JP2007087871A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2007087871A
JP2007087871A JP2005277744A JP2005277744A JP2007087871A JP 2007087871 A JP2007087871 A JP 2007087871A JP 2005277744 A JP2005277744 A JP 2005277744A JP 2005277744 A JP2005277744 A JP 2005277744A JP 2007087871 A JP2007087871 A JP 2007087871A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
battery
negative electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277744A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
博 安田
Sadao Furuya
定男 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005277744A priority Critical patent/JP2007087871A/en
Publication of JP2007087871A publication Critical patent/JP2007087871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-aid battery having light weight, high discharge performance, low electrolyte reduction performance, and long life. <P>SOLUTION: The lead-acid battery has an electrode group having a positive plate and a negative plate using a Pb-Ca alloy in a positive grid and a negative grid, and a first separator comprising a mat-like paper machine-made body mainly comprising acid-resistant fibers such as glass fiber is arranged so as to come in contact with at least the negative plate in the upper part of the electrode group. A second separator comprising a porous membrane of acid resistant resin such as polyethylene is arranged without arranging the first separator between the positive plate and the negative plate in the lower part of the electrode group except the upper part of the electrode group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、正極活物質に二酸化鉛、負極活物質に鉛、電解液に希硫酸を用いる電池である。その歴史は古く、自動車用電源、電力貯蔵用電源、大小移動用電源、通信用電源など最も広い範囲に普及した二次電池である。   A lead acid battery is a battery that uses lead dioxide as a positive electrode active material, lead as a negative electrode active material, and dilute sulfuric acid as an electrolyte. It has a long history, and is the most widely used secondary battery such as a power source for automobiles, a power source for power storage, a power source for large and small mobiles, and a power source for communication.

鉛蓄電池の中でも、負極吸収式でない、液式開放型の鉛蓄電池では、電解液である希硫酸が正極板、負極板およびセパレータとからなる極板群を完全に浸漬した状態で構成される。このような液式の鉛蓄電池は使用中に電解液中の水が分解反応により減少していくが(減液)、近年、このような水の分解反応を抑制するために、Pb−Ca合金を正負極格子体に使用した鉛蓄電池が広く使われている。   Among lead-acid batteries, liquid-type open-type lead-acid batteries that are not negative electrode absorption type are configured in a state in which dilute sulfuric acid, which is an electrolytic solution, is completely immersed in an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator. In such a liquid type lead-acid battery, water in the electrolytic solution is reduced by decomposition reaction during use (liquid reduction). In recent years, in order to suppress such decomposition reaction of water, a Pb—Ca alloy is used. Lead-acid batteries using a positive and negative electrode grid are widely used.

通常、車両用に用いる液式の鉛蓄電池ではポリエチレン樹脂の微多孔膜のセパレータが用いられている。ポリエチレン微多孔膜は電解液透過性に優れるため、電池の内部抵抗増加を抑制でき、急放電特性の面で有利である。ポリエチレン微多孔膜はあくまで正極と負極とを隔離するためのものであり、それ自体が電解液を含浸保持する機能を有するものではない。   Usually, a liquid lead acid battery used for a vehicle uses a polyethylene resin microporous membrane separator. Since the polyethylene microporous membrane is excellent in electrolyte permeability, it can suppress an increase in internal resistance of the battery and is advantageous in terms of rapid discharge characteristics. The polyethylene microporous film is only for separating the positive electrode and the negative electrode, and does not itself have a function of impregnating and holding the electrolytic solution.

したがって、水の分解反応が進行して負極板が電解液より露出すると、露出した負極板面にセパレータから電解液が補給されないため、負極板面と大気中の酸素とが接触し、酸化して負極での放電性能を低下させる。そこで、電解液面を負極板面の上端よりもさらに上方に設定し、かつ電槽に確保すべき最低の液面線を表示することにより、電池の使用者に対し、液面低下時には水を補給するよう注意喚起を行っている。   Therefore, when the decomposition reaction of water proceeds and the negative electrode plate is exposed from the electrolyte solution, the electrolyte solution is not replenished from the separator to the exposed negative electrode plate surface. Reduces discharge performance at the negative electrode. Therefore, by setting the electrolyte level further above the upper end of the negative electrode plate surface and displaying the lowest liquid level line to be secured in the battery case, the battery user is given water when the liquid level drops. We are alerting you to replenish.

また、多少の水が分解しても短期間で容易に負極板が露出しないよう、負極板上端から数十mm程度の余裕をもって電解液面を設定する。したがって、本来、放電反応に必要とされる以上の電解液を電池内に確保するため、電池重量あたりの放電容量は低下し、電池軽量化の面で不利である。   Moreover, even if some water decomposes | disassembles, an electrolyte solution level is set with a margin of about several dozen mm from the upper end of a negative electrode plate so that a negative electrode plate may not be easily exposed in a short period of time. Therefore, in order to ensure more electrolyte solution than is necessary for the discharge reaction in the battery, the discharge capacity per battery weight is reduced, which is disadvantageous in terms of battery weight reduction.

一方、過充電時に正極側で発生する酸素ガスを負極側で水に還元するメカニズムを利用して電解液の枯渇を防ぐことにより、補水不要化と、密閉化によって転倒状態や横倒し状態でも使用を可能にする、制御弁を有した負極吸収式鉛蓄電池が開発され多くの用途に使われている。   On the other hand, the use of a mechanism that reduces oxygen gas generated on the positive electrode side to water on the negative electrode side during overcharge prevents the electrolyte from being depleted, making it unnecessary to refill water, and can be used even in a falling or lying state due to sealing. A negative electrode lead-acid storage battery with a control valve has been developed and used in many applications.

このタイプの電池は主に微細ガラス繊維を主原料として抄造したAGM(Absorbed Glass Mat)をセパレータとして使用し、電解液量をこのAGMセパレータと極板の活物質空孔に吸収される程度に制限し、充電中に発生する酸素ガスをAGMセパレータを介して負極に導入し水に戻して減液を抑制する機構を持つ。   This type of battery uses AGM (Absorbed Glass Mat) made mainly from fine glass fiber as a separator, and the amount of electrolyte is limited to be absorbed by the AGM separator and the active material pores of the electrode plate. In addition, oxygen gas generated during charging is introduced into the negative electrode through the AGM separator and returned to water to suppress liquid reduction.

今日、環境問題が重要視される中、自動車の燃費向上を図るため車両の軽量化が強く求められている。車両用の鉛蓄電池についても同じように軽量化が強く要望されている。前記したような、制御弁を有した負極吸収式鉛蓄電池は電解液量が制限され、極板群から遊離した電解液がない分、前記したような、液式の鉛蓄電池より軽量であるため、特に軽量化が求められる一部の車両に搭載されている。   Today, environmental issues are regarded as important, and there is a strong demand for lighter vehicles in order to improve the fuel efficiency of automobiles. Similarly, weight reduction is strongly demanded for lead-acid batteries for vehicles. As described above, the negative electrode absorption lead-acid battery having a control valve is lighter than the liquid lead-acid battery as described above, because the amount of electrolyte is limited and there is no electrolyte free from the electrode plate group. In particular, it is mounted on some vehicles that require weight reduction.

しかしながら、この制御弁を有した負極吸収式の鉛蓄電池では、使用状態に応じて、電池の内部圧力が外部の大気圧より高くなったり低くなったりするため、その圧力差に対して電槽や蓋といった電池の筐体が変形や破損などしないよう、強固に設計する必要があった。このため、電槽・蓋に使用する材料、一般的にはポリプロピレン樹脂の量は同サイズの液式鉛蓄電池と比べて多くなり、この部分において重量増になっていた。   However, in the negative electrode lead-acid storage battery having this control valve, the internal pressure of the battery becomes higher or lower than the external atmospheric pressure depending on the use state. It was necessary to design the battery case such as a lid firmly so that it would not be deformed or damaged. For this reason, the amount of the material used for the battery case and the lid, generally, the amount of the polypropylene resin is larger than that of the liquid lead acid battery of the same size, and the weight is increased in this portion.

また、制御弁を有した負極吸収式の鉛蓄電池では、電解液はその量が制限された状態でAGMセパレータおよび正負極活物質中に含浸保持されている。また、AGM セパレータ中での電解液の拡散性は、液式鉛蓄電池で用いられているようなポリエチレン樹脂の微多孔膜のセパレータに比較して良好でないため、電池反応物質である硫酸の量が制限され、さらにはその拡散が制限されるという2つの要因により、5〜20時間率放電といった、緩放電での初期容量と−15℃といった低温雰囲気下における150Aあるいは300A放電といった、低温急放電の持続時間が液式鉛蓄電池に比較して低いという課題があった。   Moreover, in the negative electrode absorption type lead-acid battery having a control valve, the electrolytic solution is impregnated and held in the AGM separator and the positive and negative electrode active materials in a state in which the amount thereof is limited. In addition, the diffusibility of the electrolyte in the AGM separator is not as good as that of a polyethylene resin microporous membrane separator used in liquid lead-acid batteries. Due to the two factors that are limited and further the diffusion is limited, the initial capacity in a slow discharge, such as 5-20 hour rate discharge, and the low temperature rapid discharge, such as 150A or 300A discharge in a low temperature atmosphere such as -15 ° C. There existed a subject that duration was low compared with a liquid lead acid battery.

特許文献1には、AGMや合成繊維からなるマット体といった、電解液保持性を有するいわゆるリテーナーマットをセパレータとして用い、電解液量を極板上端以上とし、制御弁を備えた鉛蓄電池が提案されている。特許文献1に示された鉛蓄電池では、電解液量が確保されているために、通常の電解液量が制限された負極吸収式の鉛蓄電池と比較して初期放電性能を改善することができる。
特開2003−142148号公報
Patent Document 1 proposes a lead-acid battery using a so-called retainer mat having electrolyte retention, such as a mat body made of AGM or synthetic fiber, as a separator, having an electrolyte amount equal to or more than the upper end of the electrode plate, and having a control valve. ing. In the lead storage battery disclosed in Patent Document 1, since the amount of electrolyte is ensured, the initial discharge performance can be improved as compared with a negative electrode absorption type lead storage battery in which the amount of normal electrolyte is limited. .
JP 2003-142148 A

前記した特許文献1で示された制御弁式鉛蓄電池では、電解液が通常の制御弁式鉛蓄電池に比較し、より確保されるため、特に緩放電での初期容量を改善できる。しかしながら、正負極板全面がリテーナマットに接しているため、低温急放電での持続時間の面で従来の液式鉛蓄電池に比較して著しく不利であった。   In the control valve type lead storage battery disclosed in Patent Document 1 described above, since the electrolytic solution is more ensured as compared with a normal control valve type lead storage battery, the initial capacity can be improved particularly in slow discharge. However, since the entire surface of the positive and negative electrode plates is in contact with the retainer mat, it is significantly disadvantageous compared to the conventional liquid lead-acid battery in terms of the duration of the low temperature rapid discharge.

本発明は、前記したような液式および制御弁による負極吸収式鉛蓄電池の課題を再度見直し、従来の液式鉛蓄電池で必要であった補水の手間を省き、また、電解液量削減を可能することでより軽量であり、さらには制御弁付の負極吸収式鉛蓄電池のように緩放電での初期容量および低温急放電の持続時間が低くならない電池を提供するものである。   The present invention re-examines the problems of the negative electrode type lead storage battery with the liquid type and control valve as described above, eliminates the need for rehydration necessary for the conventional liquid type lead storage battery, and reduces the amount of electrolyte. Thus, it is possible to provide a battery that is lighter in weight and that does not have a low initial discharge capacity and a low-temperature rapid discharge duration, such as a negative electrode absorption lead-acid battery with a control valve.

上記の課題を解決するために、本発明の請求項1に係る発明は、正極格子および負極格子にPb−Ca合金を用いた正極板および負極板を有した極板群を備え、前記極板群上部において、少なくとも負極板面に接するようガラス繊維等の耐酸性繊維を主体とするマット状抄造体からなる第1のセパレータを配し、前記極板群上部を除いた極板群下部において、第1のセパレータを配さず、かつポリエチレン等の耐酸性樹脂の微多孔膜からなる第2のセパレータを配したことを特徴とする鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention includes an electrode plate group having a positive electrode plate and a negative electrode plate using a Pb-Ca alloy for a positive electrode lattice and a negative electrode lattice, and the electrode plate In the upper part of the group, the first separator made of a mat-shaped paper-making body mainly composed of acid-resistant fibers such as glass fiber so as to be in contact with at least the negative electrode plate surface, in the lower part of the electrode plate group excluding the upper part of the electrode plate group, 1 shows a lead storage battery in which a first separator is not provided and a second separator made of a microporous film of acid-resistant resin such as polyethylene is provided.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記極板群上部において、前記正極板面に接するよう、第2のセパレータを配したことを特徴とするものである。   The lead storage battery according to claim 2 of the present invention is characterized in that, in the lead storage battery of claim 1, a second separator is disposed on the upper part of the electrode plate group so as to be in contact with the surface of the positive electrode plate. is there.

また、本発明の請求項3に係る発明は、請求項1の鉛蓄電池において、前記極板群上部において、前記第2のセパレータで構成された中心層と、この中心層の外側両面に配置され、前記第1のセパレータからなる外層で構成された三層のセパレータが前記正極板−負極板間に配置され、前記極板群下部において、前記第2のセパレータで構成された中心層のみを前記正極板−負極板間に配置したことを特徴とするものである。   According to a third aspect of the present invention, in the lead storage battery of the first aspect, the upper part of the electrode plate group is disposed on the center layer composed of the second separator and on both outer sides of the center layer. A three-layer separator composed of an outer layer made of the first separator is disposed between the positive electrode plate and the negative electrode plate, and only the central layer composed of the second separator is disposed at the lower part of the electrode plate group. It is arranged between the positive electrode plate and the negative electrode plate.

さらに、本発明の請求項4に係る発明は、請求項1、2もしくは3の鉛蓄電池において、 初期状態における電解液面を負極板上端以上かつ、前記負極板同士を接合する負極ストラップの下面未満としたことを特徴としたものである。   Furthermore, the invention according to claim 4 of the present invention is the lead storage battery of claim 1, 2, or 3, wherein the electrolyte surface in the initial state is above the upper end of the negative electrode plate and less than the lower surface of the negative electrode strap that joins the negative electrode plates together. It is characterized by that.

そして、本発明の請求項5に係る発明は、請求項4の鉛蓄電池において、負極ストラップにはSbを含まない、Pb合金を用いることを特徴としたものである。   The invention according to claim 5 of the present invention is characterized in that, in the lead-acid battery of claim 4, a Pb alloy not containing Sb is used for the negative electrode strap.

本発明による鉛蓄電池では、電解液面が低下し、負極板が電解液面から露出した場合においても、負極板上部に接するよう配置されたマットセパレータ(第1のセパレータ)より負極板に電解液が供給されるため、この部分での酸素ガス吸収反応が進行し、負極板の酸化と電解液中の水分減少が抑制される。   In the lead-acid battery according to the present invention, even when the electrolytic solution surface is lowered and the negative electrode plate is exposed from the electrolytic solution surface, the electrolytic solution is supplied to the negative electrode plate from the mat separator (first separator) disposed so as to contact the upper part of the negative electrode plate. Therefore, the oxygen gas absorption reaction proceeds in this portion, and the oxidation of the negative electrode plate and the decrease in moisture in the electrolyte are suppressed.

また、負極板下部はマットセパレータ(第1のセパレータ)を配置せず、かつ第1のセパレータよりも電気抵抗の面で有利である耐酸性樹脂の微多孔膜とした第2のセパレータを配置することにより、負極板全面にAGMを配置した従来の制御弁付負極吸収式電池に比較して急放電性能に優れ、また極板群から遊離した電解液を有することによって従来の液式鉛蓄電池と同等の緩放電容量を有した鉛蓄電池を提供することができる。   Further, a mat separator (first separator) is not disposed at the lower part of the negative electrode plate, and a second separator made of an acid-resistant resin microporous film, which is advantageous in terms of electric resistance as compared with the first separator, is disposed. Compared with the conventional negative electrode absorption type battery with control valve in which AGM is arranged on the entire surface of the negative electrode plate, it has excellent rapid discharge performance and has an electrolytic solution released from the electrode plate group. A lead-acid battery having an equivalent slow discharge capacity can be provided.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1)第1の実施形態
図1は本発明の第1の実施形態による鉛蓄電池1の部分断面を示す図である。鉛蓄電池1はポリプロピレン樹脂等の耐酸性を有した電槽2に極板群6が収納され、電槽2の開口部を蓋3で覆った構成は従来の鉛蓄電池と同様である。なお、図示していないが、蓋3に設けた電解液注液のための液口に装着され、電池内部で発生したガスを電池外部に排気するための排気経路を有した液口栓あるいは、液口栓と同様の機能を有する部材が装着されている点も従来の鉛蓄電池と同様である。
(1) 1st Embodiment FIG. 1: is a figure which shows the partial cross section of the lead acid battery 1 by the 1st Embodiment of this invention. The lead storage battery 1 has a configuration in which the electrode plate group 6 is housed in a battery case 2 having acid resistance, such as polypropylene resin, and the opening of the battery case 2 is covered with a lid 3. Although not shown in the drawings, a liquid port stopper attached to a liquid port for injecting an electrolyte provided in the lid 3 and having an exhaust path for exhausting gas generated inside the battery to the outside of the battery, or The point with which the member which has the function similar to a liquid stopper is mounted | worn is the same as that of the conventional lead acid battery.

本発明の鉛蓄電池1では、正極板4および負極板5はいずれもPb−Ca合金の格子体(図示せず)を備える。Pb−Ca合金を用いることで、Pb−Sb合金を用いた鉛蓄電池より電解液中の水分減少を抑制する。なお、格子体の機械的強度や耐食性を確保する目的で、0.1〜2.0質量%程度のSn、0.001〜0.1質量%程度のBi、0.005〜0.05質量%程度のBa、0.001〜0.15質量%程度のAgをPb−Ca合金中に添加することができる。なお、Caは格子体の水素過電圧を実質的に低下させず、かつ格子体に適切な機械的強度を付与することを目的として、0.01〜0.10質量%程度添加される。また、Pb−Ca合金を溶融する際に生じるCaの損出を抑制するために、0.005〜0.2質量%程度のAlを予めPb−Ca合金中に添加してもよい。   In the lead storage battery 1 of the present invention, each of the positive electrode plate 4 and the negative electrode plate 5 includes a Pb—Ca alloy lattice (not shown). By using a Pb-Ca alloy, the water | moisture content reduction in electrolyte solution is suppressed rather than the lead acid battery using a Pb-Sb alloy. For the purpose of ensuring the mechanical strength and corrosion resistance of the lattice body, Sn of about 0.1 to 2.0% by mass, Bi of about 0.001 to 0.1% by mass, 0.005 to 0.05% by mass. % Ba and 0.001 to 0.15 mass% Ag can be added to the Pb-Ca alloy. Ca is added in an amount of about 0.01 to 0.10% by mass for the purpose of substantially reducing the hydrogen overvoltage of the lattice body and imparting appropriate mechanical strength to the lattice body. Moreover, in order to suppress the loss of Ca that occurs when the Pb—Ca alloy is melted, about 0.005 to 0.2 mass% of Al may be added to the Pb—Ca alloy in advance.

本発明の鉛蓄電池1は、正極板4および負極板5を有した極板群6の上部において、少なくとも負極板5面に接するよう、ガラス繊維等の耐酸性繊維を主体とするマット状抄造体で構成された第1のセパレータ7が配置される。   The lead storage battery 1 of the present invention is a mat-shaped paper body mainly composed of acid-resistant fibers such as glass fibers so as to be in contact with at least the surface of the negative electrode plate 5 at the upper part of the electrode plate group 6 having the positive electrode plate 4 and the negative electrode plate 5. The 1st separator 7 comprised by these is arrange | positioned.

一方、極板群6の下部には、第1のセパレータ7を配置せず、ポリエチレン等の耐酸性樹脂の微多孔膜からなる第2のセパレータ8が配置される。   On the other hand, at the lower part of the electrode plate group 6, the first separator 7 is not disposed, but the second separator 8 made of a microporous film of acid resistant resin such as polyethylene is disposed.

第1のセパレータ7としては、AGMに代表される、耐酸性を有し、電解液を含浸保持可能な孔を有し、マット状であることによって、極板面と接触した状態で電解液を極板に授受可能な素材で構成されたものを用いる。なお、ガラス繊維マットの他に、例えば、スルホン化等により親水処理されたポリプロピレン樹脂繊維マットを用いることができる。なお、第1のセパレータ7は負極板5が電解液から露出した際に、負極板5にその含浸保持した電解液を補給することによって、負極板5での酸素ガス吸収反応を起こさせ、酸素ガスを水に還元することによって水の分解を抑制するものである。したがって、第1のセパレータ7は少なくとも、負極板5面に接した状態とする。   The first separator 7 has acid resistance, represented by AGM, has holes that can be impregnated and retained by the electrolytic solution, and has a mat shape so that the electrolytic solution is in contact with the electrode plate surface. Use materials composed of materials that can be transferred to the electrode plate. In addition to the glass fiber mat, for example, a polypropylene resin fiber mat subjected to hydrophilic treatment by sulfonation or the like can be used. When the negative electrode plate 5 is exposed from the electrolytic solution, the first separator 7 replenishes the negative electrode plate 5 with the electrolyte solution impregnated and retained, thereby causing an oxygen gas absorption reaction in the negative electrode plate 5 and oxygen gas. The decomposition of water is suppressed by reducing the gas to water. Therefore, the first separator 7 is at least in contact with the negative electrode plate 5 surface.

本発明の鉛蓄電池1において、初期状態の電解液面9は通常の液式鉛蓄電池と同様、正極板4および負極板5の上端よりも上方に位置させる。次に、本発明の鉛蓄電池1の使用中での液面挙動を電池の動作と関連付けて説明する。   In the lead storage battery 1 of the present invention, the electrolyte surface 9 in the initial state is positioned above the upper ends of the positive electrode plate 4 and the negative electrode plate 5 in the same manner as in a normal liquid lead storage battery. Next, the liquid level behavior during use of the lead storage battery 1 of the present invention will be described in relation to the operation of the battery.

本発明の鉛蓄電池1の使用開始とともに電解液中の水分が分解し、電解液面9が低下する。やがて正極板4および負極板5の負極板上部が電解液面9より露出した状態になるが第1のセパレータ7内では毛細管現象により電解液が含浸された状態が継続され、その結果、負極活物質内も電解液で満たされた湿潤な状態が極板群6上部で出現する。   With the start of use of the lead storage battery 1 of the present invention, water in the electrolytic solution is decomposed, and the electrolytic solution surface 9 is lowered. Eventually, the upper portions of the negative electrode plates of the positive electrode plate 4 and the negative electrode plate 5 are exposed from the electrolyte surface 9, but the state in which the electrolyte solution is impregnated by capillary action in the first separator 7 is continued. A wet state filled with the electrolyte also appears in the upper part of the electrode plate group 6.

この極板群6上部では、負極での酸素ガス吸収反応が可能になり酸素ガスが水に還元する反応が起こる。なお、電解液面9の低下とともに、負極での酸素ガス吸収反応面が増大し、この反応が促進され、水を生成するため、電解液の減少速度、すなわち電解液面9の低下速度は徐々に低下していき、水の分解反応と、水の生成反応とが平衡状態となり電池はやがて一定の重量を保つようになり、以後この状態での安定した状態で寿命まで使用可能となる。この状態で電池に補水し、電解液面9を当初の位置としても何ら差し支えないが、負極での酸素ガス吸収反応が抑制されるため、再び電解液面9が低下し、前記したように水の分解反応と生成反応が平衡に達した時点で電解液面9が安定する。   In the upper part of the electrode plate group 6, an oxygen gas absorption reaction at the negative electrode becomes possible, and a reaction occurs in which the oxygen gas is reduced to water. As the electrolytic solution level 9 decreases, the oxygen gas absorption reaction surface at the negative electrode increases, and this reaction is promoted to generate water. Therefore, the decreasing rate of the electrolytic solution, that is, the decreasing rate of the electrolytic solution surface 9 gradually increases. The water decomposition reaction and the water generation reaction become an equilibrium state, and the battery eventually maintains a constant weight, and can be used in a stable state in this state until the end of its life. In this state, the battery is refilled and the electrolyte surface 9 can be used as the initial position. However, since the oxygen gas absorption reaction at the negative electrode is suppressed, the electrolyte surface 9 is lowered again, and the water level is reduced as described above. When the decomposition reaction and the production reaction of reach the equilibrium, the electrolyte surface 9 is stabilized.

この現象は極板群6の上部で生じるため、第1のセパレータ7は極板群6の上部にのみ配置しておけば良く極板群6下部にはこの第1のセパレータ7を配置せず、ポリエチレン樹脂等の耐酸性樹脂の微多孔膜からなる第2のセパレータ8を配することにより、低温急放電の持続時間が低下するのを抑制することができる。なお、極板群6下部には第1のセパレータ7を配置した場合、低温急放電性能が低下するため、避けるべきである。   Since this phenomenon occurs in the upper part of the electrode plate group 6, the first separator 7 may be arranged only in the upper part of the electrode plate group 6, and the first separator 7 is not arranged in the lower part of the electrode plate group 6. By arranging the second separator 8 made of a microporous film of acid-resistant resin such as polyethylene resin, it is possible to suppress a decrease in the duration of low-temperature rapid discharge. In addition, when the 1st separator 7 is arrange | positioned in the electrode group 6 lower part, since a low-temperature rapid discharge performance falls, it should avoid.

第1のセパレータ7と第2のセパレータ8の境界部をどの位置に設定するかは、平衡状態となり、その高さが安定した電解液面9の位置によって決定すべきである。電解液面9が上述の平衡状態となり、安定した状態で、第1のセパレータ7の下端が少なくとも、電解液に接した状態に設定することが好ましい。この状態では第1のセパレータ7に電解液が常に接した状態となるため、前記した毛細管現象により、負極での酸素ガス吸収反応を安定して起こさせることができる。   The position at which the boundary between the first separator 7 and the second separator 8 is set should be determined by the position of the electrolyte surface 9 where the equilibrium is achieved and the height is stable. It is preferable to set the electrolytic solution surface 9 in the above-described equilibrium state and in a stable state so that the lower end of the first separator 7 is at least in contact with the electrolytic solution. In this state, the electrolytic solution is always in contact with the first separator 7, so that the oxygen gas absorption reaction at the negative electrode can be stably caused by the capillary phenomenon described above.

なお、車両用鉛蓄電池では、平衡状態での電解液面が第1のセパレータ7の下端よりも下方に位置する場合でも、車両走行時の加減速により、電解液面が揺動し、上下するため、第1のセパレータ7に電解液が補給されることにより、実質上、差し支えない場合もあるが、車両走行の頻度が少ない場合や、バックアップ用といった静置した状態で用いる場合には、電解液面の揺動による第1のセパレータ7への電解液補給が促進されないため、上記したように、電解液面9が上述の平衡状態となり、安定した状態で、第1のセパレータ7の下端を、少なくとも電解液に接した状態に設定することが好ましい。   In the lead acid battery for a vehicle, even when the electrolyte surface in an equilibrium state is located below the lower end of the first separator 7, the electrolyte surface fluctuates and rises and falls due to acceleration / deceleration during vehicle travel. For this reason, there is a case where the first separator 7 is substantially replenished with the electrolytic solution. However, when the vehicle travels less frequently or is used in a stationary state such as a backup, it is necessary to perform electrolysis. Since the supply of the electrolytic solution to the first separator 7 due to the fluctuation of the liquid level is not promoted, as described above, the electrolytic solution surface 9 is in the above-described equilibrium state, and the lower end of the first separator 7 is moved in a stable state. It is preferable to set at least a state in contact with the electrolytic solution.

従来、制御弁を持たない鉛蓄電池において、電解液から負極板が露出した状態で長期に使用された場合、電解液から露出した負極板は電池外部の酸素により酸化され電池が早期に劣化すると考えられてきた。特に、電解液が極度に制限された制御弁付負極吸収式電池では外部空気が導入されたとき負極全面が一度に酸化されるため早期の電池劣化がほぼ確実に起こる。   Conventionally, in a lead-acid battery that does not have a control valve, when the negative electrode plate is exposed from the electrolyte for a long period of time, the negative electrode plate exposed from the electrolyte is oxidized by oxygen outside the battery and the battery deteriorates early. Has been. In particular, in a negative electrode absorption battery with a control valve in which the electrolyte is extremely restricted, the entire surface of the negative electrode is oxidized at once when external air is introduced, so that early battery deterioration almost certainly occurs.

しかしながら本発明の鉛蓄電池では、極板群上部のみに耐酸性繊維マットの抄造体からなる第1のセパレータ7を配し、かつ極板群下部にポリエチレン樹脂等の耐酸性樹脂からなる微多孔膜からなる第2のセパレータ8を配置することによって、従来の液式鉛蓄電池と殆ど同等の緩放電特性および急放電特性を有する。一方、従来より懸念されていた外部酸素の進入による負極板の劣化はほとんどの場合問題にならないことがわかった。   However, in the lead storage battery of the present invention, the first separator 7 made of a paper-made product of acid-resistant fiber mat is disposed only on the upper part of the electrode plate group, and the microporous film made of acid-resistant resin such as polyethylene resin is provided on the lower part of the electrode plate group. By arranging the second separator 8 made of the above, it has a slow discharge characteristic and a rapid discharge characteristic almost the same as those of a conventional liquid lead acid battery. On the other hand, it has been found that the deterioration of the negative electrode plate due to the entry of external oxygen, which has been a concern in the past, is not a problem in most cases.

また、使用開始当初、電解液面の低下は認められるものの、ある位置で平衡状態となるため、基本的に補水を必要としない。また、電解液面9の低下によっても負極板の劣化が進行しないため、従来の液式鉛蓄電池のように、電解液面から負極板が露出するまでの時間を確保するために、本来、放電反応にはあまり寄与しない、余分な電解液を電池内に確保することが不要となる。   In addition, although a decrease in the electrolytic solution level is recognized at the beginning of use, it is in an equilibrium state at a certain position, and therefore, basically no water replenishment is required. In addition, since the deterioration of the negative electrode plate does not proceed due to the decrease in the electrolytic solution level 9, as in a conventional liquid lead-acid battery, in order to ensure the time until the negative electrode plate is exposed from the electrolytic solution surface, It is not necessary to secure an extra electrolyte in the battery that does not contribute much to the reaction.

したがって、本発明の請求項4に示したように、初期状態における電解液面9を、図1に示したように、負極板5上端以上かつ、負極板5の同極性極板同士を接合する負極ストラップ10未満とすることにより、余分な電解液を当初より削減することによって、従来の液式鉛蓄電池に比較して約10%程度の電池軽量化を達成することができる。   Therefore, as shown in claim 4 of the present invention, the electrolyte surface 9 in the initial state is joined to the upper ends of the negative electrode plate 5 and the same polarity plates of the negative electrode plate 5 as shown in FIG. By making it less than the negative electrode strap 10, it is possible to achieve a battery weight reduction of about 10% as compared with a conventional liquid lead-acid battery by reducing excess electrolyte from the beginning.

また、本発明の鉛蓄電池では、従来の制御弁式鉛蓄電池で設けていたような、5kPa〜20kPa程度で開弁動作する制御弁を有さないため、電池内圧は大気圧から大きく変化することはない。したがって、電槽や蓋およびこれらの接合部を設計する際、この内圧増加を考慮して肉厚化することは不要であり、従来の液式鉛蓄電池と同様の設計が可能であるため、肉厚化による電池重量の増加を抑制することができる。   In addition, since the lead storage battery of the present invention does not have a control valve that opens at about 5 kPa to 20 kPa as provided in a conventional control valve type lead storage battery, the internal pressure of the battery greatly changes from atmospheric pressure. There is no. Therefore, it is not necessary to increase the thickness in consideration of the increase in internal pressure when designing the battery case, the lid, and their joints, and the design similar to that of the conventional liquid lead-acid battery is possible. An increase in battery weight due to thickening can be suppressed.

なお、電池を長期間保管する場合、外部酸素による負極活物質の酸化の速さは、従来の液式鉛蓄電池を車両に搭載した状態で流れる暗電流による放電(十数〜数十mA)と同程度のものである。長期放置による放電が進んだ場合、本発明の鉛蓄電池では、従来の液式鉛蓄電池と同様、電池を車両から取り外して補充電処理を行えばよい。   When the battery is stored for a long period of time, the oxidation rate of the negative electrode active material by external oxygen is determined by the discharge (tens to several tens of mA) caused by dark current flowing in a state where a conventional liquid lead acid battery is mounted on a vehicle. It is the same level. When the discharge due to long-term standing proceeds, in the lead storage battery of the present invention, the battery may be removed from the vehicle and subjected to a supplementary charging process as in the case of the conventional liquid lead storage battery.

もしこのような長期放置に対して負極板酸化を抑制し、補充電処理を不要としたい等の、対策を講じたいのならば、液口栓の内にフィルターや迷路構造を設け、排気経路の通気抵抗を増大させ、大気中の酸素の電池内への進入速度を低減させるなどの処置を行えばよい。   If you want to take measures such as suppressing the negative electrode plate oxidation and eliminating the need for supplementary charging treatment against such prolonged standing, install a filter or labyrinth structure inside the liquid spigot, and What is necessary is just to take measures such as increasing the airflow resistance and reducing the entry speed of oxygen in the air into the battery.

なお、請求項4の構成では、従来の液式鉛蓄電池と異なり負極板5の耳部を集合溶接するストラップ10が常に気相中に露出しているために負極側のストラップ10において、まれに起こる異常腐食を防止するためにはこのストラップ10をSbを含まないPbもしくはPb鉛合金を使用することが好ましい。なお、これは請求項5の構成に相当する。   In the configuration of claim 4, unlike the conventional liquid lead-acid battery, the strap 10 for collectively welding the ears of the negative electrode plate 5 is always exposed in the gas phase. In order to prevent the abnormal corrosion that occurs, this strap 10 is preferably made of Pb or Pb lead alloy that does not contain Sb. This corresponds to the configuration of claim 5.

なお、第1のセパレータ7と第2のセパレータ8との接合方法としては、例えば、第1のセパレータ7中にポリプロピレン樹脂等の熱溶着性を有した樹脂繊維を混抄しておき、第1のセパレータ7と第2のセパレータ8とを熱溶着で接合することができる。また、第1のセパレータ7を前述したようなポリプロピレン樹脂繊維のマットとすれば当初より熱溶着性を有しているので、これら同士の熱溶着により接合を容易に行うことができる。また、ホットメルト剤や接着剤を用いてもこれらの接合を行うことができる。   As a method for joining the first separator 7 and the second separator 8, for example, resin fibers having heat-welding properties such as polypropylene resin are mixed in the first separator 7, and the first separator 7 and the second separator 8 are mixed. The separator 7 and the second separator 8 can be joined by heat welding. Further, if the first separator 7 is made of a polypropylene resin fiber mat as described above, since it has heat-weldability from the beginning, it can be easily joined by heat-welding each other. Moreover, these joining can be performed also using a hot-melt agent or an adhesive.

(2)第2の実施形態
本発明の第2の実施形態による鉛蓄電池は図2に示したような極板群構成を有する。すなわち、前記した第1の実施形態における、第2のセパレータ8に替えて、正極板4板上部まで延長された第2のセパレータ8´とした構成である。第2のセパレータ8´の材質は第1の実施形態における第2のセパレータ8となんら変わるところはない。
(2) Second Embodiment A lead-acid battery according to the second embodiment of the present invention has an electrode plate group configuration as shown in FIG. That is, the second separator 8 ′ is extended to the upper part of the positive electrode plate 4 instead of the second separator 8 in the first embodiment. The material of the second separator 8 'is not different from that of the second separator 8 in the first embodiment.

第2の実施形態では、負極板5面側に第1のセパレータ7を配置する必要上、第2のセパレータ8´を正極板面4側に配置する。第2の実施形態では、第1の実施形態と同様の作用効果を有するが、それらに加え、この構成によれば、第2のセパレータ8´上に第1のセパレータ7との貼り合わせ寸法が第1の実施形態に比較してより確保できるため、貼り合わせ強度をより高くでき、製造工程におけるこれら第1のセパレータ7と第2のセパレータ8´との剥離を抑制できるため、生産性の面で好ましい。   In the second embodiment, the second separator 8 ′ is disposed on the positive electrode plate surface 4 side in order to dispose the first separator 7 on the negative electrode plate 5 surface side. In the second embodiment, the same effects as in the first embodiment are obtained, but in addition to this, according to this configuration, the bonding size of the first separator 7 on the second separator 8 ′ is increased. Since it can be ensured more than the first embodiment, the bonding strength can be further increased, and the separation between the first separator 7 and the second separator 8 ′ in the manufacturing process can be suppressed. Is preferable.

(3)第3の実施形態
第3の実施形態による鉛蓄電池の極板群構成は図3に示したように、極板群上部において、第1および第2の実施形態における第2のセパレータ8,8´と同様の素材で構成された中心層13と、この中心層13の外側両面に配置され、第1および第2の実施形態における第1のセパレータ7と同様の素材からなる外層14で構成された三層のセパレータ15が正極板4−負極板5間に配置され、極板群下部において、第2のセパレータ8と同様の素材で構成された中心層13のみを正極板4−負極板5間に配置したものである。第3の実施形態では、第1および第3の実施形態と同様の作用効果を得ることができるが、この場合、第2の実施形態に比較して、正極板4上部への電解液の補給が促進されるため、より放電特性を改善することができる。
(3) Third Embodiment As shown in FIG. 3, the electrode plate group configuration of the lead storage battery according to the third embodiment is the second separator 8 in the first and second embodiments in the upper part of the electrode plate group. , 8 'and an outer layer 14 disposed on both outer sides of the center layer 13 and made of the same material as the first separator 7 in the first and second embodiments. The configured three-layer separator 15 is disposed between the positive electrode plate 4 and the negative electrode plate 5, and only the central layer 13 made of the same material as that of the second separator 8 is disposed at the lower part of the electrode plate group. It is arranged between the plates 5. In the third embodiment, the same effects as those in the first and third embodiments can be obtained. In this case, however, the electrolyte solution is supplied to the upper portion of the positive electrode plate 4 as compared with the second embodiment. As a result, the discharge characteristics can be further improved.

なお、これら第2および第3の実施形態においても、第1の実施形態と同様、請求項4に記載されたように、初期状態における電解液面9を負極板5の上端以上かつ、負極板5同士を接合するストラップ10の下面未満とすることにより、電解液量削減による電池軽量化が可能となることには変わりがない。また、その際、請求項5に記載されたように、ストラップにはSbを含まない、Pb合金を用いることにより、この部分での腐食を抑制することが可能となる。   In the second and third embodiments, as in the first embodiment, the electrolyte surface 9 in the initial state is not less than the upper end of the negative electrode plate 5 and the negative electrode plate, as described in claim 4. By making it less than the lower surface of the strap 10 that joins the five together, the battery weight can be reduced by reducing the amount of electrolyte. At this time, as described in claim 5, it is possible to suppress corrosion at this portion by using a Pb alloy that does not contain Sb in the strap.

また、上述した本発明の各実施形態において、図1、図2および図3に示したように、第2のセパレータ8,8´あるいは中心層13をU字折とした例を示しているが、それぞれ平板状あるいは袋状とすることもできる。   Further, in each of the embodiments of the present invention described above, as shown in FIGS. 1, 2, and 3, an example is shown in which the second separator 8, 8 ′ or the center layer 13 is U-folded. These can be flat or bag-shaped, respectively.

以下、本発明例および比較例による鉛蓄電池(以下、電池)を作成し、各電池の5時間率放電容量、低温急放電性能および寿命試験を行った。   Hereinafter, lead acid batteries (hereinafter referred to as batteries) according to the invention examples and comparative examples were prepared, and the 5-hour rate discharge capacity, low-temperature rapid discharge performance, and life test of each battery were performed.

(1)本発明例の電池A
本発明例の電池Aは図1に示す第1の実施形態を有する電池である。電池1の構成を以下に示す。
(1) Battery A of the present invention example
The battery A of the present invention example is a battery having the first embodiment shown in FIG. The configuration of the battery 1 is shown below.

本発明例の電池Aに用いた正極板は、Pb−0.06質量%Ca−1.2質量%Snの圧延鉛合金シートから得たエキスパンド格子体に常法による鉛蓄電池用正極活物質ペーストを充填し、熟成乾燥することにより、得たものである。   The positive electrode plate used in the battery A of the example of the present invention is a positive electrode active material paste for a lead-acid battery in an expanded lattice obtained from a rolled lead alloy sheet of Pb-0.06 mass% Ca-1.2 mass% Sn. And obtained by aging and drying.

本発明例の電池Aに用いた負極板は、Pb−0.06質量%Ca−0.3質量%Sn合金の圧延鉛合金シートから得たエキスパンド格子体に常法による鉛蓄電池用負極活物質ペーストを充填し、熟成乾燥することにより、得たものである。   The negative electrode plate used in the battery A of the present invention example is a negative electrode active material for a lead storage battery in an expanded lattice obtained from a rolled lead alloy sheet of Pb-0.06 mass% Ca-0.3 mass% Sn alloy. It was obtained by filling with paste and aging and drying.

本発明例の電池Aに用いたセパレータは図1に示すような第1のセパレータ7と第2のセパレータ8で構成されたセパレータである。なお、これらの各セパレータの側部は閉じられ、全体として袋状としたものである。第1のセパレータ7は繊維径0.5μm〜1.0μmのガラス繊維を抄造した、19.6kPa加圧時の厚さ1.0mmのガラス繊維マットであり、第2のセパレータ8は厚み0.3mmのポリエチレン樹脂の微多孔膜で構成される。第1のセパレータ7と第2のセパレータ8の高さを合計したセパレータの総高さを100としたとき、第1のセパレータ7の高さを40、第2のセパレータ8の高さを60とした。   The separator used in the battery A of the example of the present invention is a separator composed of a first separator 7 and a second separator 8 as shown in FIG. In addition, the side part of each of these separators is closed and is formed into a bag shape as a whole. The first separator 7 is a glass fiber mat having a thickness of 1.0 mm under pressure of 19.6 kPa, made of glass fibers having a fiber diameter of 0.5 μm to 1.0 μm. It is composed of a 3 mm polyethylene resin microporous membrane. When the total height of the separators obtained by adding the heights of the first separator 7 and the second separator 8 is 100, the height of the first separator 7 is 40, and the height of the second separator 8 is 60. did.

上記の正極板5枚、負極板6枚およびセパレータを組み合わせ、JIS D5301(始動用鉛蓄電池)で規定する55D23形電池を作成した。なお、負極ストラップにはSbを含まない、Pb−5質量%Sn合金を用いた。その後、比重1.200(20℃)換算の希硫酸を電池に注液し、化成充電終了後、電解液の比重(20℃換算)を1.300、および電解液面を負極板上端と同じ高さとなるよう、調整した。なお、注液口には、排気経路を有した液口栓を装着した。   The 55D23 type battery prescribed | regulated by JISD5301 (lead-acid battery for starting) was created combining 5 sheets of said positive electrode plates, 6 sheets of negative electrode plates, and a separator. In addition, the Pb-5 mass% Sn alloy which does not contain Sb was used for the negative electrode strap. Thereafter, dilute sulfuric acid converted to a specific gravity of 1.200 (20 ° C.) is poured into the battery, and after chemical conversion charging, the specific gravity of the electrolytic solution (converted to 20 ° C.) is 1.300, and the electrolyte surface is the same as the upper end of the negative electrode The height was adjusted. The liquid inlet was equipped with a liquid stopper having an exhaust path.

(2)本発明例の電池B
本発明例の電池Bは図2に示す第2の実施形態を有する電池である。電池Bに用いた正極板、負極板は電池Aに用いたものと全く同じものである。本発明例の電池Bに用いた第1のセパレータ7および第2のセパレータ8´はそれぞれ電池Aに用いたものと同一材質のものを用いた。第2のセパレータ8´は側部が閉じられた袋状であり、第2のセパレータ8´の高さを100としたとき、第1のセパレータ高さを40としている。以降の本発明例の電池Bの構成は、電池Aと同様とした。
(2) Battery B of the present invention example
The battery B of the present invention example is a battery having the second embodiment shown in FIG. The positive electrode plate and negative electrode plate used for battery B are exactly the same as those used for battery A. The first separator 7 and the second separator 8 ′ used in the battery B of the example of the present invention were made of the same material as that used for the battery A, respectively. The second separator 8 ′ has a bag shape with its side portions closed. When the height of the second separator 8 ′ is 100, the first separator height is 40. The configuration of the battery B in the following examples of the present invention was the same as that of the battery A.

(3)本発明例の電池C
本発明例の電池Cは図3に示す第3の実施形態を有する電池である。電池Cに用いた正極板、負極板は電池Aおよび電池Bに用いたものと全く同じものである。本発明例の電池Cに用いたセパレータ15を構成する中心層13および外層14はそれぞれ、電池Aおよび電池Bで用いた第2のセパレータ8,8´および第1のセパレータ7と同一材料のものである。
(3) Battery C of the present invention example
The battery C of the present invention example is a battery having the third embodiment shown in FIG. The positive electrode plate and negative electrode plate used for battery C are exactly the same as those used for battery A and battery B. The center layer 13 and the outer layer 14 constituting the separator 15 used in the battery C of the example of the present invention are made of the same material as the second separators 8 and 8 ′ and the first separator 7 used in the battery A and the battery B, respectively. It is.

なお、セパレータ15は側部が閉じられた袋状であり、中心層13の高さを100としたとき、外層の高さを40としている。本発明例の電池Cの以降の構成は、電池Aおよび電池Bと同様とした。   In addition, the separator 15 is a bag shape with the side part closed, and when the height of the center layer 13 is 100, the height of the outer layer is 40. The subsequent configuration of the battery C of the example of the present invention was the same as that of the battery A and the battery B.

(4)比較例の電池D
比較例の電池Dは前記した本発明例の電池A、BおよびCで用いたものと同様の正極板5枚と負極板6枚とを用い、図4に示すように、厚み0.3mmのポリエチレン樹脂の微多孔膜を袋状としたセパレータ17を用いたものである。セパレータ17は第1〜第2の実施形態で用いた第2のセパレータ8,8´および中心層13と同一素材である。
(4) Battery D of Comparative Example
The battery D of the comparative example uses five positive electrode plates and six negative electrode plates similar to those used in the batteries A, B and C of the present invention described above, and has a thickness of 0.3 mm as shown in FIG. A separator 17 in which a polyethylene resin microporous membrane is formed into a bag shape is used. The separator 17 is made of the same material as the second separators 8, 8 ′ and the center layer 13 used in the first to second embodiments.

比較例の電池Dは上述の電池A〜Cと同様、55D23形電池である。化成充電後、電解液比重(20℃換算)を1.280とし、電解液面を負極ストラップがすべて浸漬される、負極板上端から上方へ40mmの位置に調整した。なお、比較例の電池Dの電解液中に含まれる硫酸量は本発明例の電池A〜Cの電解液中に含まれる硫酸量とは同一である。   The battery D of the comparative example is a 55D23 type battery similar to the batteries A to C described above. After the chemical charging, the electrolyte specific gravity (20 ° C. conversion) was set to 1.280, and the electrolyte surface was adjusted to a position of 40 mm upward from the upper end of the negative electrode plate where all the negative electrode straps were immersed. In addition, the amount of sulfuric acid contained in the electrolyte solution of the battery D of the comparative example is the same as the amount of sulfuric acid contained in the electrolyte solutions of the batteries A to C of the example of the present invention.

(5)比較例の電池E
比較例の電池Eは、比較例の電池Dにおける電解液比重(20℃換算)を1.300とし、電解液面を負極上端と同一位置とした電池であり、比較例の電池Eの電解液中に含まれる硫酸量は電池A〜Dの電解液中に含まれる硫酸量とは同一である。
(5) Battery E of Comparative Example
The battery E of the comparative example is a battery in which the electrolyte specific gravity (converted to 20 ° C.) in the battery D of the comparative example is 1.300, and the electrolytic solution surface is in the same position as the upper end of the negative electrode. The amount of sulfuric acid contained therein is the same as the amount of sulfuric acid contained in the electrolyte solutions of batteries A to D.

(6)比較例の電池F
比較例の電池Fは前記した本発明例の電池A、BおよびCで用いたものと同様の正極板5枚と負極板6枚とを用い、図5に示すように、繊維径0.5μm〜1.0μmのガラス繊維を抄造した、19.6kPa加圧時の厚さ1.0mmのガラス繊維マットからなる平板状のマットセパレータ16を用いたものである。マットセパレータ16は第1〜第3の実施形態で用いた第1のセパレータ7および外層14と同一素材である。
(6) Battery F of Comparative Example
The battery F of the comparative example uses five positive electrode plates and six negative electrode plates similar to those used in the batteries A, B, and C of the above-described example of the present invention, and, as shown in FIG. A flat mat separator 16 made of a glass fiber mat having a thickness of 1.0 mm under pressure of 19.6 kPa, made of glass fiber having a thickness of ˜1.0 μm, is used. The mat separator 16 is the same material as the first separator 7 and the outer layer 14 used in the first to third embodiments.

比較例の電池Fは上述の各電池と同様、55D23形電池である。化成充電後、電解液比重(20℃換算)を1.300とし、電解液面を、負極板上端と同一の位置に調整した。なお、比較例の電池Dの電解液中に含まれる硫酸量は電池A〜Dの電解液中に含まれる硫酸量とは同一である。その他の仕様は電池A〜Dと同じである。   The battery F of the comparative example is a 55D23 type battery, like the above-described batteries. After the chemical charging, the electrolyte specific gravity (20 ° C. conversion) was set to 1.300, and the electrolyte surface was adjusted to the same position as the upper end of the negative electrode plate. In addition, the amount of sulfuric acid contained in the electrolyte solution of the battery D of the comparative example is the same as the amount of sulfuric acid contained in the electrolyte solutions of the batteries A to D. Other specifications are the same as those of the batteries A to D.

(7)比較例の電池G
比較例の電池Gは、比較例の電池Fにおける電解液量を、セパレータおよび正負極板に含浸保持できる程度とし、電池内圧変化に耐えうる強度を確保する目的で、電槽および蓋を液式鉛蓄電池用のものよりも肉厚とした制御弁付負極吸収式鉛蓄電池のものに変更するとともに蓋に10kPaで開弁動作する制御弁を搭載した、負極吸収式の鉛蓄電池である。
(7) Battery G of comparative example
In the battery G of the comparative example, the amount of the electrolytic solution in the battery F of the comparative example is set so that it can be impregnated and held in the separator and the positive and negative electrode plates, and the battery case and the lid are liquid-type for the purpose of ensuring the strength that can withstand changes in battery internal pressure. It is a negative electrode absorption type lead storage battery in which a control valve that operates to open at 10 kPa is mounted on the lid while changing to a negative absorption type lead storage battery with a control valve that is thicker than that for a lead storage battery.

上記した各電池について、電池質量、5時間率放電容量および−15℃、300A放電(6.0V終止)における放電持続時間および放電5秒目電圧を計測した。これらの結果を表1に示す。   For each of the batteries described above, the battery mass, 5 hour rate discharge capacity, -15 ° C., discharge duration at 300 A discharge (6.0 V termination) and discharge 5 second voltage were measured. These results are shown in Table 1.

Figure 2007087871
Figure 2007087871

表1に示した結果からわかるように、本発明例の電池A〜Cは、電解液量が制限された制御弁付の負極吸収式鉛蓄電池である電池Gに比べては重いものの、従来の液式鉛蓄電池(比較例の電池D)に対しては、約10%の軽量化が図れる。また単位質量あたりの5時間率放電容量および−15℃、300Aでの低温急放電性能で比較すると、本発明例の電池A〜Cおよび電解液面を低下させた比較例の電池Eが、他の比較例の電池D、F、Gに比較して優れている。   As can be seen from the results shown in Table 1, the batteries A to C of the example of the present invention are heavier than the battery G, which is a negative electrode absorption lead-acid battery with a control valve with a limited amount of electrolyte, About 10% of weight reduction can be achieved with respect to a liquid lead acid battery (battery D of a comparative example). In addition, when compared with the discharge capacity at 5 hours per unit mass and the low temperature rapid discharge performance at −15 ° C. and 300 A, the batteries A to C of the example of the present invention and the battery E of the comparative example with the electrolyte surface lowered are The batteries D, F, and G of the comparative examples are superior.

特に、低温急放電性能では、電池Fおよび電池Gともに極板全面にガラス繊維マットが対向するため、電解液の拡散が抑制されるため、放電持続時間および5秒目電圧ともに他の電池と比較して著しく低下している。   In particular, in the low temperature rapid discharge performance, since the glass fiber mat faces the entire surface of both the battery F and the battery G, the diffusion of the electrolyte is suppressed, so that both the discharge duration and the voltage at the 5th second are compared with other batteries. And it has fallen remarkably.

次に、これら各電池について、JIS D5301で規定する軽負荷寿命試験を行った。寿命試験条件は、以下に示す通りである。なお、試験中の補水は一切、行わなかった。   Next, a light load life test defined by JIS D5301 was performed on each of these batteries. The life test conditions are as shown below. In addition, no water replenishment was performed during the test.

(a)温度条件:40℃に温度調整された恒温室に試験電池を配置
(b)充放電:25A×4分放電+14.8V(最大電流25A)で10分定電圧充電
(c)性能確認:上記480サイクル毎に356Aで30秒間放電し、30秒目電圧が
7.2V以下となった時点で試験終了
(d)寿命サイクル数の算出:480サイクル毎の30秒目電圧の関係から直線外挿に
より、30秒目電圧=7.2Vとなるサイクル数を寿命
サイクル数として算出
表2に上記の寿命試験の結果を示す。なお、結果は電池Dの寿命サイクル数に対する百分率で表示した。
(A) Temperature condition: Place the test battery in a temperature-controlled room adjusted to 40 ° C. (b) Charge / Discharge: 10 A constant voltage charge at 25 A × 4 minutes discharge + 14.8 V (maximum current 25 A) (c) Performance check : Discharge at 356A for 30 seconds every 480 cycles, and the voltage at 30th
When the voltage reaches 7.2 V or less, the test ends. (D) Calculation of the number of life cycles: From the relationship of voltage at 30 seconds every 480 cycles, linear extrapolation
Therefore, the number of cycles in which the voltage at the 30th second becomes 7.2V is the life
Calculation as number of cycles Table 2 shows the results of the above life test. The results were expressed as a percentage with respect to the number of life cycles of the battery D.

Figure 2007087871
Figure 2007087871

表2に示した結果から、本発明例の電池は比較例の電池D、Eに対して優れた寿命特性を有していることがわかる。比較例の電池DおよびEでは、電解液面の低下とともに、負極が酸化劣化し、さらに減液が進行することによって、寿命終期には電解液が極端に減少し劣化していた。特に、電解液面を低下させた電池Eでは、極端に短寿命であった。   From the results shown in Table 2, it can be seen that the battery of the example of the present invention has excellent life characteristics with respect to the batteries D and E of the comparative example. In the batteries D and E of the comparative examples, the negative electrode was oxidized and deteriorated as the electrolytic solution level was lowered, and the liquid reduction progressed, so that the electrolytic solution was extremely reduced and deteriorated at the end of the life. In particular, the battery E with a lowered electrolyte surface has an extremely short life.

一方、比較例の電池Fでは、電解液面が低下し、負極板が電解液面から露出した場合であっても、ガラス繊維マットにより電解液が負極板に補給され、酸素ガスの負極吸収反応が進行する。したがって、極端な電解液面の低下は抑制されるとともに、負極の酸化劣化は抑制されるために、比較例の電池DおよびEよりも寿命性能は良化する。   On the other hand, in the battery F of the comparative example, even when the electrolytic solution level is lowered and the negative electrode plate is exposed from the electrolytic solution surface, the electrolytic solution is replenished to the negative electrode plate by the glass fiber mat, and the negative electrode absorption reaction of oxygen gas Progresses. Accordingly, an extreme decrease in the electrolyte surface is suppressed, and the oxidative deterioration of the negative electrode is suppressed, so that the life performance is improved compared to the batteries D and E of the comparative example.

比較例の電池Gでは、負極吸収式の電池であり、減液は殆ど進行しないが、電解液量が制限されているため、性能確認時の356Aでの放電電圧特性が低下するため、良好な軽負荷寿命特性は得られない。   The battery G of the comparative example is a negative electrode absorption type battery, and the liquid reduction hardly progresses, but since the amount of the electrolyte is limited, the discharge voltage characteristic at 356A at the time of performance check is lowered, so that it is good. Light load life characteristics cannot be obtained.

本発明例の電池A〜Cでは、電解液面が低下し、負極板が電解液面より露出するものの、ガラス繊維マットによって電解液が負極板面に補給される。したがって、負極板上での酸素ガス吸収反応により水が生成し、減液の進行が抑制され、負極の酸化劣化による寿命低下は抑制される。なお、電池A〜Cの電解液面はガラス繊維マット(第1のセパレータ)に接する位置にあった。また、極板群下部にはガラス繊維マットは存在せず、低抵抗のポリエチレン樹脂の微多孔膜であるため、性能確認における356A放電電圧特性が良好であり、補水を行わない場合でも全体として極めて良好な寿命特性を有する。   In the batteries A to C of the present invention example, the electrolytic solution level is lowered and the negative electrode plate is exposed from the electrolytic solution surface, but the electrolytic solution is replenished to the negative electrode plate surface by the glass fiber mat. Therefore, water is generated by the oxygen gas absorption reaction on the negative electrode plate, the progress of liquid reduction is suppressed, and the lifetime reduction due to the oxidative deterioration of the negative electrode is suppressed. In addition, the electrolyte solution surfaces of the batteries A to C were in a position in contact with the glass fiber mat (first separator). In addition, since there is no glass fiber mat in the lower part of the electrode plate group and it is a microporous film of low-resistance polyethylene resin, the 356A discharge voltage characteristic in the performance confirmation is good, and even if no water replenishment is performed as a whole, Has good life characteristics.

本実施例から、本発明例による電池A〜Cは、電池質量、5時間率容量、低温急放電性能および軽負荷寿命特性をそれぞれ高いレベルで両立できることがわかる。一方、比較例の電池では、5時間率容量および低温急放電性能に優れた電池D、Eは、補水なしの条件化では極端に寿命低下する。   From this example, it can be seen that the batteries A to C according to the examples of the present invention can achieve a high level of battery mass, 5 hour rate capacity, low temperature rapid discharge performance, and light load life characteristics. On the other hand, in the battery of the comparative example, the batteries D and E excellent in 5-hour rate capacity and low-temperature rapid discharge performance have an extremely reduced life under conditions without water replenishment.

以上のことから、本発明によれば、補水の手間を省いた場合であっても長寿命であり、軽量化され、かつ緩放電および急放電性能に優れた鉛蓄電池を得られることがわかる。   From the above, it can be seen that according to the present invention, a lead-acid battery having a long life, light weight, and excellent slow discharge and rapid discharge performance can be obtained even when refilling is omitted.

本発明の鉛蓄電池は、減液とこれによる寿命低下が抑制され、軽量化され、かつ緩放電および急放電性能に優れていることから、車両用鉛蓄電池をはじめとする様々な鉛蓄電池に好適である。   The lead storage battery of the present invention is suitable for various lead storage batteries such as a lead storage battery for vehicles because liquid reduction and life reduction due to this are suppressed, the weight is reduced, and the slow discharge and rapid discharge performance is excellent. It is.

本発明の第1の実施形態による鉛蓄電池の部分断面を示す図The figure which shows the partial cross section of the lead acid battery by the 1st Embodiment of this invention. 本発明の第2の実施形態による鉛蓄電池の極板群構成を示す図The figure which shows the electrode plate group structure of the lead acid battery by the 2nd Embodiment of this invention. 本発明の第3の実施形態による鉛蓄電池の極板群構成を示す図The figure which shows the electrode plate group structure of the lead acid battery by the 3rd Embodiment of this invention. 比較例の電池Dおよび電池Eの極板群構成を示す図The figure which shows the electrode plate group structure of the battery D and the battery E of a comparative example 比較例の電池Fおよび電池Gの極板群構成を示す図The figure which shows the electrode plate group structure of the battery F of the comparative example, and the battery G

符号の説明Explanation of symbols

1 (第1の実施形態による)鉛蓄電池
2 電槽
3 蓋
4 正極板
5 負極板
6 極板群
7 第1のセパレータ
8、8´ 第2のセパレータ
9 電解液面
10 ストラップ
13 中心層
14 外層
15 セパレータ
16 マットセパレータ
17 セパレータ
DESCRIPTION OF SYMBOLS 1 Lead storage battery (according to 1st Embodiment) 2 Battery case 3 Lid 4 Positive electrode plate 5 Negative electrode plate 6 Electrode plate group 7 1st separator 8, 8 '2nd separator 9 Electrolyte surface 10 Strap 13 Central layer 14 Outer layer 15 Separator 16 Matte separator 17 Separator

Claims (5)

正極格子および負極格子にPb−Ca合金を用いた正極板および負極板を有した極板群を備え、前記極板群上部において、少なくとも負極板面に接するようガラス繊維等の耐酸性繊維を主体とするマット状抄造体からなる第1のセパレータを配し、
前記極板群上部を除いた極板群下部において、前記第1のセパレータを配さず、かつポリエチレン等の耐酸性樹脂の微多孔膜からなる第2のセパレータを配したことを特徴とする鉛蓄電池。
An electrode plate group having a positive electrode plate and a negative electrode plate using a Pb—Ca alloy for the positive electrode lattice and the negative electrode lattice is provided, and at the upper part of the electrode plate group, mainly acid-resistant fibers such as glass fibers are in contact with at least the negative electrode plate surface A first separator made of a mat-like papermaking body,
Lead having a second separator made of a microporous film of acid-resistant resin such as polyethylene, without the first separator in the lower part of the electrode group excluding the upper part of the electrode group Storage battery.
前記極板群上部において、前記正極板面に接するよう、第2のセパレータを配したことを特徴とする請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein a second separator is disposed in contact with the positive electrode plate surface in the upper part of the electrode plate group. 前記極板群上部において、前記第2のセパレータで構成された中心層と、この中心層の外側両面に配置され、前記第1のセパレータからなる外層で構成された三層のセパレータが前記正極板−負極板間に配置され、前記極板群下部において、前記第2のセパレータで構成された中心層のみを前記正極板−負極板間に配置したことを特徴とする請求項1に記載の鉛蓄電池。 In the upper part of the electrode plate group, the positive electrode plate is composed of a central layer composed of the second separator and a three-layer separator disposed on both outer sides of the central layer and composed of the outer layer composed of the first separator. 2. The lead according to claim 1, wherein the lead layer is disposed between the positive electrode plate and the negative electrode plate, and is disposed between the positive electrode plate and the negative electrode plate at a lower portion of the electrode plate group, and only the center layer constituted by the second separator is disposed between the negative electrode plates. Storage battery. 初期状態における電解液面を負極板上端以上かつ、負極板同士を接合する負極ストラップの下面未満としたことを特徴とする請求項1、2もしくは3に記載の鉛蓄電池。 4. The lead acid battery according to claim 1, wherein an electrolyte surface in an initial state is set to be higher than or equal to an upper end of the negative electrode plate and less than a lower surface of the negative electrode strap for joining the negative electrode plates to each other. 前記負極ストラップにはSbを含まない、Pb合金を用いることを特徴とした請求項4に記載の鉛蓄電池。 The lead acid battery according to claim 4, wherein a Pb alloy not containing Sb is used for the negative electrode strap.
JP2005277744A 2005-09-26 2005-09-26 Lead-acid battery Pending JP2007087871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277744A JP2007087871A (en) 2005-09-26 2005-09-26 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277744A JP2007087871A (en) 2005-09-26 2005-09-26 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2007087871A true JP2007087871A (en) 2007-04-05

Family

ID=37974632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277744A Pending JP2007087871A (en) 2005-09-26 2005-09-26 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2007087871A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054467A1 (en) * 2011-10-14 2013-04-18 株式会社Gsユアサ Valve-regulated lead-acid battery
US8846252B2 (en) 2009-02-26 2014-09-30 Johnson Controls Technology Company Battery electrode and method for manufacturing same
JP2015176638A (en) * 2014-03-13 2015-10-05 株式会社Gsユアサ Liquid type lead storage battery
CN106299201A (en) * 2016-08-23 2017-01-04 浙江畅通科技有限公司 A kind of AGM dividing plate suppressing electrolyte stratification
CN106299200A (en) * 2016-08-23 2017-01-04 浙江畅通科技有限公司 A kind of AGM dividing plate production method suppressing electrolyte stratification
KR20180034660A (en) 2015-09-18 2018-04-04 가부시키가이샤 지에스 유아사 Lead accumulator
US10581046B2 (en) 2008-12-18 2020-03-03 Clarios Germany Gmbh & Co. Kgaa Laminar textile material for a battery electrode
JPWO2019021691A1 (en) * 2017-07-24 2020-05-28 株式会社Gsユアサ Lead acid battery
WO2022123643A1 (en) * 2020-12-08 2022-06-16 昭和電工マテリアルズ株式会社 Lead acid stroage battery, strap, strap component, mold for strap production, and method for producing strap

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233293B2 (en) 2008-12-18 2022-01-25 Clarios Germany Gmbh & Co. Kg Laminar textile material for a battery electrode
US10581046B2 (en) 2008-12-18 2020-03-03 Clarios Germany Gmbh & Co. Kgaa Laminar textile material for a battery electrode
US10044043B2 (en) 2009-02-26 2018-08-07 Johnson Controls Technology Company Fiber scrim, battery electrode and method for manufacturing same
US8846252B2 (en) 2009-02-26 2014-09-30 Johnson Controls Technology Company Battery electrode and method for manufacturing same
JPWO2013054467A1 (en) * 2011-10-14 2015-03-30 株式会社Gsユアサ Control valve type lead acid battery
WO2013054467A1 (en) * 2011-10-14 2013-04-18 株式会社Gsユアサ Valve-regulated lead-acid battery
JP2015176638A (en) * 2014-03-13 2015-10-05 株式会社Gsユアサ Liquid type lead storage battery
CN108028436A (en) * 2015-09-18 2018-05-11 株式会社杰士汤浅国际 Lead accumulator
KR20180034660A (en) 2015-09-18 2018-04-04 가부시키가이샤 지에스 유아사 Lead accumulator
CN106299200A (en) * 2016-08-23 2017-01-04 浙江畅通科技有限公司 A kind of AGM dividing plate production method suppressing electrolyte stratification
CN106299201A (en) * 2016-08-23 2017-01-04 浙江畅通科技有限公司 A kind of AGM dividing plate suppressing electrolyte stratification
JPWO2019021691A1 (en) * 2017-07-24 2020-05-28 株式会社Gsユアサ Lead acid battery
JP7111099B2 (en) 2017-07-24 2022-08-02 株式会社Gsユアサ lead acid battery
WO2022123643A1 (en) * 2020-12-08 2022-06-16 昭和電工マテリアルズ株式会社 Lead acid stroage battery, strap, strap component, mold for strap production, and method for producing strap

Similar Documents

Publication Publication Date Title
JP2007087871A (en) Lead-acid battery
JP5079324B2 (en) Lead acid battery
WO2005093890A1 (en) Lead battery and lead battery storage method
JP4752365B2 (en) Lead acid battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP6164266B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP5023482B2 (en) Lead acid battery
JP2020181826A (en) Vapor pressure barrier for lead acid battery for improved water loss performance, separator, system, and method of manufacture and use thereof
JP4325153B2 (en) Control valve type lead acid battery
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
JP2006294292A (en) Lead-acid battery
JP2006318658A (en) Lead-acid battery
JPH08329975A (en) Sealed lead-acid battery
JP2006318659A (en) Lead-acid battery
JP6244801B2 (en) Lead acid battery
GB2084790A (en) Lead-acid batteries
KR870000967B1 (en) Sealed deep-cycle lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JPS6048869B2 (en) battery electrode
JP6323791B2 (en) Liquid lead-acid battery
JP2007250360A (en) Lead-acid battery
JP2019003838A (en) Liquid-type lead storage battery
JPH0766791B2 (en) Recombinable battery and its separator
JP3511858B2 (en) Lead storage battery