JP2007087729A - 流体用制御弁 - Google Patents

流体用制御弁 Download PDF

Info

Publication number
JP2007087729A
JP2007087729A JP2005274158A JP2005274158A JP2007087729A JP 2007087729 A JP2007087729 A JP 2007087729A JP 2005274158 A JP2005274158 A JP 2005274158A JP 2005274158 A JP2005274158 A JP 2005274158A JP 2007087729 A JP2007087729 A JP 2007087729A
Authority
JP
Japan
Prior art keywords
valve
fuel
control valve
fluid control
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274158A
Other languages
English (en)
Inventor
Shigehito Suzuki
重仁 鈴木
Daisuke Yamamoto
大介 山本
Masakazu Hasegawa
雅一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2005274158A priority Critical patent/JP2007087729A/ja
Priority to US11/520,037 priority patent/US7673847B2/en
Priority to DE102006044364A priority patent/DE102006044364B4/de
Publication of JP2007087729A publication Critical patent/JP2007087729A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 燃料電池自動車に搭載されている燃料電池に水素を供給する水素供給制御弁として好適な特性を有する流体用制御弁を提供する。
【解決手段】 本発明の燃料電池30に供給する燃料の流量を制御する流体用制御弁100は、燃料流出孔129を有するバルブ本体103,105,107,109,127と、バルブ本体内で移動して燃料流出孔を開閉するバルブ131と、燃料流出孔が閉じる方向にバルブを付勢する付勢力を発生する付勢手段141と、付勢手段の付勢力に抗して、燃料流出孔が開く方向にバルブを移動させる電磁力を発生する電磁力発生手段111,113と、を有する。バルブ本体は、複数の部材により構成されており、また、部材間に形成された、溶着による封止部147a,147b,147cを有している。これによって流体の外部への漏れを封止する。
【選択図】 図2

Description

本発明は、流体、例えば水素ボンベに貯えられている水素ガスを、当該水素ガスを使用して発電する燃料電池に供給する水素供給系に用いられる流体用制御弁に関する。
内燃機関に燃料を供給するために用いられる一般的な燃料噴射弁は、バルブ本体内に配置されたバルブを電磁力によって駆動することにより燃料噴射孔を開閉するよう構成されている。バルブ本体は、バルブボディ、コア、バルブシート等の嵌め合いによって構成されるとともに、バルブボディ、コア、バルブシートの各嵌合面には、燃料通路を流れる燃料が外部へ漏出することを防止するべくゴム製のOリングによる封止構造が設けられている。このようなOリングによる封止構造は、例えば、特許文献1、特許文献2に開示されている。
WO2003−042526号公報 特開平9−310656号公報
近年、燃料電池発電システムを搭載した燃料電池自動車が開発されている。この燃料電池自動車は、燃料電池発電システムで発電された電力を走行モータに供給することにより駆動する。
燃料電池発電システムは、水素と酸素を電気化学的に反応させて発電する燃料電池と、燃料電池に酸素を供給する酸素供給系と、燃料電池に水素を供給する水素供給系を備えている。
従来の、燃料電池自動車の水素供給系は、水素ガスを貯蔵する水素ボンベと、水素ボンベと燃料電池の間に設けられた遮断弁及びレギュレータを備えている。レギュレータは、水素ボンベに貯蔵されている水素ガスの圧力を設定圧力に減圧する。レギュレータとしては、例えば、ダイアフラムとバネを有し、入力された水素ガスの圧力を、バネの圧力によって定まる設定圧力に減圧する機械式の圧力制御弁が用いられている。遮断弁は、イグニッションスイッチがオンされると開放される。これにより、水素ボンベに貯蔵されている水素ガスは、レギュレータを介して燃料電池に供給される。一方、遮断弁は、イグニッションスイッチがオフされると、閉じられる。これにより、燃料電池への水素ガスの供給が停止される。
従来の燃料電池自動車の燃料発電システムでは、レギュレータ等の流体用制御弁の封止構造として、前記した、ゴム製のOリングを有する封止構造が用いられている。このため、Oリングからの水素ガスの透過による外部への漏れが懸念される。
本発明は、かかる点に鑑みてなされたものであり、燃料電池自動車に搭載されている燃料電池に水素を供給する水素供給制御弁として好適な特性を有する流体用制御弁を提供することを目的とする。
上記課題を達成するため、特許請求の範囲の各請求項に記載の発明が構成される。
請求項1に記載の発明によれば、燃料電池に供給する燃料の流量を制御する流体用制御弁が構成される。本発明の流体用制御弁は、燃料流出孔を有するバルブ本体と、バルブ本体内で移動して燃料流出孔を開閉するバルブと、燃料流出孔が閉じる方向にバルブを付勢する付勢力を発生する付勢手段と、付勢手段の付勢力に抗して、燃料流出孔が開く方向にバルブを移動させる電磁力を発生する電磁力発生手段と、を有する。本発明における「流体用制御弁」は、電磁力によってバルブを開閉する電磁弁あり、燃料電池に水素ガスを供給する装置に好適に用いられる。
本発明によれば、バルブ本体は、複数の部材により構成されており、また、部材間に形成された、溶着による封止部を有している。なお本発明における「溶着による封止部」とは、溶接棒を媒介にして2部材を接合する態様、高温で加熱して2部材を直接に接合する態様のいずれも好適に包含する。また「封止部」は、バルブ本体につき、少なくとも1ヶ所設けられていれば足りる。本発明は、溶着による封止部によって流体の漏れを封止する構成のため、水素ガスに対しても高い封止効果を得ることができる。これにより、燃料電池発電装置に好適に用いることができる。
ところで、Oリングによる封止構造を採用した従来の流体用制御弁は、バルブ径および電磁力が小さく、水素ガス供給用として必要な所定の流量および圧力が確保できない。このため、水素ガス供給用として対応するべくバルブ径および電磁力を増大しようとすると、バルブを収容するバルブ本体の外郭形状が大型化してしまう。本発明によれば、溶着による封止部で流体の漏れを封止する構成とすることで、バルブ本体を構成する部材にOリングの収容溝を設ける必要がなくなるため、その分だけ当該部材の肉厚を内径側に薄く形成することが可能となる。その結果、バルブ本体の外郭形状を大型化することなく、バルブ径および電磁力を大きくして水素ガス供給用として使用できる。
(請求項2に記載の発明)
請求項2に記載の発明によれば、請求項1に記載の流体用制御弁におけるバルブ本体は、バルブ本体は、ボディと、ボディの内側に配置されているコアと、ボディの内側に配置されているとともに、燃料流出孔が形成されているシート部材と、コアとボディの間に配置されているリングを有する。そしてボディとシート部材との接合部、ボディとリングとの接合部、コアとリングとの接合部に、溶着による封止部が形成されている。なお本発明における「リング」とは、電磁アクチュエータのバルブに対する電磁力の作用を効率的に行わせるべく設けられるリング状の非磁性材がこれに該当する。本発明によれば、バルブ本体が、ボディ、コア、シート部材、およびリングによって構成される形式の流体用制御弁において、バルブ本体を構成する構成部材の各接合部にそれぞれ溶着による封止部を設けることによって、高い封止機能を確保できる。これにより、バルブ本体の外郭形状を大型化することなく、バルブ径および電磁力を大きくして水素ガス供給用として使用することが可能となる。
(請求項3に記載の発明)
請求項3に記載の発明によれば、請求項1または2に記載の流体用制御弁における封止部は、溶接によって形成されている。ここで「溶接」とは、溶接棒を媒介にして接合する態様をいう。本発明によれば、封止部を溶接によって形成することで、水素ガスの供給といった高圧環境下での使用に対し、劣化による強度低下を抑制できる耐久性のある流体用制御弁が提供される。
(請求項4に記載の発明)
請求項4に記載の発明によれば、燃料電池に供給する燃料の流量を制御する流体用制御弁が構成される。本発明の流体用制御弁は、燃料流出孔を有するバルブ本体と、バルブ本体内で移動して燃料流出孔を開閉するバルブと、燃料流出孔が閉じる方向にバルブを付勢する付勢力を発生する付勢手段と、付勢手段の付勢力に抗して、燃料流出孔が開く方向に前記バルブを移動させる電磁力を発生する電磁力発生手段と、入力信号に基づいて電磁力発生手段に供給する電力を制御する制御手段と、を有する。本発明における「流体用制御弁」は、電磁力によってバルブを開閉する電磁弁であり、燃料電池に水素ガスを供給する装置として好適に用いられる。
本発明における制御手段は、燃料流出孔から流出される燃料の圧力が、入力信号に比例するように電磁力発生手段に供給する電力を制御する構成とされる。ここで「電磁力発生手段」としては、典型的にはソレノイドコイルがこれに該当し、「入力信号」とは、典型的には、アクセルペダルの踏込量がこれに該当する。また「燃料の圧力」は、例えば圧力センサによって検出される。本発明によれば、電磁力発生手段に供給する電力は、入力信号としてのアクセルペダルの踏込量に比例した設定圧力と、圧力センサにより検出される圧力との差に応じたデューティ比を有する制御信号に基づき制御される。これにより、燃料電池に供給する燃料の流量をアクセルペダルの踏込量に対応して制御できる。
本発明によれば、燃料電池自動車に搭載されている燃料電池に水素を供給する水素供給制御弁として好適な特性を有する流体用制御弁が提供されることとなった。
以下、本発明の実施の形態につき、図面を参照しつつ、詳細に説明する。本実施の形態に係る流体用制御弁は、燃料電池自動車に搭載されている燃料電池に水素ガスを供給する流体用制御弁として用いている。このため、先ず燃料電池発電システムの構成につき、図1を参照しつつ説明する。
燃料電池自動車2は、イグニッションスイッチ4、アクセルペダル6、燃料電池発電システム10等を有している。イグニッションスイッチ4、アクセルペダル6は、燃料電池発電システム10の制御装置60と接続されている。制御装置60は、本発明における「制御手段」に対応する。燃料電池発電システム10は、水素ガスと酸素ガスを反応させて発電するシステムである。燃料電池自動車2は、システム10によって発電された電力を走行モータに供給することによって走行する。燃料電池発電システム10は、酸素と水素を用いて発電する燃料電池30と、燃料電池30に水素を供給する水素ボンベ12と、燃料電池30に空気を供給する空気供給装置32と、制御装置60等を備えている。
水素ボンベ12は、超高圧の水素ガスを貯蔵することができる。本実施の形態では、最大で70MPaの水素を貯蔵することができる。水素ボンベ12と燃料電池30の間には、水素ボンベ12から燃料電池30まで水素ガスを案内するガス流路50が備えられている。ガス流路50には、水素ボンベ12から燃料電池30の方向に、遮断弁14、第1レギュレータ16、第2レギュレータ100が順に配置されている。
遮断弁14は、水素ボンベ12のガス出口を開閉するパイロット式遮断弁(図示省略)と、その下流に配置されている過流防止弁(図示省略)とから構成されている。遮断弁14は、ガス配管50aによって第1レギュレータ16に接続されている。
第1レギュレータ16は、入力された水素ガスの圧力を約1MPaまで減圧する。第1レギュレータ16には、ガス配管50bが接続されている。ガス配管50bは、途中で二手に分かれており、その一方は第2レギュレータ100と接続され、他方は排気シャット弁36と接続されている。第2レギュレータ100は、入力された水素ガスの圧力を約0.2MPaまで減圧する。
排気シャット弁36は、ガス流路50を開閉する。この排気シャット弁36が開放されると、ガス流路50中の水素ガスが大気中に排出される。排気シャット弁36には、図示省略の希釈器が接続されており、水素ガスは希釈後に排出される。また排気シャット弁36には、図示省略の逆止弁が接続されており、その逆止弁によって空気がガス流路50に侵入するのが防止されている。
第2レギュレータ100と燃料電池30は、ガス配管50cによって接続されている。燃料電池30の内部には、水素ガス通過経路30aと空気通過経路30bが形成されている。この水素ガス通過経路30aには、ガス配管50cから水素ガスが流入する。燃料電池30の空気通過経路30bには、空気配管54を介して空気供給装置32が接続されている。空気供給装置32は、コンプレッサや加湿モジュール等から構成され、燃料電池30に空気を送り込む。燃料電池30の空気通過経路30bには、空気供給装置32から送り込まれた空気が流入する。燃料電池30は、水素ボンベ12からの水素ガスと、空気供給装置32からの空気中の酸素ガスを電気的に反応させて発電する。燃料電池30で発電された電力は、燃料電池自動車2の駆動(走行)エネルギーとなる。
ガス配管50cには、第2レギュレータ100から供給される水素ガスの圧力を検出する圧力センサ18が設けられている。
制御装置60は、圧力センサ18によって検出された水素ガスの圧力(ガス圧)、イグニッションスイッチ4の動作検出信号、アクセルペダル6の踏込量検出信号が入力される。
また、制御装置60には、遮断弁14、第2レギュレータ100、排気シャット弁36が接続されている。
制御装置60は、遮断弁14、第2レギュレータ100、排気シャット弁36の開閉制御を実行する。
制御装置60は、イグニッションスイッチ4がオンになると、遮断弁14を開放する。これにより、水素ボンベ12に貯蔵された水素ガスは第1レギュレータ16を介して第2レギュレータ100に供給される。
そして、アクセルペダル6の踏込量及び圧力センサ18の検出信号に基づいて、第2レギュレータ100に供給する電力を制御する。本実施の形態では、第2レギュレータ100のソレノイドコイルに供給する電力をアクセルペダル6の踏込量及び圧力センサ18の検出信号に応じたデューティ比で制御している。なおデューティ制御は、ソレノイドコイルに供給する電力パルスの周期Tと、電力パルスの幅(オン時間)tとの比(デューティ比=t/T×100%)を制御する制御方法である。なお第2レギュレータ100の具体的な制御方法については後述する。
一方、制御装置60は、イグニッションスイッチ4がオフされると、遮断弁14を閉じるとともに、排気シャット弁36を開放する。これにより、ガス配管50中の水素ガスが大気中に排出される。
排気シャット弁36は、少なくとも、遮断弁14が次に開放される前に閉じられていればよい。
本実施の形態に係る流体用制御弁は、図1に示された燃料発電システム10中の第2レギュレータ100として用いられる。すなわち、水素ガス供給用電磁駆動式の流体用制御弁であり、以下の説明では、流体用制御弁100という。
以下、本実施の形態に係る水素ガス供給用電磁駆動式の流体用制御弁につき、図2〜図5を参照しつつ説明する。図2は流体用制御弁100の全体構成を示す断面図である。図2に示すように、電磁駆動式の流体用制御弁100は、磁性材からなるほぼ円筒状のボディ101を有する。ボディ101は、互いに嵌め合い接合されたアッパボディ103とロアボディ105とから構成される。アッパボディ103内の中央部には、ほぼ円筒状のコア107が挿入配置されている。コア107は磁性材からなり、ロアボディ105との間に非磁性材からなる鍔付リング109が配置されている。またロアボディ105の前端部(コア107と反対側)には、バルブシート127が配置されている。上記のアッパボディ103、ロアボディ105、コア107、バルブシート127、および鍔付リング109によって本発明における「バルブ本体」が構成されている。
アッパボディ103とコア107の間には、ほぼ円筒状のボビン111が配置されている。ボビン111は合成樹脂等の電気絶縁材からなり、ソレノイドコイル113が多層状に巻かれている。ソレノイドコイル113にはターミナル115が電気的に接続される。アッパボディ103の外周領域には、ターミナル115を取り囲むソケット部117aを有する受電用コネクタ117が設けられ、ソケット部17aに前述した制御装置60(図1参照)の給電用コネクタ(図示省略)が接続される。これにより、ソレノイドコイル113に対する通電およびその解除がなされる。ボビン111およびソレノイドコイル113は、本発明における「電磁力発生手段」に対応する。
ロアボディ105内には、ストッパ121、カラー123、可動弁131を支持する支持プレートとしての板バネ135、リング125およびバルブシート127が順次組み付けられている。可動弁131は、本発明における「バルブ」に対応する。
バルブシート127は、非磁性材あるいは非磁性を有する制振合金からなり、軸方向一端面(図示右側)に座面127aが形成されている。バルブシート127の軸中心部にガス噴射孔129が形成されている。ガス噴射孔129は、本発明における「燃料流出孔」に対応する。バルブシート127はロアボディ105の筒孔内に嵌合されており、その嵌め合い部におけるロアボディ105の軸方向端面において溶接により接合されている。これにより、ストッパ121、カラー123、板バネ135の外周およびリング125がロアボディ105の内側フランジ部105aとの間に挟持される。なおバルブシート127のガス噴射孔129は、下流側に向かって順に絞り部129a、同径部129b、拡張部129cを有する構成とされる。
ストッパ121は、磁性材からリング状に形成され、ロアボディ105内に嵌合され、かつ内側フランジ部105aに当接されている。カラー123は、例えばステンレス材からリング状に形成され、ロアボディ105内に嵌合され、かつストッパ121の外周部と当接されている。リング125は、例えばステンレス材からリング状に形成され、ロアボディ105内に嵌合され、かつ板バネ135の外周部と当接されている。リング125は、ロアボディ105に対するバルブシート127の固定に伴い板バネ135の外周部をカラー123に押圧している。これにより、板バネ135の外周部がカラー123とリング125との間に挟持される。
可動弁131は、磁性材である電磁ステンレス材からなり、図4に示すように、コア107とほぼ同様の断面形状をなす円筒形状の主部131aと、その主部131aの前側(ロアボディ105側)の外周に張り出すフランジ部131bと、主部131a先端に突出する円板形状のバルブ部131cとを有する。なお主部131aおよびフランジ部131bは、ソレノイドコイル113の通電時において、アーマチュアとして機能する。
主部131aの中空部131dの内周面には、段付面からなるバネ座面131eが形成されている。またフランジ部131bの後面(図4の上面)はストッパ121と面接触可能な当接面131fとなっている。
バルブ部131cの前面(図4の下面)は、バルブシート127の座面127aと面接触可能な接触面131gとされ、この接触面131gには、弾性を有する環状のシール部材133が嵌着されている。シール部材133は可動弁131の閉弁時にバルブシート127の座面127aと当接してシール作用と緩衝作用を果たす。このとき、シール部材133は、バルブシート127の座面127aに当接後弾性変形し、それに伴いバルブ部131cの接触面131gがバルブシート127の座面127aに当接する。すなわち、可動弁131の最終的な閉弁位置については、座面127aと接触面131gとの直接接触によって規定される。またバルブ部131cには、主部131aの中空部131dと連通するとともに径方向に放射状に延びる、例えば6本の貫通孔131hが周方向に60度の等間隔で形成されている。中空部131dと貫通孔131hとによって可動弁131のガス通路が構成される。貫通孔131hは、本発明における「流体通路」に対応する。
次に可動弁131を支持する板バネ135につき説明する。図3には板バネ135の全体構成が示される。図示のように、板バネ135は、例えば析出硬化系ステンレスからなり、中央部に円形の孔135aを有する円板状に形成されている。板バネ135は、外周部135bと内周部135cとの間の中間領域に、当該板バネ135の周方向に延びる内外2列のスリット135d,135eを各3本ずつ60度の間隔で備えている。なお外周側のスリット135dと、内周側のスリット135eとは、周方向において互いに60度の位相差を有する。上記のように、板バネ135の外周部135bと内周部135cとのそれぞれにスリット135d,135eを設けることによって、外周部135bと内周部135cとの間の中間領域には、板バネ135の軸方向(可動弁131の移動方向)に弾性変形可能な支持部137が形成される。支持部137は、本発明における「弾性変形部」に対応する。
支持部137は、外周部135bに連接される周方向に3個の柱状部137aと、内周部135cに連接される周方向に3個の柱状部137bと、それら外周側の柱状部137aと内周側の柱状部137bとを互いに連接する6個の梁状部137cとを有する構成とされる。柱状部137a,137bは、本発明における「連接部位」に対応する。なお外周側の柱状部137aと内周側の柱状部137bとは、周方向において互いに60度の位相差を有する。したがって、支持部137は、外周部135bと内周部135bcに対して交互に連接される。そして板バネ135の軸方向からみたとき、支持部137は、その形状がそれぞれ略S字状に形成されている。すなわち、板バネ135は、周方向に60度間隔で設定された合計6個の柱状部137a,137bとそれら柱状部137a,137bをつなぐS字状の梁状部137cとを有する支持部137によって、外周部135bと内周部135cが互いに連接された構成とされる。
外周側のスリット135dの幅は、周方向端部側の幅が周方向中央部の幅よりも内径側に広げられた広幅に形成されている。内周側のスリット135eの幅は、周方向端部側の幅が周方向中央部の幅よりも外径側に広げられた広幅に形成されている。このように外周側および内周側のスリット幅を設定することによって、支持部137は、略S字状に形成されている(図3にS字形状を2点鎖線で示す)。ただし隣接する支持部137は、略逆S字状となる。すなわち、支持部137は略S字状と略逆S字状とが交互に形成されることになり、その場合、略S字状に形成される支持部137の柱状部137aと、略逆S字状に形成される支持部137の柱状部137aが互いに兼用する。また外周側のスリット135dおよび内周側のスリット135eの周方向端部には、それぞれ周方向中央部のスリット幅よりも拡大された大きさの円弧面(R面)135fが形成されている。このことによって、外周側のスリット135d相互間、および内周側のスリット135e相互間に挟まれる領域、すなわち柱状部137a,137bの応力集中が回避される構成とされる。
また板バネ135の内周部135cには、前後両面に跨り当該内周部135cを被覆する弾性体139がインサート成形によって設けられている(図4参照)。板バネ135の内周部135cには、適数個(6個)の孔135gが周方向に等間隔で設けられ、この孔135gを通して前後の弾性体139が連結されている。弾性体139の内径は、可動弁131の主部131aの外径よりも若干小さく形成されている。すなわち、可動弁131は、その主部131aが弾性体139に締まり嵌めによって取り付けられる。このとき、板バネ135と可動弁131とは、図5に示すように、支持部137の6個の柱状部137a,137bと、可動弁131の6個の貫通孔131hとの周方向における相対位置が互いに一致するように位相合せされる。
板バネ135は、前述したように、その外周部135bがカラー123とリング125に挟持されてロアボディ105側に止着され、内周部135cが弾性体139を介して可動弁131に止着される。かくして、板バネ135は、可動弁131を当該可動弁131の外周面がロアボディ105の内周面等に非接触状態で置かれるフローティング状態で支持し、可動弁131がバルブシート127のガス噴射孔129を開閉するべく軸方向に移動されるとき、同方向に弾性変形する。
可動弁131は、コア107内に配置されたコイルバネ141によってガス噴射孔129を閉じる方向に付勢され、常時にはバルブ部131cのシール部材133がバルブシート127の座面127aに押し付けられた閉弁状態に置かれる。このときのコイルバネ141の付勢力は、コア107内に配置されたバネ荷重調整用のパイプ143によって調整することが可能とされる。コイルバネ141は、本発明における「付勢手段」に対応する。なおコイルバネ141は、一端が可動弁131のバネ座面131eに当接され、他端がパイプ143の一端に当接される。またパイプ143は、例えばコア107内周に当該パイプ143を圧入することで取り付けられ、その圧入量を変えることによってコイルバネ141の付勢力を調整する構成とされる。なおパイプ143の取付け方については、コア内周に設けた雌ネジにパイプ143の外周に設けた雄ネジをねじ込み、そのねじ込み量を変えることによってコイルバネ141の付勢力を調整する構成であってもよい。可動弁131がコイルバネ141によって閉弁状態に置かれるとき、板バネ135は、開き方向に付勢力が作用する構成とされ、これにより可動弁131と板バネ135とは常時に接触状態が維持される。板バネ135の付勢力は、コイルバネ141の付勢力に比べてはるかに小さく、コイルバネ141による可動弁131の閉弁動作を損なうものではない。
水素ガスは、コア107の中空部107aおよびパイプ143の中空部143aを経て可動弁131の中空部131dへと導かれる。可動弁131が閉弁状態に置かれているとき、水素ガスは、可動弁131の中空部131dから6個の貫通孔131hを通り、可動弁131の外周領域とロアボディ105の内周面との間の空間部151に達している。なおコア107のガス入口には異物の混入を防止するストレーナ145が配置されている。上記の各中空部107a,143a,131d、貫通孔131hおよび空間部151によって水素ガスの流路が構成される。
本実施の形態においては、バルブ本体の流路に導かれた水素ガスが、当該流路から外部へ漏出することを防止するために、図2に示すように、バルブ本体における封止すべき箇所に溶着による封止構造を採用している。バルブ本体を構成する構成部材、すなわち、アッパボディ103、ロアボディ105、コア107、バルブシート127、および鍔付リング109は、それらが互いに嵌り合うことによって接続される構成とされる。具体的には、アッパボディ103とロアボディ105が互いに嵌合し、バルブシート127がロアボディ105の前端部に嵌合し、さらに鍔付リング109がロアボディ105とコア107にそれぞれ嵌合する構成とされる。
鍔付リング109は、非磁性材からなり、ソレノイドコイル113の可動弁131に対する電磁力の作用を効率的に行わせるべくロアボディ105とコア107との間に介在状に設けられる。鍔付リング109は、リング部109bと、当該リング109bの軸方向前端に形成された外側に張り出す円形の鍔部109aとからなる。鍔付リング109の鍔部109aは、ロアボディ105の軸方向後端面に形成された円形の凹状段差部105bに嵌合された状態で、その外周縁部が凹状段差部105bの径方向内周縁部に溶接により接合され、これによって鍔付リング109とロアボディ105との嵌合面には溶着封止部147aが形成されている。また鍔付リング109のリング部109bは、コア107の軸方向の前側外周に形成された小径段差部107bに嵌合されるとともに、その軸方向後端が小径段差部107bの軸方向前端に当接された状態で溶接により接合され、これによって鍔付リング109とコア107との当接面には溶着封止部147bが形成されている。またバルブシート127は、ロアボディ105の前側に嵌合されるとともに、その外周面がロアボディ105の軸方向前端面に溶接により接合され、これによってバルブシート127とロアボディ105の嵌合面には溶着封止部147cが形成されている。上記の各溶着封止部147a,147b,147cは、本発明における「封止部」に対応する。
なおアッパボディ103とロアボディ105は、その嵌合面において、溶接により互いに接合されるが、この溶接はあくまでも両ボディ103,105の接合を目的としたものであり、ガス漏れ防止用の封止を目的としたものではない。
本実施の形態に係る流体用制御弁100は、上記のように構成される。コイルバネ141の付勢力で閉弁状態に置かれた可動弁131は、制御装置60の制御によるソレノイドコイル113の通電によって生ずる電磁力でコイルバネ141の付勢力に抗して後退移動され、バルブ部131cがバルブシート127の座面127aから離れてバルブシート127のガス噴射孔129を開く。これにより、ガス噴射孔129から水素ガスが噴射され、下流側へと流れる。なお、このときのガス噴射孔129の開度は、可動弁131のフランジ部131bの当接面131fがストッパ121に当接することで規定される。一方、ソレノイドコイル113に対する通電が遮断されたときは、可動弁131は、コイルバネ141の付勢力で前方へと移動され、バルブ部131cがバルブシート127の座面127aに当接されてガス噴射孔129を閉じる。
本実施の形態においては、鍔付リング109とロアボディ105との嵌合面、鍔付リング109とコア107との嵌合面、およびバルブシート127とロアボディ105の嵌合面に、それぞれ溶接による溶着封止部147cを形成し、これによってバルブ本体の流路に導かれた水素ガスが、当該流路から各嵌合面を経て外部へ漏出することを防止する構成としている。このため、従来のゴム製のOリングによる封止構造に比べて、水素ガスに対する封止機能を向上することができ、水素ガスの供給装置として用いた場合であっても、水素透過による水素漏れを抑制できるとともに、劣化による強度低下を抑制できる耐久性の高い流体用制御弁が提供される。
ところで、Oリングによる封止構造を採用した従来の流体用制御弁は、可動弁の径およびソレノイドコイルの電磁力が小さく、水素ガス供給用として必要な所定の流量および圧力が確保できない。このため、水素ガス供給用として使用するべく可動弁の径およびソレノイドコイルの電磁力を増大しようとすると、可動弁を収容するバルブ本体の外郭形状が大型化してしまう。本実施の形態においては、溶着封止部147a,147b、147cを設けたことで、バルブ本体を構成するロアボディ106、バルブシート127、鍔付リング109等にOリングの収容溝を設ける必要がなくなるため、その分だけそれらの肉厚を内径側に薄く形成することが可能となる。その結果、バルブ本体の外郭形状を大型化することなく、可動弁131の径およびソレノイドコイル113の電磁力を大きくして水素ガス供給用として使用できる。
なお可動弁131が軸方向に移動してガス噴射孔129を開閉するとき、可動弁131を支持する板バネ135は、支持部137が可動弁131の移動方向に弾性変形する。このときの可動弁131の開閉動作時の挙動は、当該可動弁131を支持する板バネ135の動き(弾性変形)に依存することになる。
可動弁131が移動動作されてガス噴射孔129から水素ガスが噴射するとき、可動弁131には貫通孔131hから水素ガスが噴射することに伴って軸方向のおよび径方向力が作用し、この力を板バネ135の支持部137が受ける。このとき、可動弁131の貫通孔131hと、支持部137の柱状部137a,137bとの相対的な位置関係について、特段の配慮がなされていない場合、板バネ135が受ける力が可動弁131の軸方向(移動方向)回りにおいてばらつき、可動弁131の開閉動作の挙動が不安定化する可能性がある。
しかるに、本実施の形態においては、板バネ135と可動弁131とは、図5に示すように、支持部137の6個の柱状部137a,137bと、可動弁131の6個の貫通孔131hとの周方向における相対位置が互いに一致するように位相合せされた構成とされる。このため、位相合せされた各柱状部137a,137bに作用する可動弁131からの力は、それぞれが均等なものとなり、これにより板バネ135の周方向における力のバランスが保たれる。その結果、板バネ135は、軸方向に直線状に弾性変形することとなり、可動弁131の挙動が安定化する。すなわち、可動弁131が軸線方向に傾斜することなく直線状に移動動作する結果、ガス噴射孔129からの噴射量が安定化することになり、噴射性能が向上する。また可動弁131の挙動が安定化することにより、一部の柱状部137a,137bに力が偏って作用することもなくなり、板バネ135の耐久性の向上につながる。
また本実施の形態においては、板バネ135における支持部137を、板バネ135の軸方向からみて略S字状に形成したことによって、板バネ135における支持部137のバネ性を有効に活用することが可能となる。
また本実施の形態においては、外周側のスリット135dの周方向端部、および内周側のスリット135eの周方向端部それぞれに、スリット幅よりも更に拡大された円弧面135fを形成し、これによって柱状部137a,137bの応力集中を回避する構成としている。このことによって、可動弁131の移動に伴って板バネ135の支持部137が弾性変形するときの支点となる部位の応力集中を合理的に回避し、板バネ135の耐久性をより一層向上することができる。
また本実施の形態における流体用制御弁100においては、バルブシート127を制振合金から形成した場合には、これによって、可動弁131の閉弁動作時に可動弁131のバルブ部131cがバルブシート127の座面127aに当接する際の衝撃が緩和され、作動音の発生が低減されるとともに、可動弁131の跳ね返りが抑えられて水素ガスの噴射量の適正化が図られる。
以上のように、本実施の形態に係る流体用制御弁100によれば、ガス漏れ防止用の封止部を溶接による溶着封止部147a,147b,147cとしたことで、高圧環境下での使用が可能な耐久性を確保でき、加えて可動弁131をフローティング状態で支持する板バネ135につき、その耐久性を向上できるため、水素ガス供給用として適用するべく、可動弁131の質量が増大され、あるいはソレノイドコイル113による吸引力が増大された場合にあっても、これに十分に対応することが可能とされる。
次に、制御装置60により流体用制御弁100を制御する方法について説明する。
前述したように、従来の燃料電池自動車に搭載されている燃料電池発電システムに用いられているレギュレータは、入力された水素ガスの圧力を、バネの圧力によって定まる設定圧力に減圧する機械式の圧力制御弁である。
従来のレギュレータの制御特性を図10に示す。図10は、従来のレギュレータの流量Qに対する噴射圧力(2次側圧力)の特性を示している。ここで、「流量」は、レギュレータから出力される(燃料電池30に供給される)水素ガスの流量を示している。また、「噴射圧力(2次側圧力)」は、レギュレータから出力される水素ガスの圧力を示している。
このため、従来のレギュレータでは、燃料電池に供給する水素ガスの供給量を適切に制御することができない。例えば、燃料電池自動車では、消費電力の大部分が走行モータで消費される。そして、走行モータの消費電力は、アクセルペダルの踏込量に応じて決定される。したがって、燃料電池に供給する水素ガスの量をアクセルペダルの踏込量に比例して制御することが好ましい。
燃料電池に供給する水素ガスの流量を、アクセルペダルの踏込量に比例して制御する制御方法の概略動作をまず説明する。本実施の形態では、流体用制御弁100のソレノイドコイル113に供給する電力を制御する方法としては、デューティ制御を用いている。デューティ制御は、ソレノイドコイル113に供給する電力パルスの周期Tと、電力パルの幅(オン時間)tとの比(デューティ比=t/T×100%)を制御する制御方法である。
燃料電池(FC:fuel cell)30の出力特性を図7に示す。図7は、燃料電池30の出力(発電量)Wに対する噴射圧力(2次側圧力)(流体用制御弁100のガス噴射孔129から噴射される水素ガスの圧力)Pの特性を示している。図7に示す燃料電池30の出力特性に基づいて、燃料電池30から所望の出力を発生させるために必要な水素ガスの圧力が決定される。
また、流体用制御弁100の出力特性を図8に示す。図9は、噴射圧力(2次側圧力)(流体用制御弁100のガス噴射孔129から噴射される水素ガスの圧力)Pに対する水素流量(流体用制御弁100のガス噴射孔129から噴射される水素ガスの流量)Qの特性を示している。図9に基づいて、流体用制御弁100のガス噴射孔129から噴射される水素ガスの圧力を所定値とするために必要な、流体用制御弁100のガス噴射孔129から噴射する水素ガスの流量が決定される。
また、流体用制御弁100の制御特性を図9に示す。図9は、水素流量(流体用制御弁100のガス噴射孔129から噴射される水素ガスの流量)Qに対するデューティ比(流体用制御弁100のソレノイドコイル113に供給する電力パルスのデューティ比)の特性を示している。図9により、流体用制御弁100のソレノイドコイル113に供給する電力パルスのデューティ比を変更することによって、流体用制御弁100の開弁時間が変わり、ガス噴射孔129から噴射される水素ガスの流量が変化することが分かる。
また、燃料電池自動車で消費される電力は、アクセルペダルの踏込量に応じて予め求めることができる。
したがって、アクセルペダルの踏込量に対応する電力を燃料電池から発生させるために必要な水素ガスの圧力を図7から決定し、流体用制御弁100のガス噴射孔129から出力される水素ガスの圧力が、決定した圧力となるように流体用制御弁100のソレノイドコイル113のデューティ比を制御することによって、アクセルペダルの踏込量に対応する電力を燃料電池30から発生させることができる。
次に、制御装置60によって流体用制御弁100を制御する制御方法の一実施の形態を、図6に示すフローチャートに基づいて説明する。
なお、以下では、制御装置60(例えば、制御装置60がアクセス可能な記憶回路)には、図7の特性、アクセルペダル6の踏込量に応じた燃料電池自動車の消費電力に基づいて、アクセルペダル6の踏込量に対応する噴射圧力(流体用制御弁100のガス噴射孔129から出力する水素ガスの圧力)の設定値(噴射圧力設定値)とデューティ比がマップデータベースに記憶されているものとする。
ステップS1では、イグニッションスイッチ4がONしたか否かを判断する。イグニッションスイッチ4がオンしたか否かは、例えば、イグニッショスイッチ4の動作信号に基づいて判別する。イグニッションスイッチ4がオンした場合にはステプS2に進み、オンしていない場合には待機する。
ステップS2では、始動処理を実行する。例えば、遮断弁14のソレノイドコイルに電力を供給し、遮断弁14を開放状態とする。
次に、ステップS3で、圧力センサ18から出力されている、流体用制御弁100のガス噴射孔129から出力される水素ガスの圧力(噴射圧力)を読み込む。
また、ステップS4で、マップデータベースから、アクセルペダル6の踏込量に応じた噴射圧力設定値Xおよびデューティ比を読み込む。この時、アクセルペダル6が踏込まれていないため、アイドリング状態に対応した噴射圧力設定値Xおよびデューティ比をマップデータベースから読み込む。
そして、読み込んだデューティ比を有する電力を流体用電磁弁100のソレノイドコイル113に供給する。ステップS5では、噴射圧力が噴射圧力設定値Xを超えているか否かを判断する。噴射圧力が噴射圧力設定値Xを超えている場合にはステップS6に進み、噴射圧力が噴射圧力設定値Xを超えていない場合にはステップS7に進む。
ステップS6では、流体用制御弁100のソレノイドコイル113に供給する電力のデューティ比を下げた後、ステップS3に戻る。これにより、流体用制御弁100のガス噴射孔129から噴射される水素ガスの流量が減少する。
ステップS7では、噴射圧力が噴射圧力設定値X未満であるか否かを判断する。噴射圧力が噴射圧力設定値X未満である場合にはステップS8に進み、噴射圧力が噴射圧力設定値X未満でない場合(噴射圧力が噴射圧力設定値に等しい場合)にはステップS3に戻る。
ステップS8では、流体用制御弁100のソレノイドコイル113に供給する電力のデューティ比を上げた後、ステップS3に戻る。これにより、流体用制御弁100のガス噴射孔129から噴射される水素ガスの流量が増加する。
なお、ステップS4では、常時アクセルペダル6の踏込量を検出し、踏み込み量が変化する毎にアクセルペダル6の踏込量に応じた噴射圧力設定値Xおよびデューティ比を読込む。
また、図示していないが、ステップS3〜S8の途中に、イグニッションスイッチ4がOFFしたか否かを判断するステップが設けられている。イグニッションスイッチ4がOFされた場合には、停止処理を実行する。例えば、遮断弁14を閉じると共に、排気シャット弁36を開放し、水素ガス流路50中の水素ガスを大気に排出する。
以上のようにして、燃料電池30に供給される水素ガスの圧力、すなわち流体用制御弁100のガス噴射孔129から噴射される水素ガスの流量は、ソレノイドコイル113に供給する電力をアクセルペダル6の踏込量に比例して制御することによって制御される。すなわち、アクセルペダル6の踏込量に比例して燃料電池30の発電量が制御される。
したがって、燃料電池30に供給する水素ガスを適切に制御することができる。
なお、流体用制御弁100の制御方法は実施の形態で説明した方法に限定されない。例えば、アクセルペダル6の踏込量に対応する噴射圧力設定値は、記憶回路から読込む方法を用いてもよいし、その都度算出する方法を用いてもよい。
また、流体用制御弁100のソレノイドコイル113に供給する電力を制御する方法としては、デューティ比を制御する方法以外の種々の方法を用いることができる。
また上述した流体用制御弁100の制御方法は、溶着封止部147a,147b,147cを有しない構成、つまり通常のOリングのようなシール部材を用いて封止する構成の電磁弁に適用してもよい。
なお上述した実施の形態では、互いに嵌り合う2部材につき、溶接棒を媒介にして接合する、いわゆる溶接によってガス漏れ防止用の溶着封止部147a,147b,147cを形成するとしたが、互いに嵌り合う2部材の封止すべき部位を高温で加熱して直接に接合する構成であってもよい。また本実施の形態では溶着封止部147a,147b,147cを3ヶ所に設ける場合で説明したが、溶着封止部を1ヶ所または3ヶ所以外の複数箇所に設けた形態でもよい。また上述した実施の形態では、流体用制御弁100のボディ101がアッパボディ103とロアボディ105との2部品を接合することで構成されるとしたが、アッパボディ103とロアボディ105を一体にした1部品にしてもよい。
また上述した実施の形態では、流体用制御弁100を、自動車用の燃料電池発電装置に水素ガスを供給する装置として適用する場合で説明したが、水素ガス供給用に限定されるものではなく、例えば圧縮天然ガスを機関に供給する装置として用いることを妨げない。また溶着封止部147a,147b,147cを備えた流体用制御弁100の流量制御については、上述した実施の形態で説明した制御方法以外の方法で制御してもかまわない。また本実施の形態に係る流体用制御弁100は、図1に示された燃料発電システム10中における水素ボンベ12のガス出口を開閉する制御弁として使用してもよい。
上記発明の趣旨に鑑み、以下の態様を構成することが可能とされる。
(態様1)
「請求項1に記載の流体用制御弁であって、
前記バルブを支持する支持プレートを有する。前記バルブは、複数の流体通路を有する。前記支持プレートは、弾性変形可能な複数の弾性変形部を有する。そして前記支持プレートと前記バルブとは、少なくとも2個の弾性変形部と、少なくとも2つの流体通路が位相合せされている。」
上記のように構成された態様1に記載の発明によれば、支持プレートの少なくとも2つの弾性変形部が、バルブの少なくとも2つの流体通路に位相合せされた構成のため、位相合せされた弾性変形部に作用するバルブからの力は、それぞれが均等なものとなり、これにより支持プレートの力のバランスが保たれる。その結果、バルブの開閉作動時の挙動が安定化し、流体流出孔から流出される流体の流出量が安定化する。また支持プレートの各弾性変形部に作用する力が均等化されることで、当該支持プレートの耐久性も向上する。
(態様2)
「態様1に記載の流体用制御弁であって、
前記弾性変形部は、前記支持プレートの外周部あるいは内周部に接続された連接部位と、それら連接部位を互いに接続する梁状部とを有し、前記連接部位と前記流体通路が周方向において一致するように位相合せされていることを特徴とする流体用制御弁。」
態様2に記載の発明によれば、本発明によれば、弾性変形部における連接部位とバルブの流体通路とを周方向において一致するように位相合せする構成のため、連接部位に作用するバルブからの力は、それぞれが均等なものとなり、これにより支持プレートの周方向における力のバランスが保たれる。その結果、バルブの開閉動作時の挙動が安定化する。
(態様3)
「態様1または2に記載の流体用制御弁であって、
前記複数の流体通路と前記複数の弾性変形部は、同数設けられるとともに、周方向においてそれぞれが位相合せされていることを特徴とする流体用制御弁。」
態様3に記載の発明によれば、支持プレートの周方向における力のバランスが確保されることとなり、バルブの挙動を安定化する上で有効とされる。
(態様4)
「態様1〜3のいずれか1つに記載の流体用制御弁であって、
前記弾性変形部は、前記支持プレートの軸方向からみてS字状に形成されていることを特徴とする流体用制御弁。」
態様4に記載の発明によれば、支持プレートにおける弾性変形部のバネ性を有効に活用することが可能となった。なお本発明における「S字状」は、「逆S字状」を包含する。また文字通りのS字状のみならず、略S字形状をも包含する。
(態様5)
「請求項1に記載の流体用制御弁であって、
前記バルブを支持する支持プレートを有する。前記バルブは、複数の流体通路を有する。
前記支持プレートは、弾性変形可能な複数の弾性変形部を有し、前記弾性変形部は、前記支持プレートの軸方向からみてS字状に形成されている」。
態様5に記載の発明によれば、支持プレートの弾性変形部は、S字状に形成された構成としている。なお本発明における「S字状」は、「逆S字状」を包含する。また文字通りのS字状のみならず、略S字形状をも包含する。このため、バルブからの力は、弾性変形部が周方向において均等に受けることができ、支持プレートの周方向における力のバランスが保たれる。その結果、バルブの開閉作動時の挙動が安定化し、流体流出孔から流出される流体の流出量が安定化する。また支持プレートの各弾性変形部に作用する力が均等化されることで、当該支持プレートの耐久性も向上する。
(態様6)
「態様5に記載の流体用制御弁であって、
隣接する弾性変形部は、一方がS字状、他方が逆S字状に形成されていることを特徴とする流体用制御弁。」
態様6に記載の発明によれば、バルブからの力は、弾性変形部が周方向においてより均等に受けることができ、支持プレートの周方向における力のバランスが保たれる。その結果、バルブの開閉動作時の挙動が安定化する。
(態様7)
「態様1〜6のいずれか1つに記載の流体用制御弁であって、
前記支持プレートは、外周部と内周部との間の中間領域において、前記外周側と前記内周側とのそれぞれに周方向に沿って延びる複数のスリットを有し、前記弾性変形部はこれら外周側のスリット相互間、および内周側のスリット相互間で挟まれる部位に連接部位を有し、前記各スリットの周方向端部それぞれを、当該周方向端部間のスリット幅よりも拡大された大きさの円弧面によって形成したことを特徴とする流体用制御弁。」
支持プレートの弾性変形部が弾性変形する際、当該弾性変形部の外周部との連接部位、および内周部との連接部位はそれぞれ弾性変形の支点となる。態様7に記載の発明においては、この弾性変形時の支点に相当する連接部位を円弧面(すなわち、R面による面取り)、特に周方向端部間のスリット幅よりも更に拡大された円弧面によって形成している。このことによって、弾性変形部の連接部位に作用する応力集中を合理的に回避することが可能となり、支持プレートの耐久性をより一層向上することができる。
燃料電池発電装置に水素ガスを供給するシステム構成を示す図である。 本実施の形態に係る流体用制御弁の全体構成を示す断面図である。 板バネを示す正面図である。 可動弁および板バネを示す断面図である。 図4のA矢視図である。 制御装置による水素ガスの噴射量制御を説明するフローチャートである。 燃料電池出力−噴射圧力の関係を示すグラフである。 噴射圧力−水素流量の関係を示すグラフである。 水素流量−デューティ比の関係を示すグラフである。 従来例の噴射圧力−デューティ比の関係を示す図である。
符号の説明
2 燃料電池自動車
4 イグニッションスイッチ
6 アクセルペダル
10 燃料電池発電システム
12 水素ボンベ
14 遮断弁
16 第1レギュレータ
18 圧力センサ
20 第2遮断弁
22 第2レギュレータ
30 燃料電池
30a 水素ガス通過経路
30b 空気通過経路
32 空気供給装置
36 排気シャット弁
50 ガス流路
50a ガス配管
50b ガス配管
50c ガス配管
50d ガス配管
54 空気配管
60 制御装置
100 流体用制御弁
101 ボディ
103 アッパボディ(バルブ本体)
105 ロアボディ(バルブ本体)
105a 内側フランジ部
105b 凹状段差部
107 コア(バルブ本体)
107a 中空部
107b 小径段差部
109 鍔付リング(バルブ本体)
109a 鍔部
109b リング部
111 ボビン(電磁力発生手段)
113 ソレノイドコイル(電磁力発生手段)
115 ターミナル
117 受電用コネクタ
117a ソケット部
121 ストッパ
123 カラー
125 リング
127 バルブシート(バルブ本体)
127a 座面
129 ガス噴射孔(燃料流出孔)
131 可動弁(バルブ)
131a 主部
131b フランジ部
131c バルブ部
131d 中空部
131e バネ座面
131f 当接面
131g 接触面
131h 貫通孔
131i 切欠
133 シール部材
135 板バネ(支持プレート)
135a 孔
135b 外周部
135c 内周部
135d 外周側のスリット
135e 内周側のスリット
135f 円弧面
135g 孔
137 支持部(弾性変形部)
137a 柱状部(連接部位)
137b 柱状部(連接部位)
137c 梁状部
139 弾性体
141 コイルバネ
143 パイプ
143a 中空部
145 ストレーナ
147a、147b、147c 溶着封止部(封止部)
149 弾性部材
151 空間部

Claims (4)

  1. 燃料電池に供給する燃料の流量を制御する流体用制御弁であって、
    燃料流出孔を有するバルブ本体と、
    前記バルブ本体内で移動して前記燃料流出孔を開閉するバルブと、
    前記燃料流出孔が閉じる方向に前記バルブを付勢する付勢力を発生する付勢手段と、
    前記付勢手段の付勢力に抗して、前記燃料流出孔が開く方向に前記バルブを移動させる電磁力を発生する電磁力発生手段と、を有し、
    前記バルブ本体は、複数の部材により構成されており、また、部材間に形成された、溶着による封止部を有していることを特徴とする流体用制御弁。
  2. 請求項1に記載の流体用制御弁であって、
    前記バルブ本体は、ボディと、前記ボディの内側に配置されているコアと、前記ボディの内側に配置されているとともに、前記燃料流出孔が形成されているシート部材と、前記コアと前記ボディの間に配置されているリングを有し、
    前記ボディと前記シート部材との接合部、前記ボディと前記リングとの接合部、前記コアと前記リングとの接合部に、溶着による封止部が形成されていることを特徴とする流体用制御弁。
  3. 請求項1または2に記載の流体用制御弁であって、
    前記封止部は、溶接によって形成されていることを特徴とする流体用制御弁。
  4. 燃料電池に供給する燃料の流量を制御する流体用制御弁であって、
    燃料流出孔を有するバルブ本体と、
    前記バルブ本体内で移動して前記燃料流出孔を開閉するバルブと、
    前記燃料流出孔が閉じる方向に前記バルブを付勢する付勢力を発生する付勢手段と、
    前記付勢手段の付勢力に抗して、前記燃料流出孔が開く方向に前記バルブを移動させる電磁力を発生する電磁力発生手段と、
    入力信号に基づいて前記電磁力発生手段に供給する電力を制御する制御手段と、を有し、
    前記制御手段は、前記燃料流出孔から流出される燃料の圧力が、入力信号に比例するように前記電磁力発生手段に供給する電力を制御することを特徴とする流体用制御弁。
JP2005274158A 2005-09-21 2005-09-21 流体用制御弁 Pending JP2007087729A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005274158A JP2007087729A (ja) 2005-09-21 2005-09-21 流体用制御弁
US11/520,037 US7673847B2 (en) 2005-09-21 2006-09-13 Fluid control valve for supplying gas to a fuel cell in a vehicle
DE102006044364A DE102006044364B4 (de) 2005-09-21 2006-09-20 Fluidsteuerungsventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274158A JP2007087729A (ja) 2005-09-21 2005-09-21 流体用制御弁

Publications (1)

Publication Number Publication Date
JP2007087729A true JP2007087729A (ja) 2007-04-05

Family

ID=37974503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274158A Pending JP2007087729A (ja) 2005-09-21 2005-09-21 流体用制御弁

Country Status (1)

Country Link
JP (1) JP2007087729A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170885A (ja) * 2009-01-23 2010-08-05 Honda Motor Co Ltd 車両用燃料電池システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357280A (ja) * 2001-03-28 2002-12-13 Ckd Corp 電磁比例弁
JP2004197889A (ja) * 2002-12-20 2004-07-15 Ntn Corp 動圧軸受装置
JP2005249191A (ja) * 2004-02-06 2005-09-15 Kofurotsuku Kk 比例ソレノイド制御バルブ
JP2006502352A (ja) * 2002-10-04 2006-01-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 噴射弁及び噴射弁を形成する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357280A (ja) * 2001-03-28 2002-12-13 Ckd Corp 電磁比例弁
JP2006502352A (ja) * 2002-10-04 2006-01-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 噴射弁及び噴射弁を形成する方法
JP2004197889A (ja) * 2002-12-20 2004-07-15 Ntn Corp 動圧軸受装置
JP2005249191A (ja) * 2004-02-06 2005-09-15 Kofurotsuku Kk 比例ソレノイド制御バルブ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170885A (ja) * 2009-01-23 2010-08-05 Honda Motor Co Ltd 車両用燃料電池システム

Similar Documents

Publication Publication Date Title
US7673847B2 (en) Fluid control valve for supplying gas to a fuel cell in a vehicle
US7219695B2 (en) Hydrogen valve with pressure equalization
US7284712B2 (en) Injector having structure for controlling nozzle needle
US7290564B2 (en) Solenoid valve
JP4193822B2 (ja) バルブ装置
JP6216923B2 (ja) 制御弁
KR20130042646A (ko) 가스 엔진의 연료 가스 공급 시스템
US7063279B2 (en) Fuel injection valve
JP5519415B2 (ja) 圧力調整装置
EP2853795B1 (en) Electromagnetic valve
WO2004079468A1 (ja) 流量制御弁
JP2007040106A (ja) バルブ装置
US9696732B2 (en) Valve device having passage defining member holding restrictor body without connection portion
JP2007303638A (ja) 流体用制御弁
JP2007085433A (ja) 流体用制御弁
JP2007087729A (ja) 流体用制御弁
JP2006513366A (ja) 直接式ニードル制御装置を備えた燃料インジェクタ
JPH1162710A (ja) 燃料噴射装置
JP2009091934A (ja) 負圧応動弁
CN114667424B (zh) 动力元件以及使用了该动力元件的膨胀阀
CN114667422B (zh) 动力元件以及使用了该动力元件的膨胀阀
JP2009016296A (ja) 気体供給装置
JP2020133490A (ja) 高圧燃料供給ポンプ及びリリーフ弁機構
JP4375046B2 (ja) サーボピストン機構及び流量調整弁
JP6270649B2 (ja) 流量調整弁及び圧力調整装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111003