JP2007090163A - Method for manufacturing hydrogen storage material - Google Patents

Method for manufacturing hydrogen storage material Download PDF

Info

Publication number
JP2007090163A
JP2007090163A JP2005280179A JP2005280179A JP2007090163A JP 2007090163 A JP2007090163 A JP 2007090163A JP 2005280179 A JP2005280179 A JP 2005280179A JP 2005280179 A JP2005280179 A JP 2005280179A JP 2007090163 A JP2007090163 A JP 2007090163A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
carbonaceous material
storage material
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280179A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Koichi Kimura
公一 木村
Hiroki Miyaoka
裕樹 宮岡
Shigeto Isobe
繁人 礒部
Toyoyuki Kubokawa
豊之 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2005280179A priority Critical patent/JP2007090163A/en
Publication of JP2007090163A publication Critical patent/JP2007090163A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrogen storage material composed of a hydrogenated carbonaceous material and a metal hydride in the shortest possible time so that the hydrogen storage material has a high hydrogen storage rate. <P>SOLUTION: The carbonaceous material and the metal hydride are crushed/mixed in a hydrocarbon gas atmosphere to obtain the hydrogen storage material which is composed of the hydrogenated carbonaceous material, in which the carbonaceous material is hydrogenated while forming a covalent bond or no covalent bond between carbon and hydrogen, and the metal hydride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池等に用いられる水素貯蔵材料の製造方法に関する。   The present invention relates to a method for producing a hydrogen storage material used for a fuel cell or the like.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵材料による貯蔵が知られている。これらの貯蔵形態の中で、水素貯蔵材料による貯蔵は、分散貯蔵や輸送の点で有利であり、水素貯蔵材料の1つであるアモルファスカーボン等の炭素質材料は、軽量で、単位体積あたりの水素貯蔵量が多い材料として注目されている。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. Known storage forms of hydrogen include compression storage using a high-pressure cylinder, cooling storage using liquid hydrogenation, and storage using a hydrogen storage material. Among these storage forms, storage with a hydrogen storage material is advantageous in terms of distributed storage and transportation. A carbonaceous material such as amorphous carbon, which is one of the hydrogen storage materials, is lightweight and has a unit weight per unit volume. It attracts attention as a material with a large amount of hydrogen storage.

ところが、このような従来の炭素質材料では、貯蔵させた水素を放出させるためには高温、例えば500℃に加熱する必要があり、その際に、炭素−炭素間結合が切断されて炭化水素(HC)が発生し、水素の純度が低下するという問題がある。   However, in such a conventional carbonaceous material, it is necessary to heat to a high temperature, for example, 500 ° C., in order to release the stored hydrogen, and at that time, the carbon-carbon bond is broken and the hydrocarbon ( There is a problem that HC) is generated and the purity of hydrogen is lowered.

このような問題を解決するために、発明者らは先に水素化炭素質材料と金属水素化物から構成される水素貯蔵材料とその製造方法について開示した(特許文献1参照)。   In order to solve such a problem, the inventors previously disclosed a hydrogen storage material composed of a hydrogenated carbonaceous material and a metal hydride and a method for producing the same (see Patent Document 1).

しかしながら、この水素貯蔵材料の水素放出特性は、炭素質材料を水素化するための水素雰囲気下でのミリング処理の時間に大きく依存する。このため、できるだけ短いミリング処理時間で高い水素貯蔵率(または水素放出率)を得ることができる製造方法が求められる。
特開2005−177718号公報
However, the hydrogen release characteristics of this hydrogen storage material largely depend on the milling time in a hydrogen atmosphere for hydrogenating the carbonaceous material. For this reason, a production method capable of obtaining a high hydrogen storage rate (or hydrogen release rate) in as short a milling time as possible is required.
JP 2005-177718 A

本発明はこのような事情に鑑みてなされたものであり、水素化炭素質材料と金属水素化物から構成される水素貯蔵材料を、できるだけ短い時間で高い水素貯蔵率を有するように製造するための方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and for producing a hydrogen storage material composed of a hydrogenated carbonaceous material and a metal hydride so as to have a high hydrogen storage rate in as short a time as possible. It aims to provide a method.

本発明によれば、炭素質材料と金属水素化物とを炭化水素ガス雰囲気において粉砕混合することを特徴とする水素貯蔵材料の製造方法、が提供される。   According to the present invention, there is provided a method for producing a hydrogen storage material, characterized in that a carbonaceous material and a metal hydride are pulverized and mixed in a hydrocarbon gas atmosphere.

この水素貯蔵材料の製造方法においては、炭素質材料と金属水素化物とをナノ構造化・複合化されるように、機械的粉砕混合を行うことが好ましい。金属水素化物としては水素化リチウムが好適である。また炭素質材料としては、グラファイト、活性炭、アモルファスカーボン、カーボンナノチューブが好適であり、これらのうち複数からなる混合物であってもよい。炭化水素ガスとしては、メタンガスまたはエタンガスを用いることが好ましい。   In this method for producing a hydrogen storage material, it is preferable to perform mechanical pulverization and mixing so that the carbonaceous material and the metal hydride are nanostructured and combined. Lithium hydride is preferred as the metal hydride. Further, as the carbonaceous material, graphite, activated carbon, amorphous carbon, and carbon nanotube are suitable, and a mixture of a plurality of these may be used. As the hydrocarbon gas, methane gas or ethane gas is preferably used.

本発明によれば、水素化炭素質材料と金属水素化物から構成される水素貯蔵材料を、従来よりも短い時間で従来よりも高い水素貯蔵率を有するように製造することができる。これにより生産性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen storage material comprised from a hydrogenated carbonaceous material and a metal hydride can be manufactured so that it may have a hydrogen storage rate higher than before in a shorter time than before. Thereby, productivity can be improved.

以下、本発明の実施の形態について説明する。本発明に係る水素貯蔵材料の製造方法は、炭素質材料と金属水素化物とを炭化水素ガス雰囲気において、機械的に粉砕混合するものである。   Embodiments of the present invention will be described below. The method for producing a hydrogen storage material according to the present invention mechanically pulverizes and mixes a carbonaceous material and a metal hydride in a hydrocarbon gas atmosphere.

炭素質材料としては、グラファイト、活性炭、アモルファスカーボン、カーボンナノチューブ等が挙げられ、これらのうち複数を混合してなる混合物も好適に用いることができる。また、金属水素化物としては水素化リチウムが好適である。但し、これに限定されるものではなく、水素化ナトリウム(NaH)等のアルカリ金属水素化物、水素化マグネシウム(MgH),水素化カルシウム(CaH)等のアルカリ土類金属水素化物を用いることもできる。金属水素化物は複数種の混合物であってもよい。炭化水素ガスとしては、メタンガスまたはエタンガスを用いることが好ましい。 Examples of the carbonaceous material include graphite, activated carbon, amorphous carbon, carbon nanotube, and the like, and a mixture obtained by mixing a plurality of these materials can also be suitably used. Moreover, lithium hydride is suitable as the metal hydride. However, the present invention is not limited to this, and alkali metal hydrides such as sodium hydride (NaH), alkaline earth metal hydrides such as magnesium hydride (MgH 2 ), calcium hydride (CaH 2 ), and the like are used. You can also. The metal hydride may be a mixture of a plurality of types. As the hydrocarbon gas, methane gas or ethane gas is preferably used.

上記粉砕混合により、炭素質材料を共有結合によってまたは共有結合を伴わずに水素化した水素化炭素質材料と、金属水素化物とから構成される水素貯蔵材料を得ることができる。   By the above pulverization and mixing, a hydrogen storage material composed of a hydrogenated carbonaceous material obtained by hydrogenating a carbonaceous material with or without a covalent bond and a metal hydride can be obtained.

「炭素質材料を共有結合によって水素化する」とは、炭素質材料における炭素−炭素共有結合が切断されて、炭素−水素共有結合が形成される形態をいい、「炭素質材料を、共有結合を伴わずに水素化する」とは、炭素質材料の結晶構造に起因して形成されている欠陥を伴った空間に水素が入り込む形態(すなわち、インターカレーション)や、炭素質材料の表面に水素が吸着する形態をいう。   “Hydrogenating a carbonaceous material by a covalent bond” refers to a form in which a carbon-carbon covalent bond in the carbonaceous material is cleaved to form a carbon-hydrogen covalent bond. “Hydrogenation without” means that hydrogen enters the space with defects formed due to the crystal structure of the carbonaceous material (ie, intercalation) or the surface of the carbonaceous material. A form in which hydrogen is adsorbed.

このように炭素質材料が水素化されるときの水素源は、雰囲気ガスである炭化水素を構成している水素であり、炭化水素を構成している炭素は炭素質材料の一部と化すものと考えられる。   Thus, when the carbonaceous material is hydrogenated, the hydrogen source is hydrogen that constitutes the hydrocarbon that is the atmospheric gas, and the carbon that constitutes the hydrocarbon turns into part of the carbonaceous material. it is conceivable that.

得られる水素貯蔵材料は、水素化炭素質材料と金属水素化物とがナノ構造化・複合化された構造を有していることが好ましい。これにより、水素貯蔵量を高め、また水素放出時における炭化水素の発生を抑制することができる。粉砕混合処理の方法、装置に限定はなく、少量生産の場合には遊星型ボールミルを用いることができ、大量生産の場合には、発明者らが先に特開2004−306016号公報で開示しているように、ローラーミル,内外筒回転型ミル,アトライター,インナーピース型ミル,気流粉砕型ミル等を用いることができる。なお、「ナノ構造化・複合化」とは、炭素質材料の長周期結晶構造を微細化することをいう。   The obtained hydrogen storage material preferably has a structure in which a hydrogenated carbonaceous material and a metal hydride are nanostructured and combined. Thereby, the hydrogen storage amount can be increased, and the generation of hydrocarbons at the time of hydrogen release can be suppressed. The method and apparatus for the pulverization and mixing treatment are not limited, and a planetary ball mill can be used for small-scale production. In the case of mass production, the inventors previously disclosed in Japanese Patent Application Laid-Open No. 2004-306016. As shown, a roller mill, an inner / outer cylinder rotating mill, an attritor, an inner piece mill, an airflow grinding mill, and the like can be used. Note that “nanostructuring / compositing” means refining the long-period crystal structure of the carbonaceous material.

水素化炭素質材料と金属水素化物の水素放出反応は、例えば、炭素質材料がグラファイト、金属水素化物がLiHの場合、後述する実施例に示すように、炭化水素の発生が殆ど認められないことから、下記(1)式によるものと考えられる。   For example, when the carbonaceous material is graphite and the metal hydride is LiH, the hydrogen release reaction between the hydrogenated carbonaceous material and the metal hydride has almost no occurrence of hydrocarbons as shown in the examples described later. From this, it can be considered that the following equation (1) is satisfied.

LiH + H…C−C(graphite) → H + Li---C−C(graphite) ―(1)
なお(1)式では各物質の係数を省略している。また、水素と炭素との結合を「…」で示しているが、これは説明の便宜上のもので、水素結合を表すものではなく、水素化グラファイトにおける水素の結合状態は先に説明した通りである。つまり、この水素化炭素質材料においては、全ての炭素が水素と結合しているわけではなく、またインターカレーションしている水素もあり、さらに水素貯蔵量は炭素質材料の水素化処理の条件に影響される。このために、一概に、水素化炭素質材料に含まれる水素と炭素の原子比を特定することはできない。
LiH + H… C−C (graphite) → H 2 + Li --- C−C (graphite) ― (1)
Note that the coefficient of each substance is omitted in the equation (1). In addition, although the bond between hydrogen and carbon is indicated by “...”, This is for convenience of explanation and does not represent a hydrogen bond, and the bonding state of hydrogen in hydrogenated graphite is as described above. is there. In other words, in this hydrogenated carbonaceous material, not all carbon is bonded to hydrogen, and there are also intercalated hydrogen, and the hydrogen storage amount is the condition for the hydrogenation treatment of the carbonaceous material. Affected by. For this reason, generally, the atomic ratio of hydrogen to carbon contained in the hydrogenated carbonaceous material cannot be specified.

一方、グラファイトに対して金属水素化物(LiH)を適切量を超えて混合すると、より具体的には、水素化炭素質材料中の炭素原子数を1としたときに、金属水素化物中の金属原子数を3超とすると、一部は水素放出後にリチウムカーバイド(Li)を生成し、再水素化を困難にするばかりでなく水素放出温度が高くなるという問題が生じ、逆に、炭素原子数3に対して金属原子数が1未満になると炭化水素が発生しやすくなるという問題が生ずる。これらの理由により、水素化炭素質材料と金属水素化物を、水素化炭素質材料中の炭素原子数と金属水素化物中の金属原子数との比が1:3〜3:1の関係を満たすように調製することが好ましい。 On the other hand, when a metal hydride (LiH) is mixed with graphite over an appropriate amount, more specifically, when the number of carbon atoms in the hydrogenated carbonaceous material is 1, the metal in the metal hydride. If the number of atoms is more than 3, some of them generate lithium carbide (Li 2 C 2 ) after releasing hydrogen, which not only makes rehydrogenation difficult but also raises the hydrogen releasing temperature, When the number of metal atoms is less than 1 with respect to 3 carbon atoms, there is a problem that hydrocarbons are easily generated. For these reasons, the hydrogenated carbonaceous material and the metal hydride satisfy the relationship in which the ratio of the number of carbon atoms in the hydrogenated carbonaceous material to the number of metal atoms in the metal hydride is 1: 3 to 3: 1. It is preferable to prepare as follows.

本発明に係る水素貯蔵材料には、水素発生反応を促進させる触媒機能物質を添加することも好ましい。このような触媒機能物質としては、B,C,Mn,Fe,Co,Ni,Pt,Pd,Rh,Li,Na,Mg,K,Ir,Nd,La,Ca,V,Ti,Cr,Cu,Zn,Al,Si,Ru,Mo,W,Ta,Zr,Hf,Agから選ばれた1種または2種以上の金属またはその化合物またはその合金、あるいは水素貯蔵合金が好適に用いられる。これら触媒機能物質は、炭素質材料と金属水素化物を粉砕混合する際に添加することが好ましい。   It is also preferable to add a catalytic functional substance that promotes the hydrogen generation reaction to the hydrogen storage material according to the present invention. Such catalytic functional materials include B, C, Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, Na, Mg, K, Ir, Nd, La, Ca, V, Ti, Cr, and Cu. , Zn, Al, Si, Ru, Mo, W, Ta, Zr, Hf, Ag, or one or more metals, a compound thereof, an alloy thereof, or a hydrogen storage alloy is preferably used. These catalytic functional substances are preferably added when the carbonaceous material and the metal hydride are pulverized and mixed.

このような触媒機能物質を添加する場合、その添加量は、金属水素化物の質量を基準として、その0.1質量%以上20質量%以下とすることが好ましい。触媒機能物質の添加量が0.1質量%未満の場合には、水素発生反応促進の効果が得られず、20質量%を超えると水素放出反応が阻害されたり、単位質量あたりの水素貯蔵率が目減りするという問題が生ずる。   When such a catalyst functional substance is added, the addition amount is preferably 0.1% by mass or more and 20% by mass or less based on the mass of the metal hydride. When the addition amount of the catalytic functional material is less than 0.1% by mass, the effect of promoting the hydrogen generation reaction cannot be obtained, and when it exceeds 20% by mass, the hydrogen releasing reaction is inhibited or the hydrogen storage rate per unit mass The problem of loss of eyes arises.

次に、本発明の実施例と比較例について説明する。図1(a)・(b)・(c)にそれぞれ実施例1,実施例2、比較例に係る各水素貯蔵材料の概略の製造方法を示す。   Next, examples and comparative examples of the present invention will be described. 1 (a), (b), and (c) show schematic manufacturing methods of hydrogen storage materials according to Example 1, Example 2, and Comparative Example, respectively.

(実施例1の水素貯蔵材料の製造方法)
グラファイト(レアメタリック社製Carbon Powder、純度99.999%、粒径200μm)と水素化リチウム(LiH;純度95%、シグマ・アルドリッチ社製)とを、炭素原子とリチウム原子の比が2:1となるように、アルゴングローブボックス中で合計0.35g秤量し、これらを高クロム鋼製のバルブ付きミル容器(以下「ミル容器」という)に、高クロム鋼製のボール(以下「粉砕ボール」という)とともに、収容した。続いて、このミル容器内を真空排気した後に、メタンガスをミル容器内圧が1MPaとなるように導入し、遊星型ボールミル装置(Fritsch社製、P−7型)を用いて、370rpmで32時間、ミリング(粉砕)処理した。なお、遊星型ボールミル装置自体は、室温・大気雰囲気に静置されている。このミリング処理後の試料をアルゴングローブボックス内で取り出し、実施例1の水素貯蔵材料を得た。
(Method for producing hydrogen storage material of Example 1)
Graphite (Carbon Powder manufactured by Rare Metallic, purity 99.999%, particle size 200 μm) and lithium hydride (LiH; purity 95%, manufactured by Sigma-Aldrich) have a carbon atom to lithium atom ratio of 2: 1. Then, 0.35 g in total was weighed in an argon glove box, and these were placed in a high-chromium steel valve-equipped mill container (hereinafter referred to as “mill container”) and a high-chromium steel ball (hereinafter “pulverized ball”). And housed. Subsequently, after evacuating the inside of the mill container, methane gas was introduced so that the inner pressure of the mill container was 1 MPa, and using a planetary ball mill apparatus (manufactured by Fritsch, P-7 type) at 370 rpm for 32 hours, Milling was performed. Note that the planetary ball mill apparatus itself is kept at room temperature and in an air atmosphere. The sample after the milling treatment was taken out in an argon glove box, and the hydrogen storage material of Example 1 was obtained.

(実施例2の水素貯蔵材料の製造方法)
実施例2の水素貯蔵材料の製造は、ミル容器に充填する炭化水素ガスとしてメタンガスに代えてエタンガスを用いたことを除いて、実施例1の水素貯蔵材料の製造と同様に行った。
(Method for Producing Hydrogen Storage Material of Example 2)
The production of the hydrogen storage material of Example 2 was performed in the same manner as the production of the hydrogen storage material of Example 1, except that ethane gas was used instead of methane gas as the hydrocarbon gas charged in the mill vessel.

(比較例の水素貯蔵材料の製造方法)
グラファイトとLiHとを、炭素原子とリチウム原子の比が1:1となるように、アルゴングローブボックス中で合計0.35g秤量し、これをミル容器に粉砕ボールとともに収容した。続いて、このミル容器内を真空排気した後に、高純度水素ガスをミル容器内圧が1MPaとなるように導入し、遊星型ボールミル装置を用いて、370rpmで32時間、ミリング処理した。このミリング処理後の試料をアルゴングローブボックス内で取り出し、比較例の水素貯蔵材料を得た。
(Method for producing hydrogen storage material of comparative example)
Graphite and LiH were weighed in a total of 0.35 g in an argon glove box so that the ratio of carbon atoms to lithium atoms was 1: 1, and this was stored together with pulverized balls in a mill container. Subsequently, after the inside of the mill container was evacuated, high-purity hydrogen gas was introduced so that the inner pressure of the mill container became 1 MPa, and milling was performed at 370 rpm for 32 hours using a planetary ball mill apparatus. The sample after this milling treatment was taken out in an argon glove box, and a hydrogen storage material of a comparative example was obtained.

(水素貯蔵材料の評価)
上述の通りにして製造した各試料について、高純度アルゴングローブボックス内に設置されたTG−MASS装置(熱重量・質量分析装置)を用いて脱離ガス分析を行った。図2に各試料の昇温に伴う脱離ガスの質量数(MASS)分析法によるガス放出スペクトルと熱重量曲線(TG曲線)を示す。
(Evaluation of hydrogen storage materials)
About each sample manufactured as mentioned above, desorption gas analysis was performed using the TG-MASS apparatus (thermogravimetry and mass spectrometer) installed in the high purity argon glove box. FIG. 2 shows a gas release spectrum and a thermogravimetric curve (TG curve) by a mass number (MASS) analysis method of desorbed gas accompanying the temperature rise of each sample.

実施例1では、図2(a)に示されるように、100℃近辺から水素の放出に伴う重量減少が始まり、450℃まで水素の放出が認められた。水素の放出ピークは380℃付近に大きく現れ、180℃付近にメタン(質量数)の放出を表すピークが小さく現れていることが確認された。450℃までの重量減少率は約3.7%であり、その殆どは水素と考えられた。   In Example 1, as shown in FIG. 2 (a), the weight reduction accompanying the release of hydrogen started from around 100 ° C., and the release of hydrogen was observed up to 450 ° C. It was confirmed that the hydrogen release peak appears large around 380 ° C., and the peak representing the release of methane (mass number) appears around 180 ° C. The weight loss rate up to 450 ° C. was about 3.7%, most of which was considered as hydrogen.

実施例2では、図2(b)に示されるように、100℃近辺から水素放出に伴う重量減少が始まるが、約250℃までは大きな重量減少は見られなかった。しかし、300℃付近から急激に重量減少が起こり、同時に水素の放出ピークが現れた。450℃までの重量減少率は約2.7%となった。この実施例2ではメタン等の炭化水素の発生は実質的に認められなかったので、高純度の水素ガスが得られることが確認された。   In Example 2, as shown in FIG. 2 (b), the weight reduction accompanying hydrogen release started from around 100 ° C., but no significant weight reduction was observed up to about 250 ° C. However, the weight decreased rapidly from around 300 ° C., and a hydrogen release peak appeared at the same time. The weight loss rate up to 450 ° C. was about 2.7%. In Example 2, since generation of hydrocarbons such as methane was not substantially observed, it was confirmed that high-purity hydrogen gas was obtained.

比較例では、図2(c)に示されるように、水素放出ピークの現れ方は実施例2に類似したが、450℃までの重量減少率は1.1%程度であった。比較例は実施例1,2と同時間で製造しているが、その水素貯蔵率は実施例1,2よりも小さいものとなった。   In the comparative example, as shown in FIG. 2C, the appearance of the hydrogen release peak was similar to that in Example 2, but the weight reduction rate up to 450 ° C. was about 1.1%. Although the comparative example was manufactured at the same time as Example 1, 2, the hydrogen storage rate became a thing smaller than Example 1,2.

本発明により製造された水素貯蔵材料は、水素と酸素を燃料として発電する燃料電池等に好適である。   The hydrogen storage material produced by the present invention is suitable for a fuel cell that generates power using hydrogen and oxygen as fuel.

実施例と比較例に係る各水素貯蔵材料の概略の製造方法を示す図。The figure which shows the outline manufacturing method of each hydrogen storage material which concerns on an Example and a comparative example. 水素貯蔵材料から放出されるガスの質量数分析法によるガス放出スペクトルと熱重量曲線を示す図。The figure which shows the gas emission spectrum and thermogravimetric curve by the mass number analysis method of the gas discharge | released from a hydrogen storage material.

Claims (5)

炭素質材料と金属水素化物とを炭化水素ガス雰囲気において粉砕混合することを特徴とする水素貯蔵材料の製造方法。   A method for producing a hydrogen storage material, comprising pulverizing and mixing a carbonaceous material and a metal hydride in a hydrocarbon gas atmosphere. 前記粉砕混合は、前記炭素質材料と金属水素化物とをナノ構造化・複合化する機械的粉砕を伴うものであることを特徴とする請求項1に記載の水素貯蔵材料の製造方法。   2. The method for producing a hydrogen storage material according to claim 1, wherein the pulverization and mixing involves mechanical pulverization for nanostructuring / compositing the carbonaceous material and the metal hydride. 前記金属水素化物の主成分が水素化リチウムであることを特徴とする請求項1または請求項2に記載の水素貯蔵材料の製造方法。   The method for producing a hydrogen storage material according to claim 1 or 2, wherein a main component of the metal hydride is lithium hydride. 前記炭素質材料は、グラファイト、活性炭、アモルファスカーボン、カーボンナノチューブのいずれかであることを特徴とする請求項1から請求項3のいずれか1項に記載の水素貯蔵材料の製造方法。   The method for producing a hydrogen storage material according to any one of claims 1 to 3, wherein the carbonaceous material is any one of graphite, activated carbon, amorphous carbon, and carbon nanotubes. 前記炭化水素ガスは、メタンガスまたはエタンガスであることを特徴とする請求項1から請求項4のいずれか1項に記載の水素貯蔵材料の製造方法。   The method for producing a hydrogen storage material according to any one of claims 1 to 4, wherein the hydrocarbon gas is methane gas or ethane gas.
JP2005280179A 2005-09-27 2005-09-27 Method for manufacturing hydrogen storage material Pending JP2007090163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280179A JP2007090163A (en) 2005-09-27 2005-09-27 Method for manufacturing hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280179A JP2007090163A (en) 2005-09-27 2005-09-27 Method for manufacturing hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2007090163A true JP2007090163A (en) 2007-04-12

Family

ID=37976463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280179A Pending JP2007090163A (en) 2005-09-27 2005-09-27 Method for manufacturing hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2007090163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180517A (en) * 2021-12-16 2022-03-15 氢华能源技术(武汉)有限公司 Method for preparing hydrogen storage material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187338A (en) * 1999-12-28 2001-07-10 Toshiba Corp Carbon fiber aggregate and method of producing the same
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction
JP2004290811A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2005177718A (en) * 2003-12-24 2005-07-07 Taiheiyo Cement Corp Hydrogen storage material and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001187338A (en) * 1999-12-28 2001-07-10 Toshiba Corp Carbon fiber aggregate and method of producing the same
JP2003146631A (en) * 2001-11-12 2003-05-21 Japan Science & Technology Corp Method for manufacturing functional nanomaterial using endothermic reaction
JP2004290811A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2005177718A (en) * 2003-12-24 2005-07-07 Taiheiyo Cement Corp Hydrogen storage material and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180517A (en) * 2021-12-16 2022-03-15 氢华能源技术(武汉)有限公司 Method for preparing hydrogen storage material
CN114180517B (en) * 2021-12-16 2022-06-07 氢华能源技术(武汉)有限公司 Method for preparing hydrogen storage material

Similar Documents

Publication Publication Date Title
Rud et al. Hydrogen storage of the Mg–C composites
US6387152B1 (en) Process for manufacturing nanocrystalline metal hydrides
JP2008043927A (en) Method of manufacturing hydrogen storage material
Zhang et al. Catalytic effect comparison of TiO2 and La2O3 on hydrogen storage thermodynamics and kinetics of the as-milled La-Sm-Mg-Ni-based alloy
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
Wang et al. Synthesis of Mg-based composite material with in-situ formed LaH3 and its hydrogen storage characteristics
JP2007117989A (en) Hydrogen storage material and its production method
JP2009132553A (en) Method for producing hydrogen storage material and hydrogen generation method
JP4853810B2 (en) Hydrogen storage material and method for producing the same
JP2007090163A (en) Method for manufacturing hydrogen storage material
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
JP2008073582A (en) Manufacturing method of hydrogen storage material
JP2008062128A (en) Manufacturing method of hydrogen storage material and treating method of hydrogen storage material
JP2004204309A (en) Hydrogen storage material, and production method therefor
JP2006007064A (en) Hydrogen storage material and manufacturing method thereof
JP4575866B2 (en) Method for producing hydrogen storage material
JP2007320815A (en) Hydrogen storage material and hydrogen generation method
JP4615908B2 (en) Hydrogen storage material and method for producing the same
JP2005095869A (en) Hydrogen storing material and its production method
JP2006247512A (en) Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
JP2006008439A (en) Hydrogen storing material and manufacturing method therefor
US20080199395A1 (en) Reversible Hydrogen Storage Composition, Method of Making and Uses of Said Composition
JP2005177718A (en) Hydrogen storage material and manufacturing method of the same
JP2007152278A (en) Hydrogen storage material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125