JP2007088024A - 研磨方法 - Google Patents

研磨方法 Download PDF

Info

Publication number
JP2007088024A
JP2007088024A JP2005271918A JP2005271918A JP2007088024A JP 2007088024 A JP2007088024 A JP 2007088024A JP 2005271918 A JP2005271918 A JP 2005271918A JP 2005271918 A JP2005271918 A JP 2005271918A JP 2007088024 A JP2007088024 A JP 2007088024A
Authority
JP
Japan
Prior art keywords
acid
group
polishing
metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005271918A
Other languages
English (en)
Inventor
Yoshinori Nishiwaki
良典 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005271918A priority Critical patent/JP2007088024A/ja
Publication of JP2007088024A publication Critical patent/JP2007088024A/ja
Abandoned legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】 低流量において迅速なCMP速度を有する研磨方法を提供すること。
【解決手段】 エッチング抑止剤を含む研磨液を半導体基板単位面積及び単位時間あたり0.35ml/(min・cm2)以下の流量で研磨定盤上の研磨パッドに供給し、研磨パッドと被研磨面とを接触させた状態で相対運動させて金属膜の少なくとも一部を除去することを特徴とする化学的機械的研磨方法。なお、エッチング抑止剤としてはテトラゾール類が好ましい。

Description

本発明は、半導体デバイスの製造に関するものであり、特に半導体デバイスの配線工程における化学的機械的研磨方法に関する。
大規模集積回路(以下、「LSI」と記す。)で代表される半導体デバイスの開発においては、高集積化・高速化のため、近年配線の微細化と積層化による高密度化・高集積化が求められている。このための技術に化学的機械的研磨(以下、「CMP」と記す。)が用いられてきているが、これは絶縁性薄膜(SiO2など)や配線に用いられる金属薄膜の研磨に用いられ、基板の平滑化や配線形成時の余分な金属薄膜の除去を行う方法であり、例えば特許文献1に開示されている。
CMPに用いる金属用研磨溶液は、多くの場合砥粒(例えばアルミナ)と酸化剤(例えば過酸化水素)とが含まれる。基本的なメカニズムは、酸化剤によって金属表面を酸化し、その酸化皮膜を砥粒で除去していると考えられており、例えば非特許文献1に記述されている。
しかしながら、このような固体砥粒を含む金属用研磨液を用いてCMPを行うと、研磨傷(スクラッチ)、研磨面全体が必要以上に研磨される現象(シニング)、研磨金属面が皿状にたわむ現象(ディッシング)、金属配線間の絶縁体が必要以上に研磨されたうえ、配線金属面が皿状にたわむ現象(エロージョン)などが発生することがある。
また、研磨後に、半導体面に残留する研磨液を除去するために通常行なわれる洗浄工程において、固体砥粒を含有する研磨液を用いることによって、その洗浄工程が複雑となり、さらにその洗浄後の液(廃液)を処理するには固体砥粒を沈降分離する必要があるなどコスト面での問題点が存在する。
これらを解決するひとつの手段として、例えば、砥粒を含まない研磨液とドライエッチングとの組み合わせによる金属表面研磨方法が非特許文献2に開示されており、また特許文献2には、過酸化水素/リンゴ酸/ベンゾトリアゾール/ポリアクリル酸アンモニウムおよび水からなる金属用研磨液が開示されている。これらの方法によれば、半導体基体の凸部の金属膜が選択的にCMPされ、凹部に金属膜が残されて所望の導体パターンが得られる。従来の固体砥粒を含むよりもはるかに機械的に柔らかい研磨パッドとの摩擦によってCMPが進むため、スクラッチの発生は軽減されている。
一方、配線用の金属としては従来からタングステンおよびアルミニウムがインターコネクト構造体に汎用されてきた。しかしながら更なる高性能化を目指し、これらの金属より配線抵抗の低い銅を用いたLSIが開発されるようになった。この銅を配線する方法としては、例えば、特許文献3に記載されている、ダマシン法が知られている。また、コンタクトホールと配線用溝とを同時に層間絶縁膜に形成し、両者に金属を埋め込むデュアルダマシン法が最近広く用いられるようになってきた。この銅配線用のターゲット材には、ファイブナイン以上の高純度銅ターゲットが出荷されてきた。しかしながら、近年は更なる高密度化を目指す配線の微細化に伴って、銅配線の導電性や電子特性などの向上が必要となり、それに伴って高純度銅に第3成分を添加した銅合金を用いることも検討されはじめてきている。同時に、これらの高精細で高純度の材料を汚染させることなく高生産性を発揮し得る高速金属研磨手段が求められている。
また、最近は生産性向上のため、LSI製造時のウェハ径を大型化しており、現在は直径200mm以上が汎用されており、300mm以上の大きさでの製造も開始され始めてきた。このような大型化に伴い、ウェハ中心部と周辺部とでの研磨速度の差が大きくなり、面内均一性に対する改善要求が強くなってきている。
銅及び銅合金に対して機械的研磨手段をもたない化学的研磨方法としては、特許文献4に記載されている方法が知られている。しかしながら溶解作用のみによる化学的研磨方法は、凸部の金属膜を選択的に化学的機械的に研磨するCMPに比べ、ディッシングなどの発生によりその平面性に課題が残っている。
また、特許文献5には研磨パッドの劣化を抑える化学機械研磨用水系分散体が開示されているが、研磨面の段差平坦化に関するものである。
特許文献6には、ベンゾトリアゾール又はその誘導体を防食剤とする研磨方法が開示されている。
米国特許4944836号公報 特開2001−127019号公報 特開平2−278822号公報 特開昭49−122432号公報 特開2001−279231号公報 特開2002−50595号公報 ジャーナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)、第138巻、第11号(1991年発行)、3460〜3464頁 ジャーナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society);第147巻、第10号(2000年発行)、3907〜3913頁
本発明は、LSIの生産性を高めるためにより迅速なCMPを進めるためになされたものであり、上述の銅金属及び銅合金を原料とする配線の研磨速度を上げようとする要請に基づいて行なわれたものである。
また、環境及びコストの観点より、より少ない量で高研磨速度を達成する化学的機械的研磨方法が要求されている。
本発明の目的は、低流量において迅速なCMP速度を有する研磨方法を提供することである。
本発明者は鋭意検討した結果、上記課題が下記の化学的機械的研磨方法によって解決できることを見出して本発明を完成するに至った。すなわち、本発明は、下記の(1)であり、好ましい実施態様である(2)及び(3)と共に列記する。
(1)エッチング抑止剤を含む研磨液を半導体基板単位面積及び単位時間あたり0.35ml/(min・cm2)以下の流量で研磨定盤上の研磨パッドに供給し、研磨パッドと被研磨面とを接触させた状態で相対運動させて金属膜の少なくとも一部を除去することを特徴とする化学的機械的研磨方法、
(2)上記エッチング抑止剤が下記式(I)で表される化合物である(1)記載の化学的機械的研磨方法、
Figure 2007088024
式中、R1及びR2は、各々独立に、水素原子又は1価の置換基を表し、R1及びR2が互いに結合して環を形成してもよい。なお、R1及びR2が同時に水素原子の場合、式(I)で表される化合物は、その互変異性体でもよい。
(3)更に酸化剤、及び、有機酸又はアミノ酸を含有する(1)又は(2)に記載の化学的機械的研磨方法。
本発明の化学的機械的研磨方法により、研磨液の少ない供給量でも絶縁膜上に形成された銅又は銅を主成分とする合金からなる金属膜の少なくとも一部を除去する研磨において大きな研磨速度を維持することができた。
以下に本発明の研磨方法について説明する。
本発明の化学的機械的研磨方法(以下、単に「研磨方法」とも言う。)は、エッチング抑止剤を含む研磨液を半導体基板単位面積及び単位時間あたり0.35ml/(min・cm2)以下の流量で研磨定盤上の研磨パッドに供給し、研磨パッドと被研磨面とを接触させた状態で相対運動させて研磨することを特徴とする。
本発明の研磨方法では、エッチング抑止剤を含む研磨液を使用する。エッチング抑止剤としては、配位原子として窒素を1分子内に4個以上有する環状化合物が例示できる。このような環状化合物としてはテトラゾール類やビイミダゾール類が例示できる。
本発明の研磨方法は、研磨液の供給量が比較的少なくても絶縁膜上に形成された銅配線等の一部を大きな研磨速度で除去することができる。具体的には、研磨液を半導体基板単位面積及び単位時間あたり0.35ml/(min・cm2)以下の流量で供給しても、さらには0.20ml/(min・cm2)以下の流量で供給しても良好な除去速度(RR:Removing Rate)が得られる。下限としては約0.05ml/(min・cm2)が好ましい。
直径200mmのウェハを例にとると、上記の流量は、それぞれ、約110ml/min及び約63ml/minに対応する。
本発明の研磨液は、式(I)で示されるテトラゾール化合物を含有することが好ましい。
Figure 2007088024
式中、R1及びR2は、各々独立に、水素原子又は1価の置換基を表し、R1及びR2が互いに結合して環を形成してもよい。なお、R1及びR2が同時に水素原子の場合、式(I)で表される化合物は、その互変異性体でもよい。
式(I)におけるR1及びR2が採りうる1価の置換基は特に限定されないが、例えば以下のものが挙げられる。ただし、R1においては、下記に例示する具体例のうち、窒素原子と結合した場合に、その化合物が安定に得られない一価の置換基は除くものとする。
ここで、「置換基」には置換原子をも含む。又、本発明に於ける基(原子団)の例示に於いて、置換可能な置換基の場合には、無置換と共に置換された基をも包含する。例えば、「アルキル基」とは、無置換アルキル基のみならず、少なくとも1つの置換基を有する置換アルキル基をも包含する。
前記の1価の置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基(置換基を有するカルバモイル基でも良く、例えば、N−ヒドロキシカルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基)、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、(無置換、一置換又は二置換)カルバモイルオキシ基、(アルキルまたはアリール)スルホニルオキシ基、
アミノ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基(置換基を有するスルファモイル基でも良く、例えばN−アシルスルファモイル基、N−スルホニルスルファモイル基)またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
なお、活性メチン基とは2つの電子求引性基で置換されたメチン基を意味し、電子求引性基とは、例えば、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、カルボンイミドイル基(Carbonimidoyl基)を意味する。2つの電子求引性基は互いに結合して環状構造をとっていてもよい。また塩とは、アルカリ金属、アルカリ土類金属、重金属などの陽イオンや、アンモニウムイオン、ホスホニウムイオンなどの有機の陽イオンを意味する。
これらの中でも好ましい1価の置換基としては、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、N−ヒドロキシカルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基、カルバゾイル基、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、
(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基、N−アシルスルファモイル基、N−スルホニルスルファモイル基またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
さらに好ましい1価の置換基は、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)が挙げられる。
1及びR2が結合して、式(I)における−C−N−結合とともに、形成する環としては、単環であっても多環であってもよく、好ましくは5〜6員環の単環、または5〜6員環から構成される多環である。
上記の1価の置換基は、さらに例示された置換基群から選ばれた任意の置換基で置換されていてもよい。
式(I)で表される化合物の分子量は、好ましくは20〜600、より好ましくは40〜400である。
式(I)で表される化合物の具体例を以下に挙げるが、これらに限定されるものではない。
Figure 2007088024
Figure 2007088024
Figure 2007088024
式(I)で表される化合物の中で好ましいものとしては、化合物I−1、I−3、I−4、I−10、I−15、I−21、I−22、I−23、I−41、I−48が挙げられ、化合物I−1、I−4、I−15、I−22、I−23がより好ましい。
また、式(I)で表される化合物は単独で用いてもよいし、2種以上併用してもよい。
式(I)で表される化合物は、常法に従って合成できるほか、市販品を使用してもよい。
式(I)で表される化合物の添加量は、総量として、研磨に使用する際の金属用研磨液(即ち、水または水溶液で希釈する場合は希釈後の金属用研磨液を意味する。以下の「研磨に使用する際の金属用研磨液」も同意である。)の1L中、0.0001〜1.0molが好ましく、より好ましくは0.001〜0.5mol、更に好ましくは0.01〜0.1molである。すなわち、式(I)で表される化合物の添加量は、酸化剤及び式(I)で表される化合物の劣化(無効果、分解)防止の点から金属用研磨液1L中1.0mol以下が好ましく、充分な効果を得る上で0.0001mol以上が好ましい。
式(I)で表される化合物の添加量よりも少ない添加量で、チオシアン酸塩、チオエーテル類、チオ硫酸塩又はメソイオン化合物を併用してもよい。
本発明に用いることがチオシアン酸塩としては特開2004−235319号公報に記載のチオシアン酸塩を好ましく挙げることができ、チオエーテル類としては特開2004−235318号公報に記載のチオエーテル類を好ましく挙げることができ、チオ硫酸塩としては特開2004−235326号公報に記載のチオ硫酸塩を好ましく挙げることができ、また、メソイオン化合物としては特開2004−235320号公報に記載のメソイオン化合物を好ましく挙げることができる。
本発明の金属用研磨液は、構成成分として少なくとも、式(I)で表される化合物を含有し、好ましくは更に酸化剤を含有し、通常水溶液であり、より好ましくは、有機酸及びアミノ酸からなる群より選ばれた少なくとも一つを含有する。
本発明の金属用研磨液は、さらに他の成分を含有してもよく、好ましい成分として、界面活性剤、水溶性ポリマー、及び添加剤を挙げることができる。
金属用研磨液が含有する各成分は1種の単独使用でも2種以上の併用してもよい。
なお、金属用研磨液の濃縮液作製時に添加する成分の内、室温での水に対する溶解度が5%未満のものの配合量は、室温での水に対する溶解度の2倍以内とすることが好ましく、1.5倍以内とすることがより好ましい。この添加量が2倍を超えると濃縮液を5℃に冷却した際の析出を防止するのが困難となる。
なお、本明細書において「濃縮」及び「濃縮液」とは、CMPに使用する状態における研磨液よりも「濃厚」及び「濃厚な液」を意味する慣用表現であり、蒸発などの物理的な濃縮操作を伴う一般的な用語の意味とは異なる用法で用いている。
すなわち、濃縮液または濃縮された研磨液とは、研磨に使用する際の研磨液よりも、溶質の濃度が高く調製された研磨液を意味し、研磨に使用する際に、水または水溶液などで希釈して、研磨に使用されるものである。希釈倍率は、一般的には1〜20体積倍である。
本発明において「金属用研磨液」とは、研磨に使用する際の研磨液(即ち、必要により希釈された研磨液)のみならず、金属用研磨液の濃縮液をも包含する意である。
(酸化剤)
本発明の金属用研磨液は、研磨対象の金属を酸化できる化合物(酸化剤)を含有する。酸化剤としては、例えば、過酸化水素、過酸化物、硝酸塩、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、過硫酸塩、重クロム酸塩、過マンガン酸塩、オゾン水、銀(II)塩、及び鉄(III)塩が挙げられる。
鉄(III)塩としては例えば、硝酸鉄(III)、塩化鉄(III)、硫酸鉄(III)、臭化鉄(III)など無機の鉄(III)塩の他、鉄(III)の有機錯塩が好ましく用いられる。
鉄(III)の有機錯塩を用いる場合、鉄(III)錯塩を構成する錯形成化合物としては、例えば、酢酸、クエン酸、シュウ酸、サリチル酸、ジエチルジチオカルバミン酸、コハク酸、酒石酸、グリコール酸、グリシン、アラニン、アスパラギン酸、チオグリコール酸、エチレンジアミン、トリメチレンジアミン、ジエチレングリコール、トリエチレングリコール、1,2−エタンジチオール、マロン酸、グルタル酸、3−ヒドロキシ酪酸、プロピオン酸、フタル酸、イソフタル酸、3−ヒドロキシサリチル酸、3,5−ジヒドロキシサリチル酸、没食子酸、安息香酸、マレイン酸などやこれらの塩の他、アミノポリカルボン酸及びその塩が挙げられる。
アミノポリカルボン酸及びその塩としては、エチレンジアミン−N,N,N’,N’−四酢
酸、ジエチレントリアミン五酢酸、1,3−ジアミノプロパン−N,N,N’,N’−四酢酸、1,2−ジアミノプロパン−N,N,N’,N’−四酢酸、エチレンジアミン−N,N’−ジコハク酸(ラセミ体)、エチレンジアミンジコハク酸(SS体)、N−(2−カルボキシラートエチル)-L-アスパラギン酸、N−(カルボキシメチル)−L−アスパラギン酸、β-アラニンジ酢酸、メチルイミノジ酢酸、ニトリロ三酢酸、シクロヘキサンジアミン四酢酸、イミノジ酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミン1−N,N’−ニ酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、N,N−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N−ジ酢酸など及びその塩が挙げられる。対塩の種類は、アルカリ金属塩及びアンモニウム塩が好ましく、特にはアンモニウム塩が好ましい。
中でも、過酸化水素、ヨウ素酸塩、次亜塩素酸塩、塩素酸塩、鉄(III)の有機錯塩が好ましく、鉄(III)の有機錯塩を用いる場合の好ましい錯形成化合物は、クエン酸、酒石酸、アミノポリカルボン酸(具体的には、エチレンジアミン−N,N,N’,N’−四酢酸、ジエチレントリアミン五酢酸、1,3−ジアミノプロパン−N,N,N’,N’−四酢酸、エチレンジアミン−N,N’−ジコハク酸(ラセミ体)、エチレンジアミンジコハク酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、N−(カルボキシメチル)−L−アスパラギン酸、β-アラニンジ酢酸、メチルイミノジ酢酸、ニトリロ三酢酸、イミノジ酢酸)を挙げることができる。
酸化剤の中でも過酸化水素並びに鉄(III)のエチレンジアミン−N,N,N’,N’−四酢酸、1,3−ジアミノプロパン−N,N,N’,N’−四酢酸及びエチレンジアミンジコハク酸(SS体)錯体が最も好ましい。
酸化剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.003mol〜8molとすることが好ましく、0.03mol〜6molとすることがより好ましく、0.1mol〜4molとすることが特に好ましい。即ち、酸化剤の添加量は、金属の酸化が十分で高いCMP速度を確保する点で0.003mol以上が好ましく、研磨面の荒れ防止の点から8mol以下が好ましい。
(酸)
本発明の金属用研磨液は更に酸を含有することが好ましい。ここでいう酸は、金属を酸化するための酸化剤とは構造が異なる化合物を意味し、その範囲で、無機酸、有機酸、アミノ酸が挙げられる。
無機酸としては、硫酸、硝酸、ホウ酸、燐酸などが挙げられ、無機酸の中では燐酸が好ましい。
本発明においては特に有機酸やアミノ酸が存在することが好ましく、さらにはアミノ酸が好ましい。
有機酸としては、水溶性のものが好ましい。以下に例示する群から選ばれたものがより好ましい。ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、及びそれらのアンモニウム塩やアルカリ金属塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、又はそれらの混合物等が挙げられる。これらの中ではギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が銅、銅合金及び銅又は銅合金の酸化物から選ばれた少なくとも1種の金属層を含む積層膜に対して特に好ましい。
アミノ酸としては、水溶性のものが好ましく、以下の群から選ばれた化合物がより好ましい。
グリシン、L−アラニン、β−アラニン、L−2−アミノ酪酸、L−ノルバリン、L−バリン、L−ロイシン、L−ノルロイシン、L−イソロイシン、L−アロイソロイシン、L−フェニルアラニン、L−プロリン、サルコシン、L−オルニチン、L−リシン、タウリン、L−セリン、L−トレオニン、L−アロトレオニン、L−ホモセリン、L−チロシン、3,5−ジヨード−L−チロシン、β−(3,4−ジヒドロキシフェニル)−L−アラニン、L−チロキシン、
4−ヒドロキシ−L−プロリン、L−システィン、L−メチオニン、L−エチオニン、L−ランチオニン、L−シスタチオニン、L−シスチン、L−システィン酸、L−アスパラギン酸、L−グルタミン酸、S−(カルボキシメチル)−L−システィン、4−アミノ酪酸、L−アスパラギン、L−グルタミン、アザセリン、L−アルギニン、L−カナバニン、L−シトルリン、δ−ヒドロキシ−L−リシン、クレアチン、L−キヌレニン、L−ヒスチジン、1−メチル−L−ヒスチジン、3−メチル−L−ヒスチジン、エルゴチオネイン、L−トリプトファン、アクチノマイシンC1、アパミン、アンギオテンシンI、アンギオテンシンII及びアンチパイン等のアミノ酸。
リンゴ酸、酒石酸、クエン酸、グリシン、グリコール酸については実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点で特に好ましい。
有機酸及び/又はアミノ酸など酸の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0005〜0.5molとすることが好ましく、0.005mol〜0.3molとすることがより好ましく、0.01mol〜0.1molとすることが特に好ましい。即ち、酸の添加量は、エッチングの抑制の点から0.5mol以下が好ましく、充分な効果を得る上で0.0005mol以上が好ましい。
(キレート剤)
本発明の金属用研磨液は、混入する多価金属イオンなどの悪影響を低減させるために、必要に応じてキレート剤(すなわち硬水軟化剤)を含有することが好ましい。
キレート剤としては、カルシウムやマグネシウムの沈澱防止剤である汎用の硬水軟化剤やその類縁化合物であり、例えば、ニトリロ三酢酸、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、N,N,N−トリメチレンホスホン酸、エチレンジアミン−N,N,N’,N’−テトラメチレンスルホン酸、トランスシクロヘキサンジアミン四酢酸、1,2−ジアミノプロパン四酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、エチレンジアミンジ琥珀酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、β−アラニンジ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−ジ酢酸、1,2−ジヒドロキシベンゼン−4,6−ジスルホン酸等が挙げられる。
キレート剤は1種の単独使用でも良いが、必要に応じて2種以上併用しても良い。
キレート剤の添加量は混入する多価金属イオンなどの金属イオンを封鎖するのに充分な量であれば良く、例えば、研磨に使用する際の金属用研磨液の1L中、0.0003mol〜0.07molになるように添加する。
〔添加剤〕
また、本発明の金属用研磨液には以下の添加剤を用いることもできる。
アンモニア;ジメチルアミン、トリメチルアミン、トリエチルアミン、プロピレンジアミン等のアルキルアミンや、エチレンジアミンテトラ酢酸(EDTA)、ジエチルジチオカルバミン酸ナトリウム及びキトサン等のアミン;ジチゾン、クプロイン(2,2’−ビキノリン)、ネオクプロイン(2,9−ジメチル−1,10−フェナントロリン)、バソクプロイン(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)及びキュペラゾン(ビスシクロヘキサノンオキサリルヒドラゾン)等のイミン;ベンズイミダゾール−2−チオール、2−[2−(ベンゾチアゾリル)]チオプロピオン酸、2−[2−(ベンゾチアゾリル)]チオブチル酸、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾール、
4−メトキシカルボニル−1H−ベンゾトリアゾール、4−ブトキシカルボニル−1H−ベンゾトリアゾール、4−オクチルオキシカルボニル−1H−ベンゾトリアゾール、5−ヘキシルベンゾトリアゾール、N−(1,2,3−ベンゾトリアゾリル−1−メチル)−N−(1,2,4−トリアゾリル−1−メチル)−2−エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等のアゾール;ノニルメルカプタン、ドデシルメルカプタン、トリアジンチオール、トリアジンジチオール、トリアジントリチオール等のメルカプタン、その他、アントラニル酸、アミノトルイル酸、キナルジン酸などが挙げられる。これらの中でもキトサン、エチレンジアミンテトラ酢酸、L−トリプトファン、キュペラゾン、トリアジンジチオール、ベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾールブチルエステル、トリルトリアゾール、ナフトトリアゾールの併用が好ましい。
これら添加剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0001mol〜0.5molとすることが好ましく0.001mol〜0.2molとすることがより好ましく、0.005mol〜0.1molとすることが特に好ましい。即ち、添加剤の添加量は、エッチング抑制の点から0.0001mol以上が好ましく、CMP速度低下防止の点から0.5mol以下が好ましい。
〔界面活性剤及び/又は親水性ポリマー〕
本発明の金属用研磨液は、界面活性剤及び/又は親水性ポリマーを含有することが好ましい。界面活性剤と親水性ポリマーは、いずれも被研磨面の接触角を低下させる作用を有して、均一な研磨を促す作用を有する。用いられる界面活性剤及び/又は親水性ポリマーとしては、以下の群から選ばれたものが好適である。
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。
また、フッ素系界面活性剤などが挙げられる。
さらに、その他の界面活性剤、親水性化合物、親水性ポリマー等としては、グリセリンエステル、ソルビタンエステル、メトキシ酢酸、エトキシ酢酸、3−エトキシプロピオン酸及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール、アルケニルポリプロピレングリコールアルキルエーテル及びアルケニルポリプロピレングリコールアルケニルエーテル等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、
ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩及びスルホコハク酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等が挙げられる。
但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。上記例示化合物の中でもシクロヘキサノール、ポリアクリル酸アンモニウム塩、ポリビニルアルコール、コハク酸アミド、ポロビニルピロリドン、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレンブロックポリマーがより好ましい。
界面活性剤及び/又は親水性ポリマーの添加量は、総量として、研磨に使用する際の金属用研磨液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。即ち、界面活性剤及び/又は親水性ポリマーの添加量は、充分な効果を得る上で、0.001g以上が好ましく、CMP速度の低下防止の点から10g以下が好ましい。また、これらの界面活性剤及び/又は親水性ポリマーの重量平均分子量としては、500〜100,000が好ましく、特には2,000〜50,000が好ましい。
〔アルカリ剤/酸剤〕
本発明の金属用研磨液はアルカリ剤及び/又は酸剤、さらには必用に応じて緩衝剤を含有することが好ましい。
ここで、アルカリ剤及び/又は酸剤は、金属用研磨液のpHを後述するように所定のpHとすべく添加される。
アルカリ剤(及び緩衝剤)としては、水酸化アンモニウム及びテトラメチルアンモニウムハイドロキサイドなどの有機水酸化アンモニウム、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどのようなアルカノールアミン類などの非金属アルカリ剤、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸塩、リン酸塩、ホウ酸塩、四ホウ酸塩、ヒドロキシ安息香酸塩、グリシル塩、N,N−ジメチルグリシン塩、ロイシン塩、ノルロイシン塩、グアニン塩、3,4−ジヒドロキシフェニルアラニン塩、アラニン塩、アミノ酪酸塩、2−アミノ−2−メチル−1,3−プロパンジオール塩、バリン塩、プロリン塩、トリスヒドロキシアミノメタン塩、リシン塩などを用いることができる。
アルカリ剤及び緩衝剤の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリウム、リン酸三ナトリウム、リン酸三カリウム、リン酸二ナトリウム、リン酸二カリウム、ホウ酸ナトリウム、ホウ酸カリウム、四ホウ酸ナトリウム(ホウ砂)、四ホウ酸カリウム、o−ヒドロキシ安息香酸ナトリウム(サリチル酸ナトリウム)、o−ヒドロキシ安息香酸カリウム、5−スルホ−2−ヒドロキシ安息香酸ナトリウム(5−スルホサリチル酸ナトリウム)、5−スルホ−2−ヒドロキシ安息香酸カリウム(5−スルホサリチル酸カリウム)、水酸化アンモニウムなどを挙げることができる。
特に好ましいアルカリ剤として水酸化アンモニウム、水酸化カリウム、水酸化リチウム及びテトラメチルアンモニウムハイドロキサイドである。
酸剤としては、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、酢酸、乳酸などの有機酸及び硝酸、硫酸、りん酸などの無機酸を好ましく例示することができる。
アルカリ剤及び/又は酸剤の添加量としては、pHが好ましい範囲に維持される量であればよく、研磨に使用する際の金属用研磨液の1L中、0.0001mol〜1.0molとすることが好ましく0.003mol〜0.5molとすることがより好ましい。
研磨に使用する際の金属用研磨液のpHは2〜14が好ましく、3〜12が特に好ましい。この範囲において本発明の金属液は特に優れた効果を発揮する。
本発明においては、研磨面への吸着性や反応性、研磨金属の溶解性、被研磨面の電気化学的性質、化合物官能基の解離状態、液としての安定性などにより、適時化合物種、添加量やpHを設定することが好ましい。
〔砥粒〕
本発明の金属用研磨液は砥粒を含有してもよい。好ましい砥粒としては、例えば、シリカ(沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカ)、セリア、アルミナ、チタニア、ジルコニア、ゲルマニア、酸化マンガン、炭化ケイ素、ポリスチレン、ポリアクリル、ポリテレフタレートなどが挙げられる。
砥粒の添加量としては、砥粒は、使用する際の金属用研磨液の全重量に対して0.01〜20重量%であることが好ましく、0.05〜5重量%の範囲であることがより好ましい。充分な効果を得る上で0.01重量%以上が好ましく、CMPによる研磨速度が飽和するため、20重量%以下が好ましい。
また、砥粒は平均粒径が5〜1000nmが好ましく、特には10〜200nmが好ましい。
〔配線金属原材料〕
本発明においては、研磨する対象である半導体が、銅金属及び/又は銅を主成分とする合金からなる配線を持つLSIであることが好ましく、特には銅を主成分とする合金が好ましい。更には、銅を主成分とする合金の中でも銀を含有する銅合金が好ましい。銅合金に含有される銀含量は、40重量%以下が好ましく、特には10重量%以下、さらには1重量%以下が好ましく、0.00001〜0.1重量%の範囲である銅合金において最も優れた効果を発揮する。
〔配線の太さ〕
本発明においては、研磨する対象であるLSIが例えばDRAMデバイス系の場合には、配線のハーフピッチで0.15μm以下が好ましく、0.10μm以下がより好ましく、0.08μm以下が特に好ましい。一方、MPUデバイス系では、配線のハーフピッチで0.12μm以下が好ましく、0.09μm以下がより好ましく、0.07μm以下であることが特に好ましい。これらのLSIに対して、本発明の研磨液は特に優れた効果を発揮する。
〔バリア金属〕
本発明の研磨方法を適用する半導体装置においては、半導体が銅金属及び/または銅を主成分とする合金からなる配線と層間絶縁膜との間に、銅の拡散を防ぐ為のバリア層を設けることが好ましい。バリア層としては低抵抗のメタル材料がよく、特にはTiN、TiW、Ta、TaN、W、WNが好ましく、中でもTa、TaNが特に好ましい。
層間絶縁膜としては、低誘電率の絶縁性物質の薄膜が好ましく、好適な絶縁性物質としては比誘電率が3.0以下である物質であり、より好ましくは2.8以下の物質である。好ましい低誘電率物質として具体的には、BlackDiamond(アプライドマテリアルズ社製)、FLARE(Honeywell Electronic Materials社製)、SILK(Dow Chemical社製)、CORAL(Novellus System社製)、LKD(JSR(株)製)及びHSG(日立化成工業(株)製)を挙げることができる。
本発明の研磨方法は、(デュアル)ダマシン法による銅(合金)配線プロセスに好ましく適用することができる。本発明の方法は、配線金属に電気抵抗の少ない銅(合金)を使用し、層間絶縁膜には低誘電率(low-k)材料を導入したデュアルダマシン法に特に好ましく使用できる。
なお、前記のように本発明の研磨方法は、LSI等の半導体装置において絶縁膜上に形成された金属配線を含む面の平坦化に好適に用いることができるが、該金属配線の研磨に付随して、バリア金属膜や絶縁膜等の一部を研磨するものであってもよい。
(平均相対速度)
本発明の研磨方法において、研磨パッドの研磨面と被研磨面との平均相対運動速度(平均相対速度)は、被研磨面の中心を通る直線の、半径方向の相対運動速度の平均値とする。
例えば、被研磨面及び研磨面が共に回転体であるとき、それぞれの回転中心間の距離を中心間距離Lとする。この中心間を結ぶ線上における、被研磨面の相対運動速度を求めて平均相対速度とする。
本発明において、平均相対速度は、0.5〜5.0m/sであることが好ましく、1.0〜3.5m/sであることがより好ましく、1.5〜3.0m/sであることが特に好ましい。
(接触圧力)
本発明において、研磨面と被研磨面との接触部分にかかる力を、その接触面積で除した値を接触圧力とする。例えば、径がφ200mmの被研磨面全面をφ600mmの研磨面に400Nの力で押し付けた場合は、接触面積は(0.1)2π=3.14・10-22であるので、接触圧力は400/(3.14・10-2)=12,732Paである。
本発明のCMP方法に適用される接触圧力は、1,000〜25,000Paであることが好ましく、2,000〜17,500Paであることがより好ましく、3,500〜14,000Paであることがさらに好ましい。
〔研磨方法〕
金属用研磨液は、濃縮液であって使用する際に水を加えて希釈して使用液とする場合、または、各成分が次項に述べる水溶液の形態でこれらを混合し、必要により水を加え希釈して使用液とする場合、あるいは使用液として調製されている場合がある。本発明の金属用研磨液を用いた研磨方法は、いずれの場合にも適用でき、研磨液を研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する研磨方法である。
研磨する装置としては、被研磨面を有する半導体基板等を保持するホルダーと研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤を有する一般的な研磨装置が使用できる。
研磨パッドとしては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、研磨定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面(被研磨膜)を有する半導体基板の研磨パッドへの押しつけ圧力は、5〜500g/cm2であることが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、12〜240g/cm2であることがより好ましい。
本発明の研磨方法を用いることができる装置としては、特に限定されないが、例えば、Mirra Mesa CMP、Reflexion CMP(アプライドマテリアルズ社製)、FREX200、FREX300((株)荏原製作所製)、NPS3301、NPS2301(ニコン社製)、A−FP−310A、A−FP−210A(東京精密(株)製)、2300TERES(ラムリサーチ社製)、Momentum(SpeedFam-IPEC社製)を好ましい例として挙げることができる。
研磨している間、研磨パッドには金属用研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。研磨終了後の半導体基板は、流水中で良く洗浄した後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させる。本発明の研磨方法では、希釈する水溶液は、次ぎに述べる水溶液と同じである。水溶液は、予め酸化剤、酸、添加剤、界面活性剤のうち少なくとも1つ以上を含有した水で、水溶液中に含有した成分と希釈される金属用研磨液の成分を合計した成分が、金属用研磨液を使用して研磨する際の成分となるようにする。水溶液で希釈して使用する場合は、溶解しにくい成分を水溶液の形で配合することができ、より濃縮した金属用研磨液を調製することができる。
濃縮された金属用研磨液に水または水溶液を加え希釈する方法としては、濃縮された金属用研磨液を供給する配管と水または水溶液を供給する配管を途中で合流させて混合し、混合し希釈された金属用研磨液を研磨パッドに供給する方法がある。混合は、圧力を付した状態で狭い通路を通して液同士を衝突混合する方法、配管中にガラス管などの充填物を詰め液体の流れを分流分離、合流させることを繰り返し行う方法、配管中に動力で回転する羽根を設ける方法など通常に行われている方法を採用することができる。
濃縮された金属用研磨液を水または水溶液などにより希釈し、研磨する方法としては、金属用研磨液を供給する配管と水または水溶液を供給する配管を独立に設け、それぞれから所定量の液を研磨パッドに供給し、研磨パッドと被研磨面の相対運動で混合しつつ研磨する方法である。または、1つの容器に、所定量の濃縮された金属用研磨液と水または水溶液を入れ混合してから、研磨パッドにその混合した金属用研磨液を供給し、研磨をする方法がある。
本発明の別の研磨方法は、金属用研磨液が含有すべき成分を少なくとも2つの構成成分に分けて、それらを使用する際に、水または水溶液を加え希釈して研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する方法である。
例えば、酸化剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液で構成成分(A)と構成成分(B)を希釈して使用する。
また、溶解度の低い添加剤を2つの構成成分(A)と(B)に分け、酸化剤、添加剤及び界面活性剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液を加え構成成分(A)と構成成分(B)を希釈して使用する。この例の場合、構成成分(A)と構成成分(B)と水または水溶液をそれぞれ供給する3つの配管が必要であり、希釈混合は、3つの配管を、研磨パッドに供給する1つの配管に結合し、その配管内で混合する方法があり、この場合、2つの配管を結合してから他の1つの配管を結合することも可能である。
例えば、溶解しにくい添加剤を含む構成成分と他の構成成分を混合し、混合経路を長くして溶解時間を確保してから、さらに水または水溶液の配管を結合する方法である。その他の混合方法は、上記したように直接に3つの配管をそれぞれ研磨パッドに導き、研磨パッドと被研磨面の相対運動により混合する方法、1つの容器に3つの構成成分を混合して、そこから研磨パッドに希釈された金属用研磨液を供給する方法である。上記した研磨方法において、酸化剤を含む1つの構成成分を40℃以下にし、他の構成成分を室温から100℃の範囲に加温し、且つ1つの構成成分と他の構成成分または水もしくは水溶液を加え希釈して使用する際に、混合した後に40℃以下とするようにすることもできる。温度が高いと溶解度が高くなるため、金属用研磨液の溶解度の低い原料の溶解度を上げるために好ましい方法である。
酸化剤を含まない他の成分を室温から100℃の範囲で加温して溶解させた原料は、温度が下がると溶液中に析出するため、温度が低下したその成分を用いる場合は、予め加温して析出したものを溶解させる必要がある。これには、加温し溶解した構成成分液を送液する手段と、析出物を含む液を攪拌しておき、送液し配管を加温して溶解させる手段を採用することができる。加温した成分が酸化剤を含む1つの構成成分の温度を40℃以上に高めると酸化剤が分解してくる恐れがあるので、加温した構成成分とこの加温した構成成分を冷却する酸化剤を含む1つの構成成分で混合した場合、40℃以下となるようにする。
また本発明においては、上述したように金属用研磨液の成分を二分割以上に分割して、研磨面に供給してもよい。この場合、酸化物を含む成分と酸を含有する成分とに分割して供給する事が好ましい。また、金属用研磨液を濃縮液とし、希釈水を別にして研磨面に供給してもよい。
〔パッド〕
研磨用のパッドは、無発泡構造パッドでも発泡構造パッドでもよい。前者はプラスチック板のように硬質の合成樹脂バルク材をパッドに用いるものである。また、後者は更に独立発泡体(乾式発泡系)、連続発泡体(湿式発泡系)、2層複合体(積層系)の3つがあり、特には2層複合体(積層系)が好ましい。発泡は、均一でも不均一でもよい。
更に研磨に用いる砥粒(例えば、セリア、シリカ、アルミナ、樹脂など)を含有したものでもよい。また、それぞれに硬さは軟質のものと硬質のものがあり、どちらでもよく、積層系ではそれぞれの層に異なる硬さのものを用いることが好ましい。材質としては不織布、人工皮革、ポリアミド、ポリウレタン、ポリエステル、ポリカーボネート等が好ましい。また、研磨面と接触する面には、格子溝/穴/同心溝/らせん状溝などの加工を施してもよい。
〔ウェハ〕
本発明の金属用研磨液でCMPを行なう対象ウェハは、径が200mm以上であることが好ましく、特には300mm以上が好ましい。300mm以上である時に顕著に本発明の効果を発揮する。
以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。
<実施例1>
下記に示す研磨液を調製し、研磨試験を行い、評価した。
(研磨液の調製)
化合物(I−1) (Tetrazoleとも標記) 0.06g/L
過酸化水素(酸化剤) 3g/L
グリシン(酸) 10g/L
コロイダルシリカ(平均粒子径40nm) 10g/L
純水を加えて全量 1000mL
pH(アンモニア水と硫酸で調整) 7.0
(研磨試験)
基体:シリコン上に反応性イオンエッチング工程によりシリコン酸化膜を形成し、さらに、スッパタリング法により厚さ20nmのTa膜を形成し、続いてスッパタリング法により厚さ50nmの銅膜を形成後、メッキ法により合計厚さ1000nmの銅膜を形成した直径8インチのウェハを使用した
研磨パッド:IC1400K−Groove(ロデール社)
研磨機: LGP−612(LapmaSter FT社)
押さえ圧力: 240g/cm2
研磨液供給速度(SFR):200,100又は50ml/min
それぞれ、0.64,0.32及び0.16ml/(min・cm2)に相当
研磨パッド/ウエハーの回転数:95/95rpm
(評価方法)
CMP速度: ウエハー面上の49箇所に対し、金属膜のCMP前後での膜厚さを電気抵抗値から換算して、平均研磨速度を求めた。
上記研磨液を用いてCMPを行って得られた研磨速度(RR)を表1に示した。
<実施例2及び比較例1〜3>
実施例1と同様にして、表1に記載の化合物を使用して、実施例2及び比較例1〜3の研磨液を調製して研磨試験を行った。なお、BTAは、ベンゾトリアゾールの省略標記であり、BicineはN,N-Bis(2-hydroxyethyl)glycine の略称である。
得られた結果を表1にまとめて示す。
Figure 2007088024
表1に示されるように、抑止剤を含む研磨液、特に好ましくは式(I)で表される化合物を含有する研磨液は、ベンゾトリアゾールを含有する研磨液に対し、低研磨液流量(0.32及び0.16ml/(min・cm2))においても高い研磨速度を示すことが認められた。

Claims (3)

  1. エッチング抑止剤を含む研磨液を半導体基板単位面積及び単位時間あたり0.35ml/(min・cm2)以下の流量で研磨定盤上の研磨パッドに供給し、
    研磨パッドと被研磨面とを接触させた状態で相対運動させて研磨することを特徴とする
    化学的機械的研磨方法。
  2. 上記エッチング抑止剤が下記式(I)で表される化合物である請求項1記載の化学的機械的研磨方法。
    Figure 2007088024
    式中、R1及びR2は、各々独立に、水素原子又は1価の置換基を表し、R1及びR2がお互いに結合して環を形成してもよい。なお、R1及びR2が同時に水素原子の場合、式(I)で表される化合物は、その互変異性体でもよい。
  3. 更に酸化剤、及び、有機酸又はアミノ酸を含有する請求項1又は2に記載の化学的機械的研磨方法。
JP2005271918A 2005-09-20 2005-09-20 研磨方法 Abandoned JP2007088024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271918A JP2007088024A (ja) 2005-09-20 2005-09-20 研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271918A JP2007088024A (ja) 2005-09-20 2005-09-20 研磨方法

Publications (1)

Publication Number Publication Date
JP2007088024A true JP2007088024A (ja) 2007-04-05

Family

ID=37974744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271918A Abandoned JP2007088024A (ja) 2005-09-20 2005-09-20 研磨方法

Country Status (1)

Country Link
JP (1) JP2007088024A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081199A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 研磨液及び研磨方法
JP2009088243A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 研磨液
JP2009094504A (ja) * 2007-09-20 2009-04-30 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2009218539A (ja) * 2007-09-12 2009-09-24 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2010192556A (ja) * 2009-02-17 2010-09-02 Fujifilm Corp 金属用研磨液、および化学的機械的研磨方法
KR101395866B1 (ko) 2008-05-15 2014-05-15 솔브레인 주식회사 절연막 함유 기판의 화학 기계적 연마 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077062A (ja) * 1999-09-06 2001-03-23 Jsr Corp 半導体装置の製造に用いる化学機械研磨用水系分散体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077062A (ja) * 1999-09-06 2001-03-23 Jsr Corp 半導体装置の製造に用いる化学機械研磨用水系分散体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218539A (ja) * 2007-09-12 2009-09-24 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2009094504A (ja) * 2007-09-20 2009-04-30 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
JP2009081199A (ja) * 2007-09-25 2009-04-16 Fujifilm Corp 研磨液及び研磨方法
KR101515837B1 (ko) * 2007-09-25 2015-05-04 후지필름 가부시키가이샤 연마액 및 연마 방법
JP2009088243A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 研磨液
KR101395866B1 (ko) 2008-05-15 2014-05-15 솔브레인 주식회사 절연막 함유 기판의 화학 기계적 연마 조성물
JP2010192556A (ja) * 2009-02-17 2010-09-02 Fujifilm Corp 金属用研磨液、および化学的機械的研磨方法

Similar Documents

Publication Publication Date Title
KR101290090B1 (ko) 수계 연마액 및 화학 기계적 연마방법
JP5121273B2 (ja) 金属用研磨液及び研磨方法
JP2006100538A (ja) 研磨用組成物及びそれを用いた研磨方法
JP2006179845A (ja) 金属用研磨液及び研磨方法
KR20070088245A (ko) 금속용 연마액
JP2006269600A (ja) 化学的機械的研磨方法及びこれに用いる研磨液
JP4448787B2 (ja) 金属用研磨液及び研磨方法
JP2006228955A (ja) 研磨液及びそれを用いた研磨方法
JP2006049790A (ja) 金属用研磨液及び研磨方法
JP4070622B2 (ja) 金属用研磨液及び研磨方法
JP5080012B2 (ja) 金属用研磨液
JP2007088024A (ja) 研磨方法
JP2007081316A (ja) 金属用研磨液、及び、化学機械的研磨方法
JP2006269910A (ja) 金属用研磨液及びこれを用いた研磨方法
JP2004235326A (ja) 金属用研磨液及び研磨方法
JP2007227525A (ja) 貴金属用研磨液、及び、化学的機械的研磨方法
JP2007088284A (ja) 水系研磨液及び化学機械的研磨方法
JP2004235319A (ja) 金属用研磨液及び研磨方法
JP2006093580A (ja) 化学的機械的研磨方法
JP2006190890A (ja) 研磨液及びそれを用いた研磨方法
JP2006086353A (ja) 銅用研磨液及び研磨方法
JP2006100570A (ja) 研磨用組成物及びそれを用いた研磨方法
JP2007088226A (ja) カーボン配線用研磨液、及び、研磨方法
JP4162502B2 (ja) 金属用研磨液及び研磨方法
JP2006100550A (ja) 金属用研磨液材料及び研磨方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100614

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110412