JP2007090329A - Molecule mediation species composition and molecule concentration apparatus - Google Patents

Molecule mediation species composition and molecule concentration apparatus Download PDF

Info

Publication number
JP2007090329A
JP2007090329A JP2006214237A JP2006214237A JP2007090329A JP 2007090329 A JP2007090329 A JP 2007090329A JP 2006214237 A JP2006214237 A JP 2006214237A JP 2006214237 A JP2006214237 A JP 2006214237A JP 2007090329 A JP2007090329 A JP 2007090329A
Authority
JP
Japan
Prior art keywords
group
molecule
mediated
species composition
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214237A
Other languages
Japanese (ja)
Inventor
Yasukazu Iwasaki
靖和 岩崎
Akira Oi
亮 大井
Hiroyuki Ono
弘幸 大野
Tomonobu Mizukumo
智信 水雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Nissan Motor Co Ltd
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Nissan Motor Co Ltd
Priority to JP2006214237A priority Critical patent/JP2007090329A/en
Publication of JP2007090329A publication Critical patent/JP2007090329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molecule mediation species composition capable of capturing/accompanying/releasing carbon dioxide, a nitrogen oxide and a sulfur oxide, and a molecule concentration apparatus using this. <P>SOLUTION: The molecule mediation species material and an ion liquid are mixed and the molecule mediation species material has a charge portion capable of controlling capturing and releasing of an object molecule by oxidation/reduction and electro-chemically controlling the oxidation/reduction state; and an aprotic polar group. The oxidation/reduction potential is +1,000 to -3,000 mV (Ag/Ag+reference). The object molecule is carbon mono-oxide, carbon dioxide, carbon disulfide, the nitrogen oxide or the sulfur oxide. The molecule concentration apparatus is provided with an electrolyte tank, a pair of electrodes and a potentiostat, and in the electrolyte tank, an electrolytic solution comprising the molecule mediation species composition or comprising mixing the molecule mediation species composition and an electrolyte is filled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分子媒介種組成物及び分子濃縮装置に係り、更に詳細には、二酸化炭素(CO)や窒素酸化物(NOx)を捕捉・放出等し得る組成物及びこれを用いた分子濃縮装置に関する。 The present invention relates to a molecule-mediated species composition and a molecular concentration apparatus, and more specifically, a composition capable of capturing and releasing carbon dioxide (CO 2 ) and nitrogen oxide (NOx), and molecular concentration using the same. Relates to the device.

近年、地球環境の保護、特に地球温暖化を防止すべく、二酸化炭素や窒素酸化物などのいわゆる温室効果ガスの放出量削減に大きな関心が寄せられている。
特に、二酸化炭素の固定化・隔離・分離濃縮などについては、従来から、膜分離、吸着分離及び吸収分離技術を適用した手法が実施されていたが、これらの手法はいずれも低濃度の二酸化炭素を分離・濃縮するには十分とは言い難かった。
In recent years, in order to protect the global environment, particularly to prevent global warming, there has been a great interest in reducing the amount of so-called greenhouse gas emissions such as carbon dioxide and nitrogen oxides.
In particular, for carbon dioxide immobilization / separation / separation / concentration, methods using membrane separation, adsorption separation, and absorption separation technology have been implemented. It was not enough to separate and concentrate

これに対し、近時では、所定のCOメディエータ(媒介種)を有機溶媒やイオン液体に溶解させた電解質を用い、電解酸化還元処理によって二酸化炭素を電気化学的に濃縮できることが提案されている(例えば、非特許文献1参照。)。
この手法は、電解質中でCOメディエータが二酸化炭素を同伴して一方の電極側に搬送し、二酸化炭素を一方の電極側に電気化学的にポンピングして分離濃縮するので、従来法に比し低濃度の二酸化炭素を含むガスからの分離濃縮が可能であり、且つ高純度の二酸化炭素を分離濃縮できる利点を有する。
The Journal of Electrochemical Society 150(5) D91−98(2003)
On the other hand, recently, it has been proposed that carbon dioxide can be electrochemically concentrated by electrolytic redox treatment using an electrolyte in which a predetermined CO 2 mediator (mediating species) is dissolved in an organic solvent or ionic liquid. (For example, refer nonpatent literature 1.).
In this method, the CO 2 mediator entrains carbon dioxide in the electrolyte and transports it to one electrode side, and the carbon dioxide is electrochemically pumped to one electrode side for separation and concentration. Separation and concentration from a gas containing low-concentration carbon dioxide is possible, and high-purity carbon dioxide can be separated and concentrated.
The Journal of Electrochemical Society 150 (5) D91-98 (2003)

しかしながら、かかる従来の電気化学的分離濃縮法にあっては、COメディエータの電解質溶液に対する溶解度が高いとは言い難く、このため、二酸化炭素の濃縮速度が十分ではなく濃縮効率に難点があった。
一方、二酸化炭素以外の温室効果ガスなどについて、このような電気化学的分離濃縮法を適用した事例は、現時点では見当たらない。
However, in the conventional electrochemical separation and concentration method, it is difficult to say that the solubility of the CO 2 mediator in the electrolyte solution is high, and therefore, the concentration rate of carbon dioxide is not sufficient and the concentration efficiency is difficult. .
On the other hand, there are no examples of applying such an electrochemical separation / concentration method to greenhouse gases other than carbon dioxide.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、二酸化炭素、窒素酸化物及び硫黄酸化物などを捕捉・同伴・放出し得る分子媒介種組成物及びこれを用いた分子濃縮装置を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object thereof is a molecule-mediated species capable of capturing, entraining, and releasing carbon dioxide, nitrogen oxide, sulfur oxide, and the like. The object is to provide a composition and a molecular concentration apparatus using the composition.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、所定の荷電部位と極性基を有する材料が、二酸化炭素その他のガス分子を有意に媒介し得ることを知見し、この材料を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a material having a predetermined charged site and a polar group can significantly mediate carbon dioxide and other gas molecules. It was found that the above-mentioned object can be achieved by using and the present invention was completed.

即ち、本発明の分子媒介種組成物は、分子媒介種材料とイオン液体を混合して成る分子媒介種組成物であって、
上記分子媒介種材料は、酸化還元処理によって対象分子の捕捉及び脱離を制御可能であり、且つその酸化還元状態を電気化学的に制御可能な荷電部位と、非プロトン性の極性基を有することを特徴とする。
That is, the molecule-mediated species composition of the present invention is a molecule-mediated species composition comprising a mixture of a molecule-mediated species material and an ionic liquid,
The molecule-mediated seed material has a charged site capable of controlling capture and desorption of a target molecule by oxidation-reduction treatment, and electrochemically controlling the oxidation-reduction state, and an aprotic polar group. It is characterized by.

また、本発明の分子媒介種組成物の好適形態は、上記分子媒介種材料において、上記酸化還元処理が電解酸化又は電解還元であり、上記対象分子を捕捉及び脱離する酸化還元電位が、この電解酸化又は電解還元に用いられるイオン液体の電位窓の範囲内に含まれることを特徴とする。   Further, in a preferred embodiment of the molecularly mediated species composition of the present invention, in the molecularly mediated species material, the oxidation-reduction treatment is electrolytic oxidation or electrolytic reduction, and the oxidation-reduction potential for capturing and desorbing the target molecule is It is included in the range of the potential window of the ionic liquid used for electrolytic oxidation or electrolytic reduction.

更に、本発明の分子媒介種組成物の他の好適形態は、上記分子媒介種材料において、上記荷電部位が、骨格内に、ベンゾキノン、ナフトキノン、アントラキノン又はフェナントレンキノン構造を有することを特徴とする。   Furthermore, another preferred embodiment of the molecular mediated species composition of the present invention is characterized in that, in the molecular mediated species material, the charged site has a benzoquinone, naphthoquinone, anthraquinone or phenanthrenequinone structure in the skeleton.

更にまた、本発明の分子媒介種組成物の更に他の好適形態は、上記分子媒介種材料において、上記極性基が、ポリエーテル基及びポリエーテルを除くヘテロ原子を含むオリゴマー鎖から成る群より選ばれた少なくとも1種のものであることを特徴とする。   Furthermore, in another preferred embodiment of the molecule-mediated species composition of the present invention, the polar group in the molecule-mediated species material is selected from the group consisting of a polyether group and an oligomer chain containing a hetero atom excluding the polyether. It is characterized by being at least one kind.

また、本発明の分子媒介種組成物の他の好適形態は、上記分子媒介種材料において、上記極性基が、ハロゲン基、ヘテロ環式基、ヒドロキシアルキル基、アセトキシアルキル基、ニトリル基、トシル基及びメシル基から成る群より選ばれた少なくとも1種のものであることを特徴とする。   In another preferred embodiment of the molecule-mediated species composition of the present invention, the polar group is a halogen group, heterocyclic group, hydroxyalkyl group, acetoxyalkyl group, nitrile group, tosyl group in the molecule-mediated species material. And at least one selected from the group consisting of mesyl groups.

更に、本発明の分子媒介種組成物の更に他の好適形態は、上記分子媒介種材料において、上記極性基が、炭素数1〜10のアルキル基、アルケニル基、ハロゲノアルキル基、アリール基及びアルキルアリール基から成る群より選ばれた少なくとも1種のものであることを特徴とする。   Furthermore, in another preferred embodiment of the molecule-mediated species composition of the present invention, in the molecule-mediated species material, the polar group is an alkyl group, alkenyl group, halogenoalkyl group, aryl group or alkyl group having 1 to 10 carbon atoms. It is at least one selected from the group consisting of aryl groups.

更にまた、本発明の分子媒介種組成物の他の好適形態は、上記分子媒介種材料が、次の一般式(1)又は(2)

Figure 2007090329
Furthermore, in another preferred embodiment of the molecule-mediated species composition of the present invention, the molecule-mediated species material has the following general formula (1) or (2):
Figure 2007090329

Figure 2007090329
Figure 2007090329

(式中のSUBは、水素、塩素、臭素、アセチル基又はオリゴエチレンオキシド鎖(−(OCHCH−CH)、n=2〜10を示し、少なくとも1以上のオリゴエチレンオキシド鎖を含む。)
で表される構造を有することを特徴とする。
(SUB in the formula represents hydrogen, chlorine, bromine, acetyl group or oligoethylene oxide chain (— (OCH 2 CH 2 ) n —CH 3 ), n = 2 to 10 and includes at least one oligoethylene oxide chain) .)
It has the structure represented by these.

また、本発明の分子濃縮装置は、電解質槽、一対の電極及びこれら電極間の電位差制御手段を備える分子濃縮装置であって、
電解質槽には、上記分子媒介種組成物を含有する電解液が満たされ、
一方の電極に対象分子を含む気体を接触させ、他方の電極から対象分子を回収し得ることを特徴とする。
The molecular concentrator of the present invention is a molecular concentrator provided with an electrolyte tank, a pair of electrodes, and a potential difference control means between these electrodes,
The electrolyte bath is filled with an electrolytic solution containing the molecular mediated species composition,
A gas containing the target molecule is brought into contact with one electrode, and the target molecule can be recovered from the other electrode.

本発明によれば、所定の荷電部位と極性基を有する材料を用いることとしたため、二酸化炭素や窒素酸化物などを捕捉・放出し得る分子媒介種組成物及びこれを用いた分子濃縮装置を提供することができる。   According to the present invention, since a material having a predetermined charged site and a polar group is used, a molecule-mediated species composition capable of capturing and releasing carbon dioxide, nitrogen oxides, and the like, and a molecular concentrator using the same are provided. can do.

以下、本発明の分子媒介種組成物につき詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。   Hereinafter, the molecule-mediated species composition of the present invention will be described in detail. In the present specification, “%” represents mass percentage unless otherwise specified.

上述の如く、本発明の分子媒介種組成物は、分子媒介種材料とイオン液体を混合して成る。
また、分子媒介種材料は、酸化還元処理によって対象分子を捕捉可能な状態となり且つその酸化還元状態を電気化学的に制御可能な荷電部位と、非プロトン性の極性基を有する化合物である。
As described above, the molecule-mediated species composition of the present invention is a mixture of a molecule-mediated species material and an ionic liquid.
The molecule-mediated seed material is a compound having a charged site capable of capturing a target molecule by redox treatment and capable of electrochemically controlling the redox state, and an aprotic polar group.

ここで、上記分子媒介種材料について説明する。
かかる分子媒介種材料が捕捉し得る対象分子としては、特に限定されるものではないが、常温で気体の分子種であり、例えば、一酸化炭素(CO)、二酸化炭素(CO)、二硫化炭素(CS)、窒素酸化物(NOx)又は硫黄酸化物(SOx)を挙げることができる。
Here, the molecule-mediated seed material will be described.
The target molecule that can be captured by such a molecule-mediated species material is not particularly limited, but is a molecular species that is a gas at room temperature, and examples thereof include carbon monoxide (CO), carbon dioxide (CO 2 ), and disulfide. Mention may be made of carbon (CS 2 ), nitrogen oxides (NOx) or sulfur oxides (SOx).

また、上記荷電部位については、酸化還元活性を有し、対象分子との結合定数が酸化型と還元型とで大きく変化する構造を有することが好ましい。
例えば、対象分子がCOの場合には、次の一般式(3)
The charged site preferably has redox activity and has a structure in which the binding constant with the target molecule varies greatly between an oxidized form and a reduced form.
For example, when the target molecule is CO 2 , the following general formula (3)

Figure 2007090329
Figure 2007090329

で表される反応を電気化学的に制御できる構造を有することが望ましい。 It is desirable to have a structure capable of electrochemically controlling the reaction represented by

更に、かかる荷電部位としては、電解酸化又は電解還元に用いられるイオン液体の電位窓の範囲内に含まれる酸化還元電位を有することが好ましい。
代表的には、対象分子がCOの場合、酸化還元電位が+1000mV〜−3000mV(Ag/Ag+基準)であることが好ましい。
上記酸化還元電位外では、メディエーター分子又はそれを溶解させた電解質溶液が不可逆な構造変化を起こし、目的の分子の捕捉・放出ができない。
Furthermore, the charged site preferably has an oxidation-reduction potential that falls within the range of the potential window of the ionic liquid used for electrolytic oxidation or electrolytic reduction.
Typically, when the target molecule is CO 2 , the redox potential is preferably +1000 mV to −3000 mV (Ag / Ag + reference).
Outside the oxidation-reduction potential, the mediator molecule or the electrolyte solution in which it is dissolved causes an irreversible structural change, and the target molecule cannot be captured or released.

上記荷電部位としては、芳香族環を構成する水素原子の2個以上を酸素原子で置換した構造を有する部位を挙げることができる。
具体的には、対象分子がCOの場合は、置換又は非置換のベンゾキノン、ナフトキノン、アントラキノン又はフェナントレンキノン構造を有する部位を例示できる。
これらは、CO存在下と非存在下で酸化還元応答が変化することが必要である。このため、例えば、β位にかさ高い置換基(t−ブチル基など)を有するもの、活性プロトンを含まないもの、パラベンゾキノンの骨格を含むもの、などが良い。
Examples of the charged site include a site having a structure in which two or more hydrogen atoms constituting an aromatic ring are substituted with oxygen atoms.
Specifically, when the target molecule is CO 2 , a site having a substituted or unsubstituted benzoquinone, naphthoquinone, anthraquinone or phenanthrenequinone structure can be exemplified.
These are necessary to the presence of CO 2 and oxidation-reduction response in the absence changes. For this reason, for example, those having a bulky substituent (such as a t-butyl group) at the β-position, those not containing active protons, those containing a parabenzoquinone skeleton, and the like are preferable.

一方、分子媒介種材料における非プロトン性極性基としては、電気的に極性を有する部位と、極性を有さない部位が一つの官能基に共存していることが好ましい。
これにより、電解質溶液中への溶解度を飛躍的に向上させることを実現でき、対象分子の効率的な補足の点で有利である。
なお、非プロトン性であることが好適な理由は、対象分子の捕捉の際に、プロトンが電解還元によって生じたアニオン部位の対カチオンとなることで、目的の捕捉分子と競合し、効率的な捕捉を妨げるためである。
また、かかる非プロトン性極性基は、電解質溶液への親和性を向上し、当該分子媒介種材料を液化するのに寄与し得る。
On the other hand, as the aprotic polar group in the molecule-mediated seed material, it is preferable that a portion having electrical polarity and a portion having no polarity coexist in one functional group.
As a result, it is possible to dramatically improve the solubility in the electrolyte solution, which is advantageous in terms of efficient supplementation of the target molecule.
In addition, the reason why it is preferable to be aprotic is that when capturing the target molecule, the proton becomes a counter cation of the anion site generated by electrolytic reduction, thereby competing with the target capturing molecule and efficiently. This is to prevent capture.
Moreover, such aprotic polar groups can contribute to improving the affinity for the electrolyte solution and liquefying the molecule-mediated seed material.

かかる極性基としては、ポリエーテル基、ポリエーテル基以外のヘテロ原子を含むオリゴマー鎖などを例示することができ、具体的には、繰り返し単位2〜10のポリエチレンオキシド基 ポリプロピレンオキシド基、ポリエチレンイミン基、ポリエチレンスクシネート基及びポリプロピオラクトン基を挙げることができる。
これらは、ポリエーテル鎖を1〜4本含むことが特に好ましい。
Examples of such polar groups include polyether groups, oligomer chains containing heteroatoms other than polyether groups, and specifically, polyethylene oxide groups having a repeating unit of 2 to 10, polypropylene oxide groups, and polyethyleneimine groups. And polyethylene succinate groups and polypropiolactone groups.
These particularly preferably contain 1 to 4 polyether chains.

また、かかる極性基の他の例としては、ピペリジノ基やメチルピペリジノ基などのヘテロ環式基、メトキシ基、エトキシ基、アセチル基及びヒドロフラン環などのヒドロキシアルキル基、アセトキシアルキル基、ニトリル基、トシル基又はメシル基を挙げることができる。   Other examples of such polar groups include heterocyclic groups such as piperidino and methylpiperidino groups, hydroxyalkyl groups such as methoxy, ethoxy, acetyl and hydrofuran rings, acetoxyalkyl groups, nitrile groups and tosyl groups. Or a mesyl group can be mentioned.

更に、かかる極性基の更に他の例としては、炭素数1〜10のアルキル基、アルケニル基又はハロゲノアルキル基、アリール基及びアルキルアリール基を挙げることができる。   Furthermore, other examples of such polar groups include alkyl groups having 1 to 10 carbon atoms, alkenyl groups or halogenoalkyl groups, aryl groups, and alkylaryl groups.

対象分子がCOの場合、上述した分子媒介種材料の典型例としては、次の一般式(1)又は(2) When the target molecule is CO 2 , typical examples of the above-described molecular mediating material include the following general formula (1) or (2)

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

(式中のSUBは、水素、塩素、臭素、アセチル基又はオリゴエチレンオキシド鎖(−(OCHCH−CH)、n=2〜10を示し、少なくとも1以上のオリゴエチレンオキシド鎖を含む。)
で表される構造を有する化合物を挙げることができる。
(SUB in the formula represents hydrogen, chlorine, bromine, acetyl group or oligoethylene oxide chain (— (OCH 2 CH 2 ) n —CH 3 ), n = 2 to 10 and includes at least one oligoethylene oxide chain) .)
The compound which has a structure represented by these can be mentioned.

次に、上記イオン液体について説明する。
本発明では、分子媒介種材料とイオン液体を混合して分子媒介種組成物を得ることにより、イオン液体の特性、即ち、蒸気が回収ガスに混入しない、蒸発し難い、電位窓が広い、イオン伝導度が高い、難燃性である、という性質が付与される。
また、高い熱分解温度(>250〜400℃)を有する、低い凝固点(<−20℃)を有することから、分子媒介種材料が安定して溶解する。
Next, the ionic liquid will be described.
In the present invention, a molecular mediating seed material and an ionic liquid are mixed to obtain a molecular mediating seed composition, so that the characteristics of the ionic liquid, i.e., vapor is not mixed into the recovered gas, is difficult to evaporate, has a wide potential window, and has a wide potential window. The properties of high conductivity and flame retardancy are imparted.
In addition, since it has a high freezing temperature (> 250-400 ° C.) and a low freezing point (<−20 ° C.), the molecule-mediated seed material dissolves stably.

なお、キノン類(DEG−Q、TEG−Q、DtBBQ、PhQ)と、イオン液体を含む種々の溶媒との溶解性(25℃)について、表1に示す。
また、DtBBQ、PhQと、[BMIM][PF]、[BMIM][TFSI]との各温度における溶解性を図1,2に示す。
In addition, it shows in Table 1 about the solubility (25 degreeC) with various solvents containing quinones (DEG-Q, TEG-Q, DtBBQ, PhQ) and an ionic liquid.
Further, DtBBQ, and PhQ, [BMIM] [PF 6 ], shown in FIGS solubility at each temperature with [BMIM] [TFSI].

Figure 2007090329
Figure 2007090329

表1にDEG−Q、TEG−Qのイオン液体への溶解度を示した。
通常、COメディエータとして知られているDtBBQとPhQのイオン液体への溶解度を示す。ここで用いたイオン液体は、1−ブチル−3−メチルイミダゾリウムヘキサフルオロフォスフェート(BMIMPF)及び1−ブチル−3−メチルイミダゾリウムビストリフルオロメタンサルフォニルイミド(BMIMTFSI)の2種類である。
DEG−Qについては、いずれのイオン液体についても、従来のCOメディエータに比べ溶解度が高いことが分かる。TEG−Qに至っては、任意の割合で混ぜることが可能である。いずれの場合も、従来に比べメディエータ濃度を飛躍的に向上させることが可能である。
Table 1 shows the solubility of DEG-Q and TEG-Q in ionic liquids.
The solubility of DtBBQ and PhQ, commonly known as CO 2 mediators, in ionic liquids is shown. There are two types of ionic liquids used here: 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) and 1-butyl-3-methylimidazolium bistrifluoromethanesulfonylimide (BMIMTFSI). .
For the DEG-Q, for any of the ionic liquid, it is seen that higher solubility than the conventional CO 2 mediators. TEG-Q can be mixed at an arbitrary ratio. In either case, it is possible to dramatically improve the mediator concentration compared to the conventional case.

かかるイオン液体としては、代表的には、分子性カチオンと分子性アニオンで構成されるものが挙げられる。   Such ionic liquids typically include those composed of a molecular cation and a molecular anion.

具体的には、分子性カチオンは、例えば、以下の化学式8〜10に示すイミダゾリウム誘導体(Imidazolium Derivatives、1〜3置換体)、化学式11に示すピリジニウム誘導体(Pyridinium Derivatives)、化学式12に示すピロリジニウム誘導体(Pyrrolidinium Derivatives)、化学式13に示すアンモニウム誘導体(Ammonium Derivatives)、化学式14に示すホスフォニウム誘導体(Phosphonium Derivatives)、化学式15に示すグアニジニウム誘導体(Guanidinium Derivatives)、化学式16に示すイソウロニウム誘導体(Isouronium Derivatives)、化学式17に示すチオウレア誘導体(Thiourea Derivatives)、などが挙げられる。   Specifically, the molecular cation includes, for example, imidazolium derivatives (Imidazolium Derivatives, 1 to 3 substituents) represented by the following chemical formulas 8 to 10, pyridinium derivatives represented by the chemical formula 11 (pyridinium derivatives), and pyrrolidinium represented by the chemical formula 12. Derivatives (Pyrrolidinium Derivatives), ammonium derivatives (Ammonium Derivatives) shown in Chemical Formula 13, phosphonium derivatives (Phosphonium Derivatives) shown in Chemical Formula 14, guanidinium derivatives (Guanidinium Derivatives shown in Chemical Formula 15) Conversion Thiourea derivatives represented by the formula 17 (Thiourea Derivatives), and the like.

Figure 2007090329
Figure 2007090329

式中のRは、炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、Rがメチル基、エチル基、プロピル基、イソプロピル基、ブチル基であるものを好適に使用できる。
R in the formula represents an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, aryl group, aralkyl group, acyl group, alkoxyalkyl group or heterocyclic group having 1 to 18 carbon atoms.
In particular, those in which R is a methyl group, an ethyl group, a propyl group, an isopropyl group, or a butyl group can be suitably used.

Figure 2007090329
Figure 2007090329

式中のR、Rは、すくなくとも1つ以上のRについて、炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、Rが水素、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ノニル基、ヘキシル基、オクチル基、デシル基、テトラデシル基、オクタデシル基、ベンジル基であるものを好適に使用できる。
R 1 and R 2 in the formula are an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, an alkoxyalkyl having 1 to 18 carbon atoms for at least one R or more. A group or a heterocyclic group;
Particularly preferred are those wherein R is hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, nonyl group, hexyl group, octyl group, decyl group, tetradecyl group, octadecyl group or benzyl group. Can be used.

Figure 2007090329
Figure 2007090329

式中のR、R、Rは、すくなくとも1つ以上のRについて、水素、炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、Rがメチル基、Rが水素、メチル基、エチル基、又はプロピル基、ブチル基又はヘキシル基であるものを好適に使用できる。
R 1 , R 2 , and R 3 in the formula are, for at least one or more R, hydrogen, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group having 1 to 18 carbon atoms, An acyl group, an alkoxyalkyl group or a heterocyclic group is shown.
In particular, those in which R 1 and R 2 are methyl groups and R 3 is hydrogen, methyl group, ethyl group, propyl group, butyl group, or hexyl group can be preferably used.

Figure 2007090329
Figure 2007090329

式中のRは、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。また、式中のR、R、Rは、少なくとも1つのRが水素(H)であり、残りのRが炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、Rがエチル基、ブチル基、ヘキシル基、オクチル基であり、R、R、Rのうち全てが水素にであるもの、あるいは1つ又は2つがメチル基であるものを好適に使用できる。
R 1 in the formula represents an alkyl group, alkenyl group, alkynyl group, cycloalkyl group, aryl group, aralkyl group, acyl group, alkoxyalkyl group or heterocyclic group having 1 to 18 carbon atoms. R 2 , R 3 , and R 4 in the formula are an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, wherein at least one R is hydrogen (H), and the remaining R is C 1-18. Represents an aryl group, an aralkyl group, an acyl group, an alkoxyalkyl group or a heterocyclic group.
Particularly preferred are those wherein R 1 is an ethyl group, butyl group, hexyl group, octyl group, and R 2 , R 3 , R 4 are all hydrogen, or one or two are methyl groups. Can be used for

Figure 2007090329
Figure 2007090329

式中のR、Rは、すくなくとも1つ以上のRについて、炭素数が1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、Rがメチル基、エチル基、プロピル基、ブチル基、ヘキシル基又はオクチル基であるものを好適に使用できる。さらには、Rのうち一つが水素であっても好適に使用できる。
R 1 and R 2 in the formula are an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group, an acyl group, an alkoxyalkyl having 1 to 18 carbon atoms for at least one R or more. A group or a heterocyclic group;
In particular, those in which R 1 and R 2 are a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or an octyl group can be suitably used. Furthermore, even if one of R is hydrogen, it can be suitably used.

Figure 2007090329
Figure 2007090329

式中のR、R、R、Rは、すくなくとも1つ以上のRについて、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、R、R、Rのすべてがメチル基又はブチル基であるものや、さらには少なくとも1つ、ないしは2つの官能基がエチル基、ブチル基、メトキシエチル基であるものを好適に使用できる。
R 1 , R 2 , R 3 , R 4 in the formula is an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group having 1 to 18 carbon atoms for at least one or more R. An acyl group, an alkoxyalkyl group or a heterocyclic group is shown.
In particular, R 1 , R 2 , R 3 , R 4 are all methyl groups or butyl groups, and further, at least one or two functional groups are ethyl groups, butyl groups, methoxyethyl groups Can be suitably used.

Figure 2007090329
Figure 2007090329

式中のR、R、R、Rは、すくなくとも1つ以上のRについて、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、R、R、Rのすべてがブチル基であるものや、ヘキシル基と少なくとも1つ以上テトラデシル基を備えるものを好適に使用できる。
R 1 , R 2 , R 3 , R 4 in the formula is an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, an aralkyl group having 1 to 18 carbon atoms for at least one or more R. An acyl group, an alkoxyalkyl group or a heterocyclic group is shown.
In particular, those in which all of R 1 , R 2 , R 3 and R 4 are butyl groups, and those having a hexyl group and at least one tetradecyl group can be preferably used.

Figure 2007090329
Figure 2007090329

式中のR、R、R、R、R、Rは、すくなくとも1つ以上のRについて、水素、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、R、R、R、R、Rのすべてが水素であるもの、R、R、R、R、R、Rのうちのいずれか1つがメチル基、イソプロピル基、フェニル基であるものを好適に使用できる。
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are hydrogen, alkyl group, alkenyl group, alkynyl group, cycloalkyl having 1 to 18 carbon atoms for at least one R. A group, an aryl group, an aralkyl group, an acyl group, an alkoxyalkyl group or a heterocyclic group;
In particular, any one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 is all hydrogen, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 One having a methyl group, an isopropyl group or a phenyl group can be preferably used.

Figure 2007090329
Figure 2007090329

式中のR、R、R、R、Rは、すくなくとも1つ以上のRについて、水素、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、R、R、R、Rのすべてがメチル基であるもの、R、R、R、Rがメチル基であり、Rがエチル基であるものを好適に使用できる。
R 1 , R 2 , R 3 , R 4 , R 5 in the formula are hydrogen, an alkyl group having 1 to 18 carbon atoms, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl, for at least one R or more. A group, an aralkyl group, an acyl group, an alkoxyalkyl group or a heterocyclic group;
In particular, R 1 , R 2 , R 3 , R 4 , R 5 are all methyl groups, R 1 , R 2 , R 3 , R 4 are methyl groups, and R 5 is an ethyl group Can be suitably used.

Figure 2007090329
Figure 2007090329

式中のR、R、R、R、Rは、すくなくとも1つ以上のRについて、水素、炭素数1〜18の、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基、アシル基、アルコキシアルキル基又は複素環式基を示す。
特に、R、R、R、Rがメチル基であり、Rがエチル基であるものを好適に使用できる。
R 1 , R 2 , R 3 , R 4 , R 5 in the formula are hydrogen, an alkyl group having 1 to 18 carbon atoms, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl, for at least one R or more. A group, an aralkyl group, an acyl group, an alkoxyalkyl group or a heterocyclic group;
In particular, those in which R 1 , R 2 , R 3 and R 4 are methyl groups and R 5 is an ethyl group can be suitably used.

一方、分子性アニオンとしては、例えば、以下の化学式18,19に示すスルフェート類およびスルホン酸類(Sulfates and sulfonates)、化学式20に示すアミド類及びイミド類(Amides and imides)、化学式21に示すメタン類(Methanes)、化学式22〜27に示すホウ酸塩類(Borates)、化学式28,29に示すリン酸塩類及びアンチモン類(Phosphates and Antimonates)、化学式30に示すその他の塩類、などが挙げられる。   On the other hand, examples of molecular anions include sulfates and sulfonates represented by the following chemical formulas 18 and 19, amides and imides represented by the chemical formula 20, and methanes represented by the chemical formula 21. (Methanes), borates represented by chemical formulas 22 to 27 (Borates), phosphates and antimonies represented by chemical formulas 28 and 29, and other salts represented by chemical formula 30.

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

Figure 2007090329
Figure 2007090329

なお、上述の分子性カチオン又は分子性アニオンは、1種又は2種以上を適宜組み合わせて使用できる。   In addition, the above-mentioned molecular cation or molecular anion can be used singly or in combination of two or more.

また、かかるイオン液体と混合する分子媒介種材料は、一般的に非水系電解質溶液に用いられるもの、例えば、各種イオン液体への溶解度が、常温(−10〜40℃)において、0.05モル/L以上であるものが好ましい。   Further, the molecular mediating seed material mixed with the ionic liquid is generally used in non-aqueous electrolyte solutions, for example, the solubility in various ionic liquids is 0.05 mol at normal temperature (−10 to 40 ° C.). Those having a / L or more are preferred.

更に、上記イオン液体と分子媒介種材料との好適な混合物としては、該分子媒介種材料が0.05〜1.0モル/L程度の割合で含まれるものが望ましい。
0.05モル/Lよりも分子媒介種材料が低濃度の場合は、対象分子の捕捉を十分に行うことが困難となる。また、1.0モル/Lを超えた高濃度の場合は、イオン液体の粘性の上昇により、酸化還元速度が低下する。
Furthermore, as a suitable mixture of the ionic liquid and the molecular mediating seed material, it is desirable that the molecular mediating seed material is contained at a rate of about 0.05 to 1.0 mol / L.
When the concentration of the molecular mediating seed material is lower than 0.05 mol / L, it is difficult to sufficiently capture the target molecule. Moreover, in the case of a high concentration exceeding 1.0 mol / L, the oxidation-reduction rate decreases due to an increase in the viscosity of the ionic liquid.

次に、本発明の分子濃縮装置について説明する。
上述の如く、本分子濃縮装置は、電解質槽、一対の電極及びこれら電極間の電位差制御手段、例えばポテンシオスタット等を備えて成る。
また、電解質槽には、上述の分子媒介種組成物、又は該分子媒介種組成物と電解質を混合して成る電解液が満たされる。
更に、一方の電極に対象分子を含む気体(低濃度の対象分子)を接触させ、他方の電極から対象分子を回収し得る。
Next, the molecular concentrator of the present invention will be described.
As described above, this molecular concentrator comprises an electrolyte tank, a pair of electrodes, and a means for controlling a potential difference between these electrodes, such as a potentiostat.
The electrolyte tank is filled with the above-described molecular mediating seed composition or an electrolytic solution obtained by mixing the molecular mediating seed composition and an electrolyte.
Furthermore, the gas containing the target molecule (low concentration target molecule) can be brought into contact with one electrode, and the target molecule can be recovered from the other electrode.

このような構成により、対象分子に蒸気が混入することなく、高濃度の該対象分子を回収できる。   With such a configuration, a high concentration of the target molecule can be recovered without vapor mixing into the target molecule.

上記電解質としては、例えば、BMIMTFSI、BMIMPFなどが挙げられる。 Examples of the electrolyte include BMIMTFSI and BMIMPF 6 .

ここで、本発明の分子濃縮装置により、対象分子(CO)が濃縮される原理について説明する。なお、ここでは、説明の便宜のため、分子媒介種材料の一例であるキノンによるCO濃縮について説明する。 Here, the principle of concentration of the target molecule (CO 2 ) by the molecular concentration apparatus of the present invention will be described. Here, for convenience of explanation, CO 2 concentration by quinone, which is an example of a molecular mediating seed material, will be described.

図3に、CO吸脱着能を有する分子媒介種材料を溶解し、気相をCOとした系における典型的なサイクリックボルタンメトリーの模式図を示す。図中の矢印は、電位の走査方向を示す。 FIG. 3 shows a schematic diagram of typical cyclic voltammetry in a system in which a molecule-mediated seed material having CO 2 adsorption / desorption ability is dissolved and the gas phase is CO 2 . The arrows in the figure indicate the potential scanning direction.

図4に、キノンを用いた系について、CO濃縮における電子とCOの動きを模式化した図を示す。 FIG. 4 schematically shows the movement of electrons and CO 2 in CO 2 concentration in a system using quinone.

図5に、二室型電解質槽を用いた分子濃縮装置を示す。
この分子濃縮装置は、CO放出槽1とCO吸着槽2を通路3で連結した二室型電解質槽を備え、該電解質層には分子媒介種組成物と電解質を均一相溶させた電解液が満たされている。
また、CO放出槽1は、CO放出側グラッシーカーボン電極4を備え、CO吸着槽2は、CO吸着側グラッシーカーボン電極5を備えている。
更に、これら双方の電極は電気的に接続されている。また、電極間にポテンシオスタット6を備えている。
FIG. 5 shows a molecular concentrator using a two-chamber electrolyte tank.
This molecular concentrator comprises a two-chamber electrolyte tank in which a CO 2 release tank 1 and a CO 2 adsorption tank 2 are connected by a passage 3, and an electrolytic solution in which a molecule-mediated seed composition and an electrolyte are uniformly mixed in the electrolyte layer. The liquid is full.
The CO 2 release tank 1 includes a CO 2 discharge side glassy carbon electrode 4, and the CO 2 adsorption tank 2 includes a CO 2 adsorption side glassy carbon electrode 5.
Furthermore, both these electrodes are electrically connected. A potentiostat 6 is provided between the electrodes.

CO吸着槽2のグラッシーカーボン電極5に、低濃度CO(8)が接触するように、バブリングする。このとき、CO吸着側グラッシーカーボン5は、ポテンシオスタット6により、図3に示す電位V1より卑な電位に設定する。
このため、この電極上では、以下の一般式、
C + 2e → D
で表される反応により酸化体Cから還元体Dが生成される。
Bubbling is performed so that the low-concentration CO 2 (8) is in contact with the glassy carbon electrode 5 of the CO 2 adsorption tank 2. At this time, the CO 2 adsorption side glassy carbon 5 is set to a potential lower than the potential V1 shown in FIG.
For this reason, on this electrode, the following general formula:
C + 2e → D
The reduced form D is produced | generated from the oxidant C by reaction represented by these.

この還元体Dは、COとの親和性が高いため、直ちにバブリングされているCOと結合し、Bが形成される。また、このBは、濃度勾配によってCO放出槽1へ移動する。
CO放出槽1のグラッシーカーボン電極4では、図1に示す電位V2より貴な電位に設定する。
このため、この電極上では、以下の一般式、
B → A + 2e
で表される反応が起こる。
このAは、COとの親和性が低いため、直ちにCOを放出してCとなる。Cは濃度勾配によって、CO吸着槽2へ拡散する。
Since this reductant D has a high affinity for CO 2 , it immediately binds to the bubbled CO 2 to form B. Moreover, this B moves to the CO 2 release tank 1 by the concentration gradient.
The glassy carbon electrode 4 of the CO 2 release tank 1 is set to a potential nobler than the potential V2 shown in FIG.
For this reason, on this electrode, the following general formula:
B → A + 2e
The reaction represented by
The A has a low affinity with CO 2, the C immediately releasing CO 2. C diffuses into the CO 2 adsorption tank 2 due to the concentration gradient.

以上のサイクルを循環することで、COのみが選択的にCO吸着槽2からCO放出槽1へ移動し、結果として低濃度CO(8)を100%CO(7)へ濃縮することができる。 By circulating the above cycle, only the CO 2 is selectively moved from CO 2 adsorption tank 2 CO 2 to release tank 1, resulting concentrated to low concentration CO 2 a (8) 100% CO 2 ( 7) can do.

なお、かかる分子媒介種材料には、以下の(1)〜(5)に示す特性が要求される。
(1)酸化体と還元体において、COとの親和性が変化すること。
(2)溶媒への溶解度が高いこと。
(3)分子媒介種材料の溶媒内における拡散速度が高いこと。
(4)分子媒介種材料の電極反応が充分に速いこと。
(5)分子媒介種材料とCOの吸着、脱離が充分に速いこと。
In addition, the characteristics shown in the following (1) to (5) are required for such a molecule-mediated seed material.
(1) Affinity with CO 2 changes in an oxidized form and a reduced form.
(2) High solubility in a solvent.
(3) The diffusion rate of the molecule-mediated seed material in the solvent is high.
(4) The electrode reaction of the molecule-mediated seed material is sufficiently fast.
(5) Adsorption and desorption of the molecule-mediated seed material and CO 2 are sufficiently fast.

本発明の分子濃縮装置では、(1)の特性は、CO濃縮に関する必須事項であり、(2)〜(5)の特性は、CO濃縮速度を向上させるために望まれる事項である。 In the molecular concentrator of the present invention, the characteristic (1) is an essential matter regarding CO 2 concentration, and the characteristics (2) to (5) are desired matters for improving the CO 2 concentration rate.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
分子媒介種材料としてDEG−Qを種類の調製方法により得た。その後、DEG−Qにイオン液体であるBMIMTFSIを混合して分子媒介種組成物を得た。
Example 1
DEG-Q was obtained as a molecule-mediated seed material by two preparation methods. Thereafter, DEG-Q was mixed with BIMMTSI, which is an ionic liquid, to obtain a molecule-mediated species composition.

(1)DEG−Qの調製1
水素化ナトリウム(NaH)6.0gにトルエン100mlを加え、懸濁液とした後、これを氷浴中で冷却した。
一方、ジエチレングリコールモノメチルエーテル(DEGMME)20mlにトルエン80mlを加え、均一溶液とした。氷浴中に置いたNaH/トルエン懸濁液を攪拌しながら、そこにDEGMME/トルエンを徐々に滴下した。この際、反応に従って水素ガスが発生するので、これを系中から追い出し、圧力が一定になるようにした。
(1) Preparation of DEG-Q 1
100 ml of toluene was added to 6.0 g of sodium hydride (NaH) to form a suspension, which was then cooled in an ice bath.
On the other hand, 80 ml of toluene was added to 20 ml of diethylene glycol monomethyl ether (DEGMME) to obtain a uniform solution. While stirring the NaH / toluene suspension placed in an ice bath, DEGMME / toluene was gradually added dropwise thereto. At this time, hydrogen gas is generated in accordance with the reaction, and it is driven out of the system so that the pressure becomes constant.

DEGMMEの滴下終了後、反応溶液の温度を徐々に上げ、室温になった後、更に12時間反応を続けた。その後、反応溶液をガラスフィルターでろ過し、未反応物を取り除いた。その一方で、クロラニル10g/トルエン200mlの懸濁液を調製し、氷浴中に置いた。NaHとDEGMMEの反応によって得られた溶液を、氷浴中のクロラニル/トルエン懸濁液に約一時間かけてゆっくりと滴下した。   After completion of the addition of DEGMME, the temperature of the reaction solution was gradually raised, and after reaching room temperature, the reaction was continued for another 12 hours. Thereafter, the reaction solution was filtered through a glass filter to remove unreacted substances. Meanwhile, a suspension of 10 g chloranil / 200 ml toluene was prepared and placed in an ice bath. The solution obtained from the reaction of NaH and DEGMME was slowly added dropwise to the chloranil / toluene suspension in an ice bath over about one hour.

滴下終了後、反応溶液の温度を徐々に上昇させ、室温になった後、更に2時間攪拌を続けた。反応溶液に生じた白色沈殿をろ別した後、トルエンを留去した。石油エーテル溶液相を回収した後、石油エーテルを留去した。得られた固体粉末をクロロホルムの溶液とした後、シリカゲルカラムを通過させた。回収された鮮橙色の溶液からクロロホルムを留去した。   After completion of the dropwise addition, the temperature of the reaction solution was gradually raised, and after reaching room temperature, stirring was further continued for 2 hours. After the white precipitate produced in the reaction solution was filtered off, toluene was distilled off. After recovering the petroleum ether solution phase, the petroleum ether was distilled off. The obtained solid powder was made into a chloroform solution, and then passed through a silica gel column. Chloroform was distilled off from the collected bright orange solution.

(2)DEG−Qの同定
同定はH−NMRによって行った。
H−NMRDEG−Q(δ,ppm)=
3.26(3H,−C2H4−OCH3),3.40−3.41(2H,−O−CH2−CH2−OCH3),3.53−3.55(2H,−O−CH2−CH2−O−CH3),3.75−3.76(2H,−CH2−O−C2H4−OCH3),4.72−4.73(2H,C(quinone)(=CCl,−C=O)−O−CH2−)
(2) Identification of DEG-Q Identification was performed by 1 H-NMR.
1 H-NMR DEG-Q (δ, ppm) =
3.26 (3H, -C2H4-OC H3 ), 3.40-3.41 (2H, -O-CH2-C H2 -OCH3), 3.53-3.55 (2H, -O-C H2 - CH2-OCH3), 3.75-3.76 (2H , -C H2 -O-C2H4-OCH3), 4.72-4.73 (2H, C (quinone) (= CCl, -C = O ) -O-C H2- )

(3)DEG−Qの調製2
DEGMME11mlにトルエン200mlを加え、氷浴中で冷却した。この溶液にクロラニル10.5gを加えた後攪拌し、懸濁液とした。
一方で、トリエチルアミン(TEA)15mlにトルエン35mlを加え、溶液とした。このTEAのトルエン溶液を先に調製したDEGMME/クロラニルのトルエン溶液に氷浴中でゆっくりと滴下した。滴下終了後、徐々に室温に戻し、更に約5時間攪拌を続けた。反応溶液をペーパーフィルターでろ過し、副生物であるTEAの塩酸塩を除去した。このろ液から一度トルエンを留去した後、もう一度冷トルエン300mlを加えることで残存するTEA塩酸塩の大部分を析出させ、ペーパーフィルターでろ別した。得られた溶液からトルエンを留去させると、針状の粗結晶が得られた。生成物をクロロホルムの濃厚溶液とした後にシリカゲルカラムを通過させ、残存のTEA塩酸塩をほぼ完全に除去した。最後にエーテル中で再結晶することにより、目的物を得た。
(3) Preparation 2 of DEG-Q
200 ml of toluene was added to 11 ml of DEGMME and cooled in an ice bath. To this solution, 10.5 g of chloranil was added and stirred to obtain a suspension.
On the other hand, 35 ml of toluene was added to 15 ml of triethylamine (TEA) to prepare a solution. This toluene solution of TEA was slowly added dropwise to the above-prepared DEGMME / chloranil toluene solution in an ice bath. After completion of the dropwise addition, the temperature was gradually returned to room temperature, and stirring was further continued for about 5 hours. The reaction solution was filtered through a paper filter to remove TEA hydrochloride as a by-product. After toluene was once distilled off from this filtrate, most of the remaining TEA hydrochloride was precipitated by adding 300 ml of cold toluene again, and was filtered off with a paper filter. When toluene was distilled off from the obtained solution, needle-like crude crystals were obtained. The product was made into a concentrated solution of chloroform and then passed through a silica gel column to remove the remaining TEA hydrochloride almost completely. Finally, the desired product was obtained by recrystallization in ether.

(4)DEG−Qの同定
同定はH−NMRによって行った。
H−NMRDEG−Q(δ,ppm)=
3.32(3H,−C2H4−OCH3),3.46−3.49(2H,−O−CH2−CH2−OCH3),3.59−3.61(2H,−O−CH2−CH2−O−CH3),3.77−3.79(2H,−CH2−O−C2H4−OCH3),4.67−4.68(2H,C(quinone)(=CCl,−C=O)−O−CH2−)
(4) Identification of DEG-Q Identification was performed by 1 H-NMR.
1 H-NMR DEG-Q (δ, ppm) =
3.32 (3H, -C2H4-OC H3 ), 3.46-3.49 (2H, -O-CH2-C H2 -OCH3), 3.59-3.61 (2H, -O-C H2 - CH2-OCH3), 3.77-3.79 (2H , -C H2 -O-C2H4-OCH3), 4.67-4.68 (2H, C (quinone) (= CCl, -C = O ) -O-C H2- )

(5)イオン液体との混合
得られたDEG−QをBMIMTFSI中に50mmol/Lの割合で溶解させて、分子媒介種組成物を得た。
(5) Mixing with ionic liquid The obtained DEG-Q was dissolved in BMIMTFSI at a rate of 50 mmol / L to obtain a molecule-mediated species composition.

(実施例2)
分子媒介種材料としてTEG−Qを次の調製方法により得た。その後、TEG−Qにイオン液体であるBMIMTFSIを混合して分子媒介種組成物を得た。
(Example 2)
TEG-Q was obtained as a molecule-mediated seed material by the following preparation method. Thereafter, BEGMTSI, which is an ionic liquid, was mixed with TEG-Q to obtain a molecule-mediated species composition.

(1)TEG−Qの調製
TEGMME15mlにトルエン150mlを加え、氷浴中で冷却した。この溶液にクロラニル10.2gを加えた後攪拌し、懸濁液とした。
一方で、トリエチルアミン(TEA)17mlにトルエン35mlを加え、溶液とした。このTEAのトルエン溶液を先に調製したTEGMME/クロラニルのトルエン溶液に氷浴中でゆっくりと滴下した。
(1) Preparation of TEG-Q 150 ml of toluene was added to 15 ml of TEGMME and cooled in an ice bath. To this solution, 10.2 g of chloranil was added and stirred to obtain a suspension.
On the other hand, 35 ml of toluene was added to 17 ml of triethylamine (TEA) to prepare a solution. This toluene solution of TEA was slowly added dropwise in an ice bath to the TEG MME / chloranil solution prepared in advance.

滴下終了後、徐々に室温に戻し、更に約5時間攪拌を続けた。反応溶液をペーパーフィルターでろ過し、副生物であるTEAの塩酸塩を除去した。このろ液から一度トルエンを留去した後、もう一度冷トルエン300mlを加えることで残存するTEA塩酸塩の大部分を析出させ、ペーパーフィルターでろ別した。得られた溶液からトルエンを留去させても、結晶にはならず、粘性の液体が得られた。生成物をクロロホルムの濃厚溶液とした後にシリカゲルカラムを通過させ、残存のTEA塩酸塩をほぼ完全に除去した。   After completion of the dropwise addition, the temperature was gradually returned to room temperature, and stirring was further continued for about 5 hours. The reaction solution was filtered through a paper filter to remove TEA hydrochloride as a by-product. After toluene was once distilled off from this filtrate, most of the remaining TEA hydrochloride was precipitated by adding 300 ml of cold toluene again, and was filtered off with a paper filter. Even if toluene was distilled off from the obtained solution, it did not become a crystal but a viscous liquid was obtained. The product was made into a concentrated solution of chloroform and then passed through a silica gel column to remove the remaining TEA hydrochloride almost completely.

(2)TEG−Qの同定
同定はH−NMRによって行った。
H−NMRTEG−Q(δ,ppm)=
3.36(3H,−C2H4−OCH3),3.51−3.64(6H,−CH2−O−C2H4−OCH3),4.66−4.67(2H,C(quinone)(=CCl,−C=O)−O−CH2−)
(2) Identification of TEG-Q Identification was performed by 1 H-NMR.
1 H-NMR TEG-Q (δ, ppm) =
3.36 (3H, -C2H4-OC H3 ), 3.51-3.64 (6H, -C H2 -O-C2 H4 -OCH3), 4.66-4.67 (2H, C (quinone) ( = CCl, -C = O) -O- CH2- )

(3)イオン液体との混合
得られたTEG−QをBMIMTFSI中に50mmol/Lの割合で溶解させて、分子媒介種組成物を得た。
(3) Mixing with ionic liquid The obtained TEG-Q was dissolved in BMIMTFSI at a rate of 50 mmol / L to obtain a molecule-mediated species composition.

(実施例3)
上記同様の操作を行い、TEG−QをBMIMPF中に50mmol/Lの割合で溶解させて、分子媒介種組成物を得た。
(Example 3)
The same operation as described above was performed, and TEG-Q was dissolved in BMIMPF 6 at a rate of 50 mmol / L to obtain a molecule-mediated species composition.

(比較例1)
上記同様の操作を行い、DEG−Qを、アセトニトリル(AN)1mmol/Lに支持塩としてのテトラブチルアンモニウムパークロレート(TBAP)を1mol/L加えたものに溶解させて、組成物を得た。
(Comparative Example 1)
The same operation as described above was performed, and DEG-Q was dissolved in 1 mmol / L of acetonitrile (AN) added with 1 mol / L of tetrabutylammonium perchlorate (TBAP) as a supporting salt to obtain a composition.

実施例1〜3で得られた分子媒介種組成物、比較例1で得られた組成物のそれぞれについて、N雰囲気下、CO雰囲気下でCVを測定した。このときの走査速度は50mV/secとした。この結果を図6〜図13に示す。 The CV was measured under a N 2 atmosphere and a CO 2 atmosphere for each of the molecule-mediated seed compositions obtained in Examples 1 to 3 and the composition obtained in Comparative Example 1. The scanning speed at this time was 50 mV / sec. The results are shown in FIGS.

DtBBQと、[BMIM][PF]、[BMIM][TFSI]との各温度における溶解性を示すグラフである。And DtBBQ, [BMIM] [PF 6 ], is a graph showing a solubility in the temperature of the [BMIM] [TFSI]. PhQと、[BMIM][PF]、[BMIM][TFSI]との各温度における溶解性を示すグラフである。And PhQ, [BMIM] [PF 6 ], is a graph showing a solubility in the temperature of the [BMIM] [TFSI]. 気相をCOとした系におけるCVを示すグラフである。Is a graph showing the CV in system gas phase was CO 2. 電子とCOの動きを示す模式図である。It is a schematic diagram showing the movement of electrons and CO 2. 二室型電解質槽を用いた分子濃縮装置の一例を示す概略図である。It is the schematic which shows an example of the molecular concentration apparatus using a two chamber type electrolyte tank. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic. CV特性を示すグラフである。It is a graph which shows a CV characteristic.

符号の説明Explanation of symbols

1 CO放出槽
2 CO吸着槽
3 分子媒介種組成物
4 CO放出側グラッシーカーボン電極
5 CO吸着側グラッシーカーボン電極
6 ポテンシオスタット
7 高濃度CO
8 低濃度CO
1 CO 2 emission tank 2 CO 2 adsorption tank 3 molecules mediate species composition 4 CO 2 emission side glassy carbon electrode 5 CO 2 adsorption side glassy carbon electrode 6 potentiostat 7 high concentration CO 2
8 Low concentration CO 2

Claims (13)

分子媒介種材料とイオン液体を混合して成る分子媒介種組成物であって、
上記分子媒介種材料は、酸化還元処理によって対象分子の捕捉及び脱離を制御可能であり、且つその酸化還元状態を電気化学的に制御可能な荷電部位と、非プロトン性の極性基を有することを特徴とする分子媒介種組成物。
A molecular mediating seed composition comprising a mixture of a molecular mediating material and an ionic liquid,
The molecule-mediated seed material has a charged site capable of controlling capture and desorption of a target molecule by oxidation-reduction treatment, and electrochemically controlling the oxidation-reduction state, and an aprotic polar group. A molecularly mediated species composition characterized by
上記分子媒介種材料において、上記酸化還元処理が電解酸化又は電解還元であり、上記対象分子を捕捉及び脱離する酸化還元電位が、この電解酸化又は電解還元に用いられるイオン液体の電位窓の範囲内に含まれることを特徴とする請求項1に記載の分子媒介種組成物。   In the molecule-mediated seed material, the redox treatment is electrolytic oxidation or electrolytic reduction, and the redox potential for capturing and desorbing the target molecule is within the range of the potential window of the ionic liquid used for the electrolytic oxidation or electrolytic reduction. The molecule-mediated species composition of claim 1, wherein the composition is contained within. 上記分子媒介種材料において、上記酸化還元電位が+1000mV〜−3000mV(Ag/Ag+基準)であることを特徴とする請求項2に記載の分子媒介種組成物。   The molecule-mediated seed composition according to claim 2, wherein the oxidation-reduction potential in the molecule-mediated seed material is +1000 mV to -3000 mV (Ag / Ag + reference). 上記分子媒介種材料において、上記荷電部位が、芳香族環を構成する水素原子の2個以上を酸素原子で置換した構造を有することを特徴とする請求項1〜3のいずれか1つの項に記載の分子媒介種組成物。   In the molecule-mediated seed material, the charged site has a structure in which two or more hydrogen atoms constituting an aromatic ring are substituted with oxygen atoms. A molecularly mediated species composition as described. 上記分子媒介種材料において、上記荷電部位が、骨格内に、ベンゾキノン、ナフトキノン、アントラキノン又はフェナントレンキノン構造を有することを特徴とする請求項1〜4のいずれか1つの項に記載の分子媒介種組成物。   The molecule-mediated species composition according to any one of claims 1 to 4, wherein in the molecule-mediated seed material, the charged site has a benzoquinone, naphthoquinone, anthraquinone, or phenanthrenequinone structure in the skeleton. object. 上記分子媒介種材料において、上記非プロトン性極性基中に、電気的に極性を有する部位と、極性を有しない部位が共存していることを特徴とする請求項1〜5のいずれか1つの項に記載の分子媒介種組成物。   The molecularly mediated seed material, wherein a part having electrical polarity and a part having no polarity coexist in the aprotic polar group. The molecule-mediated species composition according to Item. 上記分子媒介種材料において、上記極性基が、ポリエーテル基及びポリエーテルを除くヘテロ原子を含むオリゴマー鎖から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜6のいずれか1つの項に記載の分子媒介種組成物。   7. The molecularly mediated seed material, wherein the polar group is at least one selected from the group consisting of a polyether group and an oligomer chain containing a hetero atom excluding the polyether. The molecule-mediated species composition according to any one of the above. 上記分子媒介種材料において、上記極性基が、ハロゲン基、ヘテロ環式基、ヒドロキシアルキル基、アセトキシアルキル基、ニトリル基、トシル基及びメシル基から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜6のいずれか1つの項に記載の分子媒介種組成物。   In the molecularly mediated seed material, the polar group is at least one selected from the group consisting of a halogen group, a heterocyclic group, a hydroxyalkyl group, an acetoxyalkyl group, a nitrile group, a tosyl group, and a mesyl group. A molecularly mediated species composition according to any one of claims 1-6. 上記分子媒介種材料において、上記極性基が、炭素数1〜10のアルキル基、アルケニル基、ハロゲノアルキル基、アリール基及びアルキルアリール基から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜6のいずれか1つの項に記載の分子媒介種組成物。   In the molecular mediating material, the polar group is at least one selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, an alkenyl group, a halogenoalkyl group, an aryl group, and an alkylaryl group. 7. A molecule-mediated species composition according to any one of claims 1-6. 上記分子媒介種材料が、次の一般式(1)又は(2)
Figure 2007090329
Figure 2007090329
(式中のSUBは、水素、塩素、臭素、アセチル基又はオリゴエチレンオキシド鎖(−(OCHCH−CH)、n=2〜10を示し、少なくとも1以上のオリゴエチレンオキシド鎖を含む。)
で表される構造を有することを特徴とする請求項1〜9のいずれか1つの項に記載の分子媒介種組成物。
The molecular mediated species material is represented by the following general formula (1) or (2)
Figure 2007090329
Figure 2007090329
(SUB in the formula represents hydrogen, chlorine, bromine, acetyl group or oligoethylene oxide chain (— (OCH 2 CH 2 ) n —CH 3 ), n = 2 to 10 and includes at least one oligoethylene oxide chain) .)
The molecule-mediated species composition according to any one of claims 1 to 9, which has a structure represented by:
上記対象分子が、一酸化炭素、二酸化炭素、二硫化炭素、窒素酸化物又は硫黄酸化物であることを特徴とする請求項1〜10のいずれか1つの項に記載の分子媒介種組成物。   The molecule-mediated species composition according to any one of claims 1 to 10, wherein the target molecule is carbon monoxide, carbon dioxide, carbon disulfide, nitrogen oxide, or sulfur oxide. 上記イオン液体への上記分子媒介種材料の溶解度が、常温において、0.05モル/L以上であることを特徴とする請求項1〜11のいずれか1つの項に記載の分子媒介種組成物。   The molecularly mediated seed composition according to any one of claims 1 to 11, wherein the solubility of the molecularly mediated seed material in the ionic liquid is 0.05 mol / L or more at room temperature. . 電解質槽、一対の電極及びこれら電極間の電位差制御手段を備える分子濃縮装置であって、
電解質槽には、請求項1〜12のいずれか1つの項に記載の分子媒介種組成物を含有する電解液が満たされ、
一方の電極に対象分子を含む気体を接触させ、他方の電極から対象分子を回収し得ることを特徴とする分子濃縮装置。
A molecular concentrator provided with an electrolyte tank, a pair of electrodes, and a potential difference control means between these electrodes,
An electrolyte bath is filled with an electrolytic solution containing the molecule-mediated species composition according to any one of claims 1 to 12,
A molecular concentrator, wherein a gas containing a target molecule is brought into contact with one electrode, and the target molecule can be recovered from the other electrode.
JP2006214237A 2005-09-02 2006-08-07 Molecule mediation species composition and molecule concentration apparatus Pending JP2007090329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214237A JP2007090329A (en) 2005-09-02 2006-08-07 Molecule mediation species composition and molecule concentration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005255429 2005-09-02
JP2006214237A JP2007090329A (en) 2005-09-02 2006-08-07 Molecule mediation species composition and molecule concentration apparatus

Publications (1)

Publication Number Publication Date
JP2007090329A true JP2007090329A (en) 2007-04-12

Family

ID=37976614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214237A Pending JP2007090329A (en) 2005-09-02 2006-08-07 Molecule mediation species composition and molecule concentration apparatus

Country Status (1)

Country Link
JP (1) JP2007090329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Adsorbent for selectively separating-refining carbon dioxide
JP2012020221A (en) * 2010-07-14 2012-02-02 Osaka Gas Co Ltd Carbon dioxide absorption method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346963A (en) * 2004-05-31 2005-12-15 Nissan Motor Co Ltd Photo-electrochemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346963A (en) * 2004-05-31 2005-12-15 Nissan Motor Co Ltd Photo-electrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011017015; '"Electrochemical Separation and Concentration of <1% Carbon Dioxide from Nitrogen"' The Journal of Electrochemical Society 150 (5), 2003, D91-98 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Adsorbent for selectively separating-refining carbon dioxide
JP2012020221A (en) * 2010-07-14 2012-02-02 Osaka Gas Co Ltd Carbon dioxide absorption method

Similar Documents

Publication Publication Date Title
US8741491B2 (en) Ionic liquid containing sulfonate ions
Montanino et al. Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices
EP3705453B1 (en) Alkali metal salt of fluorosulfonyl imide
US11557786B2 (en) Extending the lifetime of organic flow batteries via redox state management
EP2953930B1 (en) Processes for preparing 1-alkyl-3-alkyl-pyridinium bromide and uses thereof as additives in electrochemical cells
US11557788B2 (en) Preparation of ionic liquids based on boron clusters
CN103140608A (en) Reducing carbon dioxide to products
JP7264409B2 (en) Phenazine compound, electrolyte for redox flow battery containing the same, and redox flow battery
KR101413775B1 (en) Fluoroalkane derivative, gelling agent and gel composition
US9056275B2 (en) Capture and release of carbon dioxide
Manning et al. Anodic substitution reactions of aromatic hydrocarbon cation radicals. Unequivocal evidence for ECE mechanism
JP2010084003A (en) Dye, dye-sensitized solar cell, and method for manufacturing the same
JP2009510038A (en) Ionic liquid
KR20090118969A (en) Cyclic guanidine ionic liquid
CN113089006B (en) Synthesis method of 4-seleno-1H-pyrazole compound
Zhao et al. A unique proton coupled electron transfer pathway for electrochemical reduction of acetophenone in the ionic liquid [BMIM][BF 4] under a carbon dioxide atmosphere
WO2013182767A1 (en) Salt of bicyclic aromatic anions for li-ion batteries
Speiser et al. Electrochemical Oxidation of Hexakis (dimethylamino) benzene
JP2007090329A (en) Molecule mediation species composition and molecule concentration apparatus
JP2007090328A (en) Molecule mediation species material, molecule mediation species composition and molecule concentration apparatus
JP6371157B2 (en) Ionic liquid, redox flow secondary battery electrolyte, redox flow secondary battery and salt
JP2004175666A (en) Onium salt
Alkhayri et al. A two-electron bispyridinylidene anolyte for non-aqueous organic redox flow batteries
EP3649107B1 (en) Sulfonamide macromolecules useful as single-ion conducting polymer electrolyte
KR20180001967A (en) Crown ether-inclusive electrolyte for redox flow batteries and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130724