JP2007087994A - Surface-emitting semiconductor laser element - Google Patents

Surface-emitting semiconductor laser element Download PDF

Info

Publication number
JP2007087994A
JP2007087994A JP2005271410A JP2005271410A JP2007087994A JP 2007087994 A JP2007087994 A JP 2007087994A JP 2005271410 A JP2005271410 A JP 2005271410A JP 2005271410 A JP2005271410 A JP 2005271410A JP 2007087994 A JP2007087994 A JP 2007087994A
Authority
JP
Japan
Prior art keywords
layer
resonator
semiconductor laser
emitting semiconductor
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271410A
Other languages
Japanese (ja)
Inventor
Seteiagun Kashimirusu
セティアグン カシミルス
Tatsuo Kageyama
健生 影山
Hideaki Nagoshi
秀昭 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005271410A priority Critical patent/JP2007087994A/en
Publication of JP2007087994A publication Critical patent/JP2007087994A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-emitting semiconductor laser element which can improve optical output while keeping high-speed operational characteristic in high-temperature environment. <P>SOLUTION: A plurality of active layers 42 having a multiple quantum well structure comprised of a Ga<SB>1-x</SB>In<SB>x</SB>N<SB>y1</SB>As<SB>1-y1-y2</SB>Sb<SB>y2</SB>(0.1<x, 0<y1<0.03, 0≤y2≤0.06) well layer 43 and a GaN<SB>z1</SB>As<SB>1-z1-z2-z3</SB>Sb<SB>z2</SB>P<SB>z3</SB>barrier layer 44 (0<z1≤0.05, 0≤z2≤0.06, 0≤z3≤0.2) are provided in a resonator 41, in a manner that an approx center of the respective active layers 42 may be located in the antinode of a standing wave pattern in the resonator 41. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、面発光半導体レーザ素子に関し、特に発振波長が1.0〜1.6μm帯で高光出力でかつ高温環境において高速動作特性を有する面発光半導体レーザ素子に関するものである。   The present invention relates to a surface-emitting semiconductor laser device, and more particularly to a surface-emitting semiconductor laser device having an oscillation wavelength of 1.0 to 1.6 μm, high optical output, and high-speed operation characteristics in a high temperature environment.

面発光半導体レーザ素子は同一基板上に2次元的に多数のレーザ素子を集積配置できる特長を備えており、光インターコネクションや光コンピューティングなどの光の並列性を生かした並列光情報処理、或いは大容量並列光伝送などへの応用に適している。   A surface emitting semiconductor laser element has a feature that a large number of laser elements can be integrated and arranged two-dimensionally on the same substrate, and parallel optical information processing that utilizes parallelism of light such as optical interconnection or optical computing, or Suitable for applications such as large-capacity parallel optical transmission.

近年、GaAs基板上に、相互にAl組成の異なるAlGaAs/AlGaAs等のペアが複数積層された半導体多層膜反射鏡が対をなすように形成され、前記一対の半導体多層膜反射鏡の間にGax In1-xy As1-y 系活性層が形成された、発振波長が1.0〜1.6μm帯の面発光半導体レーザ素子が高温環境において高速動作特性を有し、光通信装置の光源として注目されている。 In recent years, semiconductor multilayer reflectors in which a plurality of pairs of AlGaAs / AlGaAs having different Al compositions are laminated on a GaAs substrate are formed to form a pair, and Ga between the pair of semiconductor multilayer reflectors. A surface emitting semiconductor laser element having an oscillation wavelength of 1.0 to 1.6 μm formed with an x In 1-x N y As 1-y active layer has high-speed operation characteristics in a high temperature environment, and an optical communication device Has attracted attention as a light source.

従来の1.0〜1.6μm帯のGax In1-xy As1-y 系活性層を有する面発光半導体レーザ素子の一例について、図5を用いて説明する。
図5に示すように、面発光半導体レーザ素子10は、n−GaAs基板12上に、n−GaAs/Al0.9 Ga0.1 Asのペアを積層してなる下部DBR半導体多層膜反射鏡14と、n−GaAsクラッド層18と、発振波長が1.3μmのGaxIn1-xyAs1-y井戸層を有する多重量子井戸構造の活性層20と、p−GaAsクラッド層22と、p−GaAs/Al0.9 Ga0.1 Asのペアを積層してなる上部DBR半導体多層膜反射鏡24と、p−GaAsコンタクト層26とを順次積層した積層構造を備えている。
注入電流を効率良く閉じ込めるために、活性層20と上部DBR反射鏡24の間には、電流注入領域として設けられたp−AlAs層17と、電流注入領域の外側の電流狭窄層として設けられたAl酸化層16が形成されている。Al酸化層16は、AlAs層のAlを選択的に酸化して形成されている。
また、積層構造上には、保護膜としてSiN膜32が成膜されている。メサ上にはp−GaAsコンタクト層26に接続するリング状のp側電極34、およびp側電極34の引出し用電極36が設けられている。また、n−GaAs基板12の裏面にはn側電極38が設けてある。
上記構成により、面発光半導体レーザ素子10は、n−GaAs基板12に直交し、かつ積層構造側の方向にレーザ光を出射する。
特開2003−179308号公報
An example of a conventional surface-emitting semiconductor laser element having a Ga x In 1-x N y As 1-y active layer in the 1.0 to 1.6 μm band will be described with reference to FIG.
As shown in FIG. 5, the surface emitting semiconductor laser device 10 includes a lower DBR semiconductor multilayer reflector 14 in which an n-GaAs / Al 0.9 Ga 0.1 As pair is stacked on an n-GaAs substrate 12, A GaAs cladding layer 18, an active layer 20 having a multiple quantum well structure having a Ga x In 1-x N y As 1-y well layer with an oscillation wavelength of 1.3 μm, a p-GaAs cladding layer 22, and a p- It has a laminated structure in which an upper DBR semiconductor multilayer film reflecting mirror 24 formed by laminating a pair of GaAs / Al 0.9 Ga 0.1 As and a p-GaAs contact layer 26 are sequentially laminated.
In order to efficiently confine the injection current, a p-AlAs layer 17 provided as a current injection region and a current confinement layer outside the current injection region are provided between the active layer 20 and the upper DBR reflector 24. An Al oxide layer 16 is formed. The Al oxide layer 16 is formed by selectively oxidizing Al of the AlAs layer.
In addition, a SiN film 32 is formed as a protective film on the laminated structure. On the mesa, a ring-shaped p-side electrode 34 connected to the p-GaAs contact layer 26 and an extraction electrode 36 for the p-side electrode 34 are provided. An n-side electrode 38 is provided on the back surface of the n-GaAs substrate 12.
With the above configuration, the surface emitting semiconductor laser element 10 emits laser light in a direction perpendicular to the n-GaAs substrate 12 and on the side of the laminated structure.
JP 2003-179308 A

本発明者は鋭意実験した結果、図5に示した面発光半導体レーザ素子10において、Gax In1-xy As1-y 系井戸層を有する多重量子井戸構造の活性層20を構成する障壁層をGaNz As1-zで構成することにより、比較的低い閾値電流密 度で1.3μm帯のレーザ発振が実現することを見出した。この際、1.3μm帯の発振波長を得るために、井戸層を構成するGax In1-xy As1-y のIn組成を30%以上(x≦0.7)、N組成を3%以下(y≦0.03)に設定した。 As a result of diligent experiments, the inventor forms an active layer 20 having a multiple quantum well structure having a Ga x In 1 -x N y As 1 -y well layer in the surface emitting semiconductor laser device 10 shown in FIG. It has been found that by forming the barrier layer with GaN z As 1-z , laser oscillation in the 1.3 μm band can be realized with a relatively low threshold current density. At this time, in order to obtain an oscillation wavelength in the 1.3 μm band, the In composition of Ga x In 1-x N y As 1-y constituting the well layer is 30% or more (x ≦ 0.7), and the N composition is It was set to 3% or less (y ≦ 0.03).

ところで、上記多重量子井戸構造では、n−GaAs基板12上に積層されたGax In1-xy As1-y 井戸層は高圧縮歪み(歪量εw >2%)を受け、一方、GaNz As1-z 障壁層は引っ張り歪み(歪量εb <−0.5%)を受ける。多重量子井戸構造の結晶性を保つためには、多重量子井戸構造のネット歪みεnet を零 に近く設定する必要がある。そのためには、上記井戸層の臨界膜厚は約7nmであるので、障壁層は比較的に厚く、15nm以上に設定する必要がある。
なお、ネット歪みεnet は、
εnet =(Nw εww +Nb εbb )/(Nww +Nbb
で与えられるものである。ここで、Nw は井戸層数、εw は井戸層における歪み、Lwは井戸層厚、Nb は障壁層数、εb は障壁層における歪み、Lb は障壁層厚である。
しかしながら、上述のように障壁層を厚くすると、面発光半導体レーザ素子の光出力が低下するという問題が生じた。また、多重量子井戸構造の結晶性を悪化させないようにするためには、井戸層数を少なく設定する必要があり、その結果十分な光出力が得られないという問題が生じた。
By the way, in the multiple quantum well structure, the Ga x In 1-x N y As 1-y well layer stacked on the n-GaAs substrate 12 is subjected to high compressive strain (strain amount ε w > 2%). The GaN z As 1-z barrier layer is subjected to tensile strain (strain amount ε b <−0.5%). In order to maintain the crystallinity of the multiple quantum well structure, it is necessary to set the net strain ε net of the multiple quantum well structure close to zero. For that purpose, since the critical thickness of the well layer is about 7 nm, the barrier layer is relatively thick and needs to be set to 15 nm or more.
The net distortion ε net is
ε net = (N w ε w L w + N b ε b L b) / (N w L w + N b L b)
Is given by Here, N w is the number of well layers, ε w is the strain in the well layers, L w is the thickness of the well layers, N b is the number of barrier layers, ε b is the strain in the barrier layers, and L b is the thickness of the barrier layers.
However, when the barrier layer is made thick as described above, there arises a problem that the light output of the surface emitting semiconductor laser element is lowered. Further, in order not to deteriorate the crystallinity of the multiple quantum well structure, it is necessary to set the number of well layers to be small, and as a result, there is a problem that a sufficient light output cannot be obtained.

本発明は、上述した問題に鑑み、光出力を向上させた、特に高温環境において高速動作特性を維持しながら光出力を向上させた面発光半導体レーザ素子を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a surface-emitting semiconductor laser device that has improved light output, particularly while maintaining high-speed operation characteristics in a high temperature environment.

本発明の第1発明は、請求項1に記載のように、GaInNAs(Sb)井戸層とGaNAs(Sb)(P)障壁層とからなる多重量子井戸の活性層が共振器内に設けられた面発光半導体レーザ素子において、前記活性層は複数個が前記共振器内に設けられ、各活性層はそれぞれの略中心が前記共振器中の定在波パターンの腹の部分に位置するように前記共振器内に設けられていることを特徴とする面発光半導体レーザ素子である。ここで、活性層の中心とは、活性層の厚さ方向の中心を意味する。また、井戸層はSbを含んでも含まなくてもよく、障壁層はSb、Pを含んでも含まなくてもよい。
上述のように、GaInNAs系の多重量子井戸からなる複数の活性層の略中心を、共振器に伝搬する定在波の腹(強度の極大箇所)に位置させることにより、光出力を向上させることができる。
第1発明は、面発光半導体レーザ素子の光出力は多重量子井戸の中を伝搬する定在波の電界の強さの2乗に比例することに注目したものである。即ち、多重量子井戸構造の活性層の結晶性の悪化を防ぐために、活性層を構成する多重量子井戸の井戸層数を少なくしても、複数の活性層をそれぞれの略中心が共振器を伝搬する定在波の腹に位置するように配置することにより、多重量子井戸の中を伝搬する定在波の電界を強め、各量子井戸からの光出力を強め、その総和である全体としての光出力を向上させることができる。
レーザ波長を1300nmとし、GaAsの屈折率を3.45とすれば、1/2λ共振器長は約190nmになる。従って、光出力は理想的な特性に対して95%以上を維持するための、共振器を伝搬する定在波の腹に対する複数の活性層の各略中心の好ましい位置は、次式でより導くことができる。
190−[arcsec((0.95)1/2)×(2/π)×190]=約30nm
以上のように、共振器を伝搬する定在波の腹の両側30nm以内に、活性層の略中心を配置することが好ましい。
According to a first aspect of the present invention, an active layer of a multi-quantum well comprising a GaInNAs (Sb) well layer and a GaNAs (Sb) (P) barrier layer is provided in the resonator as described in claim 1. In the surface-emitting semiconductor laser device, a plurality of the active layers are provided in the resonator, and each active layer is positioned so that a substantially center of each of the active layers is located at an antinode of the standing wave pattern in the resonator. The surface-emitting semiconductor laser device is provided in a resonator. Here, the center of the active layer means the center of the active layer in the thickness direction. The well layer may or may not contain Sb, and the barrier layer may or may not contain Sb and P.
As described above, the optical output is improved by positioning the approximate center of a plurality of active layers composed of GaInNAs-based multiple quantum wells at the antinode (maximum intensity point) of the standing wave propagating to the resonator. Can do.
The first invention pays attention to the fact that the optical output of the surface emitting semiconductor laser element is proportional to the square of the strength of the electric field of the standing wave propagating in the multiple quantum well. That is, in order to prevent deterioration of the crystallinity of the active layer of the multi-quantum well structure, even if the number of well layers of the multi-quantum well constituting the active layer is reduced, a plurality of active layers propagate through the resonator at their respective centers. By placing them so that they are located at the antinodes of standing waves, the electric field of the standing waves propagating in the multiple quantum wells is strengthened, the light output from each quantum well is strengthened, and the total light that is the sum of them The output can be improved.
If the laser wavelength is 1300 nm and the refractive index of GaAs is 3.45, the 1 / 2λ resonator length is about 190 nm. Therefore, in order to maintain the optical output at 95% or more with respect to the ideal characteristic, a preferable position of each approximate center of the plurality of active layers with respect to the antinodes of the standing wave propagating through the resonator is derived from the following equation. be able to.
190− [arcsec ((0.95) 1/2 ) × (2 / π) × 190] = about 30 nm
As described above, it is preferable to arrange the approximate center of the active layer within 30 nm on both sides of the antinode of the standing wave propagating through the resonator.

上記について、共振器内における電界強度の2乗を算出した結果により、説明する。計算に用いたパラメーターは、発振波長λが1300nm、井戸層厚Lw が7.3nm、障壁層厚Lb が16nm、また共振器の実効屈折率neff が3.45、共振器長が2λ/neff である。
図1(a)は、共振器内における電界強度の2乗の変化を示す図である。
図1(a)において、曲線Aは、図1(b)に示すように、3重量子井戸構造でネット歪みεnet が0.33%である1個の活性層を、3個の井戸層の中心の井戸層 が共振器中の定在波パターンの腹の部分に位置するように、共振器中に設けた場合を示す。また、曲線Bは、図1(c)に示すように、前記活性層を2個、それぞれの中心の井戸層が共振器中の定在波パターンの腹の部分に位置するように、共振器中に設けた場合を示す。さらに、曲線Cは、図1(d)に示すように、前記活性層を3個、それぞれの中心の井戸層が共振器中の定在波パターンの腹の部分に位置するように、周期的に設けた場合を示す。
図1(a)からわかるように、光出力に相当する電界強度の2乗は、活性層が1個である曲線Aに対して、活性層が2個である曲線Bは2倍、活性層が3個である曲線Cは3倍になる。
The above will be described based on the result of calculating the square of the electric field strength in the resonator. The parameters used for the calculation were as follows: the oscillation wavelength λ was 1300 nm, the well layer thickness L w was 7.3 nm, the barrier layer thickness L b was 16 nm, the effective refractive index n eff of the resonator was 3.45, and the resonator length was 2λ. / N eff .
FIG. 1A is a diagram showing a change in the square of the electric field strength in the resonator.
In FIG. 1 (a), a curve A indicates that one active layer having a triple quantum well structure and a net strain ε net of 0.33% is represented by three well layers as shown in FIG. 1 (b). This shows a case where the center well layer is provided in the resonator so that the well layer is located at the antinode of the standing wave pattern in the resonator. Further, as shown in FIG. 1 (c), the curve B indicates that the two active layers and the center well layer of each of the active layers are located at the antinodes of the standing wave pattern in the resonator. The case where it is provided is shown. Furthermore, as shown in FIG. 1 (d), the curve C shows that the three active layers are arranged periodically such that the central well layer is located at the antinode of the standing wave pattern in the resonator. The case where it is provided is shown.
As can be seen from FIG. 1A, the square of the electric field intensity corresponding to the light output is twice that of the curve B having two active layers compared to the curve A having one active layer. Curve C with three is tripled.

また、第2発明は、請求項2に記載のように、請求項1において、前記各活性層の略中心は、前記共振器中の定在波パターンの腹の両側略30nm以内に位置するように前記共振器内に設けられていることを特徴とする面発光半導体レーザ素子である。
前記多重量子井戸の井戸層と障壁層の伝導帯バンドオフセットエネルギーは400meV以下であり、価電子帯バンドオフセットエネルギーは200meV以下であることを特徴とする面発光半導体レーザ素子である。
レーザ波長を1300nmとし、GaAsの屈折率を3.45とすれば、1/2λ共振器長は約190nmになる。従って、光出力は理想的な特性に対して95%以上を維持するための、共振器を伝搬する定在波の腹に対する複数の活性層の各略中心の好ましい位置は、次式でより導くことができる。
190−[arcsec((0.95)1/2)×(2/π)×190]=約30nm
以上のように、共振器を伝搬する定在波の腹の両側30nm以内に、活性層の略中心を配置することが好ましい。
According to a second aspect of the present invention, as recited in the second aspect, in the first aspect, the approximate center of each active layer is located within approximately 30 nm on both sides of the antinode of the standing wave pattern in the resonator. The surface-emitting semiconductor laser device is provided in the resonator.
The surface emitting semiconductor laser device is characterized in that the conduction band offset energy of the well layer and the barrier layer of the multiple quantum well is 400 meV or less and the valence band offset energy is 200 meV or less.
If the laser wavelength is 1300 nm and the refractive index of GaAs is 3.45, the 1 / 2λ resonator length is about 190 nm. Therefore, in order to maintain the optical output at 95% or more with respect to the ideal characteristic, a preferable position of each approximate center of the plurality of active layers with respect to the antinodes of the standing wave propagating through the resonator is derived from the following equation. be able to.
190− [arcsec ((0.95) 1/2 ) × (2 / π) × 190] = about 30 nm
As described above, it is preferable to arrange the approximate center of the active layer within 30 nm on both sides of the antinode of the standing wave propagating through the resonator.

また、第3発明は、請求項3に記載のように、請求項1ないし2において、前記多重量子井戸の井戸層と障壁層の伝導帯バンドオフセットエネルギーは400meV以下であり、価電子帯バンドオフセットエネルギーは200meV以下であることを特徴とする面発光半導体レーザ素子である。   According to a third aspect of the present invention, in the first or second aspect, the conduction band offset energy of the well layer and the barrier layer of the multiple quantum well is 400 meV or less, and the valence band offset The surface emitting semiconductor laser device is characterized in that the energy is 200 meV or less.

本発明は、鋭意実験した結果に基づくものである。
光出力を向上させるためには、活性層を構成する多重量子井戸の各井戸層へのキャリア注入効率が重要なパラメーターとなる。そこで、本発明者は量子井戸構造とキャリア注入効率との関係を調べた。図2は、レーザ発振の閾値電流密度と井戸層と障壁層間の伝導帯バンドオフセットエネルギーとの関係を示す一例である。図2に示すように、井戸層と障壁層間の伝導帯バンドオフセットエネルギーが400meVを超えると、閾値電流密度が著しく増加する。これは、伝導帯バンドオフセットエネルギーが400meVを超えると、井戸層へのキャリア注入効率が低下することに起因する。従って、光出力を向上させるためには井戸層と障壁層間の伝導帯バンドオフセットエネルギーを400meV以下に設定することが好ましい。
同様に、井戸層と障壁層間の価電子帯バンドオフセットエネルギーは、200meV以下に設定することが好ましい。
The present invention is based on the results of earnest experiments.
In order to improve the optical output, the carrier injection efficiency into each well layer of the multiple quantum wells constituting the active layer is an important parameter. Therefore, the present inventor investigated the relationship between the quantum well structure and the carrier injection efficiency. FIG. 2 is an example showing the relationship between the threshold current density of laser oscillation and the conduction band offset energy between the well layer and the barrier layer. As shown in FIG. 2, when the conduction band offset energy between the well layer and the barrier layer exceeds 400 meV, the threshold current density significantly increases. This is because when the conduction band offset energy exceeds 400 meV, the carrier injection efficiency into the well layer decreases. Therefore, in order to improve the light output, it is preferable to set the conduction band offset energy between the well layer and the barrier layer to 400 meV or less.
Similarly, the valence band offset energy between the well layer and the barrier layer is preferably set to 200 meV or less.

また、第4発明は、請求項4に記載のように、請求項1ないし3において、前記多重量子井戸構造の障壁層にはp型変調ドープが施されることを特徴とする面発光半導体レーザ素子である。電子に比べて正孔の拡散長が短いため、多重量子井戸構造の障壁層にp型変調ドープを施すことによって井戸層への正孔注入効率が向上できる。   A fourth aspect of the present invention is the surface emitting semiconductor laser according to the fourth aspect, wherein the barrier layer of the multiple quantum well structure is subjected to p-type modulation doping in the first to third aspects. It is an element. Since the diffusion length of holes is shorter than that of electrons, the efficiency of hole injection into the well layer can be improved by applying p-type modulation doping to the barrier layer of the multiple quantum well structure.

また、第5発明は、請求項5に記載のように、請求項1ないし4において、前記多重量子井戸のネット歪εnet は、−0.5%≦εnet ≦0.5%であることを特徴とする面発光半導体レーザ素子である。
上述のように、ネット歪εnet を−0.5%≦εnet ≦0.5%に設定すると、多重量子井戸の結晶性を良好に保つことができる。
According to a fifth aspect of the present invention, as described in the fifth aspect, in the first to fourth aspects, the net strain ε net of the multiple quantum well is −0.5% ≦ ε net ≦ 0.5%. A surface emitting semiconductor laser device characterized by the following.
As described above, when the net strain ε net is set to −0.5% ≦ ε net ≦ 0.5%, the crystallinity of the multiple quantum well can be kept good.

また、第6発明は、請求項6に記載のように、請求項1ないし5において、前記多重量子井戸の井戸層数Nw は、3≦Nw ≦12であることを特徴とする面発光半導体レーザ素子である。
上述のように、井戸層数Nw を3≦Nw ≦12に設定すると、多重量子井戸の結晶性を良好に保つことができる。
According to a sixth aspect of the present invention, as in the sixth aspect of the present invention, in the first to fifth aspects, the number of well layers N w of the multiple quantum well is 3 ≦ N w ≦ 12. It is a semiconductor laser element.
As described above, when the number of well layers N w is set to 3 ≦ N w ≦ 12, the crystallinity of the multiple quantum well can be kept good.

また、第7発明は、請求項7に記載のように、請求項1ないし6において、前記共振器を構成する二つの反射鏡は半導体多層膜反射鏡からなり、前記二つの半導体多層膜反射鏡中に、注入電流を狭窄する電流狭窄層を設けたことを特徴とする面発光半導体レーザ素子である。
多重量子井戸構造からなる複数の活性層を共振器中に定在波パターンの腹の部分に位置するように設けて光出力を向上させるためには、共振器長を長くする必要がある。そうすると、注入電流を狭窄する電流狭窄層を共振器の注入する側にのみ設けただけでは、注入電流が共振器中で広がり、その結果、レーザ光のスペクトル幅が増加し、又は単一モードが得られにくくなる。そこで、第6発明のように、共振器両側の二つの半導体多層膜反射鏡中に、注入電流を狭窄する電流狭窄層を設けると、レーザ光のスペクトル幅を狭く、又は単一モードを維持しながら光出力を向上させることができる。
According to a seventh aspect of the present invention, according to the seventh aspect of the present invention, in the first to sixth aspects, the two reflecting mirrors constituting the resonator are semiconductor multilayer reflecting mirrors, and the two semiconductor multilayer reflecting mirrors. In the surface emitting semiconductor laser device, a current confinement layer for confining an injection current is provided therein.
In order to improve the light output by providing a plurality of active layers having a multiple quantum well structure so as to be located in the antinodes of the standing wave pattern in the resonator, it is necessary to increase the resonator length. Then, if a current confinement layer for confining the injection current is provided only on the side where the resonator is injected, the injection current spreads in the resonator, resulting in an increase in the spectral width of the laser beam or a single mode. It becomes difficult to obtain. Therefore, if a current confinement layer for constricting the injection current is provided in the two semiconductor multilayer reflectors on both sides of the resonator as in the sixth aspect of the invention, the spectrum width of the laser beam is narrowed or the single mode is maintained. The light output can be improved.

本発明によれば、GaInNAs系の1.3μm帯面発光半導体レーザ素子において、高温環境において高速の動作特性を維持しながら高い光出力を得ることができるという優れた効果を有する。   According to the present invention, a GaInNAs 1.3 μm band surface emitting semiconductor laser device has an excellent effect that a high light output can be obtained while maintaining high-speed operation characteristics in a high temperature environment.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。
図3は、本発明にかかる面発光半導体レーザ素子の一実施形態の発振部分を示す要部断面図である。図3において、従来の面発光半導体レーザ素子の説明に用いた図5に関して説明した部分と同部分は同符号で指示し、詳細な説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a cross-sectional view of an essential part showing an oscillation part of one embodiment of the surface emitting semiconductor laser device according to the present invention. In FIG. 3, the same parts as those described with reference to FIG. 5 used for the description of the conventional surface emitting semiconductor laser element are designated by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、本実施形態の面発光半導体レーザ素子40は、n−GaAs基板12上に、n−GaAs/Al0.9 Ga0.1 Asのペアを積層してなる下部DBR半導体多層膜反射鏡14と、共振器41と、p−GaAs/Al0.9 Ga0.1 Asのペアを積層してなる上部DBR半導体多層膜反射鏡24と、p−GaAsコンタクト層26とを順次積層したものである。
図4は、上記実施形態の共振器41部分を示す要部断面図である。共振器41は、共振器長が1.5λ/neff であり、その中に2個の活性層42が設けられている 。また、45はGaAsクラッド層である。
前記活性層42は、3重量子井戸からなり、前記3重量子井戸を構成する井戸層43はGa0.61In0.39As0.9820.018からなり、障壁層44はGaN0.019 As0.981 からなり、その発振波長は1.295μm、ネット歪みεnet は0 .33%である。前記2個の活性層42は、各々の3重量子井戸の中心の井戸層43aが共振器41の定在波の腹に一致するよう設けられている。また、井戸層43と障壁層44の伝導帯バンドオフセットエネルギーは350meVに、価電子帯バンドオフセットエネルギーは100meVになっている。
また、下部DBR半導体多層膜反射鏡14には、炭素イオン注入によりn型から高抵抗化した、注入電流を狭窄する電流狭窄層46が形成されている。また、上部DBR半導体多層膜反射鏡24には、電流注入領域として設けられたp−AlAs層17と、電流注入領域の外側の電流狭窄層として設けられたAl酸化層16が形成されている。
なお、共振器41およびその周辺以外は、図5に示した従来の面発光半導体レーザ素子と同様の構造である。
As shown in FIG. 3, the surface emitting semiconductor laser device 40 according to the present embodiment includes a lower DBR semiconductor multilayer film reflecting mirror in which an n-GaAs / Al 0.9 Ga 0.1 As pair is stacked on an n-GaAs substrate 12. 14, a resonator 41, an upper DBR semiconductor multilayer mirror 24 formed by stacking a pair of p-GaAs / Al 0.9 Ga 0.1 As, and a p-GaAs contact layer 26 are sequentially stacked.
FIG. 4 is a cross-sectional view of the main part showing the resonator 41 portion of the above embodiment. The resonator 41 has a resonator length of 1.5λ / n eff , and two active layers 42 are provided therein. Reference numeral 45 denotes a GaAs cladding layer.
The active layer 42 is composed of a triple quantum well, the well layer 43 constituting the triple quantum well is composed of Ga 0.61 In 0.39 As 0.982 N 0.018 , the barrier layer 44 is composed of GaN 0.019 As 0.981 , and its oscillation wavelength Is 1.295 μm, the net distortion ε net is 0. 33%. The two active layers 42 are provided such that the center well layer 43a of each triplet well coincides with the antinode of the standing wave of the resonator 41. The conduction band offset energy of the well layer 43 and the barrier layer 44 is 350 meV, and the valence band offset energy is 100 meV.
The lower DBR semiconductor multilayer mirror 14 is provided with a current confinement layer 46 that constricts the injection current, which is increased in resistance from n-type by carbon ion implantation. In the upper DBR semiconductor multilayer mirror 24, a p-AlAs layer 17 provided as a current injection region and an Al oxide layer 16 provided as a current confinement layer outside the current injection region are formed.
Except for the resonator 41 and its periphery, the structure is the same as that of the conventional surface emitting semiconductor laser element shown in FIG.

本実施形態の面発光半導体レーザ素子40は、有機金属気相成長法およびガスソース分子線エピタキシー法を組み合わせたハイブリッド法により、n−GaAs基板12上に化合物半導体層からなる積層構造を形成し、次いで積層構造をメサエッチングし、次いで、蒸着により金属のp側電極34、およびp側電極34の引出し用電極36を形成し、さらに、n−GaAs基板12の裏面にn側電極38を形成して製作した。   The surface-emitting semiconductor laser device 40 of the present embodiment forms a stacked structure composed of compound semiconductor layers on the n-GaAs substrate 12 by a hybrid method combining a metal organic vapor phase epitaxy method and a gas source molecular beam epitaxy method, Next, the laminated structure is mesa-etched, and then a metal p-side electrode 34 and an extraction electrode 36 for the p-side electrode 34 are formed by vapor deposition, and an n-side electrode 38 is formed on the back surface of the n-GaAs substrate 12. Made.

本実施形態が従来例と異なる特徴的なことは、以下の通りである。即ち、
1)共振器長が1.5λ/neff であり、3重量子井戸からなる2個の活性層42が、3重量子井戸の中心井戸層43aが共振器41の定在波の腹の位置に一致するように周期的に形成されており、また、活性層42の井戸層43と障壁層44の伝導帯バンドオフセットエネルギーが350meVに、価電子帯バンドオフセットエネルギーが100meVになっていることである。
2)また、下部DBR半導体多層膜反射鏡14に電流狭窄層46を設け、上部DBR半導体多層膜反射鏡24に電流狭窄層としてAl酸化層16を設け、共振器41の両側で注入電流の電流狭窄が行われていることである。
What is different from the conventional example in this embodiment is as follows. That is,
1) The resonator length is 1.5λ / n eff , the two active layers 42 made of triplet wells, the center well layer 43a of the triplet well is located at the antinode of the standing wave of the resonator 41 In addition, the conduction band offset energy of the well layer 43 and the barrier layer 44 of the active layer 42 is 350 meV, and the valence band offset energy is 100 meV. is there.
2) Further, a current confinement layer 46 is provided in the lower DBR semiconductor multilayer reflector 14, an Al oxide layer 16 is provided as a current confinement layer in the upper DBR semiconductor multilayer reflector 24, and the current of the injected current is provided on both sides of the resonator 41. It is that stenosis is performed.

本実施形態の面発光半導体レーザ素子40は、上記のような共振器41の構造により、また、共振器41の上下、即ち、下部DBR半導体多層膜反射鏡14と上部DBR半導体多層膜反射鏡24に注入電流の狭窄構造を設けることにより、85℃の高温環境において(従来に比して約2倍の)2mWの光出力を得ることができ、かつ、10Gbpsの高速の動作特性が実現できた。
なお、上部DBR半導体多層膜反射鏡24に電流狭窄層としてAl酸化層16を設け、下部DBR半導体多層膜反射鏡14には電流狭窄構造を設けない場合には、2mWの光出力を得ることができたが、動作速度は2.5Gbpsであった。
The surface-emitting semiconductor laser device 40 of the present embodiment has the above-described structure of the resonator 41, and the upper and lower sides of the resonator 41, that is, the lower DBR semiconductor multilayer reflector 14 and the upper DBR semiconductor multilayer reflector 24. By providing a constriction structure for the injection current, an optical output of 2 mW can be obtained in a high-temperature environment of 85 ° C. (about twice as much as before), and high-speed operating characteristics of 10 Gbps can be realized. .
If the upper DBR semiconductor multilayer reflector 24 is provided with an Al oxide layer 16 as a current confinement layer and the lower DBR semiconductor multilayer reflector 14 is not provided with a current confinement structure, a light output of 2 mW can be obtained. Although it was possible, the operation speed was 2.5 Gbps.

なお、上記実施形態は、本発明を具体化した一例であって、本願発明の技術的範囲を限定するものではない。例えば、n型の下部DBR半導体多層膜反射鏡14に設ける電流狭窄構造は、下部DBR半導体多層膜反射鏡14に高抵抗のi型層を設け、前記i型層をSiイオン注入により部分的にn型化して電流注入領域としてもよい。あるいは、多重量子井戸の障壁層にp型変調ドープを施してもよい。   In addition, the said embodiment is an example which actualized this invention, Comprising: The technical scope of this invention is not limited. For example, in the current confinement structure provided in the n-type lower DBR semiconductor multilayer reflector 14, a high resistance i-type layer is provided in the lower DBR semiconductor multilayer reflector 14 and the i-type layer is partially formed by Si ion implantation. An n-type may be used as a current injection region. Alternatively, p-type modulation doping may be applied to the barrier layer of the multiple quantum well.

(a)は、本発明において、共振器内における電界強度の2乗が活性層の数により変化する計算結果を示す図であり、(b)〜(d)はそれぞれ、(a)における曲線A、BおよびCの活性層の共振器内における配置を示す図である。(A) is a figure which shows the calculation result from which the square of the electric field strength in a resonator changes with the number of active layers in this invention, (b)-(d) is the curve A in (a), respectively. FIG. 3 is a diagram showing an arrangement of active layers of B, C and C in a resonator. 面発光半導体レーザ素子の活性層の井戸層と障壁層間の伝導帯バンドオフセットエネルギーと閾値電流密度との関係を示す図である。It is a figure which shows the relationship between the conduction band offset energy between the well layer of an active layer of a surface emitting semiconductor laser element, and a barrier layer, and a threshold current density. 本発明にかかる面発光半導体レーザ素子の一実施形態の要部断面である。It is a principal part cross section of one Embodiment of the surface emitting semiconductor laser element concerning this invention. 上記実施形態の共振器部の断面図である。It is sectional drawing of the resonator part of the said embodiment. 従来の面発光半導体レーザ素子の断面図である。It is sectional drawing of the conventional surface emitting semiconductor laser element.

符号の説明Explanation of symbols

10、40 面発光半導体レーザ素子
12 n−GaAs基板
14 下部DBR半導体多層膜反射鏡
16 Al酸化層
17 p−AlAs層
18 n−GaAsクラッド層
20、42 活性層
22 p−GaAsクラッド層
24 上部DBR半導体多層膜反射鏡
26 p−GaAsコンタクト層
32 SiN膜
34 p側電極
36 引出し用電極
38 n側電極
41 共振器
43、43a 井戸層
44 障壁層
45 GaAsクラッド層
46 電流狭窄層
10, 40 Surface emitting semiconductor laser element 12 n-GaAs substrate 14 Lower DBR semiconductor multilayer mirror 16 Al oxide layer 17 p-AlAs layer 18 n-GaAs clad layer 20, 42 active layer 22 p-GaAs clad layer 24 upper DBR Semiconductor multilayer mirror 26 p-GaAs contact layer 32 SiN film 34 p-side electrode 36 extraction electrode 38 n-side electrode 41 resonator 43, 43a well layer 44 barrier layer 45 GaAs cladding layer 46 current confinement layer

Claims (7)

Ga1-xInxy1As1-y1-y2Sby2(但し、0.1<x、0<y1<0.03、0≦y2≦0.06)井戸層とGaNz1As1-z1-z2-z3Sbz2z3障壁層(但し、0<z1≦0.05、0≦z2≦0.06、0≦z3≦0.2)とからなる多重量子井戸の活性層が共振器内に設けられた面発光半導体レーザ素子において、前記活性層は複数個が前記共振器内に設けられ、各活性層はそれぞれの略中心が前記共振器中の定在波パターンの腹の部分に位置するように前記共振器内に設けられていることを特徴とする面発光半導体レーザ素子。 Ga 1-x In x N y1 As 1-y1-y2 Sb y2 (where 0.1 <x, 0 <y1 <0.03, 0 ≦ y2 ≦ 0.06) well layer and GaN z1 As 1-z1 -Z2-z3 Sb z2 P z3 barrier layer (where 0 <z1 ≦ 0.05, 0 ≦ z2 ≦ 0.06, 0 ≦ z3 ≦ 0.2), the active layer of the multiple quantum well is in the resonator In the surface-emitting semiconductor laser device provided in the present invention, a plurality of the active layers are provided in the resonator, and each active layer is positioned at the center of the antinode of the standing wave pattern in the resonator. Thus, a surface emitting semiconductor laser device is provided in the resonator. 前記各活性層の略中心は、前記共振器中の定在波パターンの腹の両側略30nm以内に位置するように前記共振器内に設けられていることを特徴とする請求項1に記載の面発光半導体レーザ素子。   The substantially center of each said active layer is provided in the said resonator so that it may be located within about 30 nm of both sides of the antinode of the standing wave pattern in the said resonator. Surface emitting semiconductor laser element. 前記多重量子井戸の井戸層と障壁層の伝導帯バンドオフセットエネルギーは400meV以下であり、価電子帯バンドオフセットエネルギーは200meV以下であることを特徴とする1ないし2のいずれか1項に記載の面発光半導体レーザ素子。   3. The surface according to claim 1, wherein the conduction band offset energy of the well layer and the barrier layer of the multiple quantum well is 400 meV or less, and the valence band offset energy is 200 meV or less. Light emitting semiconductor laser element. 前記多重量子井戸構造の障壁層にはp型変調ドープが施されることを特徴とする請求項1ないし3のいずれか1項に記載の面発光半導体レーザ素子。   4. The surface emitting semiconductor laser device according to claim 1, wherein the barrier layer of the multiple quantum well structure is subjected to p-type modulation doping. 前記多重量子井戸のネット歪εnet は、−0.5%≦εnet ≦0.5%であることを特徴とする請求項1ないし4のいずれか1項に記載の面発光半導体レーザ素子。 5. The surface emitting semiconductor laser device according to claim 1, wherein a net strain ε net of the multiple quantum well is −0.5% ≦ ε net ≦ 0.5%. 前記多重量子井戸の井戸層数Nw は、3≦Nw ≦12であることを特徴とする請求項1ないし5のいずれか1項に記載の面発光半導体レーザ素子。 6. The surface emitting semiconductor laser device according to claim 1, wherein the number of well layers N w of the multiple quantum wells is 3 ≦ N w ≦ 12. 前記共振器を構成する二つの反射鏡は半導体多層膜反射鏡からなり、前記二つの半導体多層膜反射鏡中に、注入電流を狭窄する電流狭窄層を設けたことを特徴とする請求項1ないし6のいずれか1項に記載の面発光半導体レーザ素子。   The two reflecting mirrors constituting the resonator are semiconductor multilayer film reflecting mirrors, and a current confinement layer for constricting an injection current is provided in the two semiconductor multilayer film reflecting mirrors. 7. The surface emitting semiconductor laser device according to any one of 6 above.
JP2005271410A 2005-09-20 2005-09-20 Surface-emitting semiconductor laser element Pending JP2007087994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271410A JP2007087994A (en) 2005-09-20 2005-09-20 Surface-emitting semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271410A JP2007087994A (en) 2005-09-20 2005-09-20 Surface-emitting semiconductor laser element

Publications (1)

Publication Number Publication Date
JP2007087994A true JP2007087994A (en) 2007-04-05

Family

ID=37974717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271410A Pending JP2007087994A (en) 2005-09-20 2005-09-20 Surface-emitting semiconductor laser element

Country Status (1)

Country Link
JP (1) JP2007087994A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239176A (en) * 2008-03-28 2009-10-15 Dowa Electronics Materials Co Ltd Light emitting element
JP2012038882A (en) * 2010-08-06 2012-02-23 Canon Inc Surface emitting laser, surface emitting laser array, display device using surface emitting laser array as light source, printer head, and printer
JP2014112654A (en) * 2012-11-02 2014-06-19 Canon Inc Nitride semiconductor surface emitting laser and manufacturing method of the same
WO2019220795A1 (en) * 2018-05-18 2019-11-21 株式会社Qdレーザ Surface emitting laser and inspection device
JP2022540011A (en) * 2019-06-27 2022-09-14 ルミレッズ リミテッド ライアビリティ カンパニー DBR structure of LED with reduced photodegradation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239176A (en) * 2008-03-28 2009-10-15 Dowa Electronics Materials Co Ltd Light emitting element
JP2012038882A (en) * 2010-08-06 2012-02-23 Canon Inc Surface emitting laser, surface emitting laser array, display device using surface emitting laser array as light source, printer head, and printer
JP2014112654A (en) * 2012-11-02 2014-06-19 Canon Inc Nitride semiconductor surface emitting laser and manufacturing method of the same
WO2019220795A1 (en) * 2018-05-18 2019-11-21 株式会社Qdレーザ Surface emitting laser and inspection device
JP2022540011A (en) * 2019-06-27 2022-09-14 ルミレッズ リミテッド ライアビリティ カンパニー DBR structure of LED with reduced photodegradation
JP7164737B2 (en) 2019-06-27 2022-11-01 ルミレッズ リミテッド ライアビリティ カンパニー DBR structure of LED with reduced photodegradation
US11901702B2 (en) 2019-06-27 2024-02-13 Lumileds Llc LED DBR structure with reduced photodegradation

Similar Documents

Publication Publication Date Title
JP6136284B2 (en) Semiconductor laminate and surface emitting laser element
US7912105B2 (en) Vertical cavity surface emitting laser
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
JP4728656B2 (en) Surface emitting laser element
CN112563884B (en) Vertical cavity surface emitting laser and manufacturing method thereof
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
US20140227007A1 (en) Surface-emitting laser and image forming apparatus using the same
JP2007087994A (en) Surface-emitting semiconductor laser element
JP2007049144A (en) High-power vertical external cavity surface emitting laser
JP4614040B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP5355276B2 (en) Surface emitting laser
JP2003347670A (en) Surface-emission semiconductor laser element and laser array
US10283937B2 (en) Optoelectronic device with enhanced lateral leakage of high order transverse optical modes into alloy-intermixed regions and method of making same
JP2004253802A (en) GaAsSb/GaAs DEVICE WITH IMPROVED TEMPERATURE PROPERTY
US6687276B2 (en) Surface emitting semiconductor laser
JP3785683B2 (en) Surface light emitting device
JPWO2007135772A1 (en) Light emitting element
JP2007311632A (en) Surface-emitting laser element
JPWO2008078595A1 (en) Surface emitting laser
JP2005251860A (en) Surface emitting laser device
JP2006019470A (en) Surface emitting semiconductor laser and optical module
JP2006253340A (en) Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
WO2019107273A1 (en) Surface emission semiconductor laser
JP2007299895A (en) Surface emitted laser element, surface emitted laser array having the same, electronic photographing system having surface emitted laser element or surface emitted laser array, optical interconnection system having surface emitted laser element or surface emitted laser array, and optical communication system having surface emitted laser element or surface emitted laser array
JP4579526B2 (en) Surface emitting laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112