a size of 5 cm × 2 cm were selected, and the detection needle was brought into contact at a measurement speed of 2 mm / s and a measurement distance of 10 mm to obtain a surface uneven profile. The profile of the surface unevenness is 5,000 to 20000 times in the vertical direction and 10 times in the horizontal direction so that the height of the unevenness can be fully recognized, and the width of the uneven shape (height from the concave portion to the convex portion). Each profile was measured with a total of 15 predetermined rules at three locations, an average value was obtained, and an actual measurement value was calculated from the magnification.

本発明の繊維強化プラスチック部材の製造には、従来知られている繊維強化プラスチック部材のいずれの製造法も用いることができる。   For producing the fiber reinforced plastic member of the present invention, any conventionally known method for producing a fiber reinforced plastic member can be used.

本発明の繊維強化プラスチック部材の製造法としては、強化繊維基材を成形型に配置し、液状の熱硬化性樹脂組成物を含浸させた後、加熱して硬化させることを特徴とするレジン・トランスファー・モールディング(RTM)法、プリプレグを用いる方法、シート・モールド・コンパウンド(SMC)を用いる方法などが挙げられる。なかでも、複雑形状を有する繊維強化プラスチック部材を容易に製造することができることから、RTM法を用いることが好ましい。   As a method for producing the fiber-reinforced plastic member of the present invention, a resin is characterized in that a reinforcing fiber substrate is placed in a mold, impregnated with a liquid thermosetting resin composition, and then heated and cured. Examples thereof include a transfer molding (RTM) method, a method using a prepreg, and a method using a sheet mold compound (SMC). Especially, since the fiber reinforced plastic member which has complicated shape can be manufactured easily, it is preferable to use the RTM method.

RTM法を用いる場合、例えば、次のような手順で製造することができる。まず、型内の意匠面側に強化繊維不織布を配置し、次に強化繊維の織物、編み物などの基材を配置する。型を閉じ、液状の熱硬化性樹脂組成物を強化繊維に含浸させた後、硬化させ、繊維強化プラスチック部材を製造する。このとき、強化繊維不織布に含浸した液状の熱硬化性樹脂が硬化して構成要素[B]になり、強化繊維の基材に含浸した液状の熱硬化性樹脂が硬化して構成要素[A]になる。   When using the RTM method, for example, it can be produced by the following procedure. First, a reinforcing fiber nonwoven fabric is arranged on the design surface side in the mold, and then a substrate such as a reinforcing fiber woven fabric or knitted fabric is arranged. The mold is closed, and a liquid thermosetting resin composition is impregnated into a reinforcing fiber and then cured to produce a fiber-reinforced plastic member. At this time, the liquid thermosetting resin impregnated in the reinforcing fiber nonwoven fabric is cured to be a component [B], and the liquid thermosetting resin impregnated in the reinforcing fiber base is cured to be a component [A]. become.

プリプレグを用いる場合はまず、意匠面側に強化繊維不織布と未硬化の熱硬化性樹脂組成物を含むシートを構成要素[B1]としてとして配置し、次にプリプレグを構成要素[A1]として積層する。バグフィルムでバギングした後、オートクレーブを用いて、加熱、加圧する。このとき、表面層として配置した構成要素[B1]に含まれる熱硬化性樹脂組成物が硬化して構成要素[B]になり、構成要素[A1]の熱硬化性樹脂が硬化して構成要素[A]になる。   When using a prepreg, first, a sheet containing a reinforcing fiber nonwoven fabric and an uncured thermosetting resin composition is arranged as a constituent element [B1] on the design surface side, and then the prepreg is laminated as a constituent element [A1]. . After bagging with a bag film, heat and pressurize using an autoclave. At this time, the thermosetting resin composition contained in the component [B1] arranged as the surface layer is cured to be the component [B], and the thermosetting resin of the component [A1] is cured to be a component. [A].

SMCを用いる場合はまず、意匠面側に強化繊維不織布と熱硬化性樹脂組成物を含むシートを構成要素[B2]として配置し、引き続きSMCを構成要素[A2]として積層する。次に、プレスを用いて、加熱、加圧し、繊維強化プラスチック部材を製造する。このとき、表面層として配置した構成要素[B2]に含まれる熱硬化性樹脂が硬化してが構成要素[B]になり、構成要素[A2]に含まれる熱硬化性樹脂が硬化して構成要素[A]になる。   When SMC is used, first, a sheet containing a reinforcing fiber nonwoven fabric and a thermosetting resin composition is arranged as a constituent element [B2] on the design surface side, and SMC is subsequently laminated as a constituent element [A2]. Next, it heats and pressurizes using a press and manufactures a fiber reinforced plastic member. At this time, the thermosetting resin contained in the component [B2] arranged as the surface layer is cured to form the component [B], and the thermosetting resin contained in the component [A2] is cured. Become element [A].

以下、実施例によって本発明を具体的に説明する。実施例および比較例で用いた材料は以下のとおりである。
1.炭素繊維織物:
本発明における繊維強化プラスチック本体層に含まれる強化繊維の織物には、炭素繊維織物であるCO6343B(品番、“トレカ(登録商標)”T300−3K使用、目付190g/m、東レ(株)製)を用いた。
2.炭素繊維不織布
本発明における繊維強化プラスチック表面層に含まれる炭素繊維不織布は、ピッチ系炭素繊維不織布(品番S−3504F1、目付34g/m2、オリベスト(株)製)および、PAN系炭素繊維不織布(品番BO030、目付30g/m、東レ(株)製)を使用した。
3.エラストマー
本発明における低弾性率層としては、中高ニトリルグレードであるアクリロニトリルブタジエンゴムシート(NBRシート、クレハエラストマー(株)製、引張弾性率:3MPa、ショアA硬度:40、ガラス転移温度:−40℃、融点:なし、厚み100μm)を用いた。
4.RTM用熱硬化性樹脂
“エピコート(登録商標)”828(登録商標、ジャパンエポキシレジン社製、ビスフェノールA型エポキシ樹脂)100重量部に、“キュアゾール(登録商標)”2E4MZ(四国化成工業(株)製、2ーエチルー4ーメチルイミダゾール、アニオン重合型硬化剤)3重量部を加え、よく撹拌して液状のエポキシ樹脂組成物を用いた。
Hereinafter, the present invention will be described specifically by way of examples. The materials used in Examples and Comparative Examples are as follows.
1. Carbon fiber fabric:
The woven fabric of the reinforcing fiber contained in the fiber-reinforced plastic main body layer in the present invention is carbon fiber woven fabric CO6343B (product number, “Torayca (registered trademark)” T300-3K used, basis weight 190 g / m 2 , manufactured by Toray Industries, Inc. ) Was used.
2. Carbon fiber nonwoven fabric The carbon fiber nonwoven fabric contained in the fiber reinforced plastic surface layer according to the present invention includes a pitch-based carbon fiber nonwoven fabric (product number S-3504F1, basis weight 34 g / m2, manufactured by Olivest Co., Ltd.) and a PAN-based carbon fiber nonwoven fabric (product number). BO030, weight per unit area 30 g / m 2 , manufactured by Toray Industries, Inc.) was used.
3. Elastomer As the low elastic modulus layer in the present invention, a medium-high nitrile grade acrylonitrile butadiene rubber sheet (NBR sheet, manufactured by Kureha Elastomer Co., Ltd., tensile elastic modulus: 3 MPa, Shore A hardness: 40, glass transition temperature: −40 ° C. , Melting point: none, thickness 100 μm).
4). Thermosetting resin for RTM "Epicoat (registered trademark)" 828 (registered trademark, manufactured by Japan Epoxy Resin Co., Ltd., bisphenol A type epoxy resin) 100 parts by weight, "Cureazole (registered trademark)" 2E4MZ (Shikoku Chemicals Co., Ltd.) 3 parts by weight of 2-ethyl-4-methylimidazole, anionic polymerization type curing agent) was added and stirred well to use a liquid epoxy resin composition.

次に、実施例および比較例における測定法を以下に示す。
1.繊維強化プラスチック本体層および、繊維強化プラスチック表面層の繊維体積含有率
繊維体積含有率は、ASTM D 3171に準拠して求めた。
2.繊維強化プラスチック本体層および、繊維強化プラスチック表面層の弾性率
引張弾性率は、インストロン5565(インストロン社製)を用い、ASTM D 638−02に準拠して測定した。ただし、測定温度は23℃とし、測定スピードは10mm/minとした。また、歪み−応力曲線における歪みが0.1%から0.3%の間での傾きから引張弾性率を求めた。
3.繊維強化プラスチック表面層の引張破断伸び
引張破断伸びは、JIS P 8113に準拠して求めた。
4.強化繊維不織布の繊維単糸断面形状の測定
繊維強化プラスチック表面層に含まれる強化繊維不織布を10mm×10mmにカットし、4つの切断面のうち1つをSEMにて500倍に拡大し、撮影した。次に、撮影した写真中の単糸切断面の中で、映像に対して垂直である部分を10箇所選び出し、直径が一番小さい部分をl、最も大きい部分をmとして定規で測定し、l/mを算出した。10箇所それぞれについて行い、平均値を算出した。
5.強化繊維不織布の繊維単糸蛇行形状の測定
繊維強化プラスチック表面層に含まれる強化繊維不織布から、20本の単糸を選び出し、その単糸それぞれについて、無張力の状態で両端間の距離aを測定し、引き続きその単糸を手で伸ばし、これ以上伸びなくなった状態での両端間の距離bを測定した。20本それぞれについてa/bを求め、平均値を算出した。
6.曲面賦形性の評価
半径r=1000(mm)、r=100(mm)、r=20(mm)の球体面を用意し、そこにスプレータイプ接着剤を吹きかけ、その上に強化繊維不織布1plyを、押し当てるように貼り付けた。その際不織布表面に、しわが発生したかどうかを目視で確認した。評価は3つの球体面それぞれについて行った。
Next, measurement methods in Examples and Comparative Examples are shown below.
1. Fiber Volume Content of Fiber Reinforced Plastic Body Layer and Fiber Reinforced Plastic Surface Layer The fiber volume content was determined according to ASTM D 3171.
2. Elastic Modulus of Fiber Reinforced Plastic Body Layer and Fiber Reinforced Plastic Surface Layer The tensile elastic modulus was measured in accordance with ASTM D 638-02 using Instron 5565 (Instron). However, the measurement temperature was 23 ° C., and the measurement speed was 10 mm / min. Moreover, the tensile elastic modulus was calculated | required from the inclination in the strain in a strain-stress curve between 0.1% and 0.3%.
3. Tensile Breaking Elongation of Fiber Reinforced Plastic Surface Layer The tensile breaking elongation was determined in accordance with JIS P8113.
4). Measurement of fiber single yarn cross-sectional shape of reinforcing fiber nonwoven fabric The reinforcing fiber nonwoven fabric contained in the surface layer of the fiber reinforced plastic was cut into 10 mm × 10 mm, and one of the four cut surfaces was magnified 500 times with a SEM and photographed. . Next, in the photographed single yarn cut surface, 10 portions that are perpendicular to the image are selected, and the portion with the smallest diameter is l and the largest portion is m and measured with a ruler. / M was calculated. An average value was calculated for each of ten locations.
5. Measurement of fiber single yarn meandering shape of reinforced fiber nonwoven fabric 20 single yarns are selected from the reinforced fiber nonwoven fabric contained in the fiber reinforced plastic surface layer, and the distance a between both ends is measured for each of the single yarns in a tensionless state. Then, the single yarn was continuously stretched by hand, and the distance b between both ends in a state where it was not stretched any more was measured. The a / b was obtained for each of the 20 and the average value was calculated.
6). Evaluation of curved surface formability A spherical surface with radii r = 1000 (mm), r = 100 (mm), r = 20 (mm) is prepared, spray type adhesive is sprayed thereon, and reinforced fiber nonwoven fabric 1ply is formed thereon. Was pasted to press. At that time, it was visually confirmed whether or not wrinkles were generated on the surface of the nonwoven fabric. Evaluation was performed for each of the three spherical surfaces.

また、繊維強化プラスチック作製後に、部材表面を目視にて観察し、大きな凹凸等が発生しているかどうかを目視により確認した。
7.繊維強化プラスチック表面層に含まれる強化繊維不織布の目付
強化繊維不織布を長さ5cm、幅2cmのサイズにカッターを用いてカットし、ノギスを用いて長さ、幅を正確に計測し、面積を求めた。次に、天秤を用いてサンプルの重量を測定した。得られた面積、試験片の重量から強化繊維不織布の目付を算出した。
8.繊維強化プラスチック部材の表面粗さ
成形して得られた繊維強化複合材料を、長さ5cm、幅2cmのサイズにダイヤモンドカッターを用いてカットし測定サンプルを得た。表面粗さ測定は接触式の表面粗さ計、サーフコーダ SE3400((株)小坂研究所製)を用いた。検出針を測定スピード2mm/s、測定距離は10mmで接触させ、表面凹凸形状のプロファイルを得た。表面凹凸のプロファイルは、凹凸の高さが十分に認識できるように縦方向に5000〜20000倍、横方向に10倍して、凹凸形状の幅(凹凸の凹部から凸部までの高さ)を各プロファイルにつき3箇所、合計15カ所定規で計測し、平均値を求め、倍率から実測値を算出した。
Moreover, the member surface was visually observed after fiber reinforced plastic preparation, and it was confirmed visually whether the big unevenness | corrugation etc. had generate | occur | produced.
7). The basis weight of the reinforced fiber nonwoven fabric contained in the surface layer of the fiber reinforced plastic. Cut the reinforced fiber nonwoven fabric to a size of 5 cm in length and 2 cm in width using a cutter, accurately measure the length and width using a caliper, and obtain the area. It was. Next, the weight of the sample was measured using a balance. The basis weight of the reinforcing fiber nonwoven fabric was calculated from the obtained area and the weight of the test piece.
8). Surface Roughness of Fiber Reinforced Plastic Member A fiber reinforced composite material obtained by molding was cut into a size of 5 cm in length and 2 cm in width using a diamond cutter to obtain a measurement sample. For the surface roughness measurement, a contact-type surface roughness meter, Surfcoder SE3400 (manufactured by Kosaka Laboratory Ltd.) was used. The detection needle was brought into contact at a measurement speed of 2 mm / s and a measurement distance of 10 mm to obtain a profile with a surface irregularity shape. The profile of the surface unevenness is 5,000 to 20000 times in the vertical direction and 10 times in the horizontal direction so that the height of the unevenness can be fully recognized, and the width of the uneven shape (height from the concave portion to the convex portion). Each profile was measured with a total of 15 predetermined rules at three locations, an average value was obtained, and an actual measurement value was calculated from the magnification.

(比較例1)
繊維強化プラスチック本体層のみからなる繊維強化プラスチック部材をRTM法により製造し、各種測定を行った。
(Comparative Example 1)
A fiber reinforced plastic member consisting only of a fiber reinforced plastic main body layer was manufactured by the RTM method, and various measurements were performed.

各辺が経糸、緯糸のいずれかと平行な1辺300mmの正方形となるようカットした炭素繊維織物4plyを、半径1500mmの球体面を有する型に積層し、その上にピールプライと樹脂配分媒体としてナイロン製ネットを積層した。次に、ナイロン製フィルムを用いてバギングし、真空ポンプを用いて[大気圧−0.1](MPa)に減圧した後、型を90℃に保持し、RTM用樹脂組成物を注入した。RTM用樹脂組成物が型内に流入してから5分後に注入を終了し、RTM用樹脂組成物が型内に流入してから40分後に脱型を開始し、繊維強化プラスチック本体層のみからなる繊維強化プラスチック部材を得た。   A carbon fiber fabric 4ply cut so that each side is a square with a side of 300 mm parallel to either the warp or the weft is laminated on a mold having a spherical surface with a radius of 1500 mm, on which a peel ply and a resin distribution medium are made of nylon Nets were stacked. Next, bagging was performed using a nylon film, and the pressure was reduced to [atmospheric pressure-0.1] (MPa) using a vacuum pump. Then, the mold was held at 90 ° C., and an RTM resin composition was injected. The injection was completed 5 minutes after the RTM resin composition flowed into the mold, and demolding started 40 minutes after the RTM resin composition flowed into the mold, and only from the fiber-reinforced plastic body layer. A fiber reinforced plastic member was obtained.

繊維強化プラスチック本体層のVfは51%であり、十分に高かった。   The Vf of the fiber reinforced plastic main body layer was 51%, which was sufficiently high.

繊維強化プラスチック部材作製後の表面を目視で確認したところ、炭素繊維織物がしわとなっている部分は無く、従ってしわが原因で発生する大きな表面凹凸も発見されなかった。   When the surface of the fiber-reinforced plastic member was visually confirmed, there was no wrinkled portion of the carbon fiber woven fabric, and thus no large surface irregularities caused by wrinkles were found.

しかしながら、繊維強化プラスチック部材の表面粗さを測定したところ、1.60μmであり、表面の平滑性が不十分であることがわかった。   However, when the surface roughness of the fiber reinforced plastic member was measured, it was 1.60 μm, and it was found that the surface smoothness was insufficient.

(実施例1)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
Example 1
A fiber reinforced plastic member composed of a fiber reinforced plastic main body layer [A] and a fiber reinforced plastic surface layer [B] and having the component [B] disposed on one side of the component [A] is manufactured by the RTM method. Various evaluations were performed.

1辺300mmの正方形となるようカットしたピッチ系炭素繊維不織布(品番S−3504F1、目付34g/m2、オリベスト(株)製)の片面にスプレータイプの接着剤(品番:3Mスプレーのり55、住友スリーエム(株)製)を軽く吹きかけたものを2ply張り合わせて予備積層体を作製した。次に半径1500mmの球体面を有する型の表面にスプレータイプ接着剤を予め吹きかけ、その上から上記予備積層体を配置した。その際型との隙間を作らないように手で押さえながら積層した。次に、各辺が経糸、緯糸のいずれかと平行な1辺300mmの正方形となるようカットした炭素繊維織物4plyを積層し、その上にピールプライと樹脂配分媒体を積層した。積層後は比較例1と同様の方法で成形を行い、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   A spray-type adhesive (product number: 3M spray paste 55, Sumitomo 3M) on one side of a pitch-based carbon fiber non-woven fabric (product number S-3504F1, weight per unit 34 g / m2, manufactured by Olivest Co., Ltd.) cut into a square of 300 mm on a side A product obtained by lightly spraying (made by Co., Ltd.) was bonded to 2 ply to prepare a pre-laminated body. Next, a spray type adhesive was sprayed in advance on the surface of a mold having a spherical surface with a radius of 1500 mm, and the pre-laminated body was disposed thereon. At that time, the layers were stacked while being held down by hand so as not to create a gap with the mold. Next, carbon fiber woven fabric 4ply cut so that each side is a square of 300 mm per side parallel to either warp or weft was laminated, and a peel ply and a resin distribution medium were laminated thereon. After lamination, molding is performed in the same manner as in Comparative Example 1, and a layer composed of a carbon fiber woven fabric and a cured matrix resin is a constituent element [A], and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin is a constituent element [B]. A fiber reinforced plastic member was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、十分に高かった。   The elastic modulus of component [A] was 73500 MPa, which was sufficiently high.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of component [B] was 9800 MPa, which was sufficiently high.

繊維強化プラスチック部材の表面粗さを測定したところ0.74μmであり、十分に平滑であることがわかった。   When the surface roughness of the fiber reinforced plastic member was measured, it was 0.74 μm and was found to be sufficiently smooth.

次に構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。   Next, evaluation was performed on the formability of the reinforcing fiber nonwoven contained in the component [B], but it was found that the surface of the nonwoven fabric was not wrinkled on any spherical surface, and the formability was good. .

また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例2)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 2)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、成形型に注入するRTM用熱硬化性樹脂の注入量を調整し、構成要素[A]の
Vf(%)を40%にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。
In this example, fiber reinforced plastic was prepared in the same manner as in Example 1 except that the injection amount of the thermosetting resin for RTM injected into the mold was adjusted and the Vf (%) of the component [A] was 40%. A member was prepared, and a fiber reinforced plastic member having a layer composed of a carbon fiber woven fabric and a cured matrix resin as a constituent element [A] and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]の弾性率は58400MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 58400 MPa, showing a relatively high value.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は9800MPaであり、十分に高い値を示した。   The elastic modulus of the constituent element [B] was 9800 MPa, showing a sufficiently high value.

繊維強化プラスチック部材の表面粗さを測定したところ0.74μmであり、十分に平滑であることがわかった。   When the surface roughness of the fiber reinforced plastic member was measured, it was 0.74 μm and was found to be sufficiently smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven contained in the component [B] was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good.

また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(比較例2)
繊維強化プラスチック本体層および、繊維強化プラスチック表面層からなり、繊維強化プラスチック本体層の少なくとも片面に、繊維強化プラスチック表面層を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Comparative Example 2)
A fiber reinforced plastic member comprising a fiber reinforced plastic main body layer and a fiber reinforced plastic main surface layer and having a fiber reinforced plastic surface layer disposed on at least one side of the fiber reinforced plastic main body layer was prepared by the RTM method and subjected to various evaluations. .

本実施例では、成形型に注入するRTM用熱硬化性樹脂の注入量を調整し、繊維強化プラスチック本体層のVf(%)を25%にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を繊維強化プラスチック本体層、炭素繊維不織布とマトリクス樹脂硬化物からなる層を繊維強化プラスチック表面層とする繊維強化プラスチック部材を得た。   In this example, fiber reinforced plastic was prepared in the same manner as in Example 1 except that the injection amount of the thermosetting resin for RTM injected into the mold was adjusted and the Vf (%) of the fiber reinforced plastic main body layer was 25%. A member was prepared, and a fiber reinforced plastic member was obtained in which a layer composed of a carbon fiber woven fabric and a cured matrix resin was a fiber reinforced plastic main body layer, and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin was a fiber reinforced plastic surface layer.

繊維強化プラスチック表面層のVfは10%であり、適度な値を示した。   The Vf of the surface layer of the fiber reinforced plastic was 10% and showed an appropriate value.

繊維強化プラスチック表面層の弾性率は9800MPaであり、十分高い値を示した。   The elastic modulus of the fiber reinforced plastic surface layer was 9800 MPa, which was a sufficiently high value.

繊維強化プラスチック部材の表面粗さを測定したところ0.74μmであり、十分に平滑であることがわかった。   When the surface roughness of the fiber reinforced plastic member was measured, it was 0.74 μm and was found to be sufficiently smooth.

繊維強化プラスチック表面層に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforced fiber nonwoven fabric contained in the fiber reinforced plastic surface layer was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

しかしながら、繊維強化プラスチック本体層の弾性率が37400MPaであり、繊維強化プラスチック部材の剛性が十分であるとは言えなかった。   However, the elastic modulus of the fiber reinforced plastic main body layer is 37400 MPa, and it cannot be said that the rigidity of the fiber reinforced plastic member is sufficient.

(実施例3)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 3)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、成形型に注入するRTM用熱硬化性樹脂の注入量を調整し、構成要素[B]の
Vf(%)を8%にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。
In this example, fiber reinforced plastic was prepared in the same manner as in Example 1 except that the injection amount of the thermosetting resin for RTM injected into the mold was adjusted and the Vf (%) of the component [B] was 8%. A member was prepared, and a fiber reinforced plastic member having a layer composed of a carbon fiber woven fabric and a cured matrix resin as a constituent element [A] and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、十分高い値を示した。   The elastic modulus of the component [A] was 73500 MPa, which was a sufficiently high value.

構成要素[B]の弾性率は6700MPaであり、比較的高い値を示した。   The elastic modulus of the constituent element [B] was 6700 MPa, showing a relatively high value.

繊維強化プラスチック部材の表面粗さを測定したところ0.85μmであり、十分に平滑であることがわかった。   The surface roughness of the fiber reinforced plastic member was measured and found to be 0.85 μm, which was sufficiently smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven contained in the component [B] was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(比較例3)
繊維強化プラスチック本体層および、繊維強化プラスチック表面層からなり、繊維強化プラスチック本体層の少なくとも片面に、繊維強化プラスチック表面層を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Comparative Example 3)
A fiber reinforced plastic member comprising a fiber reinforced plastic main body layer and a fiber reinforced plastic main surface layer and having a fiber reinforced plastic surface layer disposed on at least one side of the fiber reinforced plastic main body layer was prepared by the RTM method and subjected to various evaluations. .

本実施例では、成形型に注入するRTM用熱硬化性樹脂の注入量を調整し、繊維強化プラスチック表面層のVf(%)を0.5%にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を繊維強化プラスチック本体層、炭素繊維不織布とマトリクス樹脂硬化物からなる層を繊維強化プラスチック表面層とする繊維強化プラスチック部材を得た。   In this example, the amount of RTM thermosetting resin to be injected into the mold was adjusted, and the fiber was reinforced in the same manner as in Example 1 except that the Vf (%) of the fiber reinforced plastic surface layer was 0.5%. A reinforced plastic member is produced, and a fiber reinforced plastic member is obtained in which a layer made of carbon fiber woven fabric and matrix resin cured product is a fiber reinforced plastic main body layer, and a layer made of carbon fiber nonwoven fabric and matrix resin cured product is a fiber reinforced plastic surface layer. It was.

繊維強化プラスチック本体層のVfは51%であり、十分高い値を示した。   The Vf of the fiber reinforced plastic main body layer was 51%, showing a sufficiently high value.

繊維強化プラスチック本体層の弾性率は73500MPaであり、十分高い値を示した。   The elastic modulus of the fiber reinforced plastic main body layer was 73500 MPa, showing a sufficiently high value.

繊維強化プラスチック表面層に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforced fiber nonwoven fabric contained in the fiber reinforced plastic surface layer was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

しかしながら繊維強化プラスチック表面層の弾性率は3700MPaであり、繊維強化プラスチックの弾性率が不十分であることがわかった。また、繊維強化プラスチック部材の表面粗さを測定したところ1.57μmであり、表面平滑性も不十分であることがわかった。   However, the elastic modulus of the fiber reinforced plastic surface layer was 3700 MPa, and it was found that the elastic modulus of the fiber reinforced plastic was insufficient. Moreover, when the surface roughness of the fiber reinforced plastic member was measured, it was 1.57 μm, and it was found that the surface smoothness was insufficient.

(比較例4)
繊維強化プラスチック本体層および、繊維強化プラスチック表面層からなり、繊維強化プラスチック本体層の少なくとも片面に、繊維強化プラスチック表面層を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Comparative Example 4)
A fiber reinforced plastic member comprising a fiber reinforced plastic main body layer and a fiber reinforced plastic main surface layer and having a fiber reinforced plastic surface layer disposed on at least one side of the fiber reinforced plastic main body layer was prepared by the RTM method and subjected to various evaluations. .

本実施例では、成形型に注入するRTM用熱硬化性樹脂の注入量を調整し、繊維強化プラスチック表面層のVf(%)を35%にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を繊維強化プラスチック本体層、炭素繊維不織布とマトリクス樹脂硬化物からなる層を繊維強化プラスチック表面層とする繊維強化プラスチック部材を得た。   In this example, fiber reinforced plastic was prepared in the same manner as in Example 1 except that the injection amount of the thermosetting resin for RTM injected into the mold was adjusted and the Vf (%) of the fiber reinforced plastic surface layer was set to 35%. A member was prepared, and a fiber reinforced plastic member was obtained in which a layer composed of a carbon fiber woven fabric and a cured matrix resin was a fiber reinforced plastic main body layer, and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin was a fiber reinforced plastic surface layer.

繊維強化プラスチック本体層のVfは51%であり、十分高い値を示した。   The Vf of the fiber reinforced plastic main body layer was 51%, showing a sufficiently high value.

繊維強化プラスチック本体層の弾性率は73500MPaであり、十分高い値を示した。   The elastic modulus of the fiber reinforced plastic main body layer was 73500 MPa, showing a sufficiently high value.

繊維強化プラスチック表面層の弾性率が27000MPaであり、十分高い値を示した。   The elastic modulus of the fiber reinforced plastic surface layer was 27000 MPa, showing a sufficiently high value.

繊維強化プラスチック表面層に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。   Although the evaluation regarding the shaping property of the reinforced fiber nonwoven fabric contained in the fiber reinforced plastic surface layer was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good.

しかしながら繊維強化プラスチック部材作製後の表面を目視で確認したところ、表面にマトリクス樹脂の含浸せず、強化繊維不織布が露出している部分が確認され、表面平滑性が不十分であることがわかった。また、繊維強化プラスチック部材の表面粗さを測定したところ1.20μmであり、表面平滑性も不十分であることがわかった。   However, when the surface of the fiber reinforced plastic member was visually confirmed, it was found that the surface was not impregnated with the matrix resin and the portion where the reinforced fiber nonwoven fabric was exposed, and the surface smoothness was insufficient. . Moreover, when the surface roughness of the fiber reinforced plastic member was measured, it was 1.20 μm, and it was found that the surface smoothness was insufficient.

(実施例4)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
Example 4
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[B]に含まれる炭素繊維不織布の引張破断伸びが6%のものを用いた以外は実施例1と同様にして繊維強化プラスチック部材を成形し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber reinforced plastic member was molded in the same manner as in Example 1 except that the carbon fiber nonwoven fabric contained in the component [B] had a tensile elongation at break of 6%. A fiber reinforced plastic member having a layer composed of a cured resin as a constituent element [A] and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 73500 MPa, which was a relatively high value.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は9800MPaであり、比較的高い値を示した。   The elastic modulus of the constituent element [B] was 9800 MPa, showing a relatively high value.

繊維強化プラスチック部材の表面粗さを測定したところ0.74μmであり、十分に平滑であることがわかった。
構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、r=1000、r=100の球体面の賦形において、不織布表面にしわは発生せず、賦形性は比較的良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。
When the surface roughness of the fiber reinforced plastic member was measured, it was 0.74 μm and was found to be sufficiently smooth.
Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven fabric contained in the component [B] was performed, in the shaping of the spherical surface of r = 1000, r = 100, the nonwoven fabric surface was not wrinkled, and the shaping property was It was found to be relatively good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(比較例5)
繊維強化プラスチック本体層および、繊維強化プラスチック表面層からなり、繊維強化プラスチック本体層の少なくとも片面に、繊維強化プラスチック表面層を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Comparative Example 5)
A fiber reinforced plastic member comprising a fiber reinforced plastic main body layer and a fiber reinforced plastic main surface layer and having a fiber reinforced plastic surface layer disposed on at least one side of the fiber reinforced plastic main body layer was prepared by the RTM method and subjected to various evaluations. .

本実施例では、繊維強化プラスチック表面層に含まれる強化繊維不織布として、PAN系炭素繊維からなる不織布(品番BO030、目付30g/m、東レ(株)製)を用いた以外は実施例1と同様にして繊維強化プラスチック部材を成形し、炭素繊維織物とマトリクス樹脂硬化物からなる層を繊維強化プラスチック本体層、炭素繊維不織布とマトリクス樹脂硬化物からなる層を繊維強化プラスチック表面層とする繊維強化プラスチック部材を得た。 In this example, as the reinforcing fiber nonwoven fabric contained in the fiber reinforced plastic surface layer, a nonwoven fabric made of PAN-based carbon fiber (product number BO030, basis weight 30 g / m 2 , manufactured by Toray Industries, Inc.) was used. In the same manner, a fiber reinforced plastic member is molded, and a fiber reinforced plastic body layer is formed from a carbon fiber woven fabric and a matrix resin cured product, and a fiber reinforced plastic surface layer is formed from a carbon fiber nonwoven fabric and a matrix resin cured product. A plastic member was obtained.

繊維強化プラスチック本体層のVfは51%であり、十分に高かった。   The Vf of the fiber reinforced plastic main body layer was 51%, which was sufficiently high.

繊維強化プラスチック本体層の弾性率は73500MPaであり十分に高かった。   The elastic modulus of the fiber reinforced plastic main body layer was 73500 MPa, which was sufficiently high.

繊維強化プラスチック表面層のVfは10%であり、適度な値を示した。   The Vf of the surface layer of the fiber reinforced plastic was 10% and showed an appropriate value.

繊維強化プラスチック表面層の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of the fiber reinforced plastic surface layer was 9800 MPa, which was sufficiently high.

繊維強化プラスチック部材の表面粗さを測定したところ0.54μmであり、十分に平滑であった。   When the surface roughness of the fiber reinforced plastic member was measured, it was 0.54 μm and was sufficiently smooth.

しかしながら、繊維強化プラスチック表面層に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわが発生し、賦形性は不十分であった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわが押しつけられ、不織布の目付が部分的に増加したことに起因する大きな表面凹凸が発見され、賦形性は良好であるとは言えなかった。   However, although the evaluation regarding the formability of the reinforced fiber nonwoven fabric contained in the surface layer of the fiber reinforced plastic was performed, the surface of the nonwoven fabric was wrinkled on any spherical surface, and the shapeability was insufficient. Moreover, when the surface after fiber reinforced plastic member production was visually confirmed, wrinkles were pressed and large surface irregularities were found due to partial increase in the basis weight of the nonwoven fabric, and the shapeability was good. I could not say it.

(実施例5)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 5)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[A]に使用する強化繊維をアラミド繊維にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber reinforced plastic member was produced in the same manner as in Example 1 except that the reinforcing fiber used for the component [A] was an aramid fiber, and a layer composed of a carbon fiber fabric and a matrix resin cured product was formed. A fiber-reinforced plastic member having a component [A], a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は44000MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 44000 MPa, which was a relatively high value.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of component [B] was 9800 MPa, which was sufficiently high.

繊維強化プラスチック部材の表面粗さを測定したところ0.74μmであり、十分に平滑であることがわかった。   When the surface roughness of the fiber reinforced plastic member was measured, it was 0.74 μm and was found to be sufficiently smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven contained in the component [B] was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例6)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 6)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[B]に含まれる強化繊維不織布をガラス繊維不織布にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber reinforced plastic member was prepared in the same manner as in Example 1 except that the reinforcing fiber nonwoven fabric contained in the component [B] was changed to a glass fiber nonwoven fabric, and a layer composed of a carbon fiber fabric and a matrix resin cured product. As a constituent element [A], a fiber reinforced plastic member having a constituent layer [B] composed of a carbon fiber nonwoven fabric and a cured matrix resin was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、十分に高かった。   The elastic modulus of component [A] was 73500 MPa, which was sufficiently high.

構成要素[B]のVfは10%であり、比較的高い値を示した。   The Vf of the constituent element [B] was 10%, showing a relatively high value.

構成要素[B]の弾性率は5800MPaであり、比較的高かった。   The elastic modulus of the component [B] was 5800 MPa, which was relatively high.

また繊維強化プラスチック部材の表面粗さを測定したところ0.91μmであり、比較的平滑であることがわかった。   Further, when the surface roughness of the fiber reinforced plastic member was measured, it was 0.91 μm and was found to be relatively smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、いずれの球体面においても不織布表面にしわは発生せず、賦形性は良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven contained in the component [B] was performed, it was found that no wrinkle was generated on the surface of the nonwoven fabric on any spherical surface, and the shaping property was good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例7)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 7)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[B]に含まれる強化繊維不織布の繊維長を5mmにした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber-reinforced plastic member was prepared in the same manner as in Example 1 except that the fiber length of the reinforcing fiber nonwoven contained in the component [B] was changed to 5 mm, and composed of a carbon fiber fabric and a cured matrix resin. A fiber reinforced plastic member having a constituent element [A] as a layer and a constituent element [B] as a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、十分高かった。   The elastic modulus of the component [A] was 73500 MPa, which was sufficiently high.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は7800MPaであり、比較的高かった。   The elastic modulus of the component [B] was 7800 MPa, which was relatively high.

また繊維強化プラスチック部材の表面粗さを測定したところ0.85μmであり、比較的平滑であることがわかった。   Further, when the surface roughness of the fiber reinforced plastic member was measured, it was 0.85 μm, which was found to be relatively smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、r=1000、r=100の球体面の賦形において、不織布表面にしわは発生せず、賦形性は比較的良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven fabric contained in the component [B] was performed, in the shaping of the spherical surface of r = 1000, r = 100, the nonwoven fabric surface was not wrinkled, and the shaping property was It was found to be relatively good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例8)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、低弾性率層[C]を介して構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 8)
Consisting of a fiber reinforced plastic body layer [A] and a fiber reinforced plastic surface layer [B], the component [B] is disposed on at least one side of the component [A] via a low elastic modulus layer [C]. A fiber reinforced plastic member was produced by the RTM method and subjected to various evaluations.

1辺300mmの正方形となるようカットしたピッチ炭素繊維不織布の片面にスプレータイプの接着剤を軽く吹きかけたものを2ply張り合わせて予備積層体を作製した。次に半径1500mmの球体面を有する型の表面にスプレータイプ接着剤を予め吹きかけ、その上から上記予備積層体を配置した。その際型との隙間を作らないように手で押さえながら積層した。引き続きNBRシートを1ply配置し、その上から各辺が経糸、緯糸のいずれかと平行な1辺300mmの正方形となるようカットした炭素繊維織物4plyを積層し、その上にピールプライと樹脂配分媒体を積層した。積層後は比較例1と同様の方法で成形を行い、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]、低弾性率層を構成要素[C]とする繊維強化プラスチック部材を得た。   One layer of pitch carbon fiber nonwoven fabric cut so as to be a square with a side of 300 mm was lightly sprayed with a spray type adhesive, and 2 ply was laminated to prepare a pre-laminated body. Next, a spray type adhesive was sprayed in advance on the surface of a mold having a spherical surface with a radius of 1500 mm, and the pre-laminated body was disposed thereon. At that time, the layers were stacked while being held down by hand so as not to create a gap with the mold. Next, 1ply of NBR sheet is placed, and 4ply of carbon fiber woven fabric cut so that each side is a square with a side of 300mm parallel to either warp or weft is laminated, and then peel ply and resin distribution medium are laminated on it. did. After lamination, molding is performed in the same manner as in Comparative Example 1, and a layer composed of a carbon fiber woven fabric and a cured matrix resin is a constituent element [A], and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin is a constituent element [B]. A fiber-reinforced plastic member having the low elastic modulus layer as the constituent element [C] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 73500 MPa, which was a relatively high value.

構成要素[B]のVfは10%であり、適度な値を示した。   Vf of the constituent element [B] was 10% and showed an appropriate value.

構成要素[B]の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of component [B] was 9800 MPa, which was sufficiently high.

また繊維強化プラスチック部材の表面粗さを測定したところ0.17μmであり、きわめて平滑であることがわかった。   Further, when the surface roughness of the fiber reinforced plastic member was measured, it was 0.17 μm, which was found to be extremely smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、r=1000、r=100の球体面の賦形において、不織布表面にしわは発生せず、賦形性は比較的良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven fabric contained in the component [B] was performed, in the shaping of the spherical surface of r = 1000, r = 100, the nonwoven fabric surface was not wrinkled, and the shaping property was It was found to be relatively good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例9)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
Example 9
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[B]に含まれる強化繊維不織布の単糸の蛇行形状(l/m)を4/5にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber reinforced plastic member was produced in the same manner as in Example 1 except that the meandering shape (l / m) of the single yarn of the reinforcing fiber nonwoven contained in the component [B] was 4/5. A fiber reinforced plastic member having a layer composed of a carbon fiber fabric and a cured matrix resin as a constituent element [A] and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 73500 MPa, which was a relatively high value.

構成要素[B]のVfは10%であり、比較的高い値を示した。   The Vf of the constituent element [B] was 10%, showing a relatively high value.

構成要素[B]の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of component [B] was 9800 MPa, which was sufficiently high.

また繊維強化プラスチック部材の表面粗さを測定したところ0.82μmであり、比較的平滑であることがわかった。   Further, the surface roughness of the fiber reinforced plastic member was measured and found to be 0.82 μm, which was relatively smooth.

構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、r=1000、r=100の球体面の賦形において、不織布表面にしわは発生せず、賦形性は比較的良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。   Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven fabric contained in the component [B] was performed, in the shaping of the spherical surface of r = 1000, r = 100, the nonwoven fabric surface was not wrinkled, and the shaping property was It was found to be relatively good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

(実施例10)
繊維強化プラスチック本体層[A]および、繊維強化プラスチック表面層[B]からなり、構成要素[A]の少なくとも片面に、構成要素[B]を配設した繊維強化プラスチック部材を、RTM法により作製し各種評価を行った。
(Example 10)
A fiber-reinforced plastic member comprising a fiber-reinforced plastic main body layer [A] and a fiber-reinforced plastic surface layer [B] and having the component [B] disposed on at least one side of the component [A] is produced by the RTM method. Various evaluations were performed.

本実施例では、構成要素[B]に含まれる強化繊維不織布の単糸断面形状(a/b)を4/5にした以外は実施例1と同様にして繊維強化プラスチック部材を作製し、炭素繊維織物とマトリクス樹脂硬化物からなる層を構成要素[A]、炭素繊維不織布とマトリクス樹脂硬化物からなる層を構成要素[B]とする繊維強化プラスチック部材を得た。   In this example, a fiber-reinforced plastic member was prepared in the same manner as in Example 1 except that the single-fiber cross-sectional shape (a / b) of the reinforcing fiber nonwoven contained in the component [B] was changed to 4/5. A fiber reinforced plastic member having a layer composed of a fiber woven fabric and a cured matrix resin as a constituent element [A] and a layer composed of a carbon fiber nonwoven fabric and a cured matrix resin as a constituent element [B] was obtained.

構成要素[A]のVfは51%であり、十分に高かった。   The Vf of the component [A] was 51% and was sufficiently high.

構成要素[A]の弾性率は73500MPaであり、比較的高い値を示した。   The elastic modulus of the component [A] was 73500 MPa, which was a relatively high value.

構成要素[B]のVfは10%であり、比較的高い値を示した。   The Vf of the constituent element [B] was 10%, showing a relatively high value.

構成要素[B]の弾性率は9800MPaであり、十分に高かった。   The elastic modulus of component [B] was 9800 MPa, which was sufficiently high.

また繊維強化プラスチック部材の表面粗さを測定したところ0.84μmであり、比較的平滑であることがわかった。
構成要素[B]に含まれる強化繊維不織布の賦形性に関する評価を行ったが、r=1000、r=100の球体面の賦形において、不織布表面にしわは発生せず、賦形性は比較的良好であることがわかった。また繊維強化プラスチック部材作製後の表面を目視で確認したところ、しわに起因する大きな表面凹凸は発見されなかった。
Further, when the surface roughness of the fiber reinforced plastic member was measured, it was 0.84 μm, which was found to be relatively smooth.
Although the evaluation regarding the shaping property of the reinforcing fiber nonwoven fabric contained in the component [B] was performed, in the shaping of the spherical surface of r = 1000, r = 100, the nonwoven fabric surface was not wrinkled, and the shaping property was It was found to be relatively good. Moreover, when the surface after fiber reinforced plastic member preparation was confirmed visually, the big surface unevenness | corrugation resulting from a wrinkle was not discovered.

Figure 2007090811
Figure 2007090811

Figure 2007090811
Figure 2007090811

本発明は、自動車の外板用途ばかりではなく、航空機、建材用途など繊維強化プラスチックが利用される他の分野においても応用可能であり、ユーザーが直接目にすることの多く表面意匠性が求められる部材に好適に用いることができる。   The present invention can be applied not only to the outer panel of automobiles but also to other fields where fiber reinforced plastics are used such as aircraft and building materials, and the surface design is often required by the user. It can use suitably for a member.

Claims (16)

繊維強化プラスチック本体層[A]の少なくとも片面に、繊維強化プラスチック表面層[B]を配設した繊維強化プラスチック部材であって、各構成要素が以下を満たす繊維強化プラスチック部材。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
A fiber reinforced plastic member in which a fiber reinforced plastic surface layer [B] is disposed on at least one surface of a fiber reinforced plastic main body layer [A], and each component satisfies the following.
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%
繊維強化プラスチック本体層[A]の少なくとも片面に、低弾性率層[C]を介して繊維強化プラスチック表面層[B]を配設した繊維強化プラスチック部材であって、各構成要素が以下を満たす繊維強化プラスチック部材。
[A]強化繊維の体積含有率(Vf)が30〜85%
[B]引張破断伸びεB(%)が、εB≧5 である強化繊維不織布を含み、その体積含有率(Vf)が1〜30%
[C]引張弾性率が、0.1〜500MPa
A fiber reinforced plastic member in which a fiber reinforced plastic surface layer [B] is disposed on at least one surface of a fiber reinforced plastic main body layer [A] via a low elastic modulus layer [C], and each component satisfies the following: Fiber reinforced plastic parts.
[A] Volume content (Vf) of reinforcing fiber is 30 to 85%
[B] A reinforcing fiber nonwoven fabric having an elongation at break εB (%) of εB ≧ 5 and a volume content (Vf) of 1 to 30%
[C] Tensile elastic modulus is 0.1 to 500 MPa
構成要素[A]に含まれる強化繊維が炭素繊維および/またはガラス繊維を含む請求項1または2のいずれかに記載の繊維強化プラスチック部材。 The fiber-reinforced plastic member according to any one of claims 1 and 2, wherein the reinforcing fibers contained in the component [A] include carbon fibers and / or glass fibers. 構成要素[A]に含まれる強化繊維が織物形態および/または編み物形態である請求項1〜3のいずれかに記載の繊維強化プラスチック部材。 The fiber reinforced plastic member according to any one of claims 1 to 3, wherein the reinforcing fiber contained in the component [A] is in a woven form and / or a knitted form. 構成要素[B]に含まれる強化繊維不織布が、炭素繊維不織布である請求項1〜4のいずれかに記載の繊維強化プラスチック部材。 The fiber reinforced plastic member according to any one of claims 1 to 4, wherein the reinforcing fiber nonwoven fabric contained in the component [B] is a carbon fiber nonwoven fabric. 前記強化繊維不織布に含まれる強化繊維の繊維長が1〜50mmである請求項1〜5のいずれかに記載の繊維強化プラスチック部材 The fiber length of the reinforced fiber contained in the said reinforced fiber nonwoven fabric is 1-50 mm, The fiber reinforced plastic member in any one of Claims 1-5 構成要素[B]に含まれる強化繊維不織布が、蛇行した強化繊維によって形成されている請求項1〜6のいずれかに記載の強化繊維プラスチック部材。 The reinforcing fiber plastic member according to any one of claims 1 to 6, wherein the reinforcing fiber nonwoven fabric contained in the component [B] is formed of meandering reinforcing fibers. 前記強化繊維不織布に含まれる強化繊維の断面形状が楕円形状を有する請求項1〜7のいずれかに記載の繊維強化プラスチック部材。 The fiber-reinforced plastic member according to any one of claims 1 to 7, wherein a cross-sectional shape of the reinforcing fiber contained in the reinforcing fiber nonwoven fabric has an elliptical shape. 前記強化繊維不織布に含まれる強化繊維が繊維状バインダーによって結着されている請求項1〜8のいずれかに記載の繊維強化プラスチック部材。 The fiber-reinforced plastic member according to any one of claims 1 to 8, wherein the reinforcing fibers contained in the reinforcing fiber nonwoven fabric are bound by a fibrous binder. 前記強化繊維不織布の繊維目付が1〜200(g/m)である請求項1〜9のいずれかに記載の繊維強化プラスチック部材。 The fiber basis weight of the reinforcing fiber nonwoven fabric is 1 to 200 (g / m 2 ). The fiber reinforced plastic member according to any one of claims 1 to 9. 前記強化繊維不織布に含まれる強化繊維がピッチ系炭素繊維を含む構成要素1〜10のいずれかに記載の強化繊維プラスチック部材。 The reinforcing fiber plastic member according to any one of the constituent elements 1 to 10, wherein the reinforcing fibers contained in the reinforcing fiber nonwoven fabric include pitch-based carbon fibers. 構成要素[C]がエラストマーを含むことを特徴とする請求項1〜11のいずれかに記載の繊維強化プラスチック部材。 Component [C] contains an elastomer, The fiber reinforced plastic member in any one of Claims 1-11 characterized by the above-mentioned. 表面粗さが1.00μm以下であることを特徴とする、請求項1〜12のいずれかに記載の繊維強化プラスチック部材。 The fiber-reinforced plastic member according to claim 1, wherein the surface roughness is 1.00 μm or less. 強化繊維の織物および/または編み物の両面または片面に引張破断伸び(%)εB≧5である強化繊維不織布を配設し、液状の熱硬化性樹脂組成物を含浸させ、加熱して硬化させることにより請求項1〜13のいずれかに記載の繊維強化プラスチック部材を得る繊維強化プラスチック部材の製造法。 A reinforcing fiber nonwoven fabric having a tensile breaking elongation (%) εB ≧ 5 is disposed on both sides or one side of a reinforcing fiber fabric and / or knitted fabric, impregnated with a liquid thermosetting resin composition, and cured by heating. The manufacturing method of the fiber reinforced plastic member which obtains the fiber reinforced plastic member in any one of Claims 1-13. 次の構成要素「A1」の両面または片面に構成要素[B1]を配設し、加圧加熱することにより、請求項1〜13のいずれかに記載の繊維強化プラスチックを得る繊維強化プラスチック部材の製造法。
「A1]強化繊維に未硬化の熱硬化性樹脂組成物を含浸させたプリプレグ
[B1]引張破断伸びをεB(%)としたとき、εB≧5である強化繊維不織布に、未硬化の熱硬化性樹脂を含む樹脂組成物を含浸させたシート
The fiber reinforced plastic member for obtaining the fiber reinforced plastic according to any one of claims 1 to 13 by disposing the component [B1] on both sides or one side of the next component "A1" and heating under pressure. Manufacturing method.
[A1] Prepreg of reinforcing fiber impregnated with uncured thermosetting resin composition [B1] When tensile elongation at break is εB (%), reinforced fiber nonwoven fabric with εB ≧ 5 is uncured thermosetting Sheet impregnated with a resin composition containing a conductive resin
次の構成要素「A2」の両面および片面に、構成要素[B2]を配設し加圧加熱することにより、請求項1〜13のいずれかに記載の繊維強化プラスチックを得る繊維強化プラスチック部材の製造法。
[A2]シートモールディングコンパウンド(SMC)
[B2]引張破断伸びをεB(%)としたとき、εB≧5である強化繊維不織布に、未硬化の熱硬化性樹脂を含む樹脂組成物を含浸させたシート
The fiber reinforced plastic member for obtaining the fiber reinforced plastic according to any one of claims 1 to 13 by disposing the component [B2] on both sides and one side of the next component "A2" and heating under pressure. Manufacturing method.
[A2] Seat molding compound (SMC)
[B2] A sheet obtained by impregnating a reinforcing fiber nonwoven fabric with εB ≧ 5 with a resin composition containing an uncured thermosetting resin when the tensile elongation at break is εB (%)
JP2005286340A 2005-09-30 2005-09-30 Member of fiber-reinforced plastic and manufacturing method of the same Pending JP2007090811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286340A JP2007090811A (en) 2005-09-30 2005-09-30 Member of fiber-reinforced plastic and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286340A JP2007090811A (en) 2005-09-30 2005-09-30 Member of fiber-reinforced plastic and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2007090811A true JP2007090811A (en) 2007-04-12

Family

ID=37977048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286340A Pending JP2007090811A (en) 2005-09-30 2005-09-30 Member of fiber-reinforced plastic and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2007090811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254320A (en) * 2007-04-05 2008-10-23 Osaka Gas Chem Kk Heat insulator and its manufacturing process
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
JP2014502569A (en) * 2010-12-28 2014-02-03 サイテク・テクノロジー・コーポレーシヨン Multi-layer composition gradient structures with improved damping properties
JP2015515390A (en) * 2012-02-28 2015-05-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Method for producing carbon fiber article and article produced by this method
CN112046093A (en) * 2019-06-06 2020-12-08 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254320A (en) * 2007-04-05 2008-10-23 Osaka Gas Chem Kk Heat insulator and its manufacturing process
JP2009172950A (en) * 2008-01-28 2009-08-06 Mitsubishi Electric Corp Composite material sheet and composite component equipped therewith
JP2014502569A (en) * 2010-12-28 2014-02-03 サイテク・テクノロジー・コーポレーシヨン Multi-layer composition gradient structures with improved damping properties
JP2015515390A (en) * 2012-02-28 2015-05-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Method for producing carbon fiber article and article produced by this method
CN112046093A (en) * 2019-06-06 2020-12-08 双叶电子工业株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate
JP2020199643A (en) * 2019-06-06 2020-12-17 双葉電子工業株式会社 Carbon fiber-reinforced plastic plate and method for producing carbon fiber-reinforced plastic plate
JP7005557B2 (en) 2019-06-06 2022-01-21 双葉電子工業株式会社 Manufacturing method of carbon fiber reinforced plastic plate and carbon fiber reinforced plastic plate

Similar Documents

Publication Publication Date Title
JP4645334B2 (en) Fiber reinforced plastic parts
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
JP5460333B2 (en) COMPOSITE LAMINATE HAVING DAMPING INTERMEDIATE AND ITS MANUFACTURING METHOD
JP5136876B2 (en) Reinforced fiber laminate and method for producing the same
JPWO2005083002A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2006051813A5 (en)
KR20130141468A (en) Carbon-fiber-reinforced plastic molded article
JP2008132705A (en) Carbon fiber laminate and carbon fiber reinforced resin using it
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
KR20080101758A (en) Smc sheet and method for manufacturing the same
JP2007090811A (en) Member of fiber-reinforced plastic and manufacturing method of the same
GB2433466A (en) Moulding materials
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
JP2008080597A (en) Fiber-reinforced plastic member
JP2885038B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
JP2006150904A (en) Composite sheet and composite material having smooth surface using it
JP2005336407A (en) Composite material excellent in surface smoothness
JP2007260930A (en) Preform base material and preform manufacturing method
CA3096604A1 (en) Layered article
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
JP4558398B2 (en) Composite material with smooth surface
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material