JP2007089563A - Method for extracting nucleic acid, method for detecting cancer cell, and magnetic bead - Google Patents

Method for extracting nucleic acid, method for detecting cancer cell, and magnetic bead Download PDF

Info

Publication number
JP2007089563A
JP2007089563A JP2006133292A JP2006133292A JP2007089563A JP 2007089563 A JP2007089563 A JP 2007089563A JP 2006133292 A JP2006133292 A JP 2006133292A JP 2006133292 A JP2006133292 A JP 2006133292A JP 2007089563 A JP2007089563 A JP 2007089563A
Authority
JP
Japan
Prior art keywords
magnetic beads
cells
nucleic acid
magnetic
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006133292A
Other languages
Japanese (ja)
Other versions
JP5007920B2 (en
Inventor
Takashi Nakabayashi
崇 中林
Shigeo Fujii
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006133292A priority Critical patent/JP5007920B2/en
Publication of JP2007089563A publication Critical patent/JP2007089563A/en
Application granted granted Critical
Publication of JP5007920B2 publication Critical patent/JP5007920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for rapidly extracting a nucleic acid from a subject, and to provide a magnetic bead capable of rapidly recovering a target cell. <P>SOLUTION: This method for extracting the nucleic acid comprises adding the magnetic bead to the subject containing the cell, making the magnetic bead capture the cell, and separating the cell captured by the magnetic bead from the subject by using magnetic force, so that the nucleic acid of the cell is extracted with the magnetic bead. Further, the magnetic bead for recovering the cell comprises a magnetic bead in which a core of a metal particle consisting mainly of a magnetic metal is multilayeredly covered with two or more kinds of inorganic materials different from each other and has a probe having affinity for a desired cell on the surface of the magnetic bead. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、広く植物、動物から採取された細胞を含む検体から細胞を回収すると共に、核酸を抽出する方法および細胞を捕捉する磁気ビーズに関するものである。   The present invention relates to a method for extracting nucleic acid from a specimen containing cells collected from plants and animals, and a method for extracting nucleic acid and a magnetic bead for capturing the cell.

医療診断分野では、例えば、病原体の検出や、疾病の早期発見などの目的で核酸を抽出し、解析する方法が用いられている。しかしながら、血液、生体組織、糞便、尿などから核酸を抽出する場合は、夾雑物の混入による擬陽性の結果を生じることを防ぐため、細胞や核酸の精製が必要である。そこで例えば、細胞を含む検体から、遺伝子検査の対象となる一種または、数種の細胞を特異的に回収することが行なわれる。このように回収した細胞から核酸を抽出し、ポリメラーゼ連鎖反応(PCR)等で核酸を増幅し遺伝子変異を検出するなどして、遺伝子診断が行われている。   In the field of medical diagnosis, for example, a method of extracting and analyzing a nucleic acid for the purpose of detecting a pathogen or early detection of a disease is used. However, when nucleic acids are extracted from blood, biological tissue, feces, urine, etc., purification of cells and nucleic acids is necessary to prevent false positive results due to contamination. Therefore, for example, one or several types of cells to be subjected to genetic testing are specifically collected from a specimen containing cells. Nucleic acids are extracted from the cells thus collected, and genetic diagnosis is performed by amplifying the nucleic acids by polymerase chain reaction (PCR) or the like to detect gene mutations.

血液や糞便などの細胞を含む検体からの細胞回収方法の一つに、検査対象の細胞と特異的に結合する磁気ビーズなどの固体担体に細胞を捕捉して、不純物を除き回収する方法(例えば、特許文献1)がある。また、細胞回収に用いる磁気ビーズとしては、Ber−EP4抗体を結合された磁気ビーズ(Dynabeads Epithelial Enrich、ダイナル社製)や非特異吸着を抑制した磁気ビーズ(例えば、特許文献2)がある。   One of the methods for recovering cells from specimens containing cells such as blood and feces is a method for capturing cells on a solid carrier such as a magnetic bead that specifically binds to the cells to be examined, and removing and removing impurities (for example, Patent Document 1). In addition, examples of magnetic beads used for cell recovery include magnetic beads to which a Ber-EP4 antibody is bound (Dynabeads Epithelial Enrich, manufactured by Dynal) and non-specific adsorption-suppressed magnetic beads (for example, Patent Document 2).

一方、核酸抽出の方法の一つに、ケイ素酸化物などの固体担体に核酸を吸着させ、洗浄、脱離することにより回収する方法がある(例えば、特許文献3)。この場合、核酸を分離する方法としては、遠心分離法、磁気ビーズを用いる方法、フィルタを用いる方法などがある。   On the other hand, as one method for nucleic acid extraction, there is a method in which nucleic acid is adsorbed on a solid support such as silicon oxide, and recovered by washing and desorbing (for example, Patent Document 3). In this case, as a method for separating nucleic acids, there are a centrifugal separation method, a method using magnetic beads, a method using a filter, and the like.

また、磁気ビーズを用い抗体などタンパク質を回収することにより、アレルギーなどの疾病を診断する方法がある。   In addition, there is a method for diagnosing diseases such as allergies by collecting proteins such as antibodies using magnetic beads.

特開2005−46065公報JP-A-2005-46065 特開2005−83904公報JP 2005-83904 A 特開2004−73193公報JP 2004-73193 A

しかしながら、従来は細胞を含む検体からの細胞回収と、回収した細胞からの核酸抽出とを別々の固体担体で行う為、工程が煩雑であり、核酸を迅速に効率よく抽出することができないという問題があった。   However, conventionally, since the cell recovery from the specimen containing cells and the nucleic acid extraction from the recovered cells are performed on separate solid carriers, the process is complicated and the nucleic acid cannot be extracted quickly and efficiently. was there.

また、従来の磁気ビーズは粒径が1〜10nmのフェライトなどの超常磁性体をポリマーやシリカに内包もしくは、被覆することにより作製されている。そのため外部磁場によって磁性粒子に働く外力は小さく、細胞のように磁気ビーズと同等もしくはそれ以上の大きさの対象を吸着し回収することが困難であった。また、粒径が小さいため、糞便など多くの不純物を含むような溶液から回収する場合に多大な時間がかかってしまう。   Conventional magnetic beads are produced by encapsulating or coating a superparamagnetic material such as ferrite having a particle diameter of 1 to 10 nm in a polymer or silica. For this reason, the external force acting on the magnetic particles by the external magnetic field is small, and it has been difficult to adsorb and collect an object having a size equal to or larger than that of a magnetic bead like a cell. Further, since the particle size is small, it takes a long time to recover from a solution containing many impurities such as feces.

そこで、本発明では、これらの問題に鑑み、工程を簡略化し迅速に検体から核酸を抽出する方法を提供することを目的とした。また、所望の細胞を迅速に回収する磁気ビーズを提供することを目的とした。   Therefore, in view of these problems, the present invention aims to provide a method for simplifying the process and quickly extracting a nucleic acid from a specimen. Another object of the present invention is to provide a magnetic bead that quickly collects desired cells.

発明者等は、上記課題を解決すべく、迅速に検体から核酸を抽出する方法および所望の細胞を迅速に回収する磁気ビーズを鋭意検討した結果、本発明を完成するに至った。
本発明の核酸抽出方法は、細胞を含む検体に磁気ビーズを加え、前記磁気ビーズに前記細胞を捕捉させ、磁力を用いて前記磁気ビーズに捕捉された前記細胞を前記検体から分離するとともに、前記磁気ビーズにより前記細胞の核酸を抽出することを主な特徴とする。また、本発明の磁気ビーズは、磁性金属を主成分とする金属粒子核が、互いに異なる2種以上の無機材料で多層に被覆されている磁気ビーズであり、前記磁気ビーズ表面に所望の細胞と親和性をもつプローブを持つことを主な特徴とする。以下、本発明について具体的に説明する。
In order to solve the above-mentioned problems, the inventors have intensively studied a method for rapidly extracting nucleic acids from a specimen and magnetic beads for rapidly collecting desired cells, and as a result, the present invention has been completed.
The nucleic acid extraction method of the present invention adds magnetic beads to a specimen containing cells, causes the magnetic beads to capture the cells, separates the cells captured by the magnetic beads using magnetic force, and The main feature is that the nucleic acid of the cells is extracted by magnetic beads. The magnetic beads of the present invention are magnetic beads in which metal particle nuclei mainly composed of a magnetic metal are coated in multiple layers with two or more different inorganic materials, and the surface of the magnetic beads and desired cells The main feature is to have a probe with affinity. Hereinafter, the present invention will be specifically described.

本発明の核酸抽出方法は、細胞を含む検体に磁気ビーズを加え、前記磁気ビーズに前記細胞を捕捉させ、磁力を用いて前記磁気ビーズに捕捉された前記細胞を前記検体から分離するとともに、前記磁気ビーズにより前記細胞の核酸を抽出することを特徴とする。同じ磁気ビーズにより細胞回収と核酸抽出を行なうため、煩雑な工程がなく細胞回収と核酸抽出を連続して行うことができるので迅速に核酸抽出を行なうことができる。   The nucleic acid extraction method of the present invention adds magnetic beads to a specimen containing cells, causes the magnetic beads to capture the cells, separates the cells captured by the magnetic beads using magnetic force, and The nucleic acid of the cell is extracted with magnetic beads. Since cell recovery and nucleic acid extraction are performed using the same magnetic beads, there is no complicated process, and cell recovery and nucleic acid extraction can be performed continuously, so that nucleic acid extraction can be performed quickly.

また、上記核酸抽出方法において、前記磁気ビーズには、前記細胞と親和性をもつプローブが固定化されていることが好ましい。細胞と親和性をもつプローブを固定化することにより所望の細胞を回収することができる。   In the nucleic acid extraction method, it is preferable that a probe having affinity for the cells is immobilized on the magnetic beads. Desired cells can be recovered by immobilizing a probe having affinity for cells.

さらに、上記核酸抽出方法において、前記プローブは、前記細胞の表面抗原に対する抗体であることが好ましい。特異性の高い抗原抗体反応により特異的に所望の細胞を捕捉できる。   Furthermore, in the nucleic acid extraction method, the probe is preferably an antibody against a surface antigen of the cell. A desired cell can be specifically captured by a highly specific antigen-antibody reaction.

さらに、上記核酸抽出方法において、前記磁気ビーズは、ケイ素酸化物で被覆されていることが好ましい。ケイ素酸化物で被覆されることにより、核酸抽出担体としての良好な特性をもつことができる。   Furthermore, in the nucleic acid extraction method, the magnetic beads are preferably coated with silicon oxide. By being coated with silicon oxide, it can have good characteristics as a nucleic acid extraction carrier.

さらに、上記核酸抽出方法において、前記磁気ビーズは、磁性金属を主成分とする金属粒子核が、互いに異なる2種以上の無機材料で多重に被覆されている金属微粒子であることが好ましい。磁性金属を主成分とするので、飽和磁化が高く迅速に磁気ビーズを回収することができる。   Furthermore, in the nucleic acid extraction method, the magnetic beads are preferably metal fine particles in which metal particle nuclei containing a magnetic metal as a main component are coated in multiple layers with two or more different inorganic materials. Since magnetic metal is a main component, saturation magnetization is high and magnetic beads can be collected quickly.

さらに、上記核酸抽出方法において、前記細胞を前記検体から分離した後、磁気ビーズを追加して前記細胞の核酸を抽出することが好ましい。磁気ビーズを追加することにより、より多くの核酸を抽出することができる。   Furthermore, in the nucleic acid extraction method, it is preferable to extract the nucleic acid of the cell by adding magnetic beads after separating the cell from the specimen. By adding magnetic beads, more nucleic acids can be extracted.

さらに、上記核酸抽出方法において、前記検体が生体組織または糞便であることが好ましい。前記核酸抽出方法は、磁気ビーズに捕捉された細胞を検体から分離する工程を有することから、夾雑物が多く、また粘性が高い検体から核酸を効率よく抽出できる。したがって、検体が、夾雑物が多く、また粘性が高い生体組織、糞便である場合に好適に用いることができる。   Furthermore, in the nucleic acid extraction method, the specimen is preferably a living tissue or stool. Since the nucleic acid extraction method has a step of separating the cells captured by the magnetic beads from the sample, the nucleic acid can be efficiently extracted from the sample having a lot of impurities and high viscosity. Therefore, it can be suitably used when the specimen is a biological tissue or stool with a lot of impurities and high viscosity.

本発明のがん細胞検出方法は、上記核酸抽出方法のいずれかの核酸抽出方法を用いることを特徴とする。前記核酸抽出方法は、細胞回収効率、ひいては核酸抽出効率に優れることから、検体中の含有濃度に低い、がん細胞の検出に好適に用いることができる。   The cancer cell detection method of the present invention is characterized by using any one of the nucleic acid extraction methods described above. Since the nucleic acid extraction method is excellent in cell recovery efficiency, and thus in nucleic acid extraction efficiency, it can be suitably used for detection of cancer cells having a low concentration in a specimen.

本発明の磁気ビーズは、磁性金属を主成分とする金属粒子核が、互いに異なる2種以上の無機材料で多層に被覆されている磁気ビーズであり、前記磁気ビーズ表面に所望の細胞と親和性をもつプローブを有する細胞回収用であることを特徴とする。所望の細胞と親和性をもつプローブを持つことにより特異的に前記所望の細胞を補足でき、かつ、磁性金属を主成分とする金属核をもつことにより高い飽和磁化を有し、迅速に回収できる。   The magnetic beads of the present invention are magnetic beads in which metal particle nuclei mainly composed of a magnetic metal are coated in multiple layers with two or more different inorganic materials, and have an affinity for desired cells on the surface of the magnetic beads. It is for cell collection | recovery which has a probe with. By having a probe having affinity for a desired cell, the desired cell can be specifically captured, and by having a metal nucleus composed mainly of a magnetic metal, it has a high saturation magnetization and can be quickly recovered. .

また、上記磁気ビーズにおいて、金属粒子核に接して一部または全体を被覆する無機材料の外側の無機材料は、ケイ素酸化物を主体とする被覆層であることが好ましい。ケイ素酸化物で被覆されていることにより核酸抽出特性を有することができる。   In the above magnetic beads, the inorganic material outside the inorganic material that covers a part or the whole in contact with the metal particle nucleus is preferably a coating layer mainly composed of silicon oxide. By being coated with silicon oxide, it can have nucleic acid extraction properties.

さらに、上記磁気ビーズにおいて、所望の細胞の表面抗原に対する抗体が固定化されていることが好ましい。特異性の高い抗原抗体反応により特異的に所望の細胞を捕捉できる。   Further, in the magnetic beads, it is preferable that an antibody against a desired cell surface antigen is immobilized. A desired cell can be specifically captured by a highly specific antigen-antibody reaction.

さらに、飽和磁化の値が60Am/kg以上であることが好ましい。飽和磁化が60Am/kg以上の大きな値を持つ磁気ビーズは、磁気分離における分離速度が速く、細胞回収効率に優れる。飽和磁化は室温(25℃)の飽和磁化の値である。 Furthermore, the value of saturation magnetization is preferably 60 Am 2 / kg or more. Magnetic beads having a large saturation magnetization of 60 Am 2 / kg or more have a high separation rate in magnetic separation and excellent cell recovery efficiency. The saturation magnetization is a value of saturation magnetization at room temperature (25 ° C.).

さらに、上記磁気ビーズは、平均粒径が4μm以下であることが好ましい。粒径が小さいため、比表面積が大きく少量の磁気ビーズで細胞を捕捉することができる。また、粒径が4μm以下では、特に細胞を生きたまま捕捉する確率を格段に向上することができる。なお、平均粒径は、レーザ回折型粒径分布測定器によるメジアン径d50値である。   Further, the magnetic beads preferably have an average particle size of 4 μm or less. Since the particle size is small, cells can be captured with a small amount of magnetic beads having a large specific surface area. Further, when the particle size is 4 μm or less, the probability of capturing the cells alive can be significantly improved. The average particle diameter is a median diameter d50 value measured by a laser diffraction type particle size distribution measuring instrument.

本発明によれば、工程を簡略化し迅速に不純物を含む検体から核酸を抽出する方法および目的とする細胞を迅速に回収する磁気ビーズを提供することが出来る。   According to the present invention, it is possible to provide a method for extracting nucleic acids from a sample containing impurities and a magnetic bead for quickly recovering target cells by simplifying the process.

本発明の核酸抽出方法は、細胞を回収する工程と、その回収した細胞から核酸を抽出する工程を有する。細胞を吸着する固体担体は磁気ビーズであり、細胞を含む検体に磁気ビーズを加え、細胞を磁気ビーズに捕捉させ、磁力を用い、磁気ビーズと捕捉された細胞を検体から分離して、保持する。これにより、目的とする細胞以外の、検体に含まれる不純物を除去する。そして、さらに前記磁気ビーズにより細胞の核酸を抽出する。また、本発明の方法は煩雑な工程がなく、自動化にするのに好適である。   The nucleic acid extraction method of the present invention includes a step of collecting cells and a step of extracting nucleic acids from the collected cells. The solid carrier that adsorbs the cells is magnetic beads. The magnetic beads are added to the specimen containing the cells, the cells are captured by the magnetic beads, and the magnetic beads and the captured cells are separated from the specimen and retained by using magnetic force. . Thereby, impurities contained in the specimen other than the target cells are removed. Then, the nucleic acid of the cells is further extracted with the magnetic beads. Further, the method of the present invention does not have complicated steps and is suitable for automation.

[細胞回収]
細胞を含む検体に磁気ビーズを加え、ボルテックスなどを用いて攪拌し、磁気ビーズを分散させ細胞を補足させる。磁力、すなわち磁気勾配を利用し、磁気ビーズを回収し、保持する。磁力を発生する手段は特に限定するものではないが、例えば磁石を容器側面もしくは底面に設置し、磁気ビーズを容器壁面に回収し、保持する。磁石に保持されていない不純物を除去し、細胞を回収する。なお、磁力で磁気ビーズを回収する際、検体の粘度が高い場合など回収に時間を要する場合は、攪拌し磁気ビーズの泳動を補助してもよい。
[Cell recovery]
Add magnetic beads to a specimen containing cells, and stir using a vortex to disperse the magnetic beads and capture the cells. The magnetic beads are collected and held using a magnetic force, that is, a magnetic gradient. The means for generating the magnetic force is not particularly limited. For example, a magnet is installed on the side or bottom of the container, and the magnetic beads are collected and held on the container wall. Impurities that are not retained by the magnet are removed, and the cells are collected. When collecting magnetic beads by magnetic force, if time is required for collection such as when the viscosity of the specimen is high, the magnetic beads may be migrated to assist migration.

細胞を含む検体とは、動物・植物種類を限定するものでなく、広く植物、動物から採取された細胞を含む検体である。例えば、血液、生体組織、尿、糞便、骨髄、臍帯血、唾液、口腔スワブ、培養細胞などである。これらの検体の種類によっては、採取された細胞を含む検体に、水溶液を加えてもよい。特に生体組織や、糞便のように粘度が高い、もしくは、細胞が溶液中に分散されていない検体の場合は磁気ビーズが分散しにくく、水溶液を加え粘度を低くすることが好ましい。水溶液は、検体中に含まれる細胞を劣化させないために水系溶媒であることが好ましい。より好ましくは細胞の劣化がより少ない緩衝溶液が望ましい。   The specimen containing cells is not limited to animal / plant types, and is a specimen containing cells collected from plants and animals. For example, blood, living tissue, urine, feces, bone marrow, umbilical cord blood, saliva, oral swab, cultured cells, and the like. Depending on the type of these specimens, an aqueous solution may be added to the specimen containing the collected cells. In particular, in the case of a specimen having a high viscosity such as a living tissue or feces, or cells in which cells are not dispersed in a solution, it is difficult to disperse magnetic beads, and it is preferable to lower the viscosity by adding an aqueous solution. The aqueous solution is preferably an aqueous solvent so as not to degrade the cells contained in the specimen. More preferably, a buffer solution with less cell degradation is desirable.

本発明は特に糞便や生体組織からの核酸抽出に適している。糞便や生体組織は細胞以外の不純物を多く含み、且つ所望の細胞以外の細胞を含む。検体から所望の細胞を回収し、洗浄する精製工程を含まない核酸抽出法では、所望の細胞由来の核酸を純度よく得られないが、本発明の核酸抽出方法を用いることにより、不純物や、所望の細胞以外の細胞由来の核酸を含まない純度のよい核酸を得ることができる。   The present invention is particularly suitable for nucleic acid extraction from feces and living tissues. Feces and biological tissues contain many impurities other than cells and contain cells other than desired cells. A nucleic acid extraction method that does not include a purification step of recovering and washing desired cells from a specimen cannot obtain nucleic acids derived from the desired cells with high purity. However, by using the nucleic acid extraction method of the present invention, impurities or desired A nucleic acid having a high purity that does not contain nucleic acids derived from cells other than the above cells can be obtained.

所望の細胞とは、動物・植物種類を限定するものでなく、広く植物、動物の細胞である。たとえば、遺伝子検査などの検査対象の細胞などである。なお、所望の細胞とは一種類の細胞と限定するものでなく、複数種類の細胞を指す場合もある。   The desired cells are not limited to animal / plant types, but are broadly plant and animal cells. For example, a cell to be examined such as a genetic test. The desired cell is not limited to one type of cell, and may refer to a plurality of types of cells.

また、特に糞便のように不純物を多く含む検体の場合は、磁気ビーズを加える前に、細胞に比べ充分大きな不純物をフィルタなどでろ過し、除去することが好ましい。このことは、磁気ビーズを、細胞を含む検体中で分散させることに寄与するという点で好適である。   In particular, in the case of a specimen containing a large amount of impurities such as feces, it is preferable to remove impurities sufficiently larger than cells by filtering them before adding magnetic beads. This is preferable in that it contributes to dispersing the magnetic beads in a specimen containing cells.

細胞を磁気ビーズに捕捉させ、磁力を用いて磁気ビーズに捕捉された細胞を分離して保持し、検体に含まれる不純物を除去した後、細胞を洗浄する溶液(細胞洗浄液)を加え洗浄する工程を加えてもよい。洗浄することにより、より多くの不純物を除くことができ好ましい。細胞を劣化させないためには、細胞洗浄液は水系溶媒であることが好ましく、細胞の劣化がより少ない緩衝溶液がより好ましい。   Capturing the cells on the magnetic beads, separating and holding the cells captured on the magnetic beads using magnetic force, removing impurities contained in the specimen, and then adding and washing the cell washing solution (cell washing solution) May be added. By washing, more impurities can be removed, which is preferable. In order not to deteriorate the cells, the cell washing solution is preferably an aqueous solvent, and more preferably a buffer solution with less cell deterioration.

[核酸抽出]
上記のように磁気ビーズに捕捉された細胞に対してさらに核酸抽出を行なう。細胞回収工程によって回収した細胞を、タンパク分解酵素やカオトロピック物質を含む溶液などを用いる生化学・化学的な方法、または、凍結破壊、浸透圧、ずり応力、超音波などを利用する物理的な方法で溶解、破壊させ、得られた核酸を細胞回収に用いた前記磁気ビーズに吸着させる。すなわち、同じ磁気ビーズに細胞捕捉機能と核酸吸着機能を持たせる。なお、好ましい作業方法は、より多くの核酸を吸着させる為、磁気ビーズを新たに追加するものとする。磁石などを容器側面もしくは底面に設置し、磁力、すなわち磁気勾配を利用し、磁気ビーズを容器壁面に回収して保持する。なお、磁石に磁気ビーズを回収する際、攪拌して磁気ビーズの泳動を補助してもよい。磁石に保持されていない不純物を除去し、核酸を洗浄する溶液(核酸洗浄液)で洗浄する。核酸の洗浄において、エタノールや、イソプロピルアルコールなどアルコール類を添加することにより核酸回収量が増加するため、核酸洗浄液は、アルコール類を含む溶液であることが好ましい。その後、磁気ビーズから滅菌水などの核酸を脱離させる溶液を加え、核酸を脱離させ核酸を抽出する。図1に上記の細胞を含む検体からの核酸抽出方法の概略を示すフローチャートを示す。
[Nucleic acid extraction]
Nucleic acid extraction is further performed on the cells captured by the magnetic beads as described above. Biochemical and chemical methods using cells containing proteolytic enzymes and chaotropic substances, or physical methods using freeze destruction, osmotic pressure, shear stress, ultrasound, etc. Then, the nucleic acid obtained is dissolved and destroyed by the above procedure, and the obtained nucleic acid is adsorbed to the magnetic beads used for cell recovery. That is, the same magnetic beads are provided with a cell capture function and a nucleic acid adsorption function. In addition, a preferable working method shall add a magnetic bead newly in order to adsorb | suck more nucleic acids. A magnet or the like is installed on the side surface or bottom surface of the container, and magnetic beads are collected and held on the container wall surface using magnetic force, that is, magnetic gradient. When collecting the magnetic beads in the magnet, the magnetic beads may be assisted by stirring. Impurities not retained by the magnet are removed, and the substrate is washed with a solution for washing nucleic acid (nucleic acid washing solution). In the washing of nucleic acid, the amount of nucleic acid recovered increases by adding alcohols such as ethanol and isopropyl alcohol. Therefore, the nucleic acid washing solution is preferably a solution containing alcohols. Thereafter, a solution for desorbing nucleic acid such as sterilized water is added from the magnetic beads, and the nucleic acid is desorbed to extract the nucleic acid. FIG. 1 is a flowchart showing an outline of a method for extracting a nucleic acid from a specimen containing the above cells.

[磁気ビーズ]
本発明に係る磁気ビーズは、細胞の回収、核酸の抽出に使用できる。本発明の磁気ビーズの組成は特に限定するものでなく、細胞に親和性を持った磁気ビーズを用いることが出来る。検査目的の細胞を特異的に回収するには、所望の細胞の細胞表面抗原に対する抗体、細胞に親和性のあるアダプター、リガウンドなどプローブが表面に修飾されている磁気ビーズであることが好ましい。また、核酸を抽出する為に、磁気ビーズの最外殻は核酸と吸着するケイ素酸化物を主成分とする被膜層であることが好ましい。なお、本発明の磁気ビーズは細胞回収だけに用いることができるのも言うまでもない。
[Magnetic beads]
The magnetic beads according to the present invention can be used for cell recovery and nucleic acid extraction. The composition of the magnetic beads of the present invention is not particularly limited, and magnetic beads having affinity for cells can be used. In order to specifically recover the cells to be examined, it is preferable to use magnetic beads whose surface is modified with a probe such as an antibody against a cell surface antigen of a desired cell, an adapter having affinity for the cell, or a religand. In order to extract nucleic acid, the outermost shell of the magnetic beads is preferably a coating layer mainly composed of silicon oxide that adsorbs nucleic acid. In addition, it cannot be overemphasized that the magnetic bead of this invention can be used only for cell collection | recovery.

細胞は一般的に数μm〜数百μm程度と一般的な磁気ビーズに比べ大きく、磁気ビーズは高い飽和磁化が必要であり、磁気ビーズは高い飽和磁化が得られる磁性金属を主成分とする金属粒子核を有することが好ましい。また、前記金属粒子核を無機材料で被覆することにより、水溶液中においても化学的に安定になり好ましい。更に、互いに異なる2種以上の無機材料で被覆することによりカオトロピック物質を含む溶液や、生体物質のように高塩濃度の溶液でも安定であり、より好ましい。以下、本発明に係る磁気ビーズについてさらに詳述する。   The cell is generally several μm to several hundred μm, which is larger than general magnetic beads. The magnetic beads need high saturation magnetization, and the magnetic beads are mainly composed of magnetic metals that can provide high saturation magnetization. It is preferable to have a particle nucleus. Further, coating the metal particle core with an inorganic material is preferable because it is chemically stable in an aqueous solution. Furthermore, by coating with two or more different inorganic materials, a solution containing a chaotropic substance or a solution having a high salt concentration such as a biological substance is more preferable. Hereinafter, the magnetic beads according to the present invention will be described in more detail.

[磁気ビーズ表面]
細胞回収用の磁気ビーズ表面は、所望の細胞を特異的に補足する担体の特性を持たせるために、所望の細胞と親和性を有するプローブ、例えば、アダプター、リガウンド、抗体などが固定化されていることが好ましい。また、抗原抗体反応により特異的に所望の細胞を捕捉するために、所望の細胞の細胞表面抗原に対する特異的抗体が固定化されていることがより好ましい。例えば、ヒト上皮細胞及び上皮がん細胞に発現している抗原に対する特異的抗体Ber−EP4を結合することによりヒト上皮細胞および上皮がん細胞を回収するのに好適に用いることができる。また、前記Ber−EP4抗体が固定された磁気ビーズを用いて糞便中の上皮細胞および上皮がん細胞を特異的に捕捉して回収することにより、糞便中の潜血に含まれる白血球由来の核酸などを含まない純度のよい上皮細胞および上皮がん細胞由来の核酸を抽出することができる。このように得られた核酸を用いることにより感度よくがん細胞の検出をすることができる。すなわち、本発明の方法はがん細胞検出に用いることができる。
[Magnetic bead surface]
The surface of the magnetic beads for cell recovery is immobilized with a probe having affinity for the desired cell, such as an adapter, a rebound, an antibody, etc., in order to have the characteristics of a carrier that specifically captures the desired cell. Preferably it is. In addition, in order to specifically capture a desired cell by an antigen-antibody reaction, it is more preferable that a specific antibody against the cell surface antigen of the desired cell is immobilized. For example, it can be suitably used for recovering human epithelial cells and epithelial cancer cells by binding a specific antibody Ber-EP4 against an antigen expressed in human epithelial cells and epithelial cancer cells. In addition, by specifically capturing and recovering fecal epithelial cells and epithelial cancer cells using the magnetic beads on which the Ber-EP4 antibody is immobilized, nucleic acids derived from leukocytes contained in fecal occult blood, etc. It is possible to extract nucleic acids derived from epithelial cells and epithelial cancer cells having a high purity that does not contain any of them. By using the nucleic acid thus obtained, cancer cells can be detected with high sensitivity. That is, the method of the present invention can be used for cancer cell detection.

本発明の細胞回収磁気ビーズにおいて、抗体を結合する方法としては、物理吸着または、化学結合法を用いることが出来る。安定に使用する為には、磁気ビーズ表面を修飾しアミノ基、チオール基、カルボシル基などの官能基を固定し、これらの官能基と抗体を化学的に結合させることが好ましい。磁気ビーズ表面に固定された官能基と抗体を反応させることにより抗体を固定することが出来る。また、磁気ビーズ表面に固定された官能基と、官能基と結合するように誘導体を導入したストレプトアビジンを結合させ、このストレプトアビジンが表面に固定化されている磁気ビーズと、ビオチン化された抗体とを結合させることも出来る。ストレプトアビジンを経由し、抗体を固定化する方法は、種々のビオチン化されている抗体が市販されており、様々な細胞の表面抗原に対する特異的抗体を簡便に固定でき好ましい。係るビーズは細胞回収用途以外にも例えば、抗体として2次抗体を固定することにより所望の抗体を回収するなど、タンパク質を回収することにも用いることが出来る。   In the cell recovery magnetic bead of the present invention, physical adsorption or chemical binding can be used as a method for binding the antibody. In order to use it stably, it is preferable to modify the surface of the magnetic beads to fix functional groups such as amino groups, thiol groups, and carbosyl groups, and to chemically bond these functional groups and antibodies. The antibody can be immobilized by reacting the antibody with a functional group immobilized on the magnetic bead surface. In addition, a functional group immobilized on the surface of the magnetic bead and a streptavidin having a derivative introduced so as to bind to the functional group are bound to each other, the magnetic bead on which the streptavidin is immobilized on the surface, and a biotinylated antibody Can be combined. As a method of immobilizing an antibody via streptavidin, various biotinylated antibodies are commercially available, and specific antibodies against surface antigens of various cells can be easily immobilized, which is preferable. Such beads can be used not only for cell recovery, but also for recovering proteins, for example, by recovering a desired antibody by immobilizing a secondary antibody as an antibody.

[金属核]
金属核はFe、Co、Niの少なくとも1種以上の遷移金属磁性元素から成ることが望ましい。Fe、Co、Niいずれかの単体またはその合金、例えばFe−Co系、Fe−Ni系、さらには他の遷移金属元素であるCr、Ti、Nb、Si、Zrなどの遷移金属元素との2元、3元または4元系等の各種合金で構成されていても良い。
[Metal core]
The metal core is preferably composed of at least one transition metal magnetic element of Fe, Co, and Ni. A single element of Fe, Co, or Ni or an alloy thereof, such as Fe—Co, Fe—Ni, and other transition metal elements such as Cr, Ti, Nb, Si, and Zr You may be comprised with various alloys, such as original, ternary, or quaternary system.

金属粒子核の粒子径は特に限定されるものではないが、良好な軟磁気特性を実現するために、その粒子径は平均粒径10μm以下とする。下限は特に規定されるものではないが、Fe、Co、Niそれぞれの単体金属粒子が超常磁性となる臨界粒子径以上である10nm以上とする。 The particle diameter of the metal particle core is not particularly limited, but in order to realize good soft magnetic properties, the particle diameter is set to an average particle diameter of 10 μm or less. The lower limit is not particularly specified, but is set to 10 nm or more, which is not less than the critical particle diameter at which each single metal particle of Fe, Co, and Ni becomes superparamagnetic.

[磁気ビーズ]
被覆も含めた磁気ビーズの粒子径は細胞を吸着するのに充分な比表面積を得るには、4μm以下であることが好ましい。また、粒径が4μm以下では、特に細胞を生きたまま回収する確率が格段に向上する。さらに、細胞を回収後、回収した細胞数を数えるなど観察を行う場合、磁気ビーズの粒子径が大きいと細胞と磁気ビーズを区別することが困難であり、この観点からも磁気ビーズの粒子径が小さいことは好ましい。より好ましくは一般的な細胞の大きさより小さい平均粒子径3μm以下である。本発明に係る磁気ビーズの核は、磁性金属を主成分とする金属であることから飽和磁化が高いため、磁気分離能を維持しつつ、平均粒径を小さくすることができる。
[Magnetic beads]
The particle diameter of the magnetic beads including the coating is preferably 4 μm or less in order to obtain a specific surface area sufficient to adsorb cells. In addition, when the particle size is 4 μm or less, the probability of collecting the cells alive is particularly improved. Furthermore, when performing observations such as counting the number of collected cells after collecting the cells, it is difficult to distinguish the cells from the magnetic beads if the particle size of the magnetic beads is large. Small is preferable. More preferably, the average particle size is 3 μm or less, which is smaller than the general cell size. Since the core of the magnetic bead according to the present invention is a metal containing a magnetic metal as a main component and has high saturation magnetization, the average particle size can be reduced while maintaining the magnetic separation ability.

平均粒径は、例えば、金属微粒子の試料粉末を溶媒中に分散させて、レーザ光線を照射させ回折を利用して粒径分布を測定する方法により求めることができる。本発明においては、平均粒径には、堀場製作所社製レーザ回折/散乱式粒度分布測定装置LA−920を用い該測定方法におけるメジアン径d50値を用いた。あるいは、粒径が100nm以下と小さい場合は、試料を透過型電子顕微鏡または走査型電子顕微鏡で観察して平均粒径を測定する。試料の電子顕微鏡写真を撮影し、写真内で任意の面積内に観察された金属粒子の粒径を測定し、その平均値を粒径として求める。後述の方法では、測定粒子の数が少なくとも50個以上になるようにして、平均値を得ることが望ましい。測定面積内の粒子数が少ない場合には、電子顕微鏡の倍率を変えるか若しくは視野を移動することにより、他の粒子も測定して合計の測定粒子数を50個以上にする。さらに、個々の微粒子の粒径(直径)とは、例えば被覆層を有する微粒子の外径に相当するが、断面が円形でない場合には最大長さと最小長さの平均値をその微粒子の粒径と見なす。   The average particle size can be determined, for example, by a method in which a metal powder sample powder is dispersed in a solvent, irradiated with a laser beam, and the particle size distribution is measured using diffraction. In the present invention, the median diameter d50 value in the measurement method was used as the average particle diameter using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by Horiba. Alternatively, when the particle size is as small as 100 nm or less, the average particle size is measured by observing the sample with a transmission electron microscope or a scanning electron microscope. An electron micrograph of the sample is taken, the particle diameter of the metal particles observed in an arbitrary area in the photograph is measured, and the average value is obtained as the particle diameter. In the method described later, it is desirable to obtain an average value so that the number of measurement particles is at least 50 or more. When the number of particles in the measurement area is small, by changing the magnification of the electron microscope or moving the field of view, other particles are also measured to make the total number of measured particles 50 or more. Further, the particle diameter (diameter) of each fine particle corresponds to, for example, the outer diameter of the fine particle having a coating layer, but when the cross section is not circular, the average value of the maximum length and the minimum length is the particle diameter of the fine particle. Is considered.

被覆も含めた磁気ビーズの飽和磁化は、60Am/kg以上であることが好ましい。飽和磁化を60Am/kg以上とすることで磁気分離が迅速に行われるため、細胞回収効率に優れる。特に、飽和磁化の値をマグタイト単体の飽和磁化を超える95Am/kg以上とすることがより好ましい。従来の酸化鉄を用いた磁気ビーズでは実現できない細胞回収効率が実現可能である。 The saturation magnetization of the magnetic beads including the coating is preferably 60 Am 2 / kg or more. Since the magnetic separation is performed quickly by setting the saturation magnetization to 60 Am 2 / kg or more, the cell recovery efficiency is excellent. In particular, the value of saturation magnetization is more preferably 95 Am 2 / kg or more, which exceeds the saturation magnetization of magite alone. Cell recovery efficiency that cannot be achieved with conventional magnetic beads using iron oxide can be realized.

[金属粒子核に接する無機材料被覆]
金属粒子の被覆層は2種以上の無機材料にて多層に被覆されていることが好ましい。金属粒子核に接する無機材料(もしくは無機質材料)は一部分または全体を被覆し、Al、B、Ce、Co、Cr、Ga、Hf、In、Mn、Nb、Ti、V、Zr、Sc、Si、Y、Taから選ばれた一種以上の金属元素(M元素)の酸化物、炭化物、ほう化物、もしくは窒化物、炭素または窒化ほう素を主体として構成されることが好ましい。チタン酸化物は耐食性に優れ、化学的に安定であり好ましい。これら無機材料は金属核全体を一様に覆うことが好ましいが、金属核が大気中に暴露された場合の酸化を防ぐ目的を達成するのであれば、一部分が被覆された状態であっても良い。
[Inorganic material coating in contact with metal particle core]
The coating layer of metal particles is preferably coated in multiple layers with two or more inorganic materials. An inorganic material (or inorganic material) in contact with the metal particle core partially or entirely covers Al, B, Ce, Co, Cr, Ga, Hf, In, Mn, Nb, Ti, V, Zr, Sc, Si, It is preferably composed mainly of an oxide, carbide, boride, or nitride, carbon or boron nitride of one or more metal elements (M element) selected from Y and Ta. Titanium oxide is preferable because it has excellent corrosion resistance and is chemically stable. These inorganic materials preferably cover the entire metal core uniformly, but may be partially covered as long as the purpose of preventing oxidation when the metal core is exposed to the atmosphere is achieved. .

金属核が無機材料によって被覆された金属核微粒子は、磁性金属の金属酸化物の粉末とM元素の酸化物、炭化物、ほう化物、窒化物もしくは、M元素単体の粉末を混合した粉末に、窒素ガスまたは窒素ガスと不活性ガスとの混合ガスなどの雰囲気の熱処理を施すことにより製造できる。この方法は、金属酸化物の還元による金属核の生成と被覆の形成を一つの熱処理工程で実現できる。すなわち、微細な金属粒子を出発原料としないため、酸化劣化を防止し、高い磁気特性を有する金属微粒子の製造に好適である。このようにして得られた被覆を有する金属微粒子にさらに核酸抽出等に好適な無機材料被覆を設けて2層以上の被覆構成とすることによって、耐酸化性、耐食性、磁気特性に特に優れた磁気ビーズを実現することができる。   The metal core fine particles in which the metal core is coated with an inorganic material are formed by mixing a powder of a metal oxide of a magnetic metal with a powder of M element oxide, carbide, boride, nitride, or M element simple substance, and nitrogen. It can be manufactured by performing heat treatment in an atmosphere such as gas or a mixed gas of nitrogen gas and inert gas. According to this method, generation of metal nuclei and formation of a coating by reduction of metal oxide can be realized in one heat treatment step. That is, since fine metal particles are not used as starting materials, it is suitable for the production of metal fine particles that prevent oxidation deterioration and have high magnetic properties. Magnetic particles having particularly excellent oxidation resistance, corrosion resistance, and magnetic properties are obtained by providing an inorganic material coating suitable for nucleic acid extraction or the like on the metal fine particles having a coating thus obtained to form a coating structure of two or more layers. Beads can be realized.

[金属核に接する無機材料被覆の外側の無機材料被覆]
細胞を回収し、且つ核酸抽出に用いる場合は、金属核を被覆する最外殻は、核酸抽出担体としての特性を持たせるためにケイ素酸化物を主体とする被覆層であることが好ましい。なお、最外殻の被膜層は、金属アルコキシドの加水分解法およびアルコキシド誘導物質を作製することにより形成できる。例えばケイ素アルコキシドの加水分解反応で得られる。ケイ素アルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシラン、アミノプロピルトリメトキシシランなどが挙げられる。ケイ素酸化物は、例えば従来からのテトラエトキシシランの加水分解反応で得られ、シリカを析出させるテトラエトキシシランの加水分解反応を制御することで、再現性をもって製造することができる。
[Inorganic material coating outside the inorganic material coating in contact with the metal core]
When cells are collected and used for nucleic acid extraction, the outermost shell that coats the metal core is preferably a coating layer mainly composed of silicon oxide in order to provide characteristics as a nucleic acid extraction carrier. The outermost coating layer can be formed by hydrolyzing metal alkoxide and producing an alkoxide derivative. For example, it can be obtained by hydrolysis reaction of silicon alkoxide. Specific examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, aminopropyltrimethoxysilane and the like. Silicon oxide is obtained, for example, by a conventional hydrolysis reaction of tetraethoxysilane, and can be produced with reproducibility by controlling the hydrolysis reaction of tetraethoxysilane that precipitates silica.

核酸の抽出量及び純度は得られた核酸を含む溶液を滅菌水で2倍に希釈した溶液の吸光度を測定し定量した(OD法)。核酸の抽出量は260nmの吸光度より溶液の濃度を求め、抽出量を定量した。また、純度は260nmと280nmの吸光度の比率(A260/A280)より判断し、1.7以上であれば純度が良いとする。   The extraction amount and purity of the nucleic acid were quantified by measuring the absorbance of a solution obtained by diluting a solution containing the obtained nucleic acid twice with sterilized water (OD method). The amount of nucleic acid extracted was determined from the absorbance at 260 nm, and the concentration of the solution was determined. The purity is judged from the ratio of absorbance at 260 nm and 280 nm (A260 / A280), and if it is 1.7 or more, the purity is good.

細胞数は、血球計算板を用い下記手順により求めた(視算法)。細胞計算板にはカバーガラスとの間の容量が1区画0.1μLとなるような格子状の目盛りが刻まれている。前記血球計算板にカバーガラスを載せ、血球計算板とカバーガラスの隙間に、回収した細胞を200μLのリン酸バッファ(PBS)に分散させた細胞懸濁液を入れた。血球計算板を位相差顕微鏡に載せ、8区画の細胞数を数え、1区画辺りの細胞数の平均値を求め2000倍することにより細胞懸濁液全体の細胞数を求めた。なお、所望の細胞の表面抗原に対する抗体が磁気ビーズに固定化されていることは、視算法により、所望の細胞を含む細胞懸濁液から、前記所望の細胞の30%以上が回収されることで確認することができる。   The number of cells was determined by the following procedure using a hemocytometer (visual calculation method). The cell counting plate is engraved with a grid-like scale so that the volume between the cell glass and the cover glass is 0.1 μL per section. A cover glass was placed on the hemocytometer, and a cell suspension in which the collected cells were dispersed in 200 μL of phosphate buffer (PBS) was placed in the gap between the hemocytometer and the cover glass. A hemocytometer was placed on a phase contrast microscope, the number of cells in 8 compartments was counted, the average value of the number of cells per compartment was obtained and multiplied by 2000, and the number of cells in the whole cell suspension was obtained. It should be noted that the antibody against the surface antigen of the desired cell is immobilized on the magnetic bead is that 30% or more of the desired cell is recovered from the cell suspension containing the desired cell by the calculation method. Can be confirmed.

以下、本発明に係る実施例を詳細に説明する。ただし、これら実施例によって必ずしも本発明が限定されるわけではない。   Hereinafter, embodiments according to the present invention will be described in detail. However, the present invention is not necessarily limited by these examples.

本発明に用いられる無機材料被覆金属微粒子の例およびその比較例を以下に示す。
(実施例1)
平均粒径30nmの酸化鉄粉末と平均粒径2μmのチタンとを等量混合し、窒素ガス雰囲気において1000℃で2時間熱処理を施し、この生成物の非磁性不要成分を磁気分離し、除去することで、粒子表面がチタン酸合物で被覆された平均粒径が2.7μmの鉄微粒子を得た。得られた微粒子5gをエタノール溶媒100ml中に分散し、これにテトラエトキシシランを添加した。この溶媒を攪拌しながら純水とアンモニア水と塩化カリウムの混合溶液を添加した。純水とアンモニア水と塩化カリウムはそれぞれ22gと4gと0.03g使用した。その後、ボールミルにおいて攪拌した。この生成物の非磁性不要成分を磁気分離し、除去することで、粒子表面がケイ素酸化物で被覆された平均粒径が3μmの鉄微粒子を得た。また、前記鉄微粒子の室温での磁気特性をVSM(試料振動型磁力計)により測定したところ、飽和磁化は105Am/kgであった。印加磁界は1.6MA/mとした。このようにして得られた、鉄を主成分とする金属粒子核がチタン酸化物およびケイ素酸化物の2種の無機材料で被覆された磁気ビーズを用いて、以下の細胞回収、核酸抽出を行なった。
Examples of inorganic material-coated metal fine particles used in the present invention and comparative examples thereof are shown below.
Example 1
An equal amount of iron oxide powder having an average particle diameter of 30 nm and titanium having an average particle diameter of 2 μm are mixed and subjected to a heat treatment at 1000 ° C. for 2 hours in a nitrogen gas atmosphere to magnetically separate and remove non-magnetic unnecessary components of the product. As a result, iron fine particles having an average particle diameter of 2.7 μm, whose particle surfaces were coated with a titanium oxide compound, were obtained. 5 g of the obtained fine particles were dispersed in 100 ml of ethanol solvent, and tetraethoxysilane was added thereto. While stirring this solvent, a mixed solution of pure water, aqueous ammonia and potassium chloride was added. Pure water, ammonia water and potassium chloride were used in an amount of 22 g, 4 g and 0.03 g, respectively. Then, it stirred in the ball mill. Non-magnetic unnecessary components of the product were magnetically separated and removed to obtain iron fine particles having an average particle diameter of 3 μm whose particle surfaces were coated with silicon oxide. Further, when the magnetic properties of the iron fine particles at room temperature were measured with a VSM (sample vibration type magnetometer), the saturation magnetization was 105 Am 2 / kg. The applied magnetic field was 1.6 MA / m. Using the magnetic beads in which the metal particle cores mainly composed of iron thus obtained were coated with two inorganic materials, titanium oxide and silicon oxide, the following cell recovery and nucleic acid extraction were performed. It was.

前記磁気ビーズと1vol%3−アミノプロピルトリエトキシシラン(APS)水溶液とを混和し、1時間攪拌した。大気中において120℃で1時間加熱処理を施し、アミノ基が導入された磁気ビーズ(アミノ基コート磁気ビーズ)を得た。Bang Laboratories社製のBioMag Plus Amine Particle Protein Coupling Kitを用い、下記の手順で前記アミノ基コート磁気ビーズに抗体を固定化した。まず、アミノ基コート磁気ビーズ5mgとキット付属ピリジンウォッシュバッファー(PWB)により5%に調整したグルタルアルデヒド400μLを混和させ、3時間室温で攪拌した。その後、非磁性成分を磁気分離により除去し、PWBで4回洗浄した。このようにして得た磁気ビーズをPWBに懸濁させた懸濁液と、ストレプトアビジン(和光純薬社製)を混和させ、4℃で16時間攪拌した。ここに、キット付属クエンチング溶液を400μL加え30分室温で攪拌し、非磁性成分を磁気分離により除去し、PWBで4回洗浄し、ストレプトアビジンコート磁気ビーズを作製した。   The magnetic beads and 1 vol% 3-aminopropyltriethoxysilane (APS) aqueous solution were mixed and stirred for 1 hour. Heat treatment was performed at 120 ° C. for 1 hour in the air to obtain magnetic beads having amino groups introduced (amino group-coated magnetic beads). Using a BioMag Plus Amine Particle Protein Coupling Kit manufactured by Bang Laboratories, the antibody was immobilized on the amino group-coated magnetic beads by the following procedure. First, 5 mg of amino group-coated magnetic beads and 400 μL of glutaraldehyde adjusted to 5% with pyridine wash buffer (PWB) attached to the kit were mixed and stirred at room temperature for 3 hours. Thereafter, the nonmagnetic component was removed by magnetic separation and washed 4 times with PWB. A suspension in which the magnetic beads thus obtained were suspended in PWB and streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and stirred at 4 ° C. for 16 hours. 400 μL of the quenching solution attached to the kit was added thereto, and the mixture was stirred for 30 minutes at room temperature. Nonmagnetic components were removed by magnetic separation, and washed 4 times with PWB to prepare streptavidin-coated magnetic beads.

次に、ビオチン化された抗ヒトCD44抗体(Ancell社製Monoclonal anti―human CD44/Biotin)1.6μLと上記ストレプトアビジンコート磁気ビーズ4mgをリン酸バッファー(PBS)160μLに懸濁させた懸濁溶液を混和し、室温で30分攪拌し、非磁性成分を磁気分離により除去し、抗ヒトCD44抗体固定化磁気ビーズを得た。   Next, a suspension solution obtained by suspending 1.6 μL of biotinylated anti-human CD44 antibody (Monoclonal anti-human CD44 / Biotin manufactured by Ancell) and 4 mg of the above streptavidin-coated magnetic beads in 160 μL of phosphate buffer (PBS) Were mixed and stirred at room temperature for 30 minutes, and nonmagnetic components were removed by magnetic separation to obtain magnetic beads with immobilized anti-human CD44 antibody.

2mLマイクロチューブに、検体として1mLのPBSに培養したヒト子宮頸部がん細胞HeLa細胞を100万細胞懸濁させた細胞懸濁液を入れ、4mgの上記抗ヒトCD44抗体固定化磁気ビーズを加え30分室温で攪拌した。マイクロチューブを磁気スタンドに立て20秒間放置し、磁石と接する壁面に磁気ビーズを回収・保持させ、非磁性成分(磁気ビーズと結合していない成分)を除去した。更に、マイクロチューブを磁気スタンドより外し、500μLのPBSを加え攪拌し、マイクロチューブを磁気スタンドに立て20秒間放置し、磁石と接する壁面に磁気ビーズを回収して保持させ、非磁性成分を除去、洗浄した。この洗浄工程を計4回行ない細胞回収を行なった。   Put a cell suspension of 1 million human cervical cancer cells HeLa cells cultured in 1 mL PBS as a sample in a 2 mL microtube, and add 4 mg of the above anti-human CD44 antibody-immobilized magnetic beads. Stir for 30 minutes at room temperature. The microtube was placed on a magnetic stand and allowed to stand for 20 seconds, and the magnetic beads were collected and retained on the wall surface in contact with the magnet to remove nonmagnetic components (components not bonded to the magnetic beads). Further, remove the microtube from the magnetic stand, add 500 μL of PBS, stir, stand the microtube on the magnetic stand and leave it for 20 seconds, collect and hold the magnetic beads on the wall in contact with the magnet, and remove non-magnetic components. Washed. This washing step was performed a total of 4 times to collect cells.

ロッシュ社製核酸抽出キット(MagNA Pure LC Isolation KitI)付属試薬を用い、下記手順で核酸抽出を行なった。上記のように回収した磁気ビーズが吸着した細胞に、キット付属溶解結合バッファー300μLを加えボルテックスで10秒攪拌した。プロテアーゼ溶液を100μL加えボルテックスで攪拌し、3.3分間60℃で攪拌し、サンプルを室温に冷却した。イソプロピルアルコール150μLを加えて攪拌し、室温で8分間攪拌した。上澄みを磁気分離により除去し、核酸を洗浄する溶液としてキット付属洗浄バッファーIを850μL加え、ボルテックスで5秒攪拌した。上澄みを磁気分離により除去し、核酸を洗浄する溶液としてキット付属洗浄バッファーIIを450μL加え、ボルテックスで5秒攪拌し、上澄みを磁気分離により除去した。この工程を2回繰り返した。磁気ビーズから核酸を脱離させる溶液としてキット付属溶出バッファーを100μL加え、60℃で8分間攪拌し、磁気分離により上澄み液を採取し核酸を得た。上記のOD法により核酸抽出量を定量した結果、3.7μgの核酸が抽出することができた。また、A260/A280=1.830と純度よく抽出することができた。すなわち、本発明の磁気ビーズは優れた核酸抽出能を示した。また、細胞の回収と核酸の抽出に同じ磁気ビーズを用いた本発明の核酸抽出方法は、工程を簡略化して迅速に核酸抽出を行なうことを可能とした。   Nucleic acid extraction was performed by the following procedure using a reagent included with a nucleic acid extraction kit (MagNA Pure LC Isolation Kit I) manufactured by Roche. To the cells adsorbed by the magnetic beads collected as described above, 300 μL of the lysis binding buffer attached to the kit was added and stirred for 10 seconds by vortexing. 100 μL of protease solution was added, vortexed and stirred for 3.3 minutes at 60 ° C., and the sample was cooled to room temperature. 150 μL of isopropyl alcohol was added and stirred, and stirred at room temperature for 8 minutes. The supernatant was removed by magnetic separation, and 850 μL of washing buffer I attached to the kit was added as a solution for washing the nucleic acid, followed by vortexing for 5 seconds. The supernatant was removed by magnetic separation, 450 μL of washing buffer II attached to the kit was added as a solution for washing the nucleic acid, vortexed for 5 seconds, and the supernatant was removed by magnetic separation. This process was repeated twice. 100 μL of an elution buffer attached to the kit was added as a solution for desorbing nucleic acids from the magnetic beads, and the mixture was stirred at 60 ° C. for 8 minutes, and the supernatant was collected by magnetic separation to obtain nucleic acids. As a result of quantifying the amount of nucleic acid extracted by the above OD method, 3.7 μg of nucleic acid could be extracted. Moreover, it was able to extract with high purity as A260 / A280 = 1.830. That is, the magnetic beads of the present invention showed excellent nucleic acid extraction ability. In addition, the nucleic acid extraction method of the present invention using the same magnetic beads for cell recovery and nucleic acid extraction simplifies the process and enables rapid nucleic acid extraction.

上記の核酸抽出方法のイソプロピルアルコール150μLの代わりにイソプロパノール150μLに鉄を主成分とするケイ素酸化物で被覆された磁気ビーズ15mgを懸濁させた懸濁液を用い、核酸抽出を行った。OD法により核酸抽出量を定量した結果、3.9μgの核酸を抽出することができた。また、A260/A280=1.850と純度よく抽出することができた。すなわち、細胞を検体から分離した後、磁気ビーズを追加して前記細胞の核酸を抽出することによって核酸抽出能が向上した。   Nucleic acid extraction was performed using a suspension in which 15 mg of magnetic beads coated with silicon oxide containing iron as a main component was suspended in 150 μL of isopropanol instead of 150 μL of isopropyl alcohol in the nucleic acid extraction method described above. As a result of quantifying the amount of nucleic acid extracted by the OD method, 3.9 μg of nucleic acid could be extracted. Moreover, it was able to extract with high purity as A260 / A280 = 1.850. That is, after separating the cells from the specimen, the nucleic acid extraction ability was improved by adding the magnetic beads and extracting the nucleic acids of the cells.

前記の磁気ビーズの代わりに、ケイ素酸化物を被覆せずチタン酸化物だけを被覆した磁気ビーズを用い、上記のチタン酸化物およびケイ素酸化物の2種の無機材料で被覆された磁気ビーズを用いた場合と同様の方法で、核酸抽出を行なった。OD法で定量し、1.2μgの核酸を抽出したが、A260/A280=1.533と純度が低くなった。上記チタン酸化物およびケイ素酸化物の2種の無機材料で被覆された磁気ビーズを用いた場合と比較すると核酸抽出量が少なく、また純度も低くなった。これは、本発明の核酸抽出方法において、ケイ素酸化物で被覆されている場合、特に顕著な効果を発現することを示す。   Instead of the magnetic beads described above, magnetic beads coated only with titanium oxide without coating with silicon oxide are used, and magnetic beads coated with the above-described two inorganic materials of titanium oxide and silicon oxide are used. Nucleic acid extraction was performed in the same manner as in Quantification was carried out by the OD method, and 1.2 μg of nucleic acid was extracted, but the purity was low at A260 / A280 = 1.533. Compared with the case of using magnetic beads coated with two inorganic materials of titanium oxide and silicon oxide, the amount of nucleic acid extracted was small and the purity was low. This indicates that the nucleic acid extraction method of the present invention exhibits a particularly remarkable effect when coated with silicon oxide.

(実施例2)
実施例1と同様の方法でストレプトアビジンコート磁気ビーズを作製し、ビオチン化されたVU−ID9抗体(biomeda社製Epithelial Specific Antigen−Biotin Labeled,Affinity Pure)16μLと上記ストレプトアビジンコート磁気ビーズ4mgをリン酸バッファー(PBS)160μLに懸濁させた懸濁溶液を混和し、室温で30分攪拌し、非磁性成分を磁気分離で除去しVU―ID9抗体固定化磁気ビーズを得た。
(Example 2)
Streptavidin-coated magnetic beads were prepared in the same manner as in Example 1, and biotinylated VU-ID9 antibody (Biomedical Specific Antigen-Biotin Labeled, Affinity Pure) 16 μL and the above streptavidin-coated magnetic beads 4 mg were used. A suspension solution suspended in 160 μL of acid buffer (PBS) was mixed, and stirred at room temperature for 30 minutes, and nonmagnetic components were removed by magnetic separation to obtain VU-ID9 antibody-immobilized magnetic beads.

検体に培養された培養したヒト子宮頸部がん細胞HeLa細胞の代わりに、がん細胞HT-29細胞を用いた以外は実施例1と同様にして、細胞回収及び核酸抽出作業を行った。核酸抽出量をOD法で定量し、1.8μgの核酸が抽出することができた。また、A260/A280=2.001と純度よく抽出することができた。すなわち、本発明の磁気ビーズは優れた核酸抽出能を示した。また、細胞の回収と核酸の抽出に同じ磁気ビーズを用いた本発明の核酸抽出方法は、工程を簡略化して迅速に核酸抽出を行なうことを可能とした。   Cell recovery and nucleic acid extraction were performed in the same manner as in Example 1 except that cancer cell HT-29 cells were used instead of the cultured human cervical cancer cells HeLa cells cultured in the specimen. The amount of nucleic acid extracted was quantified by the OD method, and 1.8 μg of nucleic acid could be extracted. Moreover, it was able to extract with high purity as A260 / A280 = 2.001. That is, the magnetic beads of the present invention showed excellent nucleic acid extraction ability. In addition, the nucleic acid extraction method of the present invention using the same magnetic beads for cell recovery and nucleic acid extraction simplifies the process and enables rapid nucleic acid extraction.

(実施例3)
実施例1と同様の方法で、抗ヒトCD44抗体固定化磁気ビーズを作製した。2mLマイクロチューブに、検体として1mLのPBSに培養したヒト子宮頸部がん細胞HeLa細胞を100万細胞懸濁させた細胞懸濁液を入れ、4mgの抗ヒトCD44抗体固定化磁気ビーズを加え、30分室温で攪拌した。マイクロチューブを磁気スタンドに立て20秒間放置し、磁石と接する壁面に磁気ビーズを回収し、保持させ、非磁性成分(磁気ビーズと結合していない成分)を除去した。更に、マイクロチューブを磁気スタンドより外し、500μLのPBSを加え攪拌し、マイクロチューブを磁気スタンドに立て20秒間放置し、磁石と接する壁面に磁気ビーズを回収・保持させ、非磁性成分を除去、洗浄した。この洗浄工程を計4回行ない細胞回収を行なった。細胞数は前記視算法を用い定量化した。また、磁気ビーズによって回収された細胞を位相差顕微鏡で観察した結果を図2に示す。HeLa細胞の表面抗原に対する抗体が固定化されている磁気ビーズを用いて細胞を回収した結果、図2のように細胞が回収されている様子が観察できた。さらに、回収した細胞からキアゲン社製QIAamp DNA Blood Mini Kit を使用し、核酸を抽出し、上記OD法により核酸抽出量を定量化した。
(Example 3)
Anti-human CD44 antibody-immobilized magnetic beads were produced in the same manner as in Example 1. Put a cell suspension of 1 million cells of human cervical cancer cells HeLa cells cultured in 1 mL PBS as a sample in a 2 mL microtube, add 4 mg of anti-human CD44 antibody-immobilized magnetic beads, Stir for 30 minutes at room temperature. The microtube was placed on a magnetic stand and allowed to stand for 20 seconds. The magnetic beads were collected and retained on the wall surface in contact with the magnet, and nonmagnetic components (components not bonded to the magnetic beads) were removed. Remove the microtube from the magnetic stand, add 500 μL of PBS, stir, stand the microtube on the magnetic stand for 20 seconds, collect and hold the magnetic beads on the wall in contact with the magnet, remove non-magnetic components, and wash did. This washing step was performed a total of 4 times to collect cells. The number of cells was quantified using the visual calculation method. Moreover, the result of having observed the cell collect | recovered with the magnetic bead with the phase-contrast microscope is shown in FIG. As a result of recovering the cells using magnetic beads on which antibodies against the surface antigens of HeLa cells were immobilized, it was observed that the cells were recovered as shown in FIG. Furthermore, nucleic acid was extracted from the collected cells using QIAamp DNA Blood Mini Kit manufactured by Qiagen, and the amount of nucleic acid extracted was quantified by the OD method.

(比較例1〜3)
表1に示す表面状態を有する磁気ビーズを作製し、実施例3と同様の方法で細胞回収を行なった。細胞数は前記視算法を用い定量化した。さらに、実施例3と同様の方法で回収した核酸を抽出し、上記OD法により核酸抽出量を定量化することにより比較した。その結果を表1に示す。なお、IgG1抗体はHeLa細胞の表面抗原に対し陰性抗体である。また、比較例1について、磁気ビーズによって回収された細胞を位相差顕微鏡で観察した結果を図2に示す。HeLa細胞と親和性をもつプローブを持たない比較例1のビーズを用いた場合は、前記細胞はほとんど観察することができない。
(Comparative Examples 1-3)
Magnetic beads having the surface state shown in Table 1 were prepared, and cells were collected in the same manner as in Example 3. The number of cells was quantified using the visual calculation method. Furthermore, the nucleic acids collected by the same method as in Example 3 were extracted, and the nucleic acid extraction amount was quantified by the OD method and compared. The results are shown in Table 1. IgG1 antibody is a negative antibody against the surface antigen of HeLa cells. Moreover, the result of having observed the cell collect | recovered with the magnetic bead with the phase-contrast microscope about the comparative example 1 is shown in FIG. When the beads of Comparative Example 1 having no probe having affinity for HeLa cells are used, the cells can hardly be observed.

表1および図2において明らかなように、磁気ビーズ表面に所望の細胞と親和性をもつプローブを持たない比較例1〜3と比べて、実施例では細胞回収量、核酸抽出量が増加している。本発明の細胞回収用の磁気ビーズが所望の細胞を回収するための磁気ビーズとして有用であることが示された。   As apparent from Table 1 and FIG. 2, compared to Comparative Examples 1 to 3 which do not have probes having affinity for desired cells on the surface of the magnetic beads, the amount of recovered cells and the amount of nucleic acid extracted were increased in Examples. Yes. It was shown that the magnetic beads for cell recovery of the present invention are useful as magnetic beads for recovering desired cells.

(実施例4および実施例5)
原料粉末の混合条件を変えた以外は実施例2と同様の方法で平均粒径1.2μm、5.6μmのVU―ID9抗体固定化磁気ビーズを得た。平均粒径1.2μmのVU―ID9抗体固定化磁気ビーズを実施例4、平均粒径5.6μmのVU―ID9抗体固定化磁気ビーズを実施例5とし、実施例3と同様の方法で細胞回収を行なった。細胞数は前記視算法を用い定量化し、検体に懸濁させた細胞数に対する回収した細胞数の割合(百分率)を細胞回収率として求めた。また、回収した細胞を100μLのリン酸バッファ(PBS)に分散させ、さらにトリパンブルー100μLを加え染色した細胞懸濁液を、血球計算板とカバーガラスの隙間に入れた。血球計算板を位相差顕微鏡に載せ、8区画の染色されていない生細胞数と染色された死細胞数を数え、1区画辺りの生細胞と死細胞数の平均値を求め、生細胞数と死細胞数の和に対する生細胞数の割合(百分率)を生細胞率として求めた。その結果を、実施例2の磁気ビーズを用いた場合の結果とともに表2に示す。
(Example 4 and Example 5)
VU-ID9 antibody-immobilized magnetic beads having an average particle size of 1.2 μm and 5.6 μm were obtained in the same manner as in Example 2 except that the mixing conditions of the raw material powder were changed. In the same manner as in Example 3, VU-ID9 antibody-immobilized magnetic beads having an average particle size of 1.2 μm were used as Example 4, and VU-ID9 antibody-immobilized magnetic beads having an average particle size of 5.6 μm were used as Example 5. Recovery was performed. The number of cells was quantified using the above-mentioned calculation method, and the ratio (percentage) of the number of recovered cells to the number of cells suspended in the specimen was determined as the cell recovery rate. Further, the collected cells were dispersed in 100 μL of phosphate buffer (PBS), and 100 μL of trypan blue was added and stained, and the cell suspension was put in the gap between the hemocytometer and the cover glass. Place a hemocytometer on a phase-contrast microscope, count the number of unstained viable cells and the number of stained dead cells in 8 compartments, find the average number of live cells and dead cells per compartment, The ratio (percentage) of the number of viable cells to the sum of the number of dead cells was determined as the viable cell ratio. The results are shown in Table 2 together with the results when using the magnetic beads of Example 2.

表2おいて明らかなように、実施例2、実施例4および実施例5の磁気ビーズは高い細胞回収率を示し、平均粒径が4μm以下では、細胞回収率は70%を超えている。本発明の細胞回収用磁気ビーズが所望の細胞を回収するための磁気ビーズとして有用であることが示された。また、平均粒径が4μm以下である実施例2および実施例4は平均粒径が4μmを超える実施例5と比べ生細胞率が極めて高く、生細胞率が85%を超える高い値を示している。平均粒径が1.2の実施例4の磁気ビーズでは、細胞回収率71%、生細胞率95%と、細胞回収率、生細胞率ともに、特に優れた性能を示している。すなわち、本発明の平均粒径が4μm以下の細胞回収用の磁気ビーズが所望の細胞を生きたまま回収するための磁気ビーズとして好適であり、さらに粒径2μm以下では生細胞率が95%と非常に高く特に好適であることが示された。   As is apparent from Table 2, the magnetic beads of Examples 2, 4 and 5 showed a high cell recovery rate, and the cell recovery rate exceeded 70% when the average particle size was 4 μm or less. It was shown that the magnetic beads for cell recovery of the present invention are useful as magnetic beads for recovering desired cells. In addition, Example 2 and Example 4 in which the average particle diameter is 4 μm or less have an extremely high viable cell ratio compared to Example 5 in which the average particle diameter exceeds 4 μm, and show a high value in which the viable cell ratio exceeds 85%. Yes. In the magnetic beads of Example 4 having an average particle size of 1.2, the cell recovery rate was 71% and the viable cell rate was 95%, and both the cell recovery rate and the viable cell rate showed particularly excellent performance. That is, the magnetic beads for cell collection having an average particle diameter of 4 μm or less according to the present invention are suitable as magnetic beads for collecting desired cells alive, and when the particle diameter is 2 μm or less, the viable cell ratio is 95%. It has been shown to be very high and particularly suitable.

(比較例4および比較例5)
ポリマーに酸化鉄粒子を包含させた飽和磁化20Am/kg、平均粒径1.0μmのストレプトアビジンコート磁気ビーズ(Dynabeads MyOne Streptavidin、ダイナル社製)および飽和磁化20Am/kg、平均粒径2.8μmストレプトアビジンコート磁気ビーズ(Dynabeads M−280 Streptavidin、ダイナル社製)に実施例2と同様の方法でVU―ID9抗体固定を固定しVU―ID9抗体化磁気ビーズを得た。粒径1.0μmのVU―ID9抗体化磁気ビーズを比較例4、粒径2.8μmのVU―ID9抗体化磁気ビーズを比較例5とし、以下の細胞回収を行なった。
(Comparative Example 4 and Comparative Example 5)
Streptavidin-coated magnetic beads (Dynabeads MyOne Streptavidin, manufactured by Dynal) with a saturation magnetization of 20 Am 2 / kg and an average particle diameter of 1.0 μm in which iron oxide particles are included in the polymer, and a saturation magnetization of 20 Am 2 / kg, an average particle diameter of 2. VU-ID9 antibody immobilization was immobilized on 8 μm streptavidin-coated magnetic beads (Dynabeads M-280 Streptavidin, manufactured by Dynal) in the same manner as in Example 2 to obtain VU-ID9 antibody-modified magnetic beads. The following cell recovery was performed using VU-ID9 antibody-conjugated magnetic beads having a particle size of 1.0 μm as Comparative Example 4 and VU-ID9 antibody-conjugated magnetic beads having a particle size of 2.8 μm as Comparative Example 5.

50mL遠沈管に、検体として30mLのPBSに培養したがん細胞HT-29細胞を1万細胞懸濁させた細胞懸濁液を入れ、実施例4、比較例4および比較例5のVU―ID9抗体化磁気ビーズをそれぞれ2mg加え、30分室温で攪拌した。遠沈管を磁気スタンドに立て1分間もしくは、15分間磁気分離し、磁石と接する壁面に磁気ビーズを回収し、保持させ、非磁性成分(磁気ビーズと結合していない成分)を除去した。更に、遠沈管を磁気スタンドより外し、500μLのPBSを加え攪拌し、内容物をマイクロチューブに移し、磁気スタンドに立て2分間放置し、磁石と接する壁面に磁気ビーズを回収・保持させ、非磁性成分を除去、洗浄し細胞回収を行なった。細胞数は前記視算法を用い定量化し、検体に懸濁させた細胞数に対する回収した細胞数の割合(百分率)を細胞回収率として求めた。さらに、磁気分離時間15分での細胞回収率に対する磁気分離時間1分での細胞回収率の割合(百分率)を細胞回収効率として求めた。その結果を表3に示す。   A cell suspension obtained by suspending 10,000 cells of cancer cell HT-29 cells cultured in 30 mL of PBS as a specimen was placed in a 50 mL centrifuge tube, and VU-ID9 of Example 4, Comparative Example 4 and Comparative Example 5 was used. 2 mg of each antibody-conjugated magnetic bead was added and stirred for 30 minutes at room temperature. The centrifuge tube was placed on a magnetic stand and magnetically separated for 1 minute or 15 minutes, and the magnetic beads were collected and retained on the wall surface in contact with the magnet, and nonmagnetic components (components not bound to the magnetic beads) were removed. Remove the centrifuge tube from the magnetic stand, add 500 μL of PBS, stir, transfer the contents to the microtube, stand on the magnetic stand, leave it for 2 minutes, and collect and hold the magnetic beads on the wall in contact with the magnet. The components were removed, washed, and the cells were collected. The number of cells was quantified using the above-mentioned calculation method, and the ratio (percentage) of the number of recovered cells to the number of cells suspended in the specimen was determined as the cell recovery rate. Furthermore, the ratio (percentage) of the cell recovery rate at 1 minute magnetic separation time to the cell recovery rate at 15 minutes magnetic separation time was determined as the cell recovery efficiency. The results are shown in Table 3.

表3において明らかなように、酸化鉄粒子を包含したポリマー粒子である比較例4および比較例5と比べ、鉄粒子を金属核に有する飽和磁化が高い実施例4の磁気ビーズは高い細胞回収効率を示し、細胞回収効率はは90%を超えている。つまり、本発明の細胞回収用磁気ビーズが所望の細胞を迅速かつ効率よく回収するための磁気ビーズとして有用であることが示された。   As is apparent from Table 3, the magnetic beads of Example 4 having a high saturation magnetization having iron particles in the metal nucleus are higher in cell recovery efficiency than Comparative Examples 4 and 5 which are polymer particles including iron oxide particles. The cell recovery efficiency is over 90%. That is, it was shown that the magnetic beads for cell recovery of the present invention are useful as magnetic beads for recovering desired cells quickly and efficiently.

(実施例6)
平均粒径30nmの酸化鉄粉末と平均粒径20μmの炭素粉とを等量混合し、窒素ガス雰囲気において1000℃で2時間熱処理を施し非磁性不要成分を分離・除去することでことで、粒子表面が炭素で被覆された平均粒子径が1μmの鉄微粒子を得た。得られた微粒子5gをエタノール溶媒100ml中に分散し、これにテトラエトキシシランを添加した。この溶媒を攪拌しながら純水とアンモニア水と塩化カリウムの混合溶液を添加した。純水とアンモニア水と塩化カリウムはそれぞれ22gと4gと0.03g使用した。その後、ボールミルにおいて攪拌した。この生成物の非磁性不要成分を磁気分離し、除去することで、粒子表面がケイ素酸化物で被覆された平均粒径が7μmの鉄微粒子を得た。また、上記鉄微粒子び磁気特性をVSMにより測定したところ、飽和磁化は65Am/kgであった。このようにして得られた、鉄を主成分とする金属粒子核が炭素およびケイ素酸化物の2種の無機材料で被覆された磁気ビーズを用いて、実施例3と同様の方法で細胞回収を行い、実施例4と同様の方法で求めた細胞回収率は42%であった、つまり、本発明の細胞回収用の磁気ビーズが所望の細胞を回収するための磁気ビーズとして有用であることが示された。
(Example 6)
By mixing equal amounts of iron oxide powder with an average particle size of 30 nm and carbon powder with an average particle size of 20 μm, and performing heat treatment at 1000 ° C. for 2 hours in a nitrogen gas atmosphere to separate and remove non-magnetic unnecessary components, Iron fine particles having an average particle diameter of 1 μm whose surface was coated with carbon were obtained. 5 g of the obtained fine particles were dispersed in 100 ml of ethanol solvent, and tetraethoxysilane was added thereto. While stirring this solvent, a mixed solution of pure water, aqueous ammonia and potassium chloride was added. Pure water, ammonia water and potassium chloride were used in an amount of 22 g, 4 g and 0.03 g, respectively. Then, it stirred in the ball mill. Non-magnetic unnecessary components of the product were magnetically separated and removed, thereby obtaining iron fine particles having an average particle diameter of 7 μm whose particle surfaces were coated with silicon oxide. Further, when the iron fine particles and the magnetic properties were measured by VSM, the saturation magnetization was 65 Am 2 / kg. Using the magnetic beads obtained by coating the metal particle nucleus mainly composed of iron with two kinds of inorganic materials, carbon and silicon oxide, cell recovery was performed in the same manner as in Example 3. The cell recovery rate determined by the same method as in Example 4 was 42%, that is, the magnetic beads for cell recovery of the present invention were useful as magnetic beads for recovering desired cells. Indicated.

細胞を含む検体からの核酸抽出方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the nucleic acid extraction method from the test substance containing a cell. 実施例3、比較例1の磁気ビーズによって回収された細胞を位相差顕微鏡で観察した図である。It is the figure which observed the cell collect | recovered with the magnetic bead of Example 3 and the comparative example 1 with the phase-contrast microscope.

符号の説明Explanation of symbols

1:磁気ビーズ 2:HeLa細胞 1: Magnetic beads 2: HeLa cells

Claims (13)

細胞を含む検体に磁気ビーズを加え、前記磁気ビーズに前記細胞を捕捉させ、磁力を用いて前記磁気ビーズに捕捉された前記細胞を前記検体から分離するとともに、前記磁気ビーズにより前記細胞の核酸を抽出することを特徴とする核酸抽出方法。   Magnetic beads are added to a specimen containing cells, the cells are captured by the magnetic beads, and the cells captured by the magnetic beads are separated from the specimen using magnetic force, and the nucleic acids of the cells are separated by the magnetic beads. A method for extracting nucleic acid, comprising extracting. 前記磁気ビーズには、前記細胞と親和性をもつプローブが固定化されていることを特徴とする請求項1に記載の核酸抽出方法。   The nucleic acid extraction method according to claim 1, wherein a probe having affinity for the cell is immobilized on the magnetic beads. 前記プローブは、前記細胞の表面抗原に対する抗体であることを特徴とする請求項2に記載の核酸抽出方法。   The nucleic acid extraction method according to claim 2, wherein the probe is an antibody against a surface antigen of the cell. 前記磁気ビーズは、ケイ素酸化物で被覆されていることを特徴とする請求項1〜3のいずれかに記載の核酸抽出方法。   The nucleic acid extraction method according to claim 1, wherein the magnetic beads are coated with silicon oxide. 前記磁気ビーズは、磁性金属を主成分とする金属粒子核が、互いに異なる2種以上の無機材料で多重に被覆されている金属微粒子であることを特徴とする請求項1〜4のいずれかに記載の核酸抽出方法。   The magnetic beads are metal fine particles in which metal particle nuclei containing a magnetic metal as a main component are coated with two or more different inorganic materials in multiple layers. The nucleic acid extraction method as described. 前記細胞を前記検体から分離した後、磁気ビーズを追加して前記細胞の核酸を抽出することを特徴とする請求項1〜5のいずれかに記載の核酸抽出方法。   The nucleic acid extraction method according to any one of claims 1 to 5, wherein after the cells are separated from the sample, magnetic beads are added to extract the nucleic acids of the cells. 前記検体は生体組織または糞便であることを特徴とする請求項1〜6のいずれかに記載の核酸抽出方法。   The nucleic acid extraction method according to claim 1, wherein the specimen is a biological tissue or stool. 前記請求項1〜7のいずれかに記載の核酸抽出方法を用いることを特徴とするがん細胞検出方法。   A method for detecting cancer cells, wherein the nucleic acid extraction method according to any one of claims 1 to 7 is used. 磁性金属を主成分とする金属粒子核が、互いに異なる2種以上の無機材料で多層に被覆されている磁気ビーズであり、前記磁気ビーズ表面に所望の細胞と親和性をもつプローブを有することを特徴とする細胞回収用の磁気ビーズ。   The magnetic particle core composed mainly of a magnetic metal is a magnetic bead that is coated in multiple layers with two or more different inorganic materials, and has a probe having affinity for a desired cell on the surface of the magnetic bead. Characteristic magnetic beads for cell recovery. 金属粒子核に接して一部または全体を被覆する無機材料の外側の無機材料は、ケイ素酸化物を主体とする被覆層であることを特徴とする請求項9に記載の細胞回収用の磁気ビーズ。   The magnetic bead for cell recovery according to claim 9, wherein the inorganic material outside the inorganic material that is in contact with the metal particle nucleus and coats a part or the whole is a coating layer mainly composed of silicon oxide. . 前記プローブは、前記細胞の表面抗原に対する抗体であること特徴とする請求項9または10に記載の細胞回収用の磁気ビーズ。   The magnetic bead for cell recovery according to claim 9 or 10, wherein the probe is an antibody against a surface antigen of the cell. 飽和磁化の値が60Am/kg以上であることを特徴とする請求項9〜11のいずれかに記載の細胞回収用の磁気ビーズ。 Magnetic beads for cell recovery of any of claims 9 to 11 that the value of saturation magnetization is equal to or is 60 Am 2 / kg or more. 平均粒径が4μm以下であることを特徴とする請求項9〜12のいずれかに記載の細胞回収用の磁気ビーズ。   The magnetic beads for cell recovery according to any one of claims 9 to 12, wherein the average particle size is 4 µm or less.
JP2006133292A 2005-08-31 2006-05-12 Nucleic acid extraction method, cancer cell detection method and magnetic beads Expired - Fee Related JP5007920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133292A JP5007920B2 (en) 2005-08-31 2006-05-12 Nucleic acid extraction method, cancer cell detection method and magnetic beads

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005250446 2005-08-31
JP2005250446 2005-08-31
JP2006133292A JP5007920B2 (en) 2005-08-31 2006-05-12 Nucleic acid extraction method, cancer cell detection method and magnetic beads

Publications (2)

Publication Number Publication Date
JP2007089563A true JP2007089563A (en) 2007-04-12
JP5007920B2 JP5007920B2 (en) 2012-08-22

Family

ID=37975933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133292A Expired - Fee Related JP5007920B2 (en) 2005-08-31 2006-05-12 Nucleic acid extraction method, cancer cell detection method and magnetic beads

Country Status (1)

Country Link
JP (1) JP5007920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221498A (en) * 2015-05-28 2016-12-28 バイオニア コーポレイション Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
WO2018169060A1 (en) * 2017-03-16 2018-09-20 富士フイルム株式会社 Method for separating megakaryocytes from platelets, and platelet separation kit
JP7477869B2 (en) 2020-07-28 2024-05-02 国立研究開発法人物質・材料研究機構 Composite particles for recovering electric bacteria, method for producing composite particles for recovering electric bacteria, and method for recovering electric bacteria

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032276A (en) * 1989-05-30 1991-01-08 Toda Kogyo Corp Black pigment granular powder
JPH0834617A (en) * 1994-07-22 1996-02-06 Toda Kogyo Corp Black magnetic iron oxide particle-shaped powder
JP2003526786A (en) * 2000-03-06 2003-09-09 デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Carrier coated with polysaccharide, its production and use
JP2003528455A (en) * 2000-03-24 2003-09-24 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Porous ferromagnetic or ferrimagnetic glass particles for molecular isolation
JP2004065132A (en) * 2002-08-07 2004-03-04 Toyobo Co Ltd Method for isolating biological substance
JP2005166967A (en) * 2003-12-03 2005-06-23 Hitachi Maxell Ltd Composite magnetic particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032276A (en) * 1989-05-30 1991-01-08 Toda Kogyo Corp Black pigment granular powder
JPH0834617A (en) * 1994-07-22 1996-02-06 Toda Kogyo Corp Black magnetic iron oxide particle-shaped powder
JP2003526786A (en) * 2000-03-06 2003-09-09 デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Carrier coated with polysaccharide, its production and use
JP2003528455A (en) * 2000-03-24 2003-09-24 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Porous ferromagnetic or ferrimagnetic glass particles for molecular isolation
JP2004065132A (en) * 2002-08-07 2004-03-04 Toyobo Co Ltd Method for isolating biological substance
JP2005166967A (en) * 2003-12-03 2005-06-23 Hitachi Maxell Ltd Composite magnetic particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221498A (en) * 2015-05-28 2016-12-28 バイオニア コーポレイション Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
US10465184B2 (en) 2015-05-28 2019-11-05 Bioneer Corporation Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
US10724031B2 (en) 2015-05-28 2020-07-28 Bioneer Corporation Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
WO2018169060A1 (en) * 2017-03-16 2018-09-20 富士フイルム株式会社 Method for separating megakaryocytes from platelets, and platelet separation kit
JP7477869B2 (en) 2020-07-28 2024-05-02 国立研究開発法人物質・材料研究機構 Composite particles for recovering electric bacteria, method for producing composite particles for recovering electric bacteria, and method for recovering electric bacteria

Also Published As

Publication number Publication date
JP5007920B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US9739768B2 (en) Methods and reagents for improved selection of biological materials
JP4048022B2 (en) Universal sample preparation method that can be automated
DE19520398B4 (en) Magnetic pigment
JP6255035B2 (en) Separation method, detection method, signal measurement method, disease determination method, drug efficacy evaluation method for disease treatment, kit and liquid composition
US20180010169A1 (en) Methods and reagents for selection of biological molecules
ES2699589T3 (en) Cell separation method by MultiSort
US5646263A (en) High efficiency method for isolating target substances using a multisample separation device
JPH11509742A (en) Separation method of biological target substance using silica magnetic particles
JPH0919292A (en) Magnetic carrier for binding nucleic acid and nucleic acid isolation using the same
JP2018526021A (en) Compositions and methods for purification of nucleic acids from blood samples
CN101268189A (en) Method for isolating nucleic acids
US10927366B2 (en) System and method for sequestering substances in bulk liquids
CN105120986B (en) A step program for nucleic acid purification
JP2003104996A (en) Magnetic carrier for bonding nucleic acid and method for manufacturing the same
JP5007920B2 (en) Nucleic acid extraction method, cancer cell detection method and magnetic beads
JP2000256388A (en) Magnetic silica particle for nucleic acid binding and isolation of nucleic acid
JP4214255B2 (en) Improved nucleic acid extraction method using particle carrier
JP4220164B2 (en) Nucleic acid purification method, nucleic acid extraction solution used in the method, and nucleic acid purification reagent kit
JP2007252240A (en) Magnetic bead for cell recovery
JP2008220260A (en) Method for magnetic separation of magnetic particle
JPH11262387A (en) Nucleic acid-binding magnetic carrier and isolation of nucleic acid using the carrier
CN117046441B (en) Magnetic graphene oxide particles, preparation method and application thereof
JP2009033995A (en) Method for extracting nucleic acid from blood sample using highly magnetized magnetic beads
RU2653130C1 (en) Magnetic sorbent, a method for its production and a method for separation of molecules of nucleic acids
Barutiak et al. Comparison of magnetic properties of magnetic beads for magnetic separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees