JP2007090266A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2007090266A
JP2007090266A JP2005284686A JP2005284686A JP2007090266A JP 2007090266 A JP2007090266 A JP 2007090266A JP 2005284686 A JP2005284686 A JP 2005284686A JP 2005284686 A JP2005284686 A JP 2005284686A JP 2007090266 A JP2007090266 A JP 2007090266A
Authority
JP
Japan
Prior art keywords
water
treatment
decarboxylation
solid
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005284686A
Other languages
Japanese (ja)
Other versions
JP4661503B2 (en
Inventor
Hirotoshi Motomura
碩敏 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005284686A priority Critical patent/JP4661503B2/en
Publication of JP2007090266A publication Critical patent/JP2007090266A/en
Application granted granted Critical
Publication of JP4661503B2 publication Critical patent/JP4661503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment apparatus where coagulation treatment can be performed under proper pH conditions in such a manner that mineral acid is not added to a coagulation treatment stage for raw water at all, or the addition amount thereof is remarkably reduced. <P>SOLUTION: An inorganic coagulant is added to industrial water as raw water, so as to perform coagulation treatment in a coagulation reaction tank 1, thereafter, solid-liquid separation is performed by a floatation equipment 2 and a double layer filtering apparatus 3, and next, cations are removed in a cation exchange tower 4. The water freed of the cations from the cation exchange tower 4 is subjected to decarboxylation treatment in a decarboxylation tower 5, and anions are removed in an anion exchanger tower 6, so as to be deionized water. As the decarboxylation tower 5, a membrane deaerator where an air chamber is evacuated with an ejector is used. At least a part of the ejector waste water in which CO<SB>2</SB>is dissolved is added to the coagulation reaction tank 1 or to the raw water, so as to regulate the pH in the coagulation reaction tank 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地下水、河川水、海水、工業用水、上水、半導体洗浄排水などの原水を処理する水処理方法及び装置に係り、特に原水を凝集処理すると共に、その後脱炭酸処理するようにした水処理方法及び装置に関する。   The present invention relates to a water treatment method and apparatus for treating raw water such as groundwater, river water, seawater, industrial water, clean water, and semiconductor cleaning wastewater. In particular, the raw water is agglomerated and then decarboxylated. The present invention relates to a water treatment method and apparatus.

地下水、河川水、海水、工業用水、上水などの用水には、懸濁物質(SS)、コロイド、有機物などの不純物が含まれており、用水利用に際して、これらの不純物を除去する。   Water such as groundwater, river water, seawater, industrial water, and clean water contains impurities such as suspended solids (SS), colloids, and organic matter, and these impurities are removed when using the water.

この除去方法として、無機凝集剤や有機凝集剤を用水に添加し、不純物を凝集し、1)沈降分離、2)加圧浮上や自然浮上などの浮上分離、3)砂濾過、二層濾過、膜濾過などの濾過などを、単独で、あるいは複数組み合わせる(例えば特開2004−25109号)。   As this removal method, an inorganic flocculant or an organic flocculant is added to the water, the impurities are aggregated, 1) sedimentation separation, 2) flotation separation such as pressurized flotation and natural flotation, 3) sand filtration, two-layer filtration, Filtration such as membrane filtration or the like is used alone or in combination (for example, JP-A-2004-25109).

図1(b)は、工業用水を処理して脱イオン水を製造する従来フローの一例を示すものである。   FIG.1 (b) shows an example of the conventional flow which processes industrial water and manufactures deionized water.

工業用水は、凝集反応槽1に導入され、凝集処理された後、加圧浮上装置2及び二層濾過装置3により固液分離処理され、次いでカチオン交換塔(H塔)4に導入されてカチオンが除去される。このカチオン交換塔4からの処理水は、脱炭酸塔5にて脱炭酸処理された後、アニオン交換塔6にてアニオンが除去され、脱イオン水とされる。上記の凝集反応槽1には、PACなどの無機凝集剤が添加されると共に、塩酸が添加されてpH調整される。
特開2004−25109号
Industrial water is introduced into the agglomeration reaction tank 1 and subjected to an agglomeration treatment, followed by solid-liquid separation treatment by the pressurized flotation device 2 and the two-layer filtration device 3, and then introduced into the cation exchange tower (H tower) 4 for cation. Is removed. The treated water from the cation exchange tower 4 is decarboxylated in the decarboxylation tower 5 and then anion is removed in the anion exchange tower 6 to obtain deionized water. In the agglomeration reaction tank 1, an inorganic flocculant such as PAC is added and hydrochloric acid is added to adjust the pH.
JP 2004-25109 A

凝集処理では、薬品種類、薬品添加量、反応時間、pHなどが、原水中の不純物を十分凝集させ、分離効率を高め、良好な処理水を得るために重要な条件となる。   In the agglomeration treatment, chemical type, chemical addition amount, reaction time, pH, and the like are important conditions for sufficiently aggregating impurities in the raw water, improving separation efficiency, and obtaining good treated water.

凝集pHの適正化のため、塩酸や硫酸などの無機酸、水酸化ナトリウムや水酸化カルシウムなどの無機アルカリが用水や凝集反応槽に添加される。   In order to optimize the flocculation pH, an inorganic acid such as hydrochloric acid or sulfuric acid, or an inorganic alkali such as sodium hydroxide or calcium hydroxide is added to the service water or the flocculation reaction tank.

無機酸や無機アルカリで凝集pHを適正化しない場合も多いが、こうした場合、凝集剤が実質的にpH調整剤としての役割を兼ね過剰に注入されるケースが多く、pH条件は良好であっても、過剰な凝集剤により凝集フロックの分離操作からのリークで処理水質を低下させたり、また、発生する汚泥量を増加させたりする。   In many cases, the aggregation pH is not optimized with an inorganic acid or an inorganic alkali, but in such a case, the flocculant is often excessively injected to serve as a pH adjuster, and the pH conditions are good. However, the excess flocculant reduces the quality of the treated water due to leakage from the separation operation of the floc flocs, and increases the amount of sludge generated.

凝集処理のpH制御に塩酸などの鉱酸や水酸化ナトリウムなどのアルカリ、あるいは、凝集剤を使用すると、いずれにしても処理水中の塩分濃度が増加する。そのため、この処理水をイオン交換処理する脱イオン装置のイオン負荷が増加し、脱イオン装置の脱イオン効率が、原水のイオン組成から想定される脱イオン効率よりも低くならざるを得ない。具体的には、イオン交換樹脂装置の1サイクル当たりの採水量が、塩分増加に伴い低下する。この結果、イオン交換樹脂装置の採水当たりの再生剤量が増加し、経済性も低下する。   If a mineral acid such as hydrochloric acid, an alkali such as sodium hydroxide, or a flocculant is used for pH control of the flocculation treatment, the salt concentration in the treated water will increase in any case. For this reason, the ion load of the deionization apparatus that performs ion exchange treatment of the treated water increases, and the deionization efficiency of the deionization apparatus must be lower than the deionization efficiency assumed from the ion composition of the raw water. Specifically, the amount of water collected per cycle of the ion exchange resin device decreases as the salinity increases. As a result, the amount of the regenerant per sampling water of the ion exchange resin device increases, and the economic efficiency also decreases.

本発明は、原水の凝集処理工程に鉱酸を全く添加することなく、又はその添加量を著しく少なくして、凝集処理を適正pH条件下で行うことができる水処理方法及び装置を提供することを目的とする。   The present invention provides a water treatment method and apparatus capable of performing a coagulation treatment under an appropriate pH condition without adding a mineral acid to the raw water coagulation treatment step at all, or by significantly reducing the amount of addition. With the goal.

特に、本発明は、その一態様において、脱イオン装置の採水量を低下させることなく適正なpH条件下で凝集処理を行うようにした水処理方法及び装置を提供することを目的とする。   In particular, an object of the present invention is, in one aspect thereof, to provide a water treatment method and apparatus in which agglomeration treatment is performed under an appropriate pH condition without reducing the amount of water collected from a deionization device.

請求項1の水処理方法は、原水に凝集剤を添加して凝集反応させる凝集処理工程と、該凝集処理工程からの水を固液分離する固液分離工程と、該固液分離工程からの水を脱炭酸処理する脱炭酸工程とを有する水処理方法において、該脱炭酸工程で生じた炭酸溶解水を前記凝集処理工程に添加してpH調整することを特徴とするものである。   The water treatment method according to claim 1 includes: a coagulation treatment step in which a coagulant is added to raw water to cause a coagulation reaction; a solid-liquid separation step in which water from the coagulation treatment step is subjected to solid-liquid separation; In the water treatment method having a decarboxylation step of decarboxylating water, the pH is adjusted by adding carbonate-dissolved water generated in the decarboxylation step to the aggregation treatment step.

請求項2の水処理方法は、請求項1において、前記凝集剤は無機凝集剤であることを特徴とするものである。   The water treatment method of claim 2 is characterized in that, in claim 1, the flocculant is an inorganic flocculant.

請求項3の水処理方法は、請求項1又は2において、前記脱炭酸工程の後に脱イオン処理を行うことを特徴とするものである。   The water treatment method according to claim 3 is characterized in that, in claim 1 or 2, deionization treatment is performed after the decarboxylation step.

請求項4の水処理方法は、請求項3において、前記固液分離工程の後にカチオン交換処理し、次いで脱炭酸処理し、その後アニオン交換処理することを特徴とするものである。   A water treatment method according to a fourth aspect is characterized in that, in the third aspect, after the solid-liquid separation step, a cation exchange treatment is performed, followed by a decarboxylation treatment, and then an anion exchange treatment.

請求項5の水処理方法は、請求項1ないし4のいずれか1項において、pH調整を前記炭酸溶解水と、酸とを併用して行うことを特徴とするものである。   A water treatment method according to a fifth aspect is characterized in that in any one of the first to fourth aspects, the pH adjustment is performed using the carbonate-dissolved water and an acid in combination.

請求項6の水処理装置は、原水を凝集処理する凝集処理手段と、該凝集処理手段からの水を固液分離する固液分離手段と、該固液分離手段からの水を脱炭酸処理する脱炭酸手段とを有する水処理装置において、該脱炭酸手段からの炭酸溶解水を前記凝集処理手段に添加する手段を備えたことを特徴とするものである。   The water treatment apparatus according to claim 6 is a coagulation treatment unit for coagulating raw water, a solid-liquid separation unit for solid-liquid separation of water from the coagulation treatment unit, and a decarboxylation treatment of water from the solid-liquid separation unit. A water treatment apparatus having a decarboxylation means comprises a means for adding carbonate-dissolved water from the decarboxylation means to the coagulation treatment means.

請求項7の水処理装置は、請求項6において、前記脱炭酸手段で脱炭酸処理された水を脱イオン処理する脱イオン手段を備えたことを特徴とするものである。   A water treatment apparatus according to a seventh aspect of the present invention is the water treatment apparatus according to the sixth aspect, further comprising a deionization unit that deionizes the water decarboxylated by the decarboxylation unit.

請求項8の水処理装置は、請求項7において、前記固液分離手段で固液分離処理された水をカチオン交換手段でカチオン交換処理し、次いで前記脱炭酸手段で脱炭酸処理し、その後、アニオン交換手段でアニオン交換処理するよう構成されていることを特徴とするものである。   The water treatment apparatus according to claim 8 is the water treatment apparatus according to claim 7, wherein the water subjected to the solid-liquid separation treatment by the solid-liquid separation means is subjected to cation exchange treatment by the cation exchange means, and then decarboxylation treatment by the decarboxylation means, The anion exchange means is configured to perform anion exchange treatment.

本発明の水処理方法及び装置によると、凝集処理後の水を脱炭酸処理する際に生じた炭酸溶解水を凝集工程でのpH調整に用いるので、凝集工程でのpH調整に塩酸等の鉱酸を用いることが不要となるか、又は鉱酸の添加量が著しく少なくて足りるようになる。   According to the water treatment method and apparatus of the present invention, the carbonate-dissolved water generated when decarboxylating the water after the flocculation treatment is used for pH adjustment in the flocculation step. It is not necessary to use an acid or the amount of mineral acid added is significantly less.

このため、処理系に脱イオン装置を設置した場合でも、脱イオン装置のイオン負荷が全く又は殆ど増加することがない。この結果、脱イオン装置の再生剤の使用量も全く又は殆ど増加しない。   For this reason, even when a deionization apparatus is installed in the processing system, the ion load of the deionization apparatus does not increase at all or hardly. As a result, the amount of regenerant used in the deionizer does not increase or hardly increases.

なお、脱イオン装置を設置しない場合でも、本発明によると、塩分濃度の低い処理水を得ることができる。この塩分濃度の低い処理水は洗浄用水等として好適である。   In addition, even when not installing a deionization apparatus, according to this invention, the treated water with low salt concentration can be obtained. This treated water having a low salinity is suitable as washing water or the like.

以下、図1(a)を参照して実施の形態について説明する。   Hereinafter, an embodiment will be described with reference to FIG.

この実施の形態においても、図1(b)のフローと同様に、原水としての工業用水に無機凝集剤を添加して凝集反応槽1で凝集処理した後、加圧浮上装置2及び二層濾過装置3で固液分離し、次いでカチオン交換塔4でカチオンを除去する。このカチオン交換塔4からの脱カチオン水を脱炭酸塔5で脱炭酸処理し、アニオン交換塔6でアニオンを除去して脱イオン水とする。   Also in this embodiment, after adding an inorganic flocculant to industrial water as raw water and agglomerating in the agglomeration reaction tank 1, as in the flow of FIG. Solid-liquid separation is performed by the apparatus 3, and then cations are removed by the cation exchange tower 4. The decationized water from the cation exchange tower 4 is decarboxylated in the decarbonation tower 5, and the anion is removed in the anion exchange tower 6 to obtain deionized water.

この実施の形態では、脱炭酸塔5として、充填材を充填した充填塔に散水し、気相部をエジェクタで減圧するようにした減圧脱気装置が用いられている。   In this embodiment, as the decarboxylation tower 5, a vacuum degassing apparatus is used in which water is sprayed into a packed tower filled with a filler and the gas phase is decompressed by an ejector.

気相中のCOは、エジェクタ噴出水に随伴されて気相から取り出される。少なくとも一部のCOはエジェクタ排水中に溶解する。このCOが溶解したエジェクタ排水の少なくとも一部を配管7により前記凝集反応槽1又は原水に添加して凝集反応槽1のpHを調整する。 CO 2 in the gas phase is extracted from the gas phase along with the ejector jet water. At least some of the CO 2 dissolves in the ejector effluent. At least a part of the ejector waste water in which the CO 2 is dissolved is added to the agglomeration reaction tank 1 or raw water through the pipe 7 to adjust the pH of the agglomeration reaction tank 1.

このように、炭酸溶解水は凝集反応槽1に直接に添加するか又は原水に添加して凝集反応槽1に添加することにより、凝集反応槽1内のpHが調整される。   Thus, the pH in the agglomeration reaction tank 1 is adjusted by adding the carbonate-dissolved water directly to the agglomeration reaction tank 1 or adding it to the raw water and adding it to the agglomeration reaction tank 1.

炭酸溶解水は、この凝集反応槽1内のpHをpH計などで検知し、pHが好ましくは5〜7となるように添加制御されるのが望ましい。   The carbonated water is desirably added and controlled so that the pH in the agglomeration reaction tank 1 is detected by a pH meter or the like, and the pH is preferably 5 to 7.

上記の無機凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸バンド、塩化アルミ、電解アルミ、塩化鉄、硫酸鉄などの無機凝集剤が好適である。   As the inorganic flocculant, inorganic flocculants such as PAC (polyaluminum chloride), sulfuric acid band, aluminum chloride, electrolytic aluminum, iron chloride, and iron sulfate are suitable.

なお、炭酸だけではpH調整が不十分である場合には、塩酸などの鉱酸を併用してもよい。   If pH adjustment is insufficient with carbonic acid alone, a mineral acid such as hydrochloric acid may be used in combination.

上記実施の形態は本発明の一例であり、本発明は図示以外の形態をもとりうる。例えば、凝集反応後の固液分離に膜分離装置を用いてもよい。また、図1では、固液分離処理水をまずカチオン交換処理した後、脱炭酸処理しているが、固液分離処理水を脱炭酸処理し、その後、脱イオン処理してもよい。脱イオン処理には混床式イオン交換装置や、電気脱イオン装置などを用いてもよい。   The above embodiment is an example of the present invention, and the present invention may take forms other than those shown in the drawings. For example, a membrane separation device may be used for solid-liquid separation after the aggregation reaction. In FIG. 1, the solid-liquid separation treated water is first subjected to cation exchange treatment and then decarboxylated, but the solid-liquid separation treated water may be decarboxylated and then deionized. For the deionization treatment, a mixed bed ion exchange device, an electrodeionization device, or the like may be used.

水処理系に、活性炭吸着塔など他の水処理手段を設けてもよい。凝集剤として無機凝集剤と高分子凝集剤とを併用してもよい。   Other water treatment means such as an activated carbon adsorption tower may be provided in the water treatment system. An inorganic flocculant and a polymer flocculant may be used in combination as the flocculant.

以下、実施例及び比較例について説明する。なお、この実施例及び比較例では、原水として、pH8.05、電気伝導度13.2mS/m、全硬度55mg as CaCO/L、Naイオン17mg as CaCO/L、塩化物イオン9mg as CaCO/L、硫酸イオン12mg as CaCO/Lの工業用水を用いた。 Hereinafter, examples and comparative examples will be described. In this example and comparative example, as raw water, pH 8.05, electrical conductivity 13.2 mS / m, total hardness 55 mg as CaCO 3 / L, Na ion 17 mg as CaCO 3 / L, chloride ion 9 mg as CaCO 3 / L, sulfate ion 12 mg as CaCO 3 / L industrial water was used.

説明の便宜上、まず比較例について説明する。   For convenience of explanation, a comparative example will be described first.

比較例1
図1(b)に示すフローに従って上記原水を処理した。原水流量200m/hrに無機凝集剤としてPACを40mg/L添加し、凝集反応槽1(40m)に35%塩酸を添加し、pH6.5となるように調整した。凝集反応水は、加圧浮上槽2(直径8m)と二層濾過装置3(直径7m)で固液分離した。
Comparative Example 1
The raw water was treated according to the flow shown in FIG. 40 mg / L of PAC as an inorganic flocculant was added to the raw water flow rate of 200 m 3 / hr, and 35% hydrochloric acid was added to the agglomeration reaction tank 1 (40 m 3 ) to adjust the pH to 6.5. The agglomeration reaction water was subjected to solid-liquid separation using a pressurized flotation tank 2 (diameter 8 m) and a two-layer filtration device 3 (diameter 7 m).

その結果、濾過時間108秒、残留アルミ濃度20μg/L以下の処理水が得られた。濾過時間の測定には、多孔性フィルタとしてφ47mm、孔径0.45μmのCA系MF膜を用い、検水1000mLの濾過時間を測定した。   As a result, treated water having a filtration time of 108 seconds and a residual aluminum concentration of 20 μg / L or less was obtained. For the measurement of the filtration time, a CA-based MF membrane having a diameter of 47 mm and a pore diameter of 0.45 μm was used as a porous filter, and the filtration time of 1000 mL of test water was measured.

塩酸添加量は、塩化物イオンとして15mg as CaCO/Lであった。 The amount of hydrochloric acid added was 15 mg as CaCO 3 / L as chloride ions.

この濾過水を原水として、純水装置(2床3塔)で純水を得た。カチオン交換塔(H塔)4にはゲル型強酸性カチオン交換樹脂を6.8m充填した。アニオン交換塔(OH塔)6にはポーラス型強塩基性アニオン交換樹脂を7.4m充填した。純水装置のブレークポイントをアニオン交換塔(OH塔)6出口の電気伝導度0.2mS/mとして純水を採水したところ、採水量は4500mであった。 Using this filtered water as raw water, pure water was obtained with a pure water apparatus (2 beds, 3 towers). The cation exchange tower (H tower) 4 was filled with 6.8 m 3 of a gel-type strongly acidic cation exchange resin. The anion exchange tower (OH tower) 6 was filled with 7.4 m 3 of a porous strong basic anion exchange resin. When pure water was sampled with the electrical conductivity of 0.2 mS / m at the outlet of the anion exchange tower (OH tower) 6 as the break point of the pure water apparatus, the amount of water collected was 4500 m 3 .

実施例1
図1(a)のフローに従い、脱炭酸塔5のエジェクター排水の一部を配管7により原水に添加して凝集反応槽1のpHを比較例1と同じく6.5に調整した。配管7による炭酸溶解水の凝集反応槽1への添加量は、原水1m当たり0.5mであった。さらに、pH調整に塩酸を塩化物イオンとして8mg(as CaCO)添加した。その他の条件は比較例1と同一とした。その結果、比較例1と同水質の処理水が得られた。
Example 1
According to the flow of FIG. 1 (a), a part of the ejector drainage of the decarbonation tower 5 was added to the raw water through the pipe 7, and the pH of the agglomeration reaction tank 1 was adjusted to 6.5 as in Comparative Example 1. The amount of carbonated dissolved water added to the coagulation reaction tank 1 through the pipe 7 was 0.5 m 3 per m 3 of raw water. Furthermore, 8 mg (as CaCO 3 ) of hydrochloric acid as chloride ions was added for pH adjustment. Other conditions were the same as those in Comparative Example 1. As a result, treated water having the same water quality as Comparative Example 1 was obtained.

この実施例1によると、比較例1に比べ、アニオン交換塔6へのアニオン負荷が13%低減され、採水量は5250mと1.15倍に増加した。 According to this Example 1, compared with the comparative example 1, the anion load to the anion exchange tower 6 was reduced by 13%, and the amount of collected water increased to 1.250 times, 5250 m 3 .

実施例及び比較例のフロー図である。It is a flowchart of an Example and a comparative example.

符号の説明Explanation of symbols

1 凝集反応槽
5 脱炭酸塔
1 Coagulation reaction tank 5 Decarboxylation tower

Claims (8)

原水に凝集剤を添加して凝集反応させる凝集処理工程と、該凝集処理工程からの水を固液分離する固液分離工程と、該固液分離工程からの水を脱炭酸処理する脱炭酸工程とを有する水処理方法において、
該脱炭酸工程で生じた炭酸溶解水を前記凝集処理工程に添加してpH調整することを特徴とする水処理方法。
A coagulation treatment step in which a coagulant is added to the raw water for a coagulation reaction, a solid-liquid separation step for solid-liquid separation of water from the coagulation treatment step, and a decarboxylation step for decarboxylation of water from the solid-liquid separation step A water treatment method comprising:
A water treatment method comprising adjusting pH by adding carbonate-dissolved water produced in the decarboxylation step to the aggregation treatment step.
請求項1において、前記凝集剤は無機凝集剤であることを特徴とする水処理方法。   The water treatment method according to claim 1, wherein the flocculant is an inorganic flocculant. 請求項1又は2において、前記脱炭酸工程の後に脱イオン処理を行うことを特徴とする水処理方法。   The water treatment method according to claim 1, wherein a deionization process is performed after the decarboxylation step. 請求項3において、前記固液分離工程の後にカチオン交換処理し、次いで脱炭酸処理し、その後アニオン交換処理することを特徴とする水処理方法。   4. The water treatment method according to claim 3, wherein after the solid-liquid separation step, cation exchange treatment is performed, followed by decarboxylation treatment, and then anion exchange treatment. 請求項1ないし4のいずれか1項において、pH調整を前記炭酸溶解水と、酸とを併用して行うことを特徴とする水処理方法。   5. The water treatment method according to claim 1, wherein pH adjustment is performed using the carbonate-dissolved water and an acid in combination. 原水を凝集処理する凝集処理手段と、該凝集処理手段からの水を固液分離する固液分離手段と、該固液分離手段からの水を脱炭酸処理する脱炭酸手段とを有する水処理装置において、
該脱炭酸手段からの炭酸溶解水を前記凝集処理手段に添加する手段を備えたことを特徴とする水処理装置。
A water treatment apparatus comprising a coagulation treatment means for coagulating raw water, a solid-liquid separation means for solid-liquid separation of water from the coagulation treatment means, and a decarboxylation means for decarboxylation of water from the solid-liquid separation means In
A water treatment apparatus comprising means for adding carbonate-dissolved water from the decarboxylation means to the coagulation treatment means.
請求項6において、前記脱炭酸手段で脱炭酸処理された水を脱イオン処理する脱イオン手段を備えたことを特徴とする水処理装置。   7. The water treatment apparatus according to claim 6, further comprising a deionization unit that deionizes the water decarboxylated by the decarboxylation unit. 請求項7において、前記固液分離手段で固液分離処理された水をカチオン交換手段でカチオン交換処理し、次いで前記脱炭酸手段で脱炭酸処理し、その後、アニオン交換手段でアニオン交換処理するよう構成されていることを特徴とする水処理装置。   8. The water according to claim 7, wherein the water subjected to the solid / liquid separation treatment by the solid / liquid separation means is subjected to cation exchange treatment by the cation exchange means, then decarboxylation treatment by the decarboxylation means, and then the anion exchange treatment by the anion exchange means. A water treatment apparatus characterized by comprising.
JP2005284686A 2005-09-29 2005-09-29 Water treatment method and apparatus Expired - Fee Related JP4661503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284686A JP4661503B2 (en) 2005-09-29 2005-09-29 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005284686A JP4661503B2 (en) 2005-09-29 2005-09-29 Water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2007090266A true JP2007090266A (en) 2007-04-12
JP4661503B2 JP4661503B2 (en) 2011-03-30

Family

ID=37976555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284686A Expired - Fee Related JP4661503B2 (en) 2005-09-29 2005-09-29 Water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4661503B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG160279A1 (en) * 2008-09-19 2010-04-29 Palo Alto Res Ct Inc Method and system for seeding with mature floc to accelerate aggregation in a water treatment process
JP2013231602A (en) * 2012-04-27 2013-11-14 Swing Corp Coagulation capability evaluation method of coagulant, and coagulation treatment device
JP2015009167A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Coagulation sedimentation apparatus and coagulation sedimentation method
CN109650580A (en) * 2017-09-27 2019-04-19 株式会社雷肯 Water treatment facilities, water treatment system and cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359388A (en) * 1986-08-29 1988-03-15 Mitsubishi Electric Corp Method for making pure water
JPH0490885A (en) * 1990-08-01 1992-03-24 Nippon Rensui Kk Apparatus and method for making pure water
JPH05169061A (en) * 1991-12-24 1993-07-09 Mitsubishi Electric Corp Production of ultra pure water and equipment thereof and control method thereof
JP2002095901A (en) * 2000-09-26 2002-04-02 Sumitomo Heavy Ind Ltd Flocculation treatment apparatus and method
JP2003326250A (en) * 2002-05-10 2003-11-18 Ooita Ichi Water treatment method
JP2005066443A (en) * 2003-08-22 2005-03-17 Shibata Kagaku Kk Water cleaning system and water cleaning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359388A (en) * 1986-08-29 1988-03-15 Mitsubishi Electric Corp Method for making pure water
JPH0490885A (en) * 1990-08-01 1992-03-24 Nippon Rensui Kk Apparatus and method for making pure water
JPH05169061A (en) * 1991-12-24 1993-07-09 Mitsubishi Electric Corp Production of ultra pure water and equipment thereof and control method thereof
JP2002095901A (en) * 2000-09-26 2002-04-02 Sumitomo Heavy Ind Ltd Flocculation treatment apparatus and method
JP2003326250A (en) * 2002-05-10 2003-11-18 Ooita Ichi Water treatment method
JP2005066443A (en) * 2003-08-22 2005-03-17 Shibata Kagaku Kk Water cleaning system and water cleaning method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG160279A1 (en) * 2008-09-19 2010-04-29 Palo Alto Res Ct Inc Method and system for seeding with mature floc to accelerate aggregation in a water treatment process
JP2013231602A (en) * 2012-04-27 2013-11-14 Swing Corp Coagulation capability evaluation method of coagulant, and coagulation treatment device
JP2015009167A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Coagulation sedimentation apparatus and coagulation sedimentation method
CN109650580A (en) * 2017-09-27 2019-04-19 株式会社雷肯 Water treatment facilities, water treatment system and cooling system

Also Published As

Publication number Publication date
JP4661503B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
Mahasti et al. Removal of calcium hardness from solution by fluidized-bed homogeneous crystallization (FBHC) process
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
US20160176739A1 (en) Water treatment device and water treatment method
CN110451704B (en) Method for treating fluorine-containing reuse water
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
EP1651573A2 (en) System and method for treatment of acidic wastewater
WO2015012054A1 (en) Method and device for treating boron-containing water
EP2993159B1 (en) Water treatment device and water treatment method
CN105800846A (en) Method used for reverse osmosis concentrated water treatment and zero discharge, and apparatus thereof
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP2010082546A (en) Water treatment apparatus and method
CN113562924A (en) Treatment system and method for resource utilization of high-salinity wastewater in ferrous metallurgy
TWI540103B (en) Method for removing boron from a boron-containing wastewater
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4661503B2 (en) Water treatment method and apparatus
JP2016179442A (en) Reverse osmosis membrane treatment method
JPH02157090A (en) Treatment of heavy metal-containing waste water
JP4396965B2 (en) Heavy metal removal method and apparatus
JP2007061683A (en) Method and apparatus for treating water
JP2006263553A (en) Method for treating anionic organic material-containing waste water
WO2014108941A1 (en) Water treatment method and water treatment device
JP3262015B2 (en) Water treatment method
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP2008237986A (en) Method for treating boron-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees