JP2007090656A - Translucent article - Google Patents

Translucent article Download PDF

Info

Publication number
JP2007090656A
JP2007090656A JP2005282916A JP2005282916A JP2007090656A JP 2007090656 A JP2007090656 A JP 2007090656A JP 2005282916 A JP2005282916 A JP 2005282916A JP 2005282916 A JP2005282916 A JP 2005282916A JP 2007090656 A JP2007090656 A JP 2007090656A
Authority
JP
Japan
Prior art keywords
fine
refractive index
layers
shape
transparent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282916A
Other languages
Japanese (ja)
Inventor
Hiroko Suzuki
裕子 鈴木
Tetsuo Matsukura
哲夫 松倉
Norinaga Nakamura
典永 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005282916A priority Critical patent/JP2007090656A/en
Publication of JP2007090656A publication Critical patent/JP2007090656A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a translucent article comprising a laminated body including one or more sets of adjacent two layers each having a different refractive index from the other in which a reflection loss of a transmitted light on the boundary face between the two layers caused by the refractive index difference of the two layers and/or an interference fringe generated by the boundary face are eliminated or decreased, while a haze does not increase. <P>SOLUTION: The translucent article comprising a laminated body including one or more sets of adjacent two layers each having a different refractive index from the other wherein at least one set of the boundary face out of the adjacent two layers has fine convexoconcaves is characterized in that the convexoconcave shape has a relation PMAX≤λMIN where λMIN is a minimum wave length in vacuum of the visible light wave spectrum and PMAX is a period at a most convex part of the fine convexoconcaves, and that an occupying rate of a sectional area of a translucent layer at the side on which the most convex part is formed in an imaginary sectional plane obtained by cutting the fine convexoconcaves with a plane orthogonal to the convexoconcave direction thereof is continuously gradually increased as it goes from the most convex part of the fine convexoconcaves to a most concave part and comes to 100% at the most concave part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種機器における表示部の窓材、透明タッチパネル等の表面板、レンズ等の各種光学素子、画像表示装置や画像撮像装置の各種表面板の構成部材、建築物の窓材などに使用され得る透光性物品に関する。   The present invention is used for window materials for display parts in various devices, surface plates for transparent touch panels, various optical elements such as lenses, constituent members for various surface plates for image display devices and image pickup devices, window materials for buildings, etc. It relates to a translucent article that can be made.

従来より、各種機器における表示部の窓材、透明タッチパネル等の表面板、レンズ等の各種光学素子、画像表示装置や画像撮像装置の各種表面板の構成部材、建築物の窓材等として、2層の透明層が積層されて成る各種透光性物品が用いられている。例えば、特許文献1には、2層の透明層の積層体から成る透光性物品として、樹脂フィルム基材の片面に電離放射線硬化型樹脂を硬化せしめた表面保護層が形成されている耐擦傷性複合フィルムが開示されている。このように、第1の透明層(樹脂フィルム基材)T1に対して、これに不足する耐汚染性、耐擦傷性等を付与しようとすると、必然的に、第2の透明層(表面保護層)T2は、第1の透明層T1とは異なった材料を選択する必要がある。その結果、第1の透明層T1の屈折率N1と、第2の透明層T2の屈折率N2は通常異なるものとなる。
このように、透光性物品において透明層が2層積層されるのは、通常、同一物質から成る1層のみでは得られる性能に限界があることから、第1の透明層とは異なる物質から成る第2の透明層を積層して、不足する性能を補完する為である。従って、積層される2層は、異なる材質が用いられるため、屈折率も異なることが多い。
Conventionally, as window materials for display parts in various devices, surface plates such as transparent touch panels, various optical elements such as lenses, constituent members of various surface plates for image display devices and image pickup devices, window materials for buildings, etc. 2 Various translucent articles formed by laminating transparent layers are used. For example, Patent Document 1 discloses a scratch-resistant article in which a surface protective layer obtained by curing an ionizing radiation curable resin is formed on one surface of a resin film base material as a translucent article including a laminate of two transparent layers. A functional composite film is disclosed. As described above, when the first transparent layer (resin film substrate) T1 is provided with insufficient stain resistance, scratch resistance, etc., the second transparent layer (surface protection) is necessarily formed. For the layer T2, it is necessary to select a material different from that of the first transparent layer T1. As a result, the refractive index N1 of the first transparent layer T1 and the refractive index N2 of the second transparent layer T2 are usually different.
As described above, in the translucent article, the two transparent layers are usually laminated because there is a limit to the performance that can be obtained with only one layer made of the same material. This is because the second transparent layer is laminated to supplement the insufficient performance. Accordingly, since the two layers to be laminated are made of different materials, the refractive indexes are often different.

図13のように、隣接して積層された層T1と層T2の屈折率が、界面Iを境にして不連続的に変化すると、当該界面Iにおいて光の反射が生じる。その結果、まず第一に、入射光LINに対して、界面反射光LRのために透過光が損失するという問題が生じる。より具体的には、入射光LINが界面Iで直接反射した反射光Lr 1のほか、層T2内の多重反射の結果の透過光Lt 、Lt 、・・、Lt nも総合した界面反射光LRにより、透過光が損失する。更に第二に、層T2の表面と裏面(層T1との界面I)との間での多重反射する結果、表面から透過する位相差を持った透過光L 2、L 4、L 6、..L n+1の干渉により、透過光LOUTが変調されて、干渉縞が発生するという問題が生じる。 As shown in FIG. 13, when the refractive indexes of the adjacent layers T1 and T2 change discontinuously with the interface I as a boundary, light reflection occurs at the interface I. As a result, first of all, with respect to the incident light L IN, the problem that the transmitted light loss due to the interface reflection light L R is generated. More specifically, the incident light L IN are other reflected light L r 1 reflected directly at the interface I, the transmitted light of the results of multiple reflections within the layer T2 L t 3, L t 5 , ··, L t n In addition, the transmitted light is lost due to the interface reflected light L R that is also integrated. Secondly, as a result of multiple reflections between the front surface and the back surface (interface I with the layer T1) of the layer T2, transmitted light L t 2 , L t 4 , L t having a phase difference transmitted from the front surface is obtained. 6 ,. . The interference of L t n + 1 causes the problem that the transmitted light L OUT is modulated and interference fringes are generated.

上記のような干渉縞を解消することを目的として、層T1と層T2とを、その界面I近傍において、相互に溶解、浸透、或いは膨潤させて、界面I近傍における屈折率の不連続性を緩和し、且つ界面近傍において光散乱性を付与する技術が開示されている(例えば、特許文献2)。
例えば、特許文献2の技術を、図13のような2層積層体に適用する場合、透明層T1の表面に、透明層T2を塗布して形成する際に、該透明層T2形成用塗工液の稀釈溶剤(分散媒、或いは未反応単量体等)として透明層T1を溶解(分散、或いは膨潤)させ得る物を用いることにより、図14のように、層T1と層T2との界面I近傍に、層T1の樹脂と層T2の樹脂とが相互に溶解、浸透、或いは膨潤により交じり合った相溶拡散層Idiffusedを形成する。
In order to eliminate the interference fringes as described above, the layer T1 and the layer T2 are dissolved, penetrated, or swollen with each other in the vicinity of the interface I, and the refractive index discontinuity in the vicinity of the interface I is reduced. A technique for relaxing and imparting light scattering properties in the vicinity of the interface is disclosed (for example, Patent Document 2).
For example, when the technique of Patent Document 2 is applied to a two-layer laminate as shown in FIG. 13, when the transparent layer T2 is applied and formed on the surface of the transparent layer T1, the coating for forming the transparent layer T2 is applied. By using a solution that can dissolve (disperse or swell) the transparent layer T1 as a liquid dilution solvent (dispersion medium, unreacted monomer, etc.), the interface between the layer T1 and the layer T2 as shown in FIG. In the vicinity of I, a compatible diffusion layer I diffused is formed in which the resin of the layer T1 and the resin of the layer T2 are mixed together by dissolution, permeation, or swelling.

該相溶拡散層Idiffusedにおいては屈折率の不連続性も緩和し、界面反射光自体減少する。更に、層Idiffused近傍においては光散乱を生じ、界面Iから層T2内に入射する光は可干渉性(コヒーレンス)の低下した散乱透過光I scatterになる。よって、透過光LOUTには干渉縞を生じない。
しかしながら、上述の特許文献2の技術を用いた場合でも、図14からも明らかな様に、相溶拡散層Idiffusedにおける散乱透過光I scatter、及び散乱反射光I scatterにより、入射光LINに対する透過光(利用すべき光)の損失が依然として存在する。また、特許文献2の技術においては、相溶拡散層Idiffusedにおける散乱により、曇価(ヘイズ)が上昇する場合がある。画像光を透過させる場合には透過画像に曇りを生じ、鮮明度が低下する場合がある。
In the compatible diffusion layer I diffused , the discontinuity of the refractive index is also relaxed, and the interface reflected light itself is reduced. Furthermore, light scattering occurs in the vicinity of the layer I diffused , and the light incident from the interface I into the layer T2 becomes scattered transmitted light I t scatter with reduced coherence. Therefore, no interference fringes are generated in the transmitted light L OUT .
However, even when the technique of the above-mentioned Patent Document 2 is used, as is clear from FIG. 14, the incident light L can be obtained by the scattered transmitted light I t scatter and the scattered reflected light I r scatter in the compatible diffusion layer I diffused . There is still a loss of transmitted light (light to be used) for IN . Moreover, in the technique of patent document 2, the haze may increase due to scattering in the compatible diffusion layer I diffused . When the image light is transmitted, the transmitted image may be clouded and the sharpness may decrease.

一方、特許文献3には、裏面に反射防止用の特定の形状を有する微細凹凸が形成されてなる表示装置の窓材が開示されている。   On the other hand, Patent Document 3 discloses a window material for a display device in which fine irregularities having a specific shape for preventing reflection are formed on the back surface.

特公平7−51641号公報Japanese Patent Publication No. 7-51641 特開2005−144836号公報Japanese Patent Laid-Open No. 2005-144836 特開2003−4916号公報JP 2003-4916 A

本発明は上記問題点を解消するためになされたものであり、屈折率の互いに異なる隣接2層を1組以上含む透明層の積層体から成る透光性物品であって、2層の屈折率差に起因する2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減され、且つ、ヘイズが上昇することもない透光性物品を提供することを目的とする。   The present invention has been made to solve the above problems, and is a translucent article comprising a laminate of transparent layers including at least one pair of adjacent two layers having different refractive indexes, and has a refractive index of two layers. To provide a translucent article in which reflection loss of transmitted light at the interface between two layers due to a difference and / or interference fringes generated by the interface is eliminated or reduced, and haze does not increase. Objective.

本発明に係る透光性物品は、屈折率の互いに異なる隣接2層を1組以上含む、透明層の積層体から成り、該隣接2層のうちの少なくとも1組の界面には微細凹凸を有する透光性物品であって、
該微細凹凸形状は、可視光の波長帯域の真空中における最小波長をλMIN、該微細凹凸の最凸部における周期をPMAXとしたときに、
PMAX≦λMIN
なる関係を有し、
且つ該微細凹凸をその凹凸方向と直交する面で切断したと仮定したときの断面内における該最凸部を形成する側の透明層の断面積占有率が、該微細凹凸の最凸部から最凹部に行くに従って連続的に漸次増加して行き、最凹部において100%になることを特徴とする。
The translucent article according to the present invention is composed of a laminate of transparent layers including at least one pair of adjacent two layers having different refractive indexes, and has fine unevenness at the interface of at least one set of the adjacent two layers. A translucent article,
When the minimum wavelength in the vacuum of the visible light wavelength band is λMIN and the period at the most convex portion of the fine unevenness is PMAX,
PMAX ≦ λMIN
Have the relationship
In addition, when it is assumed that the fine irregularities are cut along a plane orthogonal to the irregular direction, the cross-sectional area occupancy of the transparent layer on the side where the most convex portions are formed in the cross section is the highest from the most convex portions of the fine irregularities. As it goes to the recess, it gradually increases gradually and reaches 100% at the most recess.

本発明に係る透光性物品によれば、屈折率の互いに異なる隣接2層の界面が上記特定形状の微細凹凸になっていることにより、該界面に到達した光に対して、該微細凹凸部の屈折率は、該微細凹凸部を形成している両媒質の屈折率の平均値として作用する。従って、屈折率の互いに異なる隣接2層の界面における屈折率変化の不連続性は緩和される。更により好ましい形態では完全に連続的に漸次変化する。物質界面における光の反射は、屈折率の不連続的変化で起きるものであるから、該界面の微細凹凸を前記特定のものとすることによって、当該界面における光反射をなくすか低減することができる。従って、2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減される。また、上記のような光の分解能以下の特定の微細凹凸が形成されている場合には、光が散乱されることも無いので、ヘイズ値が上昇することもない。更に、本発明に係る透光性物品においては、上記特定の微細凹凸が内部に形成されており、表面に露出されて無い為、当該微細凹凸が経時で摩耗したり、油汚れ等により凹部充填されることがなく、上述のような効果の低下も起きない。   According to the translucent article according to the present invention, the interface between adjacent two layers having different refractive indexes is the fine irregularities of the specific shape, so that the fine irregularities are obtained with respect to the light reaching the interface. This refractive index acts as the average value of the refractive indexes of both media forming the fine irregularities. Accordingly, the discontinuity of the refractive index change at the interface between adjacent two layers having different refractive indexes is alleviated. In a still more preferred form, it changes gradually and continuously. Since light reflection at the material interface occurs due to a discontinuous change in the refractive index, the light reflection at the interface can be eliminated or reduced by making the fine irregularities of the interface specific. . Therefore, reflection loss of transmitted light at the interface between the two layers and / or interference fringes generated by the interface are eliminated or reduced. In addition, when specific fine irregularities having a resolution equal to or lower than the light resolution as described above are formed, the light is not scattered and the haze value does not increase. Furthermore, in the translucent article according to the present invention, the specific fine irregularities are formed inside and are not exposed on the surface, so the fine irregularities are worn over time or filled with concave portions due to oil stains or the like. The above-described effects are not reduced.

本発明によれば、屈折率の互いに異なる隣接2層を1組以上含む透明層の積層体から成る透光性物品であって、2層の屈折率差に起因する2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減され、且つ、ヘイズが上昇することもない透光性物品を提供することができる。更に、本発明に係る透光性物品は、経時で上述のような効果の低下が起きないものである。   According to the present invention, a translucent article comprising a laminate of transparent layers including at least one pair of adjacent two layers having different refractive indexes, and transmission at the interface between the two layers due to the refractive index difference between the two layers It is possible to provide a translucent article in which reflection loss of light and / or interference fringes generated by the interface are eliminated or reduced, and haze does not increase. Further, the translucent article according to the present invention is one in which the above-described effect does not decrease over time.

本発明に係る透光性物品は、屈折率の互いに異なる隣接2層を1組以上含む、透明層の積層体から成り、該隣接2層のうちの少なくとも1組の界面には微細凹凸を有する透光性物品であって、
該微細凹凸形状は、可視光の波長帯域の真空中における最小波長をλMIN、該微細凹凸の最凸部における周期をPMAXとしたときに、
PMAX≦λMIN
なる関係を有し、
且つ該微細凹凸をその凹凸方向と直交する面で切断したと仮定したときの断面内における該最凸部を形成する側の透明層の断面積占有率が、該微細凹凸の最凸部から最凹部に行くに従って連続的に漸次増加して行き、最凹部において100%になることを特徴とする。
The translucent article according to the present invention is composed of a laminate of transparent layers including at least one pair of adjacent two layers having different refractive indexes, and has fine unevenness at the interface of at least one set of the adjacent two layers. A translucent article,
When the minimum wavelength in the vacuum of the visible light wavelength band is λMIN and the period at the most convex portion of the fine unevenness is PMAX,
PMAX ≦ λMIN
Have the relationship
In addition, when it is assumed that the fine irregularities are cut along a plane orthogonal to the irregular direction, the cross-sectional area occupancy of the transparent layer on the side where the most convex portions are formed in the cross section is the highest from the most convex portions of the fine irregularities. As it goes to the recess, it gradually increases gradually and reaches 100% at the most recess.

本発明に係る透光性物品によれば、屈折率の互いに異なる隣接2層の界面が上記特定形状の微細凹凸になっていることにより、該隣接2層界面に到達した光に対して、該微細凹凸部の屈折率は、該微細凹凸部を形成している両媒質の屈折率の平均値として作用する。従って、屈折率の互いに異なる隣接2層の界面における屈折率変化の不連続性は緩和される。更により好ましい形態では完全に連続的に漸次変化する。物質界面における光の反射は、屈折率の不連続的変化で起きるものであるから、該界面の微細凹凸を前記特定のものとすることによって、当該界面における光反射をなくすか低減することができる。従って、2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減される。また、上記のような光の分解能以下の特定の微細凹凸が形成されている場合には、光が散乱されることも無いので、ヘイズ値が上昇することもない。更に、本発明に係る透光性物品においては、上記特定の微細凹凸が内部に形成されており、表面に露出されて無い為、当該微細凹凸が経時で摩耗したり、油汚れ等により凹部充填されることがなく、上述のような効果の低下も起きない。   According to the translucent article according to the present invention, the interface between adjacent two layers having different refractive indices is the fine irregularities of the specific shape. The refractive index of the fine uneven portion acts as an average value of the refractive indexes of both media forming the fine uneven portion. Accordingly, the discontinuity of the refractive index change at the interface between adjacent two layers having different refractive indexes is alleviated. In a still more preferred form, it changes gradually and continuously. Since light reflection at the material interface occurs due to a discontinuous change in the refractive index, the light reflection at the interface can be eliminated or reduced by making the fine irregularities of the interface specific. . Therefore, reflection loss of transmitted light at the interface between the two layers and / or interference fringes generated by the interface are eliminated or reduced. In addition, when specific fine irregularities having a resolution equal to or lower than the light resolution as described above are formed, the light is not scattered and the haze value does not increase. Furthermore, in the translucent article according to the present invention, the specific fine irregularities are formed inside and are not exposed on the surface, so the fine irregularities are worn over time or filled with concave portions due to oil stains or the like. The above-described effects are not reduced.

以下適宜図面を引用して説明していくが、何れの図面においても、表裏は図面上方を表、図面下方を裏とし、又凹凸は図面上方に突出する場合を凸、図面下方に向かって突出する場合を凹とする。   The drawings will be described below with reference to the drawings as appropriate. In any of the drawings, the front and back are the upper side of the drawing, the lower side of the drawing is the back side, and the unevenness protrudes upward when the projection protrudes upward. If you want to make it concave.

図1は、本発明に係る透光性物品10を概念的に示す断面図である。同図のように、本発明に係る透光性物品10は、屈折率がN1の第1の透明層T1と屈折率がN2の第2の透明層T2との界面Iに上記特定の微細凹凸P12が形成されている。なお、該特定の微細凹凸P12は、本発明に係る透光性物品10では屈折率の異なる2層の透明層の界面に形成される。本発明特有のこの微細凹凸P12は、可視光線の波長以下の大きさの特定の形状の凹凸である。この様な微細な凹凸によって、屈折率の異なる2層の透明層の間での急激で不連続な屈折率変化を緩和し、不連続ではあっても段差の少ない屈折率変化、或いは更に完全に連続的で漸次変化する屈折率変化に変えることが可能となる。そして、光の反射は、物質界面の不連続な急激な屈折率変化によって生じる現象であるから、空間的に連続的に変化する様にした屈折率変化によって、光反射防止効果が得られる。その結果、2層の屈折率差に起因する2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減される。更に、本発明の透光性物品においては、微細凹凸は表面ではなく透光性物品の内部に形成してあるので、使用時に摩耗や、油汚れによる凹部充填等によって微細凹凸形状が鈍って上記効果が低下することもない。 FIG. 1 is a sectional view conceptually showing a translucent article 10 according to the present invention. As shown in the figure, the translucent article 10 according to the present invention has the specific fine unevenness at the interface I between the first transparent layer T1 having a refractive index N1 and the second transparent layer T2 having a refractive index N2. P 12 is formed. Incidentally, the specific fine irregularities P 12 is formed at the interface of the transparent layer of two different layers having refractive index in the translucent article 10 according to the present invention. The fine irregularities P 12 present invention unique is the unevenness of the particular shape of the wavelength or less in size of visible light. Such fine irregularities alleviate sudden and discontinuous refractive index changes between two transparent layers with different refractive indices, and even if they are discontinuous, there are few steps in the refractive index, or even more completely It is possible to change the refractive index to a continuous and gradually changing refractive index. The reflection of light is a phenomenon caused by a sudden and rapid change in the refractive index at the material interface, so that the light reflection preventing effect can be obtained by the change in the refractive index that is continuously changed spatially. As a result, the reflection loss of the transmitted light at the interface between the two layers due to the difference in refractive index between the two layers and / or interference fringes generated by the interface are eliminated or reduced. Further, in the translucent article of the present invention, since the fine irregularities are formed not inside the surface but inside the translucent article, the fine irregularities shape becomes dull due to wear or filling of concave parts due to oil stains during use. The effect is not reduced.

なお、本発明に係る透光性物品10は、図2に示されるように透明層が3層以上の積層体であっても良く、その場合において、図2(A)に示されるように、屈折率の互いに異なる隣接2層のうち1組のT2とT3層の間の界面Iのみに上記特定の微細凹凸形状P23が形成されていても良いし、図2(B)に示されるように、屈折率の互いに異なる隣接2層の全ての界面I、I、Iに上記特定の微細凹凸形状P12、P23、P34が形成されていても良い。更に、本発明に係る透光性物品10は、屈折率の互いに異なる隣接2層のうち1組の界面に上記特定の微細凹凸形状P12が形成されているだけでなく、これに加えて図3(A)に示されるように積層体の最表面(図面上方)に上記特定の微細凹凸形状Psurfが形成されていても良いし、図3(B)に示されるように積層体の最裏面(図面下方)に上記特定の微細凹凸形状Prearが形成されていても良いし、更には図3(C)に示されるように積層体の最表面と最裏面の両面に、上記特定の微細凹凸形状Psurf及びPrearが設けられていても良い。このように最表面や最裏面に設けられた上記特定の微細凹凸形状により、該微細凹凸形成面における透明層と空気との間の急激で不連続な屈折率変化を、連続的で漸次変化する屈折率変化に変えることが可能となる。このように最表面及び/又は最裏面にも上記特定の微細凹凸形状を形成する場合には、空間的に連続的に変化する様にした屈折率変化によって、最表面及び/又は最裏面における光反射防止効果が得られるため好ましい。この場合において、透光性物品を使用者が触れる可能性がない最裏面に、微細凹凸を形成する場合には、内部に微細凹凸形状が形成されている場合と同様に、使用時に摩耗や、油汚れによる凹部充填等によって微細凹凸形状が鈍って反射防止効果が低下する事もない。 The translucent article 10 according to the present invention may be a laminate of three or more transparent layers as shown in FIG. 2, and in that case, as shown in FIG. it only interface I 2 in between a pair of T2 and T3 layer of different adjacent two layers of refractive index the specific fine irregularities P 23 may be formed, as shown in FIG. 2 (B) As described above, the specific fine concavo-convex shapes P 12 , P 23 , and P 34 may be formed at all the interfaces I 1 , I 2 , and I 3 of the adjacent two layers having different refractive indexes. Furthermore, the translucent article 10 according to the present invention, a set of interface among the different adjacent two layers of refractive index as well as the specific fine irregularities P 12 are formed, in addition to FIG. As shown in FIG. 3 (A), the specific fine concavo-convex shape Psurf may be formed on the outermost surface (upper side of the drawing) of the laminate, or as shown in FIG. 3 (B). The specific fine concavo-convex shape P rear may be formed on the back surface (lower side of the drawing), and further, the specific surface may be formed on both the outermost surface and the back surface of the laminate as shown in FIG. Fine uneven shapes P surf and P rear may be provided. As described above, the specific fine uneven shape provided on the outermost surface or the rearmost surface causes a continuous and gradually changing refractive index change between the transparent layer and air on the fine uneven surface. It is possible to change to a change in refractive index. Thus, when the above-mentioned specific fine uneven shape is formed also on the outermost surface and / or the outermost surface, the light on the outermost surface and / or the outermost surface is changed by the refractive index change that is spatially continuously changed. It is preferable because an antireflection effect is obtained. In this case, when forming fine irregularities on the outermost back surface where the user may not touch the translucent article, as in the case where the fine irregularities are formed inside, wear during use, The fine uneven shape is not dulled by filling the recesses with oil stains, and the antireflection effect is not lowered.

尚、以上の例示は、本発明の透光性物品の態様を限定するものではない。本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   In addition, the above illustration does not limit the aspect of the translucent article of this invention. Any device that has substantially the same structure as the technical idea described in the claims of the present invention and that exhibits the same effect can be included in the technical scope of the present invention. .

〔微細凹凸〕
図4〜図6は、上記特定の微細凹凸によって得られる屈折率分布の好ましい形態を、概念的に説明する概念図である。先ず、図4は、屈折率の互いに異なる隣接2層(透明層1A及び透明層1B)のうち、一方の透明層1Aが、Z≦0の部分の空間において100%を占め、Z=0におけるXY平面上に、Z軸方向を凹凸方向とする多数の微細凹凸2が形成された状態を示す。該微細凹凸2をその凹凸方向(Z軸方向)と直交するXY平面に平行な面(Z=z)上で切断したと仮定したときの、断面内における該最凸部を形成する側の透明層1Aの断面積占有率は、該微細凹凸の最凸部2tの高さZ=HMAXから最凹部Z=0に行くに従って連続的に漸次0%から増加して行き、最凹部Z=0において100%になる。逆に、Z>0の部分の空間において形成されているもう一方の透明層1Bは、最凹部Z=0においては断面積占有率が0%であり、Z=0から微細凹凸の最凸部2tの高さZ=HMAXに行くに従って連続的に漸次0%から増加して行き、最凸部2tの高さZ=HMAXにおいて100%になる。そして、微細凹凸の最凸部2tから上方、即ちHMAX≦Zの部分の空間においては、もう一方の透明層1Bが100%を占める。なお、透明層1Aにおける断面積占有率とは、透明層1A及び透明層1Bからなる全面積に対する透明層1Aが占有する部分の合計の面積(透明層1Aの占有面積/全面積)をいう。図5において、透明層1Aにおける断面積占有率は、符号nを付した領域が相当する。
[Fine unevenness]
4 to 6 are conceptual diagrams for conceptually explaining a preferable form of the refractive index distribution obtained by the specific fine unevenness. First, FIG. 4 shows that one of the adjacent two layers (transparent layer 1A and transparent layer 1B) having different refractive indexes occupies 100% in the space where Z ≦ 0, and Z = 0 A state in which a number of fine irregularities 2 having the Z-axis direction as the irregularity direction is formed on the XY plane is shown. When it is assumed that the fine unevenness 2 is cut on a plane (Z = z) parallel to the XY plane orthogonal to the uneven direction (Z-axis direction), the transparent on the side forming the most convex portion in the cross section The cross-sectional area occupancy of the layer 1A gradually increases from 0% as it goes from the height Z = H MAX of the most convex portion 2t of the fine unevenness to the most concave portion Z = 0, and the most concave portion Z = 0. At 100%. On the contrary, the other transparent layer 1B formed in the space where Z> 0 has a cross-sectional area occupancy of 0% at the most concave portion Z = 0, and the highest convex portion having fine irregularities from Z = 0. As it goes to the height Z = H MAX of 2t, it gradually increases from 0% and reaches 100% at the height Z = H MAX of the most convex portion 2t. The other transparent layer 1B occupies 100% above the most convex part 2t of the fine irregularities, that is, in the space of the portion of H MAX ≦ Z. In addition, the cross-sectional area occupation rate in 1 A of transparent layers means the total area (occupation area of 1 A of transparent layers / total area) of the part which 1 A of transparent layers occupy with respect to the total area which consists of 1 A of transparent layers and 1 B of transparent layers. In FIG. 5, the cross-sectional area occupancy in the transparent layer 1 </ b > A corresponds to a region denoted by the symbol na.

そして、本発明では、微細凹凸2を、その最凸部2tにおける周期をPMAXとしたときに、このPMAXが、可視光の波長帯域の真空中における最小波長λMIN以下としてある為、微細凹凸形成面への到達光に対しては、媒質(透明層1A、及び透明層1B)の屈折率に空間的な分布があっても、それは注目する波長以下の大きさの分布である為に、その分布がそのまま直接に光に作用せず、それが平均化されたものとして作用する。そして該平均屈折率(有効屈折率とも云う)は、透明層1Aの屈折率nに透明層1Aの断面積占有率(図5参照。符号nの部分の合計面積の全体に対する割合)を掛け、又透明層1Bの屈折率nに透明層1Bの断面積占有率(図5参照。符号nの部分の合計面積の全体に対する割合)を掛けて合計した値となる。即ち、該微細凹凸部の断面積占有率が最凸部から最凹部にかけて連続的変化をすれば、平均屈折率も最凸部から最凹部にかけてnからnに向かって連続的変化をする(図6参照)。本発明の屈折率が互いに異なる透明層の界面おいては、平均化された後の屈折率(有効屈折率)が、光が進行するに従って連続的に変化する様な分布にしてあるため、光の反射を防げるのである。なお、本発明において、最凸部2tにおける周期PMAXとは、隣接する微細凹凸2の最凸部2t間の距離のうち最大の距離であって、個々の微細凹凸が規則的に配置され周期性を有し、隣接する微細凹凸同士間の距離が同一の構成でも良いが、周期性が無く、隣接する微細凹凸同士間の距離が不揃いである構成であっても良い。このように隣接する微細凹凸同士間の距離が不揃いの場合には、最も大きな微細凹凸同士間の距離をPMAXとする。 In the present invention, when the period of the fine projections 2t is PMAX, the PMAX is equal to or less than the minimum wavelength λMIN in the vacuum of the visible light wavelength band. Even if there is a spatial distribution in the refractive index of the medium (the transparent layer 1A and the transparent layer 1B), the distribution of the light reaching the light reaches a wavelength below the wavelength of interest. Does not act directly on light, but acts as an average. And said average refractive index (also referred to as the effective refractive index) is the cross-sectional area occupying ratio of the transparent layer 1A to the refractive index n a of the transparent layer 1A (a percentage of the total of the total area of the portion of FIG. 5 reference. Numeral n a) over, and the total value is multiplied by (percentage of the total of the total area of the reference FIG. parts of the code n b) cross-sectional area occupying ratio of the transparent layer 1B to the refractive index n b of the transparent layer 1B. That is, if the cross-sectional area occupying ratio of the fine convexo-concave portion is a continuous variation over the top recess from the most projecting portion, the average refractive index toward the n b toward the outermost recess from the most projecting portion to n a the continuous change (See FIG. 6). In the interface of the transparent layers having different refractive indexes according to the present invention, the refractive index after being averaged (effective refractive index) is distributed so as to change continuously as the light travels. It can prevent reflection. In the present invention, the period PMAX in the most convex part 2t is the maximum distance among the distances between the most convex parts 2t of the adjacent fine irregularities 2, and each fine irregularity is regularly arranged and has periodicity. The distance between adjacent fine irregularities may be the same, but it may be a structure having no periodicity and uneven distance between adjacent fine irregularities. When the distances between adjacent fine irregularities are not uniform, the distance between the largest fine irregularities is defined as PMAX.

以上について図面を基に、更に詳述する。図4において、光が透明層1B(Z軸の正)の方向から透明層1A(Z軸の負)の方向へ入光して、該透明層1B内部を進み、該透明層1Bと透明層1Aの界面近傍をZ軸の負方向に進行しつつあり、丁度、Z軸座標がzのところに存在するとする。すると、ここのZ=zに居る光にとっては、媒体の屈折率は透明基材が特定の微細凹凸をなす為、厳密には、Z=zにおいてZ軸と直交するXY平面(横断面:水平断面)内において、分布f(x,y,z)を持つ様に見える。すなわち、XY平面内において、透明層1Aの断面部分は屈折率n、その他の部分、具体的には透明層1Bの部分は屈折率nとなる(図5参照)。ところが実際には、光にとっては、その波長(表示装置の視認に関係する光の波長が分布を有する場合は、波長帯域の最小波長λMIN)よりも小さな空間的スケールの屈折率分布は、平均化されたものとして作用する結果、平均化された結果の有効屈折率(平均屈折率)は、前記XY平面内において、屈折率分布f(x,y,z)をXY平面内において積分したもの、となる。その結果、有効屈折率(nef)の分布はzのみの関数nef(z)となる(図6参照)。 The above will be described in more detail based on the drawings. In FIG. 4, light enters from the direction of the transparent layer 1B (positive on the Z axis) to the direction of the transparent layer 1A (negative on the Z axis), travels through the transparent layer 1B, and the transparent layer 1B and the transparent layer It is assumed that the vicinity of the interface of 1A is proceeding in the negative direction of the Z axis, and the Z axis coordinate is exactly located at z. Then, for the light at Z = z here, the refractive index of the medium is strictly defined by an XY plane (transverse section: horizontal) orthogonal to the Z axis at Z = z because the transparent substrate has specific fine irregularities. It appears to have a distribution f (x, y, z) within the cross section. That is, in the XY plane, cross section of the transparent layer 1A has a refractive index n a, other portions, the portion of the specific transparent layer 1B is the refractive index n b (see FIG. 5). However, in practice, for light, the refractive index distribution on a spatial scale smaller than the wavelength (the wavelength of light related to visual recognition of the display device has a distribution, the minimum wavelength λMIN of the wavelength band) is averaged. As a result, the effective refractive index (average refractive index) of the averaged result is obtained by integrating the refractive index distribution f (x, y, z) in the XY plane in the XY plane, It becomes. As a result, the distribution of the effective refractive index (n ef ) is a function n ef (z) of only z (see FIG. 6).

Figure 2007090656
Figure 2007090656

よって、もしも、微細凹凸における透明基材の凸部の面積が、凹部に向かって連続的に増大する様な形状であれば、XY平面内における透明層1Aの部分と透明層1Bの部分との面積比がZ軸方向に向かって連続的に変化する為、有効屈折率nef(z)はzに付いての連続関数になる。
一方、屈折率n0の媒質から、屈折率n1の媒質に光が入射する場合を考える。今、簡単の為に、入射角θ=0°(垂直入射)を考える。但し、入射角は入射面の法線に対する角度とする。この場合、媒質界面での反射率Rは、偏光、及び入射角には依存せず、下記の式(2)となる。
Therefore, if the area of the convex portion of the transparent substrate in the fine irregularities is a shape that continuously increases toward the concave portion, the portion of the transparent layer 1A and the portion of the transparent layer 1B in the XY plane Since the area ratio continuously changes in the Z-axis direction, the effective refractive index n ef (z) is a continuous function with respect to z.
On the other hand, from a medium of refractive index n 0, consider the case where light enters a medium of refractive index n 1. For the sake of simplicity, consider an incident angle θ = 0 ° (normal incidence). However, the incident angle is an angle with respect to the normal of the incident surface. In this case, the reflectance R at the medium interface does not depend on the polarization and the incident angle, and is expressed by the following formula (2).

Figure 2007090656
Figure 2007090656

従って、(有効)屈折率のZ方向への変化が連続関数であるということは、Z方向(光の進行方向)に微小距離Δzを隔てた2点、Z=zにおける屈折率をn0、Z=z+Δzにおける屈折率をn1、としたときに、Δz→0ならば、n1→n0となり(連続関数の定義より)、よって、式(2)より、R→0となる。 Therefore, the fact that the (effective) refractive index change in the Z direction is a continuous function means that the refractive index at Z = z is n 0 , two points separated by a small distance Δz in the Z direction (light traveling direction). When the refractive index at Z = z + Δz is n 1 , if Δz → 0, then n 1 → n 0 (from the definition of the continuous function), and therefore R → 0 from equation (2).

なお、ここで、より厳密に言うと、物体中での光の波長は、真空中の波長をλ、物体の屈折率をnとしたときに、λ/nとなり、λよりは一般にある程度小さくなる。従って、真空中の波長を用いてPMAX≦λMINの条件を設計すれば、最低限、隣接2層の媒質1A、1Bの何れかの屈折率が真空中の屈折率(屈折率=1、あらゆる媒質の中で有り得る最低の屈折率)に等しい場合に初めて上記反射防止効果を奏する。即ちこの場合が、媒質によって有り得るPMAXの上限値を与える。   Strictly speaking, the wavelength of light in the object is λ / n where λ is the wavelength in the vacuum and n is the refractive index of the object, and is generally somewhat smaller than λ. . Therefore, if the condition of PMAX ≦ λMIN is designed using the wavelength in vacuum, at least the refractive index of any of the adjacent two-layer media 1A and 1B is the refractive index in vacuum (refractive index = 1, any medium). The above antireflection effect is exhibited only when it is equal to the lowest possible refractive index). That is, this case gives an upper limit value of PMAX that can be obtained depending on the medium.

通常の殆どの媒質では屈折率nは真空の屈折率よりは大であり、厳密には反射防止の為のPMAXの条件は、PMAX≦λMIN/n(≦λMIN)となり、上記の真空の波長を使った不等式の上限で設計すると、一部の低波長領域で反射防止条件から外れる部分が生じる。但し、その場合においても、完全ではないが、ある程度の反射防止効果を奏し得る。即ち、媒質の屈折率nが真空の屈折率より大となった場合でも、λ/n≧λMINである波長λを持つような充分長波長領域の光に対しては前記、PMAX≦λ/nの条件が成り立つためである。また、PMAX≧λ/nとなる光に対しても少しでは有るが反射防止効果が期待できる為である。   In most ordinary media, the refractive index n is larger than the refractive index of vacuum. Strictly speaking, the PMAX condition for preventing reflection is PMAX ≦ λMIN / n (≦ λMIN), and the above-mentioned vacuum wavelength is If the upper limit of the inequality used is used, a part deviating from the antireflection condition occurs in some low wavelength regions. However, even in that case, although not perfect, a certain degree of antireflection effect can be achieved. That is, even when the refractive index n of the medium is larger than the refractive index of the vacuum, PMAX ≦ λ / n for light in a sufficiently long wavelength region having a wavelength λ where λ / n ≧ λMIN. This is because the above condition is satisfied. Further, this is because an antireflection effect can be expected although it is a little for light satisfying PMAX ≧ λ / n.

但し、勿論、媒質の屈折率nが真空の屈折率より大の場合に、より厳密に数値を設定し、反射防止効果を完全とする必要がある場合には、前記微細凹凸を界面に有する隣接2層の透明層の屈折率のうち、大きい屈折率をn’としたときに、PMAX≦λMIN/n’となるように設定することが好ましい。硝子、アクリル樹脂等、透明層に使われる材料は、通常1.5前後の屈折率である為、屈折率n’の透明基材中の波長(λ/n’)は、0.7λ程度となる。具体的には、λMINを可視光波長帯域の下限380nm、n’を仮に1.5とした場合には、λMIN/n’は250nm、つまりPMAXは250nm以下とすれば良い。   However, of course, when the refractive index n of the medium is larger than the refractive index of the vacuum, if it is necessary to set a numerical value more strictly and complete the antireflection effect, the adjacent surface having the fine unevenness at the interface. Of the refractive indexes of the two transparent layers, it is preferable to set so that PMAX ≦ λMIN / n ′, where n ′ is a large refractive index. Since the material used for the transparent layer, such as glass and acrylic resin, usually has a refractive index of around 1.5, the wavelength (λ / n ′) in the transparent substrate having a refractive index n ′ is about 0.7λ. Become. Specifically, when λMIN is the lower limit of the visible light wavelength band of 380 nm and n ′ is 1.5, λMIN / n ′ may be 250 nm, that is, PMAX may be 250 nm or less.

次に、微細凹凸の形状は、該微細凹凸をその凹凸方向と直交する面で切断したと仮定したときの断面内における該最凸部を形成する側の透明層の断面積占有率が、該微細凹凸の最凸部から最凹部に行くに従って連続的に漸次増加して行き、最凹部において100%になるような形状であれば、どのような形状でもあっても良い。この為には、微細凹凸の山は少なくともその一部の側面が斜めの斜面を有するものとすれば良く、下記する図7(G)の様に斜面と共に垂直側面がある形状の微細凹凸2Gでも良い。特に、好ましくは、最凸部において最凸部を形成する側の透明層の断面積占有率が0%まで連続的に収束し、且つ最凹部において当該断面積占有率が100%まで連続的に収束する形状とする。具体的には例えば、図7(A)〜図7(G)のような形状が挙げられる。   Next, as for the shape of the fine unevenness, the cross-sectional area occupation ratio of the transparent layer on the side forming the most convex portion in the cross section when it is assumed that the fine unevenness is cut by a plane perpendicular to the uneven direction is Any shape may be used as long as it gradually increases gradually from the most convex part of the fine unevenness to the most concave part and becomes 100% in the most concave part. For this purpose, at least a part of the ridges of the fine unevenness may have an inclined slope, and even in the case of the fine unevenness 2G having a vertical side face with the inclined face as shown in FIG. good. In particular, preferably, the cross-sectional area occupancy of the transparent layer on the side of forming the most convex part at the most convex part continuously converges to 0%, and the cross-sectional area occupancy at the most concave part continuously to 100%. A convergent shape. Specifically, for example, shapes as shown in FIGS. 7A to 7G can be mentioned.

但し、本発明における微小凹凸は、図示は省略するが、例えば垂直断面形状が凸部が窄まった台形であるような、斜面部分に於いては断面積占有率が連続変化し、最凸部や最凹部が平坦な形状であっても良い。この場合、最凸部を形成する側の透明層の断面積占有率は、最凸部において断面積占有率が完全には0%にならず(例えば20%)、斜面部分において最凸部から最凹部に行くに従って、例えば20%から80%まで連続的に漸次増加して行き、最凹部で100%になるときに、例えば80%から100%に不連続に変化する。最凸部と最凸部より上側についても、最凸部を形成する側の透明層の断面積占有率は、例えば20%から0%へと不連続に変化する。しかしながらこの場合においても、或る程度の効果は得られる。即ち、この場合には、最凸部及び最凹部に於いては反射が起きるが、斜面部分に於いては断面積占有率が連続変化する為、前記の反射防止機構が奏効するからである。本発明の微細凹凸の形状は、この様な条件を満たせば、どんな形状でも良い。従って、微細凹凸2の斜面は垂直断面形状で言えば、直線や曲線の他、折れ線、或いは、これらの組合わせ等でも良い。   However, although the micro unevenness in the present invention is not illustrated, the cross-sectional area occupancy continuously changes on the slope portion, for example, the vertical cross-sectional shape is a trapezoid in which the convex portion is narrowed, and the most convex portion Or the most concave part may be a flat shape. In this case, the cross-sectional area occupation ratio of the transparent layer on the side where the most convex part is formed is not completely 0% (for example, 20%) in the cross-sectional area in the most convex part. As it goes to the most concave portion, it gradually increases, for example, from 20% to 80%, and when it reaches 100% at the most concave portion, it changes discontinuously from, for example, 80% to 100%. The cross-sectional area occupancy of the transparent layer on the side where the most convex portions are formed also changes discontinuously from 20% to 0%, for example, on the most convex portions and the uppermost portions of the most convex portions. However, even in this case, a certain degree of effect can be obtained. That is, in this case, reflection occurs in the most convex part and the most concave part, but the cross-sectional area occupancy continuously changes in the slope part, so that the antireflection mechanism is effective. The shape of the fine irregularities of the present invention may be any shape as long as such conditions are satisfied. Accordingly, the slope of the fine irregularities 2 may be a straight line or a curved line, a broken line, or a combination of these as long as it has a vertical cross-sectional shape.

また、有効屈折率nef(z)を空気中から基材中に向かうZ方向の関数として、naからnbに連続的に変化する様にする為には、最凸部を形成する側の透明層が微細凹凸の最凸部において、断面積占有率が0%に収束する図7(A)や図7(C)等のような形状〔すなわち、最凸部が点(立体空間で捉えれば点又は線)となる形状〕で且つ最凹部において該断面積占有率が連続的に100%に収束する形状が最も好ましい。
そして、微細凹凸2の形状の更に好ましい形状としては、その山と谷の尖り具合を規定する。すなわち、図8(A)の垂直断面図でそれを概念的に示すように、微細凹凸2についてその最凸部2tを有する山側Mtの形状2Mtが、最凹部2bを有する谷側Mbの形状2Mbに比べて、より尖った形状を成した形状とする。なお、微細凹凸2を山側Mtと谷側Mbとに二分する境界は、図8(A)の(垂直)断面図で概念的に示すように、微細凹凸2の高さH(最凸部2tと最凹部2bとの高低差)に対して、丁度半分の高さH/2として、高さH/2以上の部分を山側Mt、高さH/2以下の部分を谷側Mbと捉える。
Further, the effective refractive index n ef (z) as a function of the Z direction from the air into the substrate, in order to as continuously changes from n a to n b is the side that forms the outermost protruding portion 7A or 7C where the cross-sectional area occupancy converges to 0% at the most convex part of the fine irregularities of the transparent layer [that is, the most convex part is a point (in three-dimensional space A shape that becomes a point or a line if captured) and a shape in which the cross-sectional area occupation ratio continuously converges to 100% in the most concave portion is most preferable.
And as a more preferable shape of the shape of the fine unevenness | corrugation 2, the sharpness of the peak and trough is prescribed | regulated. That is, as conceptually shown in the vertical sectional view of FIG. 8A, the shape 2 Mt of the mountain side Mt having the most convex portion 2t of the fine unevenness 2 is the shape of the valley side Mb having the most concave portion 2b. Compared to 2 Mb , the shape is sharper. In addition, the boundary which bisects the fine unevenness | corrugation 2 into the peak side Mt and the valley side Mb is the height H (most convex part 2t) of the fine unevenness | corrugation 2 as conceptually shown with the (vertical) sectional drawing of FIG. 8 (A). With respect to the difference in height from the most concave portion 2b), the height H / 2 is exactly half, and the portion above the height H / 2 is regarded as the mountain side Mt, and the portion below the height H / 2 is regarded as the valley side Mb.

そして、山側Mtが谷側Mbよりも「尖った形状」とは、垂直断面で単なる正弦波形状や三角形状等の山側と谷側とが同一形状となる様な中立的な形状に比べて、更に尖った形状という事である。ここで、微細凹凸2をその凹凸方向と平行な面で切断したと仮定したときの垂直断面で形状を概念的に示し図8(A)及び(B)を参照して更に説明すれば、図8(A)のように、高さH/2以上の部分である微細凹凸2の最凸部2tを有する山側Mtの形状2Mtと、高さH/2以下の部分である最凹部2bを有する谷側Mbの形状2Mbとを、図8(B)のように谷側の形状2Mbを上下逆さにして、山側の形状2Mtと重ねてそれら形状を比較した場合に、それらが全く同一で重ならず、山側の形状2Mtの高さH/2における幅Wtが、谷側の形状2Mbの高さH/2における幅Wb、よりも小さく(狭く)、Wt<Wbとなる形状が該当する。なお、形状の尖り具合は、山側Mtの形状2Mtにおいては最凸部を形成する側の透明層1Aの材料部分が占める部分を考え、谷側Mbの形状Mbにおいては当該透明層1Aと隣接する透明層1Bが占める部分を考える。つまり、山と谷では形状の中身が違う。
なお、尖った形状において、その最凸部2t或いは最凹部2bが成す形状は、三角形(立体空間では例えば円錐や四角錐等となる)の頂点〔図7(C)参照〕のように尖点を有する鋭角的形状の他図8(A)、図7(A)に示す丸みを帯びた曲率を有する湾曲形状も包含する。従って微細凹凸の最凸部と最凹部の形状の組合わせは、最凸部及び最凹部が共に尖点の場合、或いは共に曲率を有する場合、或いはどちらか片方が尖点で他方が曲率を有する場合等、いずれでも良い。
And the peak side Mt is more “pointed shape” than the valley side Mb. Compared to a neutral shape in which the peak side and the valley side are the same shape in a vertical section, such as a simple sine wave shape or a triangular shape, It is a pointed shape. Here, if the fine unevenness 2 is conceptually shown in a vertical section when it is assumed that the fine unevenness 2 is cut along a plane parallel to the unevenness direction, the shape will be further described with reference to FIGS. 8 (A) and 8 (B). As shown in FIG. 8 (A), the shape 2 Mt of the mountain side Mt having the most convex portion 2t of the fine unevenness 2 that is a portion having a height H / 2 or more and the most concave portion 2b that is a portion having a height H / 2 or less. the shape 2 Mb of valley Mb having, in the upside down shape 2 Mb of the valley as shown in FIG. 8 (B), when compared with those shapes overlapping the shape 2 Mt mountain side, they are completely The width Wt at the height H / 2 of the mountain-side shape 2 Mt is smaller (narrower) than the width Wb at the height H / 2 of the valley-side shape 2 Mb , and Wt <Wb. Applicable shape. The sharpness of the shape is considered to be the portion occupied by the material portion of the transparent layer 1A on the side forming the most convex portion in the shape 2 Mt on the mountain side Mt, and adjacent to the transparent layer 1A in the shape Mb on the valley side Mb. Consider the portion occupied by the transparent layer 1B. In other words, the shape of the mountain and the valley are different.
In the pointed shape, the shape formed by the most convex portion 2t or the most concave portion 2b is a vertices such as a vertex (see, for example, a cone or a quadrangular pyramid in a three-dimensional space) [see FIG. 7C]. In addition to an acute-angled shape having a curved shape, a curved shape having a rounded curvature as shown in FIGS. 8A and 7A is also included. Therefore, in the combination of the shape of the most convex part and the most concave part of the fine unevenness, when both the most convex part and the most concave part have cusps, or both have a curvature, either one has a cusp and the other has a curvature. Any case is acceptable.

上述のように本発明では、微細凹凸のサイズ的要素である周期及び高さが同一であったとしても、微細凹凸の形状を上述の様に、最凸部を有する山側の形状を最凹部を有する谷側の形状に比べて、より尖った形状とすることで、光の反射率をより小さくできるのである。例えば、本発明に該当する図7(A)のような微細凹凸2Aでは、図7(B)のような山側と谷側が同じ尖り具合の中立的な形状の微細凹凸2Bよりも、反射防止効果が大きくなる。   As described above, in the present invention, even if the period and the height, which are the size elements of the fine unevenness, are the same, the shape of the fine unevenness is changed to the shape of the peak side having the most convex portion as described above. By making the shape sharper than the shape on the valley side, the light reflectance can be made smaller. For example, in the fine unevenness 2A as shown in FIG. 7A corresponding to the present invention, the antireflection effect is more effective than the fine unevenness 2B having a neutral shape with the same sharpness on the mountain side and the valley side as shown in FIG. 7B. Becomes larger.

なお、図7(A)及び図7(B)では、微細凹凸の垂直断面形状が正弦波等の曲線のみによる波形の場合の比較であったが、断面形状が三角形状(より尖った形状とする為には斜面を直線のみで構成する場合、斜面は少なくとも2直線で構成されるので厳密には三角形では無いが、全体として三角形類似形状であるので「三角形状」とする。他も同様。)の微細凹凸の場合でも同じである。すなわち、図7(C)のように山側が谷側よりも尖った形状の微細凹凸2C、図7(D)のように山側と谷側とが同じ尖り具合の形状の微細凹凸2D、図7(E)のように逆に谷側の方が山側よりも尖った形状の微細凹凸2Eを比較した場合、それら微細凹凸の反射率の大小関係は、微細凹凸2Cが最も反射率が小さく、微細凹凸2C<微細凹凸2D<微細凹凸2E、の関係となる。   In FIGS. 7A and 7B, the vertical cross-sectional shape of the fine irregularities is a comparison with a waveform having only a curve such as a sine wave, but the cross-sectional shape is triangular (a more sharp shape). In order to do this, if the slope is composed only of straight lines, the slope is composed of at least two straight lines, so it is not strictly a triangle, but it is a triangle-like shape as a whole, so it is a “triangle”. The same applies to the case of fine irregularities. That is, the fine unevenness 2C having a shape in which the peak side is pointed more than the valley side as shown in FIG. 7C, and the fine unevenness 2D in which the peak side and the valley side have the same sharpness shape as shown in FIG. On the contrary, when comparing the fine unevenness 2E having a shape in which the valley side is sharper than the mountain side as in (E), the fine unevenness 2C has the smallest reflectance, and the fineness unevenness 2C has the smallest reflectance. The relationship of unevenness 2C <fine unevenness 2D <fine unevenness 2E is established.

また、本発明による微細凹凸は、その垂直断面形状が、水平面の全ての方向での垂直断面にて、図7(A)や図7(C)のように山側が谷側よりも尖った形状が最も効果的で好ましい。しかし、それらが主体を成し一部の方向のみならば、図7(D)或いは図7(E)のように、山側と谷側の尖り具合が同じ形状、或いは谷側が尖った形状を有していても、相応の効果は得られる。   Further, in the fine unevenness according to the present invention, the vertical cross-sectional shape is a shape in which the peak side is sharper than the valley side as shown in FIGS. 7A and 7C in the vertical cross-section in all directions of the horizontal plane. Is the most effective and preferred. However, if they form the main body and only in some directions, they have the same sharpness on the mountain side and valley side, or the shape on which the valley side is sharp, as shown in FIG. 7D or 7E. Even if you do it, you can get a reasonable effect.

ここで、図9に、図7(C)〜図7(E)の微細凹凸の拡大断面図を示しておく。図9中、微細凹凸2Cは図7(C)に、微細凹凸2Dは図7(D)に、微細凹凸2Eは図7(E)に対応する。各微細凹凸の最凸部2tと最凹部2bとを直線で結ぶ形状が、中立的な形状である微細凹凸2Dである。そして、微細凹凸の高さに対して高さH/2において、本発明に該当する山側が谷側より尖った微細凹凸2Cは、その山側の幅Wtが前記中立的な微細凹凸2Dの山側の幅よりも小さく内側(基材側)となる。逆に谷側が山側よりも尖った微細凹凸2Eは、その山側の幅Wtが前記中立的な微細凹凸2Dの山側の幅よりも大きく外側(空間側)となる。   Here, FIG. 9 shows an enlarged cross-sectional view of the fine irregularities of FIGS. 7 (C) to 7 (E). In FIG. 9, the fine unevenness 2C corresponds to FIG. 7C, the fine unevenness 2D corresponds to FIG. 7D, and the fine unevenness 2E corresponds to FIG. 7E. The shape connecting the most convex portions 2t and the most concave portions 2b of each fine unevenness with a straight line is the fine unevenness 2D that is a neutral shape. Then, at the height H / 2 with respect to the height of the fine unevenness, the fine unevenness 2C in which the peak side corresponding to the present invention is pointed from the valley side has a width Wt on the peak side of the neutral fine unevenness 2D. The inner side (base material side) is smaller than the width. Conversely, the fine unevenness 2E with the valley side sharper than the mountain side has a width Wt on the mountain side that is larger than the width on the mountain side of the neutral fine unevenness 2D (outside the space).

なお、個々の微細凹凸の水平断面形状は、円形(例えば図4)、楕円形、三角形、四角形、長方形、六角形、その他多角形等任意である。また、水平断面形状は、微細凹凸の最凸部から最凹部の全てにわたって同じ(相似形)である必要は無い。従って、微細凹凸の立体形状は、例えば、水平断面形状が円形で垂直断面形状が二等辺三角形状の場合の微細凹凸の立体形状は円錐状に、水平断面形状が円形で垂直断面形状が三角形状の場合の微細凹凸の立体形状は斜円錐状に、水平断面形状が三角形状で垂直断面形状が正三角形の場合の微細凹凸の立体形状は三角錐状に、水平断面形状が四角形で垂直断面形状が三角形状の場合の微細凹凸の立体形状は四角錐状になる。なお、前述したように、上記にて例えば、二等辺三角形「状」とは、例えば、図7(C)や図7(F)等の様に二等辺三角形よりも最凸部がより尖った様な二等辺三角形に類似した形状を意味する。   In addition, the horizontal cross-sectional shape of each fine unevenness | corrugation is arbitrary, such as circular (for example, FIG. 4), an ellipse, a triangle, a quadrangle, a rectangle, a hexagon, and other polygons. Further, the horizontal cross-sectional shape does not have to be the same (similar shape) from the most convex part to the most concave part of the fine irregularities. Therefore, for example, when the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is an isosceles triangle, the three-dimensional shape of the fine unevenness is conical, and the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is triangular. The three-dimensional shape of the fine irregularities is an oblique cone, and the three-dimensional shape of the fine irregularities is a triangular pyramid when the horizontal cross-sectional shape is triangular and the vertical cross-sectional shape is a regular triangle. In the case where is triangular, the three-dimensional shape of the fine irregularities is a quadrangular pyramid. In addition, as described above, for example, the isosceles triangle “shaped” in the above is, for example, that the most convex portion is sharper than the isosceles triangle as shown in FIGS. 7C and 7F. A shape similar to an isosceles triangle.

また、微細凹凸の、水平面内における配置は、図4で例示したように二次元的配置の他に、図10(A)の斜視図で例示の直線溝状の微細凹凸2のように、一次元的配置でも良く、どちらも効果は得られる。但し、一次元的配置の場合は、光の波の振幅方向との関係で、反射防止効果が得られる方向と得られない方向とが出る、異方性が発生する。従って、図4の斜視図や図10(B)及び図10(C)の平面図で例示の様な二次元的配置の方が、方向性が全く無い点で好ましい。   In addition to the two-dimensional arrangement of the fine irregularities in the horizontal plane as illustrated in FIG. 4, primary irregularities such as the linear groove-shaped fine irregularities 2 illustrated in the perspective view of FIG. The original arrangement may be used, and both are effective. However, in the case of the one-dimensional arrangement, anisotropy occurs in which a direction in which an antireflection effect is obtained and a direction in which the antireflection effect is not obtained are generated in relation to the amplitude direction of the light wave. Therefore, the two-dimensional arrangement illustrated in the perspective view of FIG. 4 and the plan views of FIGS. 10B and 10C is preferable in that there is no directivity.

また、図11の平面図で例示する様に、微細凹凸2を水平面内に二次元的に配置する場合、或る水平面を基準として、隣接する2層のうち透明層1Aが透明層1B側に向かって凸を成す山側Mtと、透明層1Bが占める空間部分が透明層1Aに向かって凸を成す(つまり透明層1A部分が透明層1A側に向かって凹を成し、谷は山を裏返した様な形状)谷側Mbとが、交互に絡み合った二重の格子状に配列された微細凹凸2でも良い。図11では、山側Mtと谷側Mbの水平断面形状は、それぞれ等高線Ltと等高線Lbで描いてある。同心円状の複数の線の等高線Ltは山側Mtを、同心円状の複数の点線の等高線Lbが谷側Mbを表す。この様な山と、山を裏返した様な谷とが共に交互に配置された様な微細凹凸の場合には、山の頂上部分が微細凹凸の最凸部2tであり、谷の谷底部分が微細凹凸の最凹部2bとなる。なお、図中、符号Mcで示した部分は、峠或いは馬の鞍の様な形状をしている鞍部である。また、図中、等高線はあくまでも、山と谷の配置を示す為のものであり、実際の或る等高線が厳密に図示の通りなっている事を示すものでは無い。また、この様な微細凹凸は、前述した図10(B)の水平面への二次元的配置を、円錐状形状の微細凹凸で行った場合の一種でもある(錐と錐との間に谷が形成される)。   Further, as illustrated in the plan view of FIG. 11, when the fine irregularities 2 are two-dimensionally arranged in the horizontal plane, the transparent layer 1 </ b> A is adjacent to the transparent layer 1 </ b> B out of the two adjacent layers based on a certain horizontal plane. Convex-facing mountain side Mt and the space occupied by the transparent layer 1B are convex toward the transparent layer 1A (that is, the transparent layer 1A part is concave toward the transparent layer 1A side, and the valley turns the mountain upside down. The fine irregularities 2 may be arranged in a double lattice pattern in which the valley side Mb is alternately intertwined. In FIG. 11, the horizontal cross-sectional shapes of the mountain side Mt and the valley side Mb are drawn with a contour line Lt and a contour line Lb, respectively. A plurality of concentric contour lines Lt represent the mountain side Mt, and a plurality of concentric dotted contour lines Lb represent the valley side Mb. In the case of fine irregularities such that such a mountain and a valley like a mountain turned upside down are alternately arranged, the top part of the mountain is the most convex part 2t of the fine irregularity, and the valley bottom part of the valley is It becomes the most concave portion 2b having fine irregularities. In the figure, the part indicated by the symbol Mc is a heel part having a shape like a heel or a horse heel. Further, in the figure, the contour lines are only for indicating the arrangement of peaks and valleys, and do not indicate that an actual certain contour line is exactly as illustrated. In addition, such fine unevenness is also a kind in the case where the above-described two-dimensional arrangement on the horizontal plane in FIG. 10B is performed with the fine unevenness having a conical shape (a valley is formed between the cones). It is formed).

なお、上述したような本発明による微細凹凸は、その個々の微細凹凸(或いは山や谷)の立体形状が全て同一でも良いが、全て同一で無くても良い。また、個々の微細凹凸2を二次元配置する場合に、周期は、個々の微細凹凸において全て同一でも良いが、全て同一で無くても良い。   In addition, as for the fine unevenness | corrugation by this invention as mentioned above, although the solid shape of each fine unevenness | corrugation (or peak and valley) may be the same, it does not need to be the same. Further, when the individual fine irregularities 2 are two-dimensionally arranged, the period may be the same in each fine irregularity or not all.

また、微細凹凸の高さHは、希望する反射率の低減効果と基材表面に入射する可視光帯域の最大波長に応じて決定する。通常、高さHは、その最小高さHMINで、100〜1000nm程度である。但し、本発明の特有の微細凹凸によれば、特開昭50−70040号公報等に記載の従来の考え方からすれば、光の波長以下で反射防止効果が得難いとされる様な高さHであっても、界面での反射防止効果が得られる。例えば、最小高さHMINが250nmでも良好な界面での反射防止性能が得られる。
ここで、微細凹凸の具体的形状及び大きさを例示すれば、形状は垂直断面が正弦波状で水平断面が円形の円錐状の形状のものを多数、二次元的に規則的配置した集合体であり、周期PMAXが50〜450nm、最小高さHMINを前記周期PMAXの1.5倍としたもの等がある。
Further, the height H of the fine irregularities is determined according to the desired reflectance reduction effect and the maximum wavelength of the visible light band incident on the substrate surface. Usually, the height H is the minimum height H MIN and is about 100 to 1000 nm. However, according to the fine irregularities peculiar to the present invention, according to the conventional concept described in Japanese Patent Application Laid-Open No. 50-70040, etc., the height H is such that it is difficult to obtain an antireflection effect below the wavelength of light. Even so, the antireflection effect at the interface can be obtained. For example, even when the minimum height H MIN is 250 nm, good antireflection performance at the interface can be obtained.
Here, as an example of the specific shape and size of the fine irregularities, the shape is an aggregate of two-dimensional regular arrangements of many conical shapes whose vertical cross section is sinusoidal and whose horizontal cross section is circular. And the period P MAX is 50 to 450 nm and the minimum height H MIN is 1.5 times the period P MAX .

〔透明層〕
本発明に用いられる透明層としては、用途により各種材料が使用でき、通常機械的強度を有する材料が使用されるが、特に制限は無い。ここで透明層とは、光を透過する性質を有すれば良く、ヘイズ5%以下、全光線透過率60%以上であることを目安にすることができる。しかしながら、本発明においては、上記特定形状の微細凹凸が界面に形成される隣接2層の透明層は、屈折率が互いに異なることが前提である。上述したような干渉縞の発生や反射損失が無視できないような2層間の屈折率差は、0.07程度以上である。特に、2層間の屈折率差が0.14以上である場合には、特に干渉縞の発生や反射損失が大きくなり、目立つようになり、本発明を適用することにより、より有効に効果が得られる。
(Transparent layer)
As the transparent layer used in the present invention, various materials can be used depending on applications, and materials having mechanical strength are usually used, but there is no particular limitation. Here, the transparent layer only needs to have a property of transmitting light, and it can be a guide that haze is 5% or less and total light transmittance is 60% or more. However, in the present invention, it is premised that the adjacent two transparent layers on which the fine irregularities of the specific shape are formed at the interface have different refractive indexes. The refractive index difference between the two layers so that the generation of interference fringes and reflection loss as described above cannot be ignored is about 0.07 or more. In particular, when the refractive index difference between the two layers is 0.14 or more, the generation of interference fringes and reflection loss are particularly large and become conspicuous. By applying the present invention, more effective effects can be obtained. It is done.

透明層に用いられる材料としては、特に限定されず、通常透明基材として用いられるような、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体等のアクリル樹脂〔但し、(メタ)アクリルとはアクリル、或いはメタクリルを意味する。〕、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子(代表的にはノルボルネン系樹脂等があるが、例えば、日本ゼオン株式会社製の製品名「ゼオノア」、JSR株式会社製の「アートン」等がある)等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリスチレン、アクリロニトリル−スチレン共重合体、ポリエーテルスルフォン、ポリスルフォン、セルロース系樹脂、塩化ビニル樹脂、ポリエーテルエーテルケトン、ポリウレタン等の熱可塑性樹脂、或いは、ガラス(セラミックスを含む)等が挙げられる。   The material used for the transparent layer is not particularly limited. For example, poly (meth) methyl acrylate, poly (meth) ethyl acrylate, methyl (meth) acrylate- ( Acrylic resin such as meth) butyl acrylate copolymer [However, (meth) acryl means acryl or methacryl. ], Polypropylene, polymethylpentene, cyclic olefin polymers (typically norbornene resins, etc., for example, the product name “ZEONOR” manufactured by ZEON CORPORATION, “ARTON” manufactured by JSR Corporation, etc. Polyolefin resins, polycarbonate resins, polyethylene terephthalate, polyethylene naphthalate, and other thermoplastic polyester resins, polyamide resins, polystyrene, acrylonitrile-styrene copolymers, polyether sulfone, polysulfone, cellulose resins, vinyl chloride resins , Polyether ether ketone, thermoplastic resins such as polyurethane, or glass (including ceramics).

また、上記のような通常透明基材として用いられるような透明層に対し、別の機能を付与する層を隣接して形成するために、通常バインダー成分として用いられるような、電離放射線硬化型樹脂組成物及び/又は熱硬化型樹脂組成物も好ましく用いることができる。   In addition, an ionizing radiation curable resin that is usually used as a binder component in order to form a layer that imparts another function adjacent to a transparent layer that is normally used as a transparent substrate as described above. A composition and / or a thermosetting resin composition can also be preferably used.

電離放射線硬化型樹脂組成物には、電離放射線の照射を受けた時に直接、又は開始剤の作用を受けて間接的に、重合や二量化等の大分子化を進行させる反応を起こす硬化反応性官能基を有するモノマー、オリゴマー及びポリマーを用いることができる。具体的には、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合を有するラジカル重合性のモノマー、オリゴマーが好ましく、バインダー成分の分子間で架橋結合が生じるように、一分子内に硬化反応性官能基を2個以上、好ましくは3個以上有する多官能のバインダー成分であることが望ましい。エチレン性不飽和結合を有する場合には、紫外線や電子線等の電離放射線の照射により、直接または開始剤の作用を受けて間接的に、光ラジカル重合反応を生じさせることができるため、光硬化工程を含む取り扱いが比較的容易である。これらの中でも(メタ)アクリロイル基は生産性に優れるため好ましい。しかしながら、その他の電離放射線硬化性のバインダー成分を用いることも可能であり、例えば、エポキシ基含有化合物のような光カチオン重合性のモノマーやオリゴマーを用いてもよい。   The ionizing radiation curable resin composition has a curing reactivity that causes a reaction that causes polymerization or dimerization to proceed directly when irradiated with ionizing radiation or indirectly by the action of an initiator. Monomers, oligomers and polymers having functional groups can be used. Specifically, radically polymerizable monomers and oligomers having an ethylenically unsaturated bond such as (meth) acryloyl group, vinyl group, allyl group and the like are preferable, and one molecule is formed so that cross-linking occurs between molecules of the binder component. It is desirable that it is a polyfunctional binder component having two or more, preferably three or more curing reactive functional groups. When it has an ethylenically unsaturated bond, photocuring can be caused directly or indirectly by the action of an initiator by irradiation with ionizing radiation such as ultraviolet rays or electron beams. The handling including the process is relatively easy. Among these, a (meth) acryloyl group is preferable because of excellent productivity. However, other ionizing radiation curable binder components may be used. For example, a photocationically polymerizable monomer or oligomer such as an epoxy group-containing compound may be used.

電離放射線硬化型樹脂組成物は、好ましくは、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレートなどのオリゴマー又はプレポリマー、及び反応性希釈剤を含む電離放射線硬化型樹脂から構成する。上記反応性希釈剤としては、エチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、スチレン、ビニルトルエン、N−ビニルピロリドンなどの単官能モノマー、並びに多官能モノマー、例えばトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオンが挙げられる。   The ionizing radiation curable resin composition is preferably one having an acrylate-based functional group, such as a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, It comprises an ionizing radiation curable resin containing a polybutadiene resin, a polythiol polyene resin, an oligomer or prepolymer such as a (meth) acrylate of a polyfunctional compound such as a polyhydric alcohol, and a reactive diluent. Examples of the reactive diluent include monofunctional monomers such as ethyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, styrene, vinyltoluene, and N-vinylpyrrolidone, and polyfunctional monomers such as trimethylolpropane tri (meth). Acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanedione It is done.

上記の電離放射線硬化型樹脂を紫外線硬化型樹脂として使用するときは、バインダー中に光重合開始剤として、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、チオキサントン類や、光増感剤としてn−ブチルアミン、トリエチルアミン、トリn−ブチルホスフィンなどを混合して使用することができる。特に本発明では、オリゴマーとしてウレタンアクリレート、モノマーとしてジペンタエリスリトールヘキサ(メタ)アクリレート等を混合するのが好ましい。光重合開始剤としては、最新UV硬化技術(P.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており、これらの光重合開始剤も本発明に用いることができる。市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア651、イルガキュア184、イルガキュア907(各商品名)等が好ましい例として挙げられる。   When the above ionizing radiation curable resin is used as an ultraviolet curable resin, as a photopolymerization initiator in the binder, acetophenones, benzophenones, Michler benzoyl benzoate, α-amyloxime esters, thioxanthones, As a sensitizer, n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed and used. In particular, in the present invention, it is preferable to mix urethane acrylate as an oligomer and dipentaerythritol hexa (meth) acrylate as a monomer. Various examples of photopolymerization initiators are also described in the latest UV curing technology (P.159, publisher: Kazuhiro Takasawa, publisher; Technical Information Association, Inc., published in 1991). Photopolymerization initiators can also be used in the present invention. Preferable examples of commercially available photocleavable photoradical polymerization initiators include Irgacure 651, Irgacure 184, and Irgacure 907 (each trade name) manufactured by Ciba Specialty Chemicals.

一方、熱硬化型樹脂としては、加熱によって同一の官能基又は他の官能基との間で重合又は架橋等の大分子量化反応を進行させて硬化させることができる硬化反応性官能基を有するモノマー、オリゴマー及びポリマーを用いることができる。熱硬化型樹脂としては、アルコキシ基、水酸基、カルボキシル基、アミノ基、エポキシ基、水素結合形成基等を有するモノマー、オリゴマー等が挙げられる。熱硬化性樹脂としては、具体的には、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン−尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等が使用される。これらの熱硬化性樹脂には必要に応じて架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等を加えて使用する。   On the other hand, as a thermosetting resin, a monomer having a curing reactive functional group that can be cured by heating to promote a large molecular weight reaction such as polymerization or crosslinking with the same functional group or another functional group. Oligomers and polymers can be used. Examples of the thermosetting resin include monomers and oligomers having an alkoxy group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a hydrogen bond forming group, and the like. Specifically, as the thermosetting resin, phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, Silicon resin, polysiloxane resin or the like is used. These thermosetting resins are used by adding a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier and the like as necessary.

また、本発明における透明層は、上述のような熱可塑性樹脂、電離放射線硬化型樹脂組成物及び/又は熱硬化型樹脂組成物を、1種又は2種以上混合して用いて形成されても良い。
なお、透明層の形状は、透光性物品の用途により様々な形状があり得る。例えば、概念図ではあるが図1で例示したような平板状である。また、平板状の場合、可撓性を有するシート状もあり得る。つまり、前述機械的強度とは、剛直に限定されるものではない。また、透明層は、三次元立体物等でも良い。つまり、透光性物品の形状は、三次元立体物でも良い。例えば、表示部の窓材等で例示すれば、反射防止面部分については、上記平板状ではあるが、その周囲にリブ等の窓材取付け用の形状を有する物等が挙げられる。また、基材が平板状の場合の厚さの具体例としては、表示部の窓材等の用途では通常0.5〜2mm程度である。
In addition, the transparent layer in the present invention may be formed by using one or more of the above-mentioned thermoplastic resins, ionizing radiation curable resin compositions and / or thermosetting resin compositions. good.
In addition, the shape of a transparent layer can have various shapes by the use of a translucent article. For example, although it is a conceptual diagram, it has a flat plate shape as illustrated in FIG. In the case of a flat plate shape, there may be a flexible sheet shape. That is, the mechanical strength is not limited to being rigid. The transparent layer may be a three-dimensional solid object. That is, the shape of the translucent article may be a three-dimensional solid object. For example, when the window material of the display unit is exemplified, the antireflection surface portion has the flat plate shape, but includes an object having a shape for attaching the window material such as a rib around it. In addition, as a specific example of the thickness when the substrate is flat, it is usually about 0.5 to 2 mm in applications such as a window material of the display unit.

なお、微細凹凸2は透明層の一部を構成するものであるが、該微細凹凸2を含む透明層は、図1に例示の透光性物品10のように、微細凹凸部分も含めて同一材質からなる連続の物体として構成する以外に、図12に例示の透光性物品10のように、微細凹凸2を含む部分(微細凹凸層11)と、微細凹凸を含まない部分(透明層基材12)とからなる例えば2層が密着した構成等としても良い。   In addition, although the fine unevenness | corrugation 2 comprises a part of transparent layer, the transparent layer containing this fine unevenness | corrugation 2 is the same also including a fine unevenness | corrugation part like the translucent article 10 illustrated in FIG. In addition to being configured as a continuous object made of a material, as shown in the translucent article 10 illustrated in FIG. 12, a portion including the fine unevenness 2 (fine unevenness layer 11) and a portion not including the fine unevenness (transparent layer base) For example, a structure in which two layers made of the material 12) are in close contact with each other may be used.

〔微細凹凸の作製方法〕
微細凹凸2を、隣接2層の透明層の界面に形成する方法としては、本発明では特に限定は無く、従来公知のレンズ等に対して微細凹凸を形成する方法を適宜利用することができる。
第1の透明層を形成する方法としては、例えば、次の(1)〜(7)等が挙げられる。
(1)先ず、ガラス等の物体表面に形成したフォトレジスト膜を、ホログラム、回折格子等の作製等に利用されているレーザ干渉法を利用して干渉縞を露光し、レジスト膜に露光量の粗密を形成し、現像処理後、このフォトレジスト膜存在下で物体をエッチングして、物体表面に微細凹凸を作製し、第1の透明層としても良い。或いは、当該微細凹凸を形成した物体を型として、この型に(或いは該型を原型としてそれから一旦めっき法等で複製型を作製してそれを型としても良い)、光硬化性樹脂を適用して光硬化させる2P法(Photo-polymerization法)、樹脂の射出成形法等を利用して、樹脂層表面に所望の微細凹凸を複製して第1の透明層を形成する(特開2003−149405号公報参照)。
[Production method of fine irregularities]
The method for forming the fine irregularities 2 at the interface between two adjacent transparent layers is not particularly limited in the present invention, and a method for forming fine irregularities on a conventionally known lens or the like can be used as appropriate.
Examples of the method for forming the first transparent layer include the following (1) to (7).
(1) First, a photoresist film formed on the surface of an object such as glass is exposed to interference fringes using a laser interference method used for producing holograms, diffraction gratings, etc. After forming the density and developing, the object may be etched in the presence of the photoresist film to produce fine irregularities on the object surface, and may be used as the first transparent layer. Alternatively, an object on which the fine irregularities are formed is used as a mold, and a photo-curing resin is applied to this mold (or the mold may be used as a prototype, and then a replica mold may be prepared once by plating or the like). The first transparent layer is formed by replicating desired fine irregularities on the surface of the resin layer by using a 2P method (photo-polymerization method) for photocuring and a resin injection molding method or the like (Japanese Patent Laid-Open No. 2003-149405). Issue gazette).

(2)ガラス等の物体表面にアルミニウム等の金属薄膜層を蒸着等の薄膜形成手段で形成した後、該金属薄膜層を加熱下で水処理して、酸化物或いは水酸化物に転化することで、金属薄膜層表面に所望の微細凹凸を作製する(特公昭61−48124号公報参照)。更に必要ならば、この金属薄膜層表面を型として、或いは例えば上記(1)の様にめっき法等で複製型を作製してこれを型として、型から2P法等で樹脂層表面に所望の微細凹凸を複製して第1の透明層を形成する。 (2) After a metal thin film layer such as aluminum is formed on the surface of an object such as glass by a thin film forming means such as vapor deposition, the metal thin film layer is treated with water under heating to convert it into an oxide or hydroxide. Thus, desired fine irregularities are formed on the surface of the metal thin film layer (see Japanese Patent Publication No. 61-48124). Further, if necessary, the metal thin film layer surface is used as a mold or, for example, a replica mold is prepared by plating as in (1) above, and this is used as a mold. The first transparent layer is formed by replicating the fine irregularities.

(3)ガラス等の物体表面を、その前後に適宜酸、アルカリ、有機溶剤処理等を組み合わせて、低温プラズマ処理することで、表面に所望の微細凹凸を作製する(特開平3−2801号公報参照)。更に必要ならば、この物体表面を型として、或いは例えば上記(1)の様にめっき法等で複製型を作製してこれを型として、型から2P法等で樹脂層表面に所望の微細凹凸を複製して第1の透明層を形成する。 (3) The surface of an object such as glass is appropriately combined with an acid, alkali, organic solvent treatment or the like before and after that, and is subjected to low-temperature plasma treatment to produce desired fine irregularities on the surface (Japanese Patent Laid-Open No. 3-2801). reference). Furthermore, if necessary, the object surface is used as a mold, or, for example, a replica mold is prepared by plating as in (1) above, and this is used as a mold. To form a first transparent layer.

(4)ガラス等の物体表面に、浸漬コート法等で粒径が光波長以下の微粒子を固定させて、少なくとも1粒子層以上(好ましくは1粒子層)の微粒子層を形成することで、該微粒子による、所望の微細凹凸を作製する方法(特開2002−6108号公報参照)。物体表面と微粒子との固定手段には、静電的相互作用等の微弱な力を利用できる。それはナノメートルオーダーの微粒子である為に、微弱力でも固定が可能な為である。更に必要ならば、この微細凹凸を形成した表面を型として、或いは該型表面に例えば上記(1)の様にめっき法等で複製型を作製してこれを型として、型から2P法等で樹脂層表面に所望の微細凹凸を複製して第1の透明層を形成する。 (4) On the surface of an object such as glass, by fixing fine particles having a particle size equal to or smaller than the light wavelength by a dip coating method or the like, forming a fine particle layer of at least one particle layer (preferably one particle layer) A method for producing desired fine irregularities using fine particles (see Japanese Patent Application Laid-Open No. 2002-6108). A weak force such as electrostatic interaction can be used for fixing the object surface and the fine particles. This is because it is a nanometer-order fine particle and can be fixed even with a weak force. Further, if necessary, the surface on which the fine irregularities are formed is used as a mold, or a replica mold is prepared on the mold surface by, for example, plating as in (1) above, and this is used as a mold. Desired fine irregularities are replicated on the surface of the resin layer to form a first transparent layer.

上記(4)の形成方法を更に説明すれば、物体表面に上記微粒子を1粒子層で、或いは複数粒子層の場合でもなるべく均一粒子数厚みで固定するには、物体表面に微粒子を接触させる前に該表面を前処理するのが好ましい。該前処理としては、例えば単分子膜等と微粒子径よりも薄い高分子電解質膜を形成する。高分子電解質としては、ポリエチレンイミン4級化物、ポリジアリルジメチルアンモニウムクロライド等のカチオンポリマー、ポリスチレンスルホン酸ナトリウム、ポリ(メタ)アクリル酸ナトリウム等のアニオンポリマー等が用いられる。また、高分子電解質膜は1種の高分子電解質の単層膜でも良いが、より好ましくは互いに極性の異なる2種以上の高分子電解質を積層した多層膜が均一粒子数厚みの点でより望ましい。このような高分子電解質多層膜の形成方法としては、公知の交互吸着膜作製法(例えば、Gero Decherら,Science,vol.277,p1232,1997)を利用できる。この方法は浸漬法を利用し、物体をカチオンポリマー水溶液とアニオンポリマー水溶液とに交互に浸漬して、ナノメートルオーダーの膜厚制御で物体表面に高分子電解質多層膜を形成する手法である。
なお、物体表面への微粒子の固定力強化が望まれるときは、例えば、微粒子が固定後の物体表面を樹脂層で覆っても良い。該樹脂層は単分子層でも効果が得られる。また、該樹脂には上記の様な高分子電解質が利用でき、また層形成も上記の様な浸漬法が利用できる。
また、上記の様に浸漬法を利用すれば、浸漬法での形成対象物体を連続帯状のシート(フィルム)とした場合に、エンドレスの微細凹凸面を形成できるため、生産性の点でも好ましい。また上記シートを透明層として製造することもできる。
To further explain the formation method of (4) above, in order to fix the fine particles on the object surface in a single particle layer or even in the case of multiple particle layers with a uniform number of particles as much as possible, before the fine particles are brought into contact with the object surface, Preferably, the surface is pretreated. As the pretreatment, for example, a monomolecular film or the like and a polymer electrolyte membrane thinner than the fine particle diameter are formed. As the polymer electrolyte, cationic polymers such as polyethyleneimine quaternized products and polydiallyldimethylammonium chloride, anionic polymers such as sodium polystyrene sulfonate and sodium poly (meth) acrylate are used. The polymer electrolyte membrane may be a single polymer electrolyte monolayer, but more preferably a multilayer membrane in which two or more polymer electrolytes having different polarities are laminated is more desirable in terms of uniform particle number thickness. . As a method for forming such a polymer electrolyte multilayer film, a known alternating adsorption film manufacturing method (for example, Gero Decher et al., Science, vol. 277, p1232, 1997) can be used. This method uses a dipping method to immerse an object alternately in an aqueous cation polymer solution and an aqueous anionic polymer solution to form a polymer electrolyte multilayer film on the surface of the object by controlling the film thickness on the order of nanometers.
When it is desired to enhance the fixing force of the fine particles on the object surface, for example, the object surface after the fine particles are fixed may be covered with a resin layer. The resin layer can be effective even with a monomolecular layer. Moreover, the polymer electrolyte as described above can be used for the resin, and the dipping method as described above can be used for the layer formation.
In addition, if the dipping method is used as described above, an endless fine uneven surface can be formed when the object to be formed by the dipping method is a continuous belt-like sheet (film), which is preferable in terms of productivity. Moreover, the said sheet | seat can also be manufactured as a transparent layer.

(5)上記(1)〜(4)に記載の方法を用いて、金属等から成る円筒又は平板上に微細凹凸を形成して成るエンボス版を用意する。一方で、アクリル樹脂、ポリカーボネート樹脂、ポチエステル樹脂、ポリスチレン、ポリオレフィン樹脂、セルロース系樹脂等から成る熱可塑性樹脂を公知の熔融押出法、キャスティング法、カレンダー法等により製膜して、第1の透明層基体を形成する。公知のエンボス加工法を用いて、該第1の透明層基体上に上記エンボス版を用いて該微細凹凸を賦形する。即ち、該第1の透明層基体を其の軟化温度から融点の間の適当な温度に加熱軟化させる。次いで、該第1の透明層基体上に該エンボス版の微細凹凸面を押圧して、該第1の透明層表面を該微細凹凸形状に賦形(成形)すると共に該第1の透明層を冷却して、賦形形状を固定する。而かる後にエンボス版を離型して、微細凹凸を有する第1の透明層を形成する。 (5) Using the method described in the above (1) to (4), an embossed plate formed by forming fine irregularities on a cylinder or flat plate made of metal or the like is prepared. On the other hand, a thermoplastic resin made of acrylic resin, polycarbonate resin, pothiester resin, polystyrene, polyolefin resin, cellulosic resin, etc. is formed by a known melt extrusion method, casting method, calendar method, etc., and the first transparent A layer substrate is formed. Using a known embossing method, the fine irregularities are formed on the first transparent layer substrate using the embossed plate. That is, the first transparent layer substrate is heated and softened to an appropriate temperature between the softening temperature and the melting point. Next, the fine uneven surface of the embossed plate is pressed onto the first transparent layer base to shape (mold) the surface of the first transparent layer into the fine uneven shape, and the first transparent layer is formed. Cool and fix the shaped shape. Thereafter, the embossed plate is released to form a first transparent layer having fine irregularities.

(6)上記(1)〜(4)に記載の方法を用い、金属等から成る円筒又は平板上に微細凹凸を形成して成るエンボス版を用意する。一方で第1の透明層を準備する。この場合の第1の透明層は、上記(5)と同様の熱可塑性樹脂を製膜した物でも良いし、エンボス加工適性の無い熱硬化性樹脂でも良いし、或いは硝子、セラミックスでも良い。次に、当該第1の透明層上に、透明樹脂から成るエンボス受容層を形成する。当該エンボス受容層は、エンボス加工適性の有る熱可塑性樹脂であって、且つ第1の透明層と屈折率の同じ樹脂を選択して用いて形成する。これは、エンボス受容層/透明基材層間の界面での光反射を防ぐためである。そして上記(5)と同様にして、公知のエンボス加工法を用いて、該エンボス受容層上に該微細凹凸を賦形し、第1の透明層を形成する。 (6) Using the method described in (1) to (4) above, an embossed plate formed by forming fine irregularities on a cylinder or flat plate made of metal or the like is prepared. Meanwhile, the first transparent layer is prepared. In this case, the first transparent layer may be a film formed of the same thermoplastic resin as in the above (5), may be a thermosetting resin having no embossing suitability, or may be glass or ceramics. Next, an emboss receiving layer made of a transparent resin is formed on the first transparent layer. The embossing-receiving layer is a thermoplastic resin having embossing suitability and is formed by selecting and using a resin having the same refractive index as that of the first transparent layer. This is to prevent light reflection at the interface between the embossing receiving layer / transparent substrate layer. Then, in the same manner as in the above (5), the fine irregularities are formed on the emboss receiving layer using a known embossing method to form a first transparent layer.

(7)上記(1)〜(4)に記載の方法を用い、金属等から成る円筒又は平板上に微細凹凸を形成して成るエンボス版を用意する。上記(6)と同様に、第1の透明層を準備する。次に、当該第1の透明層上に、電離放射線硬化性樹脂を含有する液状組成物を塗工しエンボス受容層とする。該液状組成物としては、上述したような(メタ)アクリレート系、エポキシ系等の各種の単量体、プレポリマー等の中から適宜選択して用いる。該第1の透明層上の該液状組成物表面に、該エンボス版の微細凹凸面を重ねて押圧して、該微細凹凸形状に該液状組成物を充填、賦形し、その状態で、該液状組成物に電離放射線を照射して、これを架橋、硬化させる。ここで電離放射線は、通常は第1の透明層側からこれを透過して該液状組成物に到達させるが、エンボス版が電離放射線に対して透明な場合には、エンボス版側からの照射も可能である。電離放射線としては、紫外線、X線、可視光線等の電磁波、或いは電子線、イオン線等の荷電粒子線が用いられる。しかる後に、該エンボス版を離型して、電離放射線硬化性樹脂の硬化物から成るエンボス受容層表面に、該微細凹凸を形成する。 (7) Using the method described in (1) to (4) above, an embossed plate formed by forming fine irregularities on a cylinder or flat plate made of metal or the like is prepared. As in (6) above, a first transparent layer is prepared. Next, a liquid composition containing an ionizing radiation curable resin is applied onto the first transparent layer to form an emboss receiving layer. The liquid composition is appropriately selected from the above-mentioned various (meth) acrylate-based and epoxy-based monomers, prepolymers, and the like. On the surface of the liquid composition on the first transparent layer, the fine uneven surface of the embossed plate is overlapped and pressed, and the liquid composition is filled and shaped into the fine uneven shape, and in this state, The liquid composition is irradiated with ionizing radiation to crosslink and cure. Here, the ionizing radiation is normally transmitted from the first transparent layer side to reach the liquid composition, but when the embossed plate is transparent to the ionizing radiation, irradiation from the embossed plate side is also performed. Is possible. As ionizing radiation, electromagnetic waves such as ultraviolet rays, X-rays and visible rays, or charged particle beams such as electron beams and ion beams are used. Thereafter, the embossed plate is released to form the fine unevenness on the surface of the embossing receiving layer made of a cured product of ionizing radiation curable resin.

上記の(1)〜(7)のような方法を用いて、上記特定の微細凹凸を有する第1の透明層を形成した後に、第2の透明層を形成する方法としては、まず、第1の透明層とは固化製膜後の屈折率が異なる材料からなる、第2透明層用液状樹脂組成物を準備する。当該液状樹脂組成物とは、樹脂を含有する溶液、分散液、或いは未重合の単量体乃至はプレポリマーから成るものである。当該液状樹脂組成物には、アクリル樹脂等の熱可塑性樹脂、ウレタン樹脂、エポキシ樹脂等の熱硬化性樹脂、紫外線や電子線で硬化するアクリレート系等の電離放射線硬化性樹脂等の1種又は2種以上を適宜選択して用いることができる。そして、上記で得られた第1の透明層の該微細凹凸形成面上に、第2透明層用液状樹脂組成物を塗工し、該微細凹凸を充填する。而かる後に、溶剤や分散媒の乾燥、重合(架橋反応も含む)等により該液状組成物を固化させ、第2の透明層を形成する。   As a method of forming the second transparent layer after forming the first transparent layer having the specific fine irregularities by using the methods (1) to (7) above, first, A liquid resin composition for the second transparent layer, which is made of a material having a refractive index different from that of the transparent layer after solidified film formation, is prepared. The liquid resin composition comprises a resin-containing solution, dispersion, or unpolymerized monomer or prepolymer. The liquid resin composition includes one or two of a thermoplastic resin such as an acrylic resin, a thermosetting resin such as a urethane resin and an epoxy resin, and an ionizing radiation curable resin such as an acrylate type that is cured by ultraviolet rays or an electron beam. More than one species can be appropriately selected and used. Then, the liquid resin composition for the second transparent layer is applied on the surface of the first transparent layer obtained above to form the fine irregularities, and the fine irregularities are filled. Thereafter, the liquid composition is solidified by drying of a solvent or a dispersion medium, polymerization (including a crosslinking reaction), or the like to form a second transparent layer.

なお、微細凹凸は、上記(1)の方法のように既に有形の基材とする物一つ一つに、直接形成する事も可能であるが、工業製品として大量生産が必要となる透光性物品の場合には、工業的生産性、コストを考慮すると、賦形型を作製しておき、この賦形型によって微細凹凸を賦形により形成する方法が好ましい。更に、賦形型としては、微細凹凸形状を最初に造形した原型は用いずに、該原型から1回、或いは2回以上の型取・反転による複製工程を経て作製した複製型を用いるのが好ましい。つまり、最初に一旦、原型(これを原版、或いはマザー版とも呼ぶ)を作製した後、この原型から複製型を作製する複製操作を1回又は2回以上の多数回行い、その結果、得られた複製型(これを本版、或いはマスター版とも呼ぶ)を、賦形型として使用することが好ましい。この様な賦形型を用いることで、工業的生産性、コスト等に優れた方法となる。例えば、本版が傷付いたとしても、本版は容易に再作製できるからである。   The fine irregularities can be directly formed on each of the already tangible substrates as in the method (1) above, but translucent light that requires mass production as an industrial product. In the case of a functional article, in consideration of industrial productivity and cost, it is preferable to prepare a shaping mold and form fine irregularities by shaping with this shaping mold. Furthermore, as the shaping mold, a replica mold produced by performing a duplication process by mold taking / reversing once or twice from the original mold is used without using the original mold formed with the fine uneven shape first. preferable. In other words, after first producing a prototype (also referred to as a master plate or a mother plate), a duplication operation for creating a replica mold from this master mold is performed once or twice or more, and the result is obtained. It is preferable to use a duplicated mold (this is also called a main plate or a master plate) as a shaping mold. By using such a shaping mold, the method is excellent in industrial productivity, cost, and the like. For example, even if the main plate is damaged, the main plate can be easily remade.

[透光性物品の用途]
本発明の透光性物品は、形状は、三次元形状、板、シート等任意であり、用途も特に限定されるものではない。本発明が適用し得る用途は、これから例示される用途に限定されるものではない。特に、本発明に係る透光性物品は、2層の屈折率差に起因する2層間の界面での透過光の反射損失、及び/又は、当該界面により生じる干渉縞が解消又は低減され、且つ、ヘイズが上昇しないものであるため、透過光を利用するような箇所に用いることが好ましい。
[Use of translucent article]
The translucent article of the present invention can have any shape such as a three-dimensional shape, a plate, a sheet, and the use is not particularly limited. Applications to which the present invention can be applied are not limited to the applications exemplified below. In particular, the translucent article according to the present invention eliminates or reduces the reflection loss of transmitted light at the interface between the two layers due to the difference in refractive index between the two layers and / or interference fringes generated by the interface, and Since haze does not increase, it is preferable to use it in a place where transmitted light is used.

例えば、携帯電話等の各種機器における情報表示部の窓材が挙げられる。これら情報表示部では、LCD等の表示パネルの前面に、板や成形品等となった樹脂製の窓材が配置される。窓材としての透光性物品は、外側は露出する為に傷や汚れへの耐性の点で本発明特有の微細凹凸は設けず、物品内部の屈折率の異なる隣接2層の透明層の界面の他、更に窓材の裏面側にも該微細凹凸を設けたものとするのが好ましい。   For example, the window material of the information display part in various apparatuses, such as a mobile phone, is mentioned. In these information display units, a resin window material such as a plate or a molded product is arranged on the front surface of a display panel such as an LCD. The translucent article as a window material is exposed to the outside, so that it does not have fine irregularities peculiar to the present invention in terms of resistance to scratches and dirt, and the interface between adjacent two transparent layers having different refractive indexes inside the article. In addition, it is preferable that the fine irregularities be provided on the back side of the window material.

窓材の具体的な層構成としては、具体的には例えば、透明基材上にハードコート層が積層された2層の透明層の積層体である場合が挙げられる。この場合において、透明基材は通常熱可塑性樹脂からなり、ハードコート層は電離放射線硬化型樹脂組成物からなることが多いため、特に透明基材とハードコート層の間の屈折率差が大きくなる場合が多い。したがって、当該層構成を有する透光性物品においては、透明基材とハードコート層の界面に上記特定の微細凹凸が設けられる。   Specific examples of the layer structure of the window material include a case of a laminate of two transparent layers in which a hard coat layer is laminated on a transparent substrate. In this case, since the transparent substrate is usually made of a thermoplastic resin and the hard coat layer is often made of an ionizing radiation curable resin composition, the refractive index difference between the transparent substrate and the hard coat layer is particularly large. There are many cases. Therefore, in the translucent article which has the said layer structure, the said specific fine unevenness | corrugation is provided in the interface of a transparent base material and a hard-coat layer.

情報表示部は、LCD等の表示パネル以外に、時計に代表される機械式アナログメータ等の様な機械的手段で表示するものでもよく、これらの窓材でも良い。なお、窓材は、平板状もあるが、組み付けやデザイン上の観点から周囲に突起等有する物もある。
また、上記の様な窓付き情報表示部を有する機器としては、携帯電話、時計の外にも、パーソナルコンピュータ、電子手帳等のPDA乃至は携帯情報端末、電卓、或いは、CDプレーヤー、DVDプレーヤ、MDプレーヤ、半導体メモリ方式音楽プレーヤ等の各種携帯型音楽プレーヤ、或いは、ビデオテープレコーダ、ICレコーダ、ビデオカメラ、デシタルカメラ、ラベルプリンタ等の電子機器、或いは、電気炊飯器、電気ポット、洗濯機等の電気製品等がある。
In addition to a display panel such as an LCD, the information display unit may be displayed by mechanical means such as a mechanical analog meter represented by a watch, or may be a window material of these. Note that the window material has a flat plate shape, but some have a projection or the like around it from the viewpoint of assembly or design.
In addition to mobile phones and watches, devices having an information display unit with windows as described above include personal computers, PDAs such as electronic notebooks, portable information terminals, calculators, CD players, DVD players, Various portable music players such as MD players and semiconductor memory music players, video tape recorders, IC recorders, video cameras, digital cameras, label printers and other electronic devices, electric rice cookers, electric pots, washing machines, etc. There are electrical products.

更に、板状やシート状の透光性物品としては、透明タッチパネル等に使用する透明板等の透明な基材が挙げられる。
なお、透明タッチパネルは、例えば、電子手帳等のPDA乃至は携帯情報端末(機器)、或いは、カーナビゲーションシステム、POS(販売時点情報管理)端末、携帯型オーダー入力端末、ATM(現金自動預金支払兼用機)、ファクシミリ、固定電話端末、携帯電話機、デシタルカメラ、ビデオカメラ、パソコン、パソコン用ディスプレイ、テレビジョン受像機、テレビ用モニターディスプレイ、券売機、計測機器、電卓、電子楽器等の電子機器、複写機、ECR(金銭登録機)等の事務器、或いは、洗濯機、電子レンジ等の電気製品に使用される。
Furthermore, transparent materials, such as a transparent plate used for a transparent touch panel etc., are mentioned as a plate-shaped or sheet-shaped translucent article.
The transparent touch panel is, for example, a PDA such as an electronic notebook or a portable information terminal (equipment), a car navigation system, a POS (point-of-sale information management) terminal, a portable order input terminal, an ATM (automatic cash deposit payment combined use) Machine), facsimile, fixed telephone terminal, mobile phone, digital camera, video camera, personal computer, personal computer display, television receiver, television monitor display, ticket vending machine, measuring instrument, calculator, electronic musical instrument, etc., photocopying Used in office machines such as machines, ECR (cash registering machines), or electrical products such as washing machines and microwave ovens.

また、本発明の透光性物品の用途としては各種光学素子等も挙げられる。例えば、写真機のレンズ、写真機のファインダの窓材、眼鏡のレンズ、オーバーヘッドプロジェクタのフレネルレンズ、光センサの光入力窓、望遠鏡のレンズ、或いは、CD、DVD等の光ディスクのピックアップレンズ、レーザ装置の出力窓、等が挙げられる。   Moreover, various optical elements etc. are mentioned as a use of the translucent article of this invention. For example, a camera lens, a camera finder window material, a spectacle lens, an overhead projector Fresnel lens, an optical sensor light input window, a telescope lens, or an optical disk pickup lens such as a CD or DVD, a laser device Output window, and the like.

更に、本発明の透光性物品の用途としては画像表示装置の各種表面板の構成部材も挙げられる。当該画像表示装置としては、ブラウン管(CRT、陰極線管)、プラズマディスプレイパネル(PDP)、液晶表示装置(LCD)、電場発光素子(EL)等が挙げられる。また、表面板としては、単なる補強の為の保護板の他、紫外線、赤外線、或いは可視光線のうちの特定の波長帯域を吸収或いは反射する光学フィルタ、電磁波遮蔽フィルタ、光反射防止フィルタ等が挙げられる。
また、本発明の透光性物品の用途としては、各種建築物の窓材であっても良い。
Furthermore, the use of the translucent article of the present invention includes constituent members of various surface plates of an image display device. Examples of the image display device include a cathode ray tube (CRT, cathode ray tube), a plasma display panel (PDP), a liquid crystal display device (LCD), and an electroluminescent element (EL). Further, as the surface plate, in addition to a protective plate for mere reinforcement, an optical filter that absorbs or reflects a specific wavelength band of ultraviolet light, infrared light, or visible light, an electromagnetic wave shielding filter, an anti-reflection filter, and the like can be given. It is done.
Moreover, as a use of the translucent article of this invention, the window material of various buildings may be sufficient.

以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。
<実施例1>
(1)第1の透明層における微細凹凸の形成
片面が易接着処理された厚み100μmの透明な2軸延伸PETフィルム(屈折率1.66、東洋紡績製 品名;コスモシャイン A4100)を、160℃に加熱し、易接着処理されていない側の面に、エンボス加工をして微細凹凸を形成した。
なお、エンボス版は以下のように作製した。152.4mm(6インチ)角で6.35mm厚の合成石英の一面に金属クロム膜を形成したフォトマスク用の基板を用意し、その金属クロム膜上にポジ型のEBレジスト〔商品名「ZEP7000」(日本ゼオン株式会社製)〕を回転塗布してレジスト層を形成した後、電子線描画装置にて縦横の周期325nmのメッシュ状の描画データを用いて、描画し、所定の現像液を用い現像処理を施した。その結果、描画データのメッシュ開口領域に対応する領域が現像により開口したレジストパターン層が形成された。次いで、該レジストパターン層の開口部から露出している金属クロム膜を塩素系のガスを用いてドライエッチングして、該金属クロム膜を開口した。尚、金属クロム膜のドライエッチングにはUnaxis社製ドライエッチング装置「VERSALOCK7000」を用いた。次いで、レジストパターン層と金属クロム膜を耐エッチング層として、フッ素系のガスを用いて基板のドライエッチングを行い、凸部の山側が凹部の谷側よりも尖った所望の微細凹凸形状が形成された原型(マザー版)を得た。なお、基板のドライエッチングには、日本真空株式会社製「MEPS−6025D」を用いた。次に、この原型から、電気めっき法によって、厚さ80μmのニッケルめっきプレートからなるシート状の複製型(マスター版)をエンボス版として作製した。
Hereinafter, the present invention will be specifically described with reference to examples. These descriptions do not limit the present invention.
<Example 1>
(1) Formation of fine irregularities in the first transparent layer A transparent biaxially stretched PET film (refractive index: 1.66, Toyobo Co., Ltd .; Cosmo Shine A4100) having a thickness of 100 μm, one surface of which is easily adhered, is 160 ° C. And embossed on the surface not subjected to easy adhesion treatment to form fine irregularities.
The embossed plate was produced as follows. A photomask substrate having a metal chromium film formed on one surface of a synthetic quartz of 152.4 mm (6 inches) square and 6.35 mm thick was prepared, and a positive type EB resist [trade name “ZEP7000” was formed on the metal chromium film. ”(Manufactured by Nippon Zeon Co., Ltd.)] to form a resist layer, followed by drawing with mesh-like drawing data having a vertical and horizontal period of 325 nm using an electron beam drawing apparatus, and using a predetermined developer Development processing was performed. As a result, a resist pattern layer in which an area corresponding to the mesh opening area of the drawing data was opened by development was formed. Next, the metal chromium film exposed from the opening of the resist pattern layer was dry-etched using a chlorine-based gas to open the metal chromium film. A dry etching apparatus “VERSALOCK 7000” manufactured by Unaxis was used for dry etching of the chromium metal film. Next, the resist pattern layer and the metal chromium film are used as an etching resistant layer, and the substrate is dry-etched using a fluorine-based gas to form a desired fine concavo-convex shape in which the peak side of the convex portion is sharper than the valley side of the concave portion. A prototype (mother version) was obtained. Note that “MEPS-6025D” manufactured by Nippon Vacuum Co., Ltd. was used for dry etching of the substrate. Next, a sheet-like replica mold (master plate) made of a nickel-plated plate having a thickness of 80 μm was produced as an embossed plate from this prototype by electroplating.

(2)第2の透明層形成用組成物の調製
下記組成の成分を混合して第2の透明層形成用組成物を調製した。
・カプロラクトン変性ジペンタエリスリトールヘキサアクリレート(KAYARAD DPCA30 日本化薬社製);50重量部
・イソシアヌル酸エチレンオキサイド変性トリアクリレート(M315 東亞合成社製);50重量部
・トルエン(溶剤);100重量部
・光重合開始剤(1−ヒドロキシ−シクロヘキシル−フェニルケトン)(商品名イルガキュア184、チバ・スペシャルティ・ケミカルズ社製);3重量部
(2) Preparation of 2nd composition for transparent layer formation The component of the following composition was mixed and the 2nd composition for transparent layer formation was prepared.
-Caprolactone-modified dipentaerythritol hexaacrylate (KAYARAD DPCA30, Nippon Kayaku Co., Ltd.); 50 parts by weight- Isocyanuric acid ethylene oxide-modified triacrylate (M315, manufactured by Toagosei Co., Ltd.); 50 parts by weight- Toluene (solvent); 100 parts by weight Photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl ketone) (trade name Irgacure 184, manufactured by Ciba Specialty Chemicals); 3 parts by weight

(3)第2の透明層の形成
第1の透明層の微細凹凸が形成されている面に、上記第2の透明層形成用組成物を巻き線型コーティングロッドを使用して塗布した。60℃に加熱したオーブンで30秒保持し、溶剤を乾燥させ、次いで紫外線を積算光量98mJになるように照射して塗膜を硬化させ、膜厚5μmの第2の透明層(屈折率1.50)を第1の透明層上に設け、本発明に係る透光性物品を作製した。
(3) Formation of second transparent layer The second transparent layer-forming composition was applied to the surface of the first transparent layer where the fine irregularities were formed using a wound coating rod. The film was kept in an oven heated to 60 ° C. for 30 seconds, the solvent was dried, and then the coating film was cured by irradiating ultraviolet rays so as to have an integrated light quantity of 98 mJ. 50) was provided on the first transparent layer to produce a translucent article according to the present invention.

<実施例2>
(1)第1の透明層における微細凹凸の形成
片面が易接着処理された厚み100μmの透明な2軸延伸PETフィルム(屈折率1.66、東洋紡績製 品名;コスモシャイン A4100)の易接着処理されていない面に、下記プライマー層形成用組成物をグラビアコーティングにて膜厚500nmで塗工し、70℃で1分間加熱し、溶剤を乾燥させた。その後、120℃に加熱し、実施例1と同様にしてプライマー層にエンボス加工をして微細凹凸を形成した。
[プライマー層形成用組成物(屈折率1.63)]
下記(A)及び(B)を、使用時にA/B=6/4の割合で混合して用いた。
(A)
・非結晶性ポリエステル(商品名バイロン280、東洋紡績製);95重量部
・トルエン/メチルエチルケトン=1/1重量比混合溶剤;5重量部
(B)
・ルチル型酸化チタン粒子(商品名MT−01、テイカ製);10重量部
・分散剤(商品名ディスパービック163、ビックケミー・ジャパン製);2重量部
・ペンタエリスリトールトリアクリレート(商品名PET30、日本化薬製);4重量部
・チタネートカップリング剤(商品名TA−25、松本交商製);1.28重量部
・光重合開始剤((1−ヒドロキシ−シクロヘキシル−フェニルケトン)商品名イルガキュア184、チバ・スペシャルティ・ケミカルズ社製);0.2重量部
・メチルイソブチルケトン(溶剤);17.48重量部
<Example 2>
(1) Formation of fine irregularities in the first transparent layer Easy adhesion treatment of a transparent biaxially stretched PET film (refractive index: 1.66, Toyobo product name; Cosmo Shine A4100) having a thickness of 100 μm and one surface easily adhered. The primer layer-forming composition described below was applied to the uncoated surface by gravure coating to a film thickness of 500 nm, heated at 70 ° C. for 1 minute, and the solvent was dried. Then, it heated at 120 degreeC and embossed to the primer layer similarly to Example 1, and formed the fine unevenness | corrugation.
[Primer layer forming composition (refractive index: 1.63)]
The following (A) and (B) were mixed and used at a ratio of A / B = 6/4 at the time of use.
(A)
Amorphous polyester (trade name Byron 280, manufactured by Toyobo); 95 parts by weight. Toluene / methyl ethyl ketone = 1/1 weight ratio mixed solvent; 5 parts by weight (B)
Rutile-type titanium oxide particles (trade name MT-01, manufactured by Teica); 10 parts by weight Dispersant (trade name, Disperbic 163, manufactured by Big Chemie Japan); 2 parts by weight Pentaerythritol triacrylate (trade name, PET30, Japan) 4 parts by weight-titanate coupling agent (trade name TA-25, manufactured by Matsumoto Kosho); 1.28 parts by weight-photopolymerization initiator ((1-hydroxy-cyclohexyl-phenyl ketone) trade name Irgacure 184, manufactured by Ciba Specialty Chemicals); 0.2 parts by weight; methyl isobutyl ketone (solvent); 17.48 parts by weight

(2)第2の透明層の形成
第2の透明層の形成は、実施例1と同様に行ない、実施例2の透光性物品を製造した。
(2) Formation of second transparent layer The second transparent layer was formed in the same manner as in Example 1, and the translucent article of Example 2 was produced.

<実施例3>
第2の透明層の組成物を下記に変更して、屈折率1.56の第2の透明層を形成した以外は、実施例2と同様に、実施例3の透光性物品を製造した。
[第2の透明層形成用組成物]
・9,9―ビス[4−(2アクリロイルオキシエトキシ)フェニル]フルオレン(商品名、NKエステルA−BPEF、新中村化学社製);2.5重量部
・ビス[(2―メタクリロイルチオ)エチル]スルフィド(商品名S2EG、住友精化製);2.5重量部
・ジペンタエリスリトールヘキサアクリレート(商品名DPHA、日本化薬製);3重量部
・ペンタエリスリトールトリアクリレート(商品名PET30、日本化薬製);2重量部
・光重合開始剤(1−ヒドロキシ−シクロヘキシル−フェニルケトン、商品名イルガキュア184、チバ・スペシャルティ・ケミカルズ社製);0.3重量部
・光重合開始剤((2,4,6-トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド)商品名DAROCURE TPO、チバ・スペシャルティ・ケミカルズ社製);0.3重量部
・メチルエチルケトン(溶剤);10重量部
<Example 3>
The translucent article of Example 3 was manufactured in the same manner as Example 2 except that the composition of the second transparent layer was changed to the following to form a second transparent layer having a refractive index of 1.56. .
[Second transparent layer forming composition]
9,9-bis [4- (2acryloyloxyethoxy) phenyl] fluorene (trade name, NK ester A-BPEF, manufactured by Shin-Nakamura Chemical Co., Ltd.); 2.5 parts by weight Bis [(2-methacryloylthio) ethyl ] Sulphide (trade name S2EG, manufactured by Sumitomo Seika); 2.5 parts by weight dipentaerythritol hexaacrylate (trade name DPHA, manufactured by Nippon Kayaku); 3 parts by weight pentaerythritol triacrylate (trade name PET30, Nippon Kayaku) 2 parts by weight / photopolymerization initiator (1-hydroxy-cyclohexyl-phenyl ketone, trade name Irgacure 184, manufactured by Ciba Specialty Chemicals); 0.3 parts by weight / photopolymerization initiator ((2, 4,6-Trimethylbenzoyl-diphenyl-phosphine oxide) Trade name DAROCURE TPO, Ciba Specialty Chemicals Inc.); 0.3 parts by weight Methyl ethyl ketone (solvent); 10 parts by weight

<比較例1>
片面が易接着処理された厚み100μmの透明な2軸延伸PETフィルムに微細凹凸を形成しなかったこと以外は実施例1と同様にして、比較例1の透光性物品を製造した。
<Comparative Example 1>
A translucent article of Comparative Example 1 was produced in the same manner as in Example 1 except that fine irregularities were not formed on a transparent biaxially stretched PET film having a thickness of 100 μm, on which one surface was easily adhered.

<比較例2>
プライマー層に微細凹凸を形成しなかったこと以外は実施例2と同様にして、比較例2の透光性物品を製造した。
<Comparative example 2>
A translucent article of Comparative Example 2 was produced in the same manner as in Example 2 except that fine irregularities were not formed on the primer layer.

<比較例3>
プライマー層に微細凹凸を形成しなかったこと以外は実施例3と同様にして、比較例3の透光性物品を製造した。
<Comparative Example 3>
A translucent article of Comparative Example 3 was produced in the same manner as in Example 3 except that the fine irregularities were not formed on the primer layer.

<比較例4>
プライマー層に微細凹凸を形成せず、且つ第2の透明樹脂層の形成をしなかったこと以外は実施例2と同様にして、比較例4の透光性物品を製造した。
<Comparative example 4>
A translucent article of Comparative Example 4 was produced in the same manner as in Example 2 except that fine irregularities were not formed on the primer layer and the second transparent resin layer was not formed.

〔性能評価方法〕
上記で得られた各実施例、及び比較例の透光性物品に対して、以下の点を評価した。評価結果を表1に示す。
(1)干渉縞の有無
透光性物品において、第1の透明層の面のうち、第2の透明層を積層していない側の起因する裏面反射の影響を防ぐため、当該第2の透明層が積層していない側の第1の透明層の面をサンドペーパーで擦り、その上に黒色テープを貼り、干渉縞検査ランプ(フナテック(株)製 FNA−18)および3波長蛍光灯にて第2の透明層の面から透光性物品を目視で観察し、下記評価基準にて評価した。
(評価基準)
○:干渉縞検査ランプ及び3波長蛍光灯の両方について干渉縞が生じなかった。
×:干渉縞検査ランプ及び3波長蛍光灯の両方について干渉縞が生じた。
[Performance evaluation method]
The following points were evaluated with respect to the translucent articles of Examples and Comparative Examples obtained above. The evaluation results are shown in Table 1.
(1) Presence / absence of interference fringes In the translucent article, in order to prevent the influence of back surface reflection caused by the side where the second transparent layer is not laminated among the surfaces of the first transparent layer, the second transparent The surface of the first transparent layer on the side where the layers are not laminated is rubbed with sandpaper, a black tape is pasted on it, and an interference fringe inspection lamp (FNA-18 manufactured by Funatech Co., Ltd.) and a three-wavelength fluorescent lamp The translucent article was visually observed from the surface of the 2nd transparent layer, and the following evaluation criteria evaluated.
(Evaluation criteria)
◯: No interference fringes were generated for both the interference fringe inspection lamp and the three-wavelength fluorescent lamp.
X: Interference fringes were generated for both the interference fringe inspection lamp and the three-wavelength fluorescent lamp.

(2)全光線透過率
JIS−K7105に準拠して、ヘイズメーターHR100(村上色彩技術研究所社製、商品名)を用いて全光線透過率(%)を測定した。
(2) Total light transmittance Based on JIS-K7105, total light transmittance (%) was measured using haze meter HR100 (Murakami Color Research Laboratory make, brand name).

Figure 2007090656
Figure 2007090656

<結果のまとめ>
実施例及び比較例の比較により、屈折率の互いに異なる隣接2層の界面に本発明に係る特定形状の微細凹凸を有する透光性物品では、当該微細凹凸を有しない場合には発生する干渉縞が、観測不能になることが明らかになった。
今回試作した物品の評価結果によれば、隣接2層界面の屈折率差が0.03と僅差の場合は、界面の微細凹凸無しでも干渉縞発生は見られなかった。該屈折率差が0.07以上の場合には該界面に特定の微細凹凸無しだと干渉縞が認められた。
また、上記界面に本発明に係る特定形状の微細凹凸を形成することによって、当該微細凹凸を有しない場合に比べて1.5〜1.7%全光線透過率が向上した。これは、本来上記界面で生じていた反射による透過光損失が、微細凹凸を有するために低減されたからであると考えられる。
<Summary of results>
In the translucent article which has fine irregularities of a specific shape according to the present invention at the interface between adjacent two layers having different refractive indexes, the interference fringes generated when the fine irregularities are not present. However, it became clear that it became unobservable.
According to the evaluation result of the article manufactured this time, when the difference in refractive index between the adjacent two-layer interfaces was 0.03, no interference fringes were observed even without fine irregularities at the interfaces. When the difference in refractive index was 0.07 or more, interference fringes were recognized if there were no specific fine irregularities on the interface.
Moreover, by forming fine irregularities of a specific shape according to the present invention at the interface, the total light transmittance was improved by 1.5 to 1.7% compared to the case where the fine irregularities were not provided. This is presumably because the transmitted light loss due to the reflection that originally occurred at the interface was reduced due to the fine irregularities.

本発明に係る透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the translucent article which concerns on this invention. 本発明に係る透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the translucent article which concerns on this invention. 本発明に係る透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the translucent article which concerns on this invention. 微細凹凸で得られる有効屈折率の分布を概念的に説明するための図である。It is a figure for demonstrating notionally the distribution of the effective refractive index obtained by a fine unevenness | corrugation. 微細凹凸で得られる有効屈折率の分布を概念的に説明するための図である。It is a figure for demonstrating notionally the distribution of the effective refractive index obtained by a fine unevenness | corrugation. 微細凹凸で得られる有効屈折率の分布を概念的に説明するための図である。It is a figure for demonstrating notionally the distribution of the effective refractive index obtained by a fine unevenness | corrugation. 微細凹凸の形状を垂直断面形状で概念的に比較説明するための断面図である。It is sectional drawing for notionally comparing and explaining the shape of a fine unevenness | corrugation with a vertical cross-sectional shape. 微細凹凸の形状を垂直断面形状で概念的に比較説明するための断面図である。It is sectional drawing for notionally comparing and explaining the shape of a fine unevenness | corrugation with a vertical cross-sectional shape. 微細凹凸の形状を垂直断面形状で概念的に比較説明するための断面図である。It is sectional drawing for notionally comparing and explaining the shape of a fine unevenness | corrugation with a vertical cross-sectional shape. 微細凹凸の水平面内での配置の幾つかを例示する斜視図と平面図である。It is the perspective view and top view which illustrate some arrangement | positioning in the horizontal surface of a fine unevenness | corrugation. 微細凹凸の水平面内での別の一例を示す平面図である。It is a top view which shows another example in the horizontal surface of a fine unevenness | corrugation. 本発明に係る透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the translucent article which concerns on this invention. 従来の透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the conventional translucent article. 従来の透光性物品の一形態を例示する断面図である。It is sectional drawing which illustrates one form of the conventional translucent article.

符号の説明Explanation of symbols

1A 第1の透明層
1B 第2の透明層
2 微細凹凸
2A〜2G 微細凹凸
Mb 谷側の形状
Mt 山側の形状
2b (微細凹凸の)最凹部
2t (微細凹凸の)最凸部
10 透光性物品
11 微小凹凸層
12 透明層基材
〜T 透明層
I 隣接2層の界面
IN 入射光
OUT 透過光
P 微細凹凸が形成されている面
n 屈折率
a 第1の透明層の屈折率
b 第2の透明層の屈折率
ef(Z) 有効屈折率
H (微細凹凸の)高さ
H/2 (微細凹凸の高さの半分(1/2)
MAX (微細凹凸の)最凸部の高さ
Lb (谷側の)等高線
Lt (山側の)等高線
Mb 微細凹凸の谷側
Mc 微細凹凸の鞍部
Mt 微細凹凸の山側
PMAX 周期
Wb 谷部分の幅
Wb1 山の片側での谷部分の幅
Wb2 山の他方側での谷部分の幅
Wt 山部分の幅
DESCRIPTION OF SYMBOLS 1A 1st transparent layer 1B 2nd transparent layer 2 Fine unevenness | corrugation 2A-2G Fine unevenness | corrugation 2 Shape of Mb trough side 2 Shape of Mt mountain side 2b Most concave part 2t (of fine unevenness) Most convex part 10 Through light article 11 fine uneven layer 12 transparent layer substrate T 1 through T 4 transparent layer I of the adjacent two layers interface L iN incident light L OUT transmitted light P small projections surfaces n the refractive index n a first formed Refractive index n b of transparent layer n b Refractive index n ef of second transparent layer (Z) Effective refractive index H (fine unevenness) height H / 2 (half height of fine unevenness (1/2)
H MAX Height of the most convex portion (of the fine irregularities) Lb (Valley side) Contour line Lt (Crest side) Contour lines Mb Fine irregularities of the valley side Mc Fine irregularities of the ridge Mt Fine irregularities of the mountain side PMAX Period
Wb Width of the valley portion Wb1 Width of the valley portion on one side of the mountain Wb2 Width of the valley portion on the other side of the mountain Wt Width of the mountain portion

Claims (1)

屈折率の互いに異なる隣接2層を1組以上含む、透明層の積層体から成り、該隣接2層のうちの少なくとも1組の界面には微細凹凸を有する透光性物品であって、
該微細凹凸形状は、可視光の波長帯域の真空中における最小波長をλMIN、該微細凹凸の最凸部における周期をPMAXとしたときに、
PMAX≦λMIN
なる関係を有し、
且つ該微細凹凸をその凹凸方向と直交する面で切断したと仮定したときの断面内における該最凸部を形成する側の透明層の断面積占有率が、該微細凹凸の最凸部から最凹部に行くに従って連続的に漸次増加して行き、最凹部において100%になることを特徴とする、透光性物品。

A translucent article comprising a laminate of transparent layers including at least one pair of adjacent two layers having different refractive indices, and having fine irregularities at least one set of interfaces of the adjacent two layers,
When the minimum wavelength in the vacuum of the visible light wavelength band is λMIN and the period at the most convex portion of the fine unevenness is PMAX,
PMAX ≦ λMIN
Have the relationship
In addition, when it is assumed that the fine irregularities are cut along a plane orthogonal to the irregular direction, the cross-sectional area occupancy of the transparent layer on the side where the most convex portions are formed in the cross section is the highest from the most convex portions of the fine irregularities. A translucent article characterized by increasing continuously and gradually as it goes to the recess and becomes 100% in the most recess.

JP2005282916A 2005-09-28 2005-09-28 Translucent article Pending JP2007090656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282916A JP2007090656A (en) 2005-09-28 2005-09-28 Translucent article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282916A JP2007090656A (en) 2005-09-28 2005-09-28 Translucent article

Publications (1)

Publication Number Publication Date
JP2007090656A true JP2007090656A (en) 2007-04-12

Family

ID=37976906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282916A Pending JP2007090656A (en) 2005-09-28 2005-09-28 Translucent article

Country Status (1)

Country Link
JP (1) JP2007090656A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424751A (en) * 2007-10-30 2009-05-06 索尼株式会社 Optical element and method for manufacturing master for producing optical element
JP2010069839A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Hard coat film and method of manufacturing the same
JP2010079200A (en) * 2008-09-29 2010-04-08 Sony Corp Optical element, optical component with anti-reflective function, and original disk
WO2011033818A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Structure with observation window
WO2012144508A1 (en) * 2011-04-22 2012-10-26 日東電工株式会社 Optical laminate
WO2013088675A1 (en) * 2011-12-12 2013-06-20 キヤノン電子株式会社 Optical filter, light volume adjusting device and image pickup device having same
JP2014522251A (en) * 2011-04-07 2014-09-04 ノバルティス アーゲー Optical structure with nanostructured elements, method of use and method
JP2017072846A (en) * 2011-04-22 2017-04-13 日東電工株式会社 Optical laminate
US10139525B2 (en) 2011-04-22 2018-11-27 Nitto Denko Corporation Optical laminate having hard coat layer composition with specified quantities of monofunctional monomer and varied (meth)acryloyl group containing compounds
JP7491163B2 (en) 2020-09-23 2024-05-28 株式会社Jvcケンウッド Reflective liquid crystal display element and liquid crystal display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264520A (en) * 2000-03-16 2001-09-26 Dainippon Printing Co Ltd Reflection preventing film, polarizing element, display device and method for manufacturing reflection preventing film
JP2002333502A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Antireflection window plate for display cover of portable device having display and portable device
JP2003004916A (en) * 2001-06-20 2003-01-08 Dainippon Printing Co Ltd Window material of display device, method of manufacturing for the same and display device
JP2003240904A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
JP2004069867A (en) * 2002-08-05 2004-03-04 Dainippon Printing Co Ltd Low reflection film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264520A (en) * 2000-03-16 2001-09-26 Dainippon Printing Co Ltd Reflection preventing film, polarizing element, display device and method for manufacturing reflection preventing film
JP2002333502A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Antireflection window plate for display cover of portable device having display and portable device
JP2003004916A (en) * 2001-06-20 2003-01-08 Dainippon Printing Co Ltd Window material of display device, method of manufacturing for the same and display device
JP2003240904A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2003340844A (en) * 2002-05-24 2003-12-02 Dainippon Printing Co Ltd Antireflection article due to sol/gel method and manufacturing method therefor
JP2004069867A (en) * 2002-08-05 2004-03-04 Dainippon Printing Co Ltd Low reflection film

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664821B2 (en) 2007-10-30 2017-05-30 Dexerials Corporation Optical element and method for manufacturing master for producing optical element
CN101424751A (en) * 2007-10-30 2009-05-06 索尼株式会社 Optical element and method for manufacturing master for producing optical element
JP2010069839A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Hard coat film and method of manufacturing the same
JP2010079200A (en) * 2008-09-29 2010-04-08 Sony Corp Optical element, optical component with anti-reflective function, and original disk
US8576486B2 (en) 2008-09-29 2013-11-05 Sony Corporation Optical film, antireflection optical element and master
US8736960B2 (en) 2009-09-15 2014-05-27 Sharp Kabushiki Kaisha Structure with observation port
WO2011033818A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Structure with observation window
JP5449375B2 (en) * 2009-09-15 2014-03-19 シャープ株式会社 Structure with observation window
US9579191B2 (en) 2011-04-07 2017-02-28 Novartis Ag Optical structures with nanostructre features and methods of use and manufacture
JP2014522251A (en) * 2011-04-07 2014-09-04 ノバルティス アーゲー Optical structure with nanostructured elements, method of use and method
JP2012234163A (en) * 2011-04-22 2012-11-29 Nitto Denko Corp Optical laminate
CN103492913A (en) * 2011-04-22 2014-01-01 日东电工株式会社 Optical laminate
CN103492913B (en) * 2011-04-22 2017-03-15 日东电工株式会社 Optical laminate
JP2017072846A (en) * 2011-04-22 2017-04-13 日東電工株式会社 Optical laminate
WO2012144508A1 (en) * 2011-04-22 2012-10-26 日東電工株式会社 Optical laminate
US9720134B2 (en) 2011-04-22 2017-08-01 Nitto Denko Corporation Optical laminate comprising hard coat layer comprised of cured product of composition comprising (meth)acrylic prepolymer having hydroxyl group
US10139525B2 (en) 2011-04-22 2018-11-27 Nitto Denko Corporation Optical laminate having hard coat layer composition with specified quantities of monofunctional monomer and varied (meth)acryloyl group containing compounds
KR101931400B1 (en) * 2011-04-22 2018-12-20 닛토덴코 가부시키가이샤 Optical laminate
US10203430B2 (en) 2011-04-22 2019-02-12 Nitto Denko Corporation Method of producing optical laminate comprising hard coat layer comprised of cured product of composition comprising (meth)acrylic prepolymer having hydroxyl group
CN103988098A (en) * 2011-12-12 2014-08-13 佳能电子株式会社 Optical filter, light volume adjusting device and image pickup device having same
JPWO2013088675A1 (en) * 2011-12-12 2015-04-27 キヤノン電子株式会社 Optical filter, light amount adjusting device, and image pickup apparatus having the same
WO2013088675A1 (en) * 2011-12-12 2013-06-20 キヤノン電子株式会社 Optical filter, light volume adjusting device and image pickup device having same
JP7491163B2 (en) 2020-09-23 2024-05-28 株式会社Jvcケンウッド Reflective liquid crystal display element and liquid crystal display device

Similar Documents

Publication Publication Date Title
US6677703B2 (en) Cover plate for display device, method of making the same, display device and reflection reducing structure
JP2007090656A (en) Translucent article
JP4632589B2 (en) Transparent touch panel with antireflection function and display device using the same
JP4197100B2 (en) Anti-reflective article
JP5880762B2 (en) Optical film and touch panel
JP6425657B2 (en) Light diffusing film and method of making the same
JP5439783B2 (en) Optical element, optical component with antireflection function, and master
KR101911568B1 (en) Optical element, display device, and input device
JP2003240903A (en) Antireflection article
WO2011027518A1 (en) Conductive optical device, production method therefor, touch panel device, display device, and liquid crystal display apparatus
JP2003215314A (en) Antireflection article
US20110002143A1 (en) Light guide plate and a method of manufacturing thereof
EP2521011A1 (en) Conductive optical element
JP4242090B2 (en) Surface light source device
JP5841656B2 (en) Display device
KR20100116523A (en) Antireflection optical element, and method for producing original board
JP2002286906A (en) Antireflection method, antireflection structure and antireflection structural body having antireflection structure and method for manufacturing the same
WO2005085916A1 (en) Light control film and backlight device using it
JP2003098304A (en) Antireflective transfer film and method for antireflection processing by using the same
JP2003205564A (en) Electrification preventing transfer foil with reflection preventing function
JP2003340844A (en) Antireflection article due to sol/gel method and manufacturing method therefor
JP2014071323A (en) Anti-reflection article
CN101155683A (en) Optical layered product
JP2014071292A (en) Anti-reflection article
JP2003215303A (en) Antireflection article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308