JP2007085542A - Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing - Google Patents

Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing Download PDF

Info

Publication number
JP2007085542A
JP2007085542A JP2006230866A JP2006230866A JP2007085542A JP 2007085542 A JP2007085542 A JP 2007085542A JP 2006230866 A JP2006230866 A JP 2006230866A JP 2006230866 A JP2006230866 A JP 2006230866A JP 2007085542 A JP2007085542 A JP 2007085542A
Authority
JP
Japan
Prior art keywords
spherical
portions
axial direction
roller bearing
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006230866A
Other languages
Japanese (ja)
Inventor
Kenji Nishimatsu
賢治 西松
Takashi Murai
隆司 村井
Taisuke Irie
泰輔 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006230866A priority Critical patent/JP2007085542A/en
Publication of JP2007085542A publication Critical patent/JP2007085542A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • F16C33/494Massive or moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a self-alignment roller bearing with a holder that prevents spherical rollers from being skewed, by stabilizing attitudes of the spherical rollers, feeds sufficient lubricating oil, and operates at high-speed. <P>SOLUTION: Both circumferential side faces of each of columns 8a, 8a are processed to concave curved faces that oppose rolling faces of the spherical rollers via pocket gaps feedable with the lubricating oil by using a sharpener that revolves while rotating. The curvature radius of a cross section with respect to the axial direction, in cross sections of the concave curved faces with respect to the axial direction and the radial direction of the holder, is not smaller than a curvature radius with respect to the axial direction of the rolling face of each spherical roller. The curvature radius of the cross section with respect to the radial direction is larger than the curvature radius with respect to the circumferential direction of the rolling face by an amount corresponding to the pocket gap. An oil introducing recess 13 is formed of a cutting protrusion 16 on the side face of a rim 7a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る保持器付自動調心ころ軸受は、例えばハウジングの内側に回転軸を支承する為に、製紙機械、金属の圧延機等、各種産業機械装置のロール等の回転支持部に組み込んだ状態で使用する。   The self-aligning roller bearing with a retainer according to the present invention is incorporated in a rotation support portion such as a roll of various industrial machine devices such as a papermaking machine and a metal rolling mill, for example, in order to support a rotating shaft inside the housing. Use in state.

例えば重量の嵩む軸をハウジングの内側に回転自在に支承する為に従来から、例えば特許文献1、2に記載された様な保持器付自動調心ころ軸受が使用されている。図7〜10は、このうちの特許文献1に記載された、従来構造の第1例を示している。この保持器付自動調心ころ軸受は、互いに同心に組み合わされた外輪1と内輪2との間に、複数の球面ころ3、3を転動自在に配列して成る。そして、保持器4により、これら複数の球面ころ3、3の姿勢並びに位置を規制している。   For example, a self-aligning roller bearing with a cage as described in, for example, Patent Documents 1 and 2 has been conventionally used to rotatably support a heavy shaft on the inside of a housing. FIGS. 7-10 has shown the 1st example of the conventional structure described in patent document 1 among these. This self-aligning roller bearing with a cage is formed by rolling a plurality of spherical rollers 3 and 3 between an outer ring 1 and an inner ring 2 that are concentrically combined with each other. The cage 4 regulates the postures and positions of the plurality of spherical rollers 3 and 3.

上記外輪1の内周面には、単一の中心を有する球状凹面である外輪軌道5を形成している。又、内輪2の外周面の幅方向(図8の左右方向)両側には、それぞれが上記外輪軌道5と対向する、1対の内輪軌道6、6を形成している。又、上記複数の球面ころ3、3は、その最大径部が各球面ころ3、3の軸方向長さの中央部にある対称形(ビヤ樽形)、若しくは、最大径部がこの中央部から少しずれた位置に存在する非対称形で、上記外輪軌道5と上記1対の内輪軌道6、6との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けている。又、上記各球面ころ3、3の転動面の母線形状の曲率半径は、上記外輪軌道5及び上記内輪軌道6、6の母線形状の曲率半径よりも僅かに小さい。   An outer ring raceway 5 that is a spherical concave surface having a single center is formed on the inner peripheral surface of the outer ring 1. In addition, a pair of inner ring raceways 6 and 6 are formed on both sides of the outer peripheral surface of the inner ring 2 in the width direction (left and right direction in FIG. 8). The plurality of spherical rollers 3 and 3 have a symmetrical shape (beer barrel shape) in which the maximum diameter portion is in the central portion of the axial length of each spherical roller 3 or 3, or the maximum diameter portion from this central portion. Asymmetrically located at a slightly deviated position, the outer ring raceway 5 and the pair of inner ring raceways 6 and 6 are divided into two rows, and a plurality of each row are provided to be freely rollable. Yes. The radius of curvature of the bus bar shape of the rolling surface of each of the spherical rollers 3 and 3 is slightly smaller than the radius of curvature of the bus bar shape of the outer ring raceway 5 and the inner ring raceways 6 and 6.

上記保持器4は、1個のリム部7と複数の柱部8、8とを備える。このうちのリム部7は、円環状で、上記両列の球面ころ3、3同士の間に配置されている。又、上記各柱部8、8は、それぞれの基端部を上記リム部7の軸方向両側面の円周方向等間隔の複数個所に結合した状態で、上記外輪1及び内輪2の軸方向に配置されている。上記各柱部8、8の先端部はそれぞれ、他の部分と結合されない自由端としている。そして、円周方向に隣り合う柱部8、8同士の間部分を、上記各球面ころ3、3を転動自在に保持する為のポケット9、9としている。又、上記リム部7の外周面を、上記外輪1の中間部内周面に近接対向させて、上記保持器4の径方向の位置決めを(外輪案内により)図っている。更に、上記内輪2の両端部外周面に、それぞれ外向フランジ状の鍔部10、10を形成して、上記各球面ころ3、3が、上記外輪1の内周面と上記内輪2の外周面との間の空間から軸方向外方に抜け出ない様にしている。   The cage 4 includes one rim portion 7 and a plurality of column portions 8 and 8. Among these, the rim | limb part 7 is cyclic | annular, and is arrange | positioned between the spherical rollers 3 and 3 of said both rows. In addition, each of the column parts 8, 8 is axially connected to the outer ring 1 and the inner ring 2 in a state in which the base end part is coupled to a plurality of circumferentially equidistant portions on both axial sides of the rim part 7. Is arranged. The front ends of the pillars 8 and 8 are free ends that are not coupled to other portions. And the part between the column parts 8 and 8 adjacent to the circumferential direction is made into the pockets 9 and 9 for hold | maintaining each said spherical roller 3 and 3 so that rolling is possible. Further, the outer peripheral surface of the rim portion 7 is brought close to and opposed to the inner peripheral surface of the intermediate portion of the outer ring 1 so as to position the retainer 4 in the radial direction (by the outer ring guide). Further, outward flange-shaped flanges 10 and 10 are formed on the outer peripheral surfaces of both ends of the inner ring 2, and the spherical rollers 3 and 3 are connected to the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the inner ring 2. So that it does not escape axially outward from the space between.

上述の様に構成される保持器付自動調心ころ軸受により、例えばハウジングの内側に回転軸を支承する場合、外輪1をハウジングに内嵌固定し、内輪2を回転軸に外嵌固定する。回転軸と共に内輪2が回転する場合には、複数の球面ころ3、3が転動して、この回転を許容する。ハウジングの軸心と回転軸の軸心とが不一致の場合、外輪1の内側で内輪2が調心する(外輪1の中心軸に対し内輪2の中心軸を傾斜させる)事により、この不一致を補償する。この場合に於いて、外輪軌道5は単一球面状に形成されている為、上記複数の球面ころ3、3の転動は、不一致補償後に於いても、円滑に行なわれる。   When the rotating shaft is supported on the inner side of the housing by the self-aligning roller bearing with a cage configured as described above, for example, the outer ring 1 is fitted and fixed to the housing, and the inner ring 2 is fitted and fixed to the rotating shaft. When the inner ring 2 rotates together with the rotating shaft, the plurality of spherical rollers 3 and 3 roll to allow this rotation. When the shaft center of the housing and the shaft center of the rotating shaft do not match, the inner ring 2 is aligned inside the outer ring 1 (the center axis of the inner ring 2 is inclined with respect to the center axis of the outer ring 1). To compensate. In this case, since the outer ring raceway 5 is formed in a single spherical shape, the rolling of the plurality of spherical rollers 3 and 3 is smoothly performed even after the inconsistency compensation.

上述の様な従来構造の第1例の場合、両列の球面ころ3、3を保持する為の保持器4を一体としている。これに対して、特許文献2には、図11に示す様に、両列の球面ころ3、3を保持する為の保持器4a、4aを互いに独立させた構造が記載されている。この従来構造の第2例の場合も、外輪1の内周面と内輪2の外周面との間の空間から各球面ころ3、3が軸方向外方に抜け出ない様にする為に、この内輪2の両端部外周面に鍔部10、10を形成している。   In the case of the first example of the conventional structure as described above, the cage 4 for holding the spherical rollers 3 and 3 in both rows is integrated. On the other hand, as shown in FIG. 11, Patent Document 2 describes a structure in which cages 4a and 4a for holding both rows of spherical rollers 3 and 3 are made independent of each other. Also in the case of the second example of this conventional structure, in order to prevent the spherical rollers 3 and 3 from coming out axially outwardly from the space between the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the inner ring 2, The flanges 10 and 10 are formed on the outer peripheral surfaces of the both ends of the inner ring 2.

上述の様な従来構造の第1〜2例の場合、保持器4、4aのポケット9、9内での上記各球面ころ3、3の姿勢が、必ずしも安定しない。この理由は、上記各球面ころ3、3の転動面が凸曲面であるのに対して、上記各ポケット9、9の円周方向両側面を構成する前記各柱部8、8の円周方向両側面の、上記保持器4、4aの軸方向に関する断面形状が、この軸方向と平行な直線状である為である。この為、上記各ポケット9、9内に保持された上記各球面ころ3、3は、最も径の大きくなった軸方向中間部外周面で上記各柱部8、8の円周方向両側面に当接し、これら円周方向両側面と上記各球面ころ3、3の外周面の軸方向両端寄り部分に隙間が存在する状態となる。従って、これら各球面ころ3、3は、軸方向中間部の当接部を中心として、上記隙間分だけ、多少なりとも揺動変位可能になる。   In the case of the first and second examples having the conventional structure as described above, the postures of the spherical rollers 3 and 3 in the pockets 9 and 9 of the cages 4 and 4a are not always stable. The reason for this is that the rolling surfaces of the spherical rollers 3 and 3 are convex curved surfaces, whereas the circumferences of the column portions 8 and 8 constituting the circumferential side surfaces of the pockets 9 and 9 are the same. This is because the cross-sectional shape in the axial direction of the cages 4 and 4a on both sides in the direction is a straight line parallel to the axial direction. For this reason, the spherical rollers 3 and 3 held in the pockets 9 and 9 are arranged on both side surfaces in the circumferential direction of the pillars 8 and 8 on the outer peripheral surface of the axially intermediate portion having the largest diameter. They contact each other, and there are gaps between the both sides in the circumferential direction and the axial ends of the outer circumferential surfaces of the spherical rollers 3 and 3. Accordingly, each of the spherical rollers 3 and 3 can be oscillated and displaced by the above-mentioned clearance about the contact portion of the axially intermediate portion.

そして、上記各球面ころ3、3が揺動変位した場合には、これら各球面ころ3、3の自転軸の方向が、これら各球面ころ3、3の公転方向に直角方向に対し傾斜角度を持つ、所謂スキューが発生した状態となる。この様なスキューが発生した状態では、上記各球面ころ3、3の転動面と前記外輪軌道5及び前記内輪軌道6、6との各転がり接触部で大きな滑り摩擦が生じる。この結果、前記外輪1と前記内輪2との相対回転に要する抵抗(自動調心ころ軸受の動トルク)が大きくなるだけでなく、上記各転がり接触部で発生する振動が大きくなる。この様な動トルクの増大と振動の発生とは、上記自動調心ころ軸受の運転速度が低い場合にはあまり問題とはならない。但し、この運転速度を速くする為には、上記動トルク及び振動を抑える為、上記各球面ころ3、3の姿勢を安定させ、上記スキューの発生を抑える必要がある。   When the spherical rollers 3 and 3 are oscillated and displaced, the direction of the rotation axis of the spherical rollers 3 and 3 is inclined with respect to the direction perpendicular to the revolution direction of the spherical rollers 3 and 3. The so-called skew occurs. In a state where such a skew occurs, a large sliding friction is generated at each rolling contact portion between the rolling surfaces of the spherical rollers 3 and 3 and the outer ring raceway 5 and the inner ring raceways 6 and 6. As a result, not only the resistance (dynamic torque of the self-aligning roller bearing) required for relative rotation between the outer ring 1 and the inner ring 2 is increased, but vibrations generated at the respective rolling contact portions are increased. Such an increase in dynamic torque and the occurrence of vibration are not a problem when the operation speed of the self-aligning roller bearing is low. However, in order to increase the operation speed, in order to suppress the dynamic torque and vibration, it is necessary to stabilize the posture of the spherical rollers 3 and 3 and suppress the occurrence of the skew.

特開平9−317760号公報JP-A-9-317760 実用新案登録第2524932号公報Utility Model Registration No. 2524932

本発明は、上述の様な事情に鑑みて、各球面ころの姿勢を安定させてこれら各球面ころがスキューする事を防止し、高速運転が可能な保持器付自動調心ころ軸受の構造、及び、この自動調心ころ軸受に組み込む保持器を能率良く造る為の製造方法を実現すべく発明したものである。
又、上記各球面ころの姿勢を安定させるべく、これら各球面ころの転動面と保持器のポケットの内面との間の隙間を小さくしても、これら各球面ころの表面とこれら各ポケットの内面との摺動部に潤滑油を十分に送り込める構造を実現し、上記保持器及び上記各球面ころの摩耗を防止するものである。
In view of the circumstances as described above, the present invention stabilizes the posture of each spherical roller to prevent each spherical roller from skewing, and the structure of a self-aligning roller bearing with a cage capable of high-speed operation, And it invented in order to implement | achieve the manufacturing method for manufacturing efficiently the retainer integrated in this self-aligning roller bearing.
Further, in order to stabilize the posture of each spherical roller, even if the gap between the rolling surface of each spherical roller and the inner surface of the cage pocket is reduced, the surface of each spherical roller and each pocket A structure capable of sufficiently feeding lubricating oil to the sliding portion with the inner surface is realized, and wear of the cage and the spherical rollers is prevented.

本発明の対象となる保持器付自動調心ころ軸受は、前述した従来から知られている保持器付自動調心ころ軸受と同様に、外輪と、内輪と、複数個の球面ころと、保持器とから成る。
このうちの外輪は、球状凹面である外輪軌道を、その内周面に形成している。
又、上記内輪は、上記外輪軌道と対向する1対の内輪軌道を、その外周面に形成している。
又、上記各球面ころは、上記外輪軌道と上記両内輪軌道との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けられている。
又、上記保持器は、上記各球面ころを転動自在に保持する、複数のポケットを備えている。この為に、この保持器は、上記両列の球面ころ同士の間に配置された円環状のリム部と、それぞれの基端部をこのリム部の軸方向側面の円周方向複数個所に結合した状態で上記各球面ころの軸方向に配置され、それぞれの先端部を他の部分に結合しない自由端とした複数の柱部とを備える。そして、円周方向に隣り合う柱部同士の間部分を、上記各ポケットとしている。
The self-aligning roller bearing with retainer that is the subject of the present invention is similar to the conventional self-aligning roller bearing with retainer described above, and includes an outer ring, an inner ring, and a plurality of spherical rollers. It consists of a container.
Among these, the outer ring forms an outer ring raceway having a spherical concave surface on the inner peripheral surface thereof.
Further, the inner ring forms a pair of inner ring raceways opposed to the outer ring raceway on the outer peripheral surface thereof.
Each of the spherical rollers is provided in two rows between the outer ring raceway and the inner ring raceways so as to be freely rotatable in each row.
The retainer includes a plurality of pockets for holding the spherical rollers in a rollable manner. For this purpose, this cage is formed by connecting an annular rim portion disposed between the spherical rollers in both rows and a plurality of circumferential ends on the axial side surface of the rim portion. In this state, each of the spherical rollers is disposed in the axial direction, and a plurality of column portions each having a free end that is not coupled to the other portion is provided. And the part between the column parts adjacent to the circumferential direction is made into each said pocket.

特に、請求項1に記載した保持器付自動調心ころ軸受に於いては、上記各柱部の円周方向両側面は、潤滑油を送り込み可能な(径方向に関する厚さが、例えば0.1〜0.5mm程度、或いは各球面ころの最大径の0.4〜2%程度の)ポケット隙間を介して上記各球面ころの転動面と対向する、凹曲面である。この凹曲面の断面形状を、上記保持器(リム部)の軸方向及び径方向で表わすと、軸方向に関する断面形状の曲率半径は、上記各球面ころの転動面の軸方向に関する曲率半径以上である。又、径方向に関する断面形状の曲率半径は、上記転動面の円周方向に関する曲率半径よりも、上記ポケット隙間に見合う分(例えば0.1〜0.5mm程度、或いは各球面ころの最大径の0.4〜2%程度)だけ大きい。更に、上記リム部の軸方向両側面のうちで上記各ポケットに対向する部分に、導油凹部が設けられている。   In particular, in the self-aligning roller bearing with a cage according to claim 1, lubricating oil can be fed to both side surfaces in the circumferential direction of each of the column portions (the thickness in the radial direction is, for example, 0. A concave curved surface facing the rolling surface of each spherical roller through a pocket gap (about 1 to 0.5 mm or about 0.4 to 2% of the maximum diameter of each spherical roller). When the cross-sectional shape of the concave curved surface is expressed in the axial direction and the radial direction of the cage (rim portion), the radius of curvature of the cross-sectional shape in the axial direction is equal to or greater than the radius of curvature in the axial direction of the rolling surface of each spherical roller. It is. In addition, the radius of curvature of the cross-sectional shape in the radial direction is more than the radius of curvature in the circumferential direction of the rolling surface corresponding to the pocket gap (for example, about 0.1 to 0.5 mm, or the maximum diameter of each spherical roller About 0.4 to 2%). Furthermore, an oil guide recess is provided in a portion of each side surface in the axial direction of the rim portion facing the pockets.

又、請求項4に記載した自動調心ころ軸受用保持器の製造方法は、上述の様な保持器付自動調心ころ軸受に組み込む保持器の製造方法である。即ち、円環状のリム部と、それぞれの基端部をこのリム部の軸方向側面の円周方向複数個所に結合すると共にそれぞれの先端部を他の部分に結合しない自由端とし、円周方向両側面同士の間隔を各球面ころの外径よりも小さくした複数の素柱部の円周方向両側面を、上述の様な凹曲面に加工する方法である。この為に、円周方向に隣り合う素柱部同士の間部分に、外周面が凸曲面であり、先端面に切削用凸部を有する削り工具を挿入する。この凸曲面の断面形状のうち、軸方向に関する断面形状の曲率半径は、上記各球面ころの転動面の軸方向に関する曲率半径以上とする。又、円周方向に関する断面形状の曲率半径は、この転動面の円周方向に関する曲率半径よりも小さい。この様な削り工具を、上記円周方向に隣り合う素柱部同士の間部分に、中心軸と加工すべきポケットとなるベき部分の中心軸とを平行にして挿入した状態で、自転させつつ、このポケットとなるべき部分の中心軸回りで公転させる。そして、上記各素柱部の円周方向両側面を削ると共に、上記切削用凸部により、上記リム部の軸方向両側面のうちで上記各ポケットに対向する部分に導油凹部を形成する。   According to a fourth aspect of the present invention, there is provided a method for manufacturing a cage for a self-aligning roller bearing, which is incorporated in a self-aligning roller bearing with a cage as described above. That is, an annular rim portion and each base end portion are coupled to a plurality of circumferential positions on the axial side surface of the rim portion, and each distal end portion is a free end that is not coupled to other portions, and the circumferential direction This is a method of processing both side surfaces in the circumferential direction of a plurality of elemental column portions in which the distance between both side surfaces is smaller than the outer diameter of each spherical roller into a concave curved surface as described above. For this purpose, a shaving tool having an outer peripheral surface that is a convex curved surface and a cutting convex portion on the distal end surface is inserted between the adjacent columnar portions in the circumferential direction. Of the cross-sectional shape of the convex curved surface, the radius of curvature of the cross-sectional shape in the axial direction is equal to or greater than the radius of curvature in the axial direction of the rolling surface of each spherical roller. The radius of curvature of the cross-sectional shape in the circumferential direction is smaller than the radius of curvature in the circumferential direction of the rolling surface. Such a cutting tool is rotated in a state where the central axis and the central axis of the to-be-beveled portion to be machined are inserted parallel to each other between the pillars adjacent to each other in the circumferential direction. While revolving around the central axis of the part that should become this pocket. Then, both side surfaces in the circumferential direction of each of the columnar portions are cut, and oil guide recesses are formed in portions facing the respective pockets on both side surfaces in the axial direction of the rim portion by the cutting convex portions.

上述の様に構成する本発明の保持器付自動調心ころ軸受の場合には、各ポケットの円周方向両側を仕切る、各柱部の円周方向両側面が、各球面ころの転動面よりも僅かに(ポケット隙間に見合う分だけ)大きな曲率半径を有する凹曲面である為、上記各ポケット内に保持された上記各球面ころの姿勢が安定する。この為、これら各球面ころに著しいスキューが発生する事がなく、これら各球面ころの転動面と、外輪軌道及び内輪軌道との転がり接触部で著しい滑り摩擦が発生する事を防止できる。この結果、外輪と内輪との相対回転に要する抵抗、並びに、運転時に発生する振動を抑える事ができて、高速運転が可能になる。又、上述の様に、上記各球面ころの姿勢を安定させるべく、これら各球面ころの転動面と保持器のポケットの内面との間の隙間を小さくしても、リム部の側面に形成した導油凹部により、上記各球面ころの表面と上記各ポケットの内面との摺動部に潤滑油を十分に送り込める。この為、この摺動部の摩擦抵抗を低く抑えて、この面からも、上記運転時に発生する振動を抑える事ができ、より一層の高速運転が可能になる。
又、本発明の自動調心ころ軸受用保持器の製造方法によれば、上記各柱部の円周方向両側面に、上述の様な凹曲面及び導油凹部を、比較的低コストで実施できる工業的手法により、高精度で形成できる。
In the case of the self-aligning roller bearing with a cage of the present invention configured as described above, both circumferential surfaces of each column that partition both circumferential sides of each pocket are rolling surfaces of each spherical roller. Since the concave curved surface has a slightly larger radius of curvature than the pocket gap, the posture of the spherical rollers held in the pockets is stabilized. For this reason, there is no significant skew in each spherical roller, and it is possible to prevent the occurrence of significant sliding friction at the rolling contact portion between the rolling surface of each spherical roller and the outer ring raceway and the inner ring raceway. As a result, resistance required for relative rotation between the outer ring and the inner ring and vibration generated during operation can be suppressed, and high-speed operation becomes possible. Further, as described above, in order to stabilize the posture of each spherical roller, even if the gap between the rolling surface of each spherical roller and the inner surface of the pocket of the cage is reduced, it is formed on the side surface of the rim portion. By the oil guide recess, the lubricating oil can be sufficiently fed into the sliding portion between the surface of each spherical roller and the inner surface of each pocket. For this reason, the frictional resistance of the sliding portion can be kept low, and the vibration generated during the operation can be suppressed from this surface as well, so that even higher speed operation can be achieved.
Further, according to the manufacturing method of the spherical roller bearing retainer of the present invention, the concave curved surface and the oil guide concave portion as described above are implemented at a relatively low cost on both circumferential sides of each column portion. It can be formed with high accuracy by an industrial method that can be used.

本発明を実施する場合に好ましくは、請求項2、3に記載した様に、リム部の軸方向に見た状態での導油凹部の形状を円形(欠円形、欠円環形を含む)とし、この導油凹部の一部を、このリム部の外周縁(請求項2の場合)或いは内周縁(請求項3の場合)に開口させる。
この様な構造によれば、例えば外輪の軸方向中央部に形成した給油口からこの外輪の軸方向中央部内側に送り込んだ潤滑油、或いは内輪の軸方向中央部に形成した給油口からこの内輪の軸方向中央部外側に送り込んだ潤滑油を、各球面ころの表面と各ポケットの内面との摺動部に効率良く送り込める。
When implementing the present invention, preferably, as described in claims 2 and 3, the shape of the oil guide recess when viewed in the axial direction of the rim portion is a circle (including a missing circle and a missing ring shape). A part of the oil guide recess is opened at the outer peripheral edge (in the case of claim 2) or the inner peripheral edge (in the case of claim 3) of the rim part.
According to such a structure, for example, the lubricating oil fed into the axial center portion of the outer ring from the oil filler port formed in the axial center portion of the outer ring, or the inner ring from the lubricant port formed in the axial center portion of the inner ring. Lubricating oil fed to the outside in the axial center is efficiently fed to the sliding portion between the surface of each spherical roller and the inner surface of each pocket.

又、各柱部の円周方向両側面に凹曲面を形成すると共に、リム部の側面に上述の様な導油凹部を形成する為に、例えば請求項5、6に記載した様に、削り工具の公転中心を、ポケットの径方向中央位置よりも径方向外方(請求項5の場合)、或いは、径方向内方(請求項6の場合)に偏らせる。
上記導油凹部は、上記各柱部の円周方向両側面に凹曲面を形成する工程の後、別の切削工具を使用して形成する事も可能ではあるが、上述の請求項5、6に記載した製造方法によれば、上記導油凹部の加工を上記凹曲面の加工と同時に行なえて、製造作業の効率化によるコスト低減を図れる。
Further, in order to form concave curved surfaces on both sides in the circumferential direction of each column part and to form the oil guiding concave part as described above on the side surface of the rim part, for example, as described in claims 5 and 6 The revolution center of the tool is biased radially outward (in the case of claim 5) or radially inward (in the case of claim 6) from the radial center position of the pocket.
The oil guide recess may be formed by using another cutting tool after the step of forming the concave curved surface on both sides in the circumferential direction of the pillars. According to the manufacturing method described in 1), the processing of the oil guide recess can be performed simultaneously with the processing of the concave curved surface, and the cost can be reduced by increasing the efficiency of the manufacturing operation.

又、本発明を実施する場合に好ましくは、各ポケットの隅部で各柱部の円周方向両側面とリム部の軸方向片側面とを、曲率半径が1mm以上である断面円弧状の凹曲面により連続させる。
この様な凹曲面を有する保持器を造る場合には、例えば、削り工具の先端部に設けた、曲率半径が1mm以上である断面円弧状の凸曲面部分により、各素柱部の円周方向両側面とリム部の軸方向片側面との連続部分を削る事で、当該部分に曲率半径が1mm以上である断面円弧状の凹曲面を形成する。
この様に構成すれば、保持器を構成するリム部と各柱部との連続部に応力が集中する事を防止して、この保持器の耐久性向上を図れる。
Further, when the present invention is carried out, it is preferable that a concave portion having a circular arc cross section with a radius of curvature of 1 mm or more is formed between each circumferential side surface of each column portion and one axial side surface of the rim portion at the corner portion of each pocket. Continue with curved surfaces.
In the case of making a cage having such a concave curved surface, for example, the circumferential direction of each pillar portion is provided by a convex curved surface portion having an arc-shaped cross section with a radius of curvature of 1 mm or more provided at the tip portion of the cutting tool. By cutting a continuous portion between both side surfaces and one side surface in the axial direction of the rim portion, a concave curved surface having an arcuate cross section with a radius of curvature of 1 mm or more is formed in the portion.
If comprised in this way, it can prevent that stress concentrates on the continuous part of the rim | limb part and each pillar part which comprise a holder | retainer, and can aim at the durability improvement of this holder | retainer.

又、本発明を実施する場合に好ましくは、保持器の径方向位置を、各柱部の円周方向両側面と各球面ころの転動面との係合に基づいて規制する(転動体案内とする)。
この様に構成すれば、上記保持器の径方向位置を規制する為の係合部の摩擦速度を低く抑えて、動トルク並びに運転に伴う発熱を低く抑えられる。
Further, when the present invention is carried out, preferably, the radial position of the cage is regulated based on the engagement between the circumferential side surfaces of each column and the rolling surface of each spherical roller (rolling member guide). And).
If comprised in this way, the frictional speed of the engaging part for restrict | limiting the radial direction position of the said holder | retainer will be restrained low, and the heat_generation | fever accompanying dynamic torque and driving | operation will be restrained low.

又、本発明を実施する場合に、例えば、一方の列の球面ころを保持する為の保持器と、他方の列の球面ころを保持する為の保持器とを、相対回転を可能に互いに独立させる。
この様に構成すれば、両列の球面ころの公転速度に差が生じた場合でも、これら両列の球面ころを保持している保持器が独立して回転する。この為、公転速度が速い列の球面ころが、同じく遅い列の球面ころを引き摺ったり、公転速度が遅い列の球面ころが、同じく速い列の球面ころの公転運動に対して制動を加える事がなくなる。この結果、動トルク並びに運転に伴う発熱を低く抑えられる。
Further, when carrying out the present invention, for example, a cage for holding the spherical rollers in one row and a cage for holding the spherical rollers in the other row are mutually independent so as to enable relative rotation. Let
If comprised in this way, even when a difference arises in the revolution speed of the spherical roller of both rows, the holder | retainer holding these spherical rollers of both rows will rotate independently. For this reason, a spherical roller in a row with a high revolution speed can drag a spherical roller in a slow row, or a spherical roller in a row with a low revolution speed can apply braking to the revolution motion of a spherical roller in a fast row. Disappear. As a result, the dynamic torque and the heat generated by the operation can be kept low.

或いは、両列の保持器を一体とする事もできる。この場合には、両列の保持器の回転速度の相違に基づき、これら両列の保持器のリム部同士が摩擦して摩耗粉が発生する事を防止できる。従って、金属製の保持器を使用した場合に、金属の摩耗粉がグリースに混入して転がり接触部を損傷する事を防止する等の面からは、一体型の保持器を使用する事が有効である。別体型、一体型、何れの保持器を使用するかは、保持器の材質(合成樹脂製であるか金属製であるか等)、使用時の回転速度、使用時に加わるアキシアル荷重の大きさ等、各種条件に応じて選択する。   Alternatively, the cages in both rows can be integrated. In this case, it is possible to prevent abrasion powder from being generated due to friction between the rim portions of the cages in both rows based on the difference in rotational speed between the cages in both rows. Therefore, when using a metal cage, it is effective to use an integrated cage from the standpoint of preventing metal wear powder from entering the grease and damaging the rolling contact part. It is. Whether to use a separate type or an integrated type, the type of cage (whether it is made of synthetic resin or metal, etc.), the rotation speed during use, the magnitude of the axial load applied during use, etc. Select according to various conditions.

又、本発明を実施する場合に好ましくは、上記各柱部の長さを、上記各球面ころの軸方向長さの1/2よりも大きくする。そして、円周方向に隣り合う柱部の先端部円周方向側面同士の間隔を、上記各球面ころの最大直径よりも小さくする。
この様に構成すれば、前記各ポケットを構成する、円周方向に隣り合う各柱部の先端部が、各球面ころを抱き込んで、これら各ポケットからこれら各球面ころが、外輪及び内輪の軸方向に抜け出る事を防止する。従って、これら外輪の内周面と内輪の外周面との間からの上記各球面ころの抜け出し防止の為に、この内輪の軸方向両端部外周面に鍔部を形成したり、各柱部の先端部同士の間に連結部を設ける必要がなくなる。この為、上記外輪の内周面と上記内輪の外周面との間の空間の開口端部の面積を広くできる。そして、上記各球面ころの転動面と外輪軌道及び内輪軌道との転がり接触部の潤滑を、導油凹部を通じての潤滑油供給に加え、飛沫潤滑により行なう場合に、上記空間内に入り込む潤滑剤(潤滑油)の流量を多くして、高速運転を行なう面から有利になる。又、上記内輪の軸方向両端部外周面に鍔部を形成する必要がなく、この内輪の外径を、この内輪の軸方向両端部で最も小さくできるので、この内輪の外周面と外輪の内周面との間の空間に、保持器並びに複数の球面ころを組み付ける作業を容易に行なえる。更に、上記内輪の加工作業が容易になって、この内輪を含む、保持器付自動調心ころ軸受のコストを抑えられる。
Moreover, when implementing this invention, Preferably, the length of each said column part is made larger than 1/2 of the axial direction length of each said spherical roller. And the space | interval of the front-end | tip part circumferential direction side surfaces of the column part adjacent to the circumferential direction is made smaller than the maximum diameter of each said spherical roller.
If comprised in this way, the front-end | tip part of each column part adjacent to the circumferential direction which comprises each said pocket will embed each spherical roller, and these each spherical roller from these each pocket will be an outer ring | wheel and an inner ring | wheel. Prevents slipping out in the axial direction. Therefore, in order to prevent the spherical rollers from coming out from between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring, a flange is formed on the outer peripheral surface of both ends in the axial direction of the inner ring, There is no need to provide a connecting portion between the tip portions. For this reason, the area of the open end of the space between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring can be increased. A lubricant that enters the space when the rolling contact portion between the rolling surface of each spherical roller and the outer ring raceway and the inner ring raceway is lubricated by splash lubrication in addition to the lubrication oil supply through the oil guide recess. This is advantageous in terms of high speed operation by increasing the flow rate of (lubricating oil). Further, it is not necessary to form flanges on the outer peripheral surfaces of both ends in the axial direction of the inner ring, and the outer diameter of the inner ring can be minimized at both ends in the axial direction of the inner ring. The work of assembling the cage and the plurality of spherical rollers can be easily performed in the space between the peripheral surface. Further, the processing of the inner ring is facilitated, and the cost of the self-aligning roller bearing with a cage including the inner ring can be reduced.

図1〜4は、請求項1、2、4、5に対応する、本発明の実施例1を示している。本実施例の保持器付自動調心ころ軸受は、前述の図11に示した従来構造の第2例と同様に、外輪1と、内輪2aと、複数個の球面ころ3、3と、互いに独立した(相対回転可能に組み合わされた)1対の保持器4b、4bとから成る。
このうちの外輪1は、単一の中心を有する球状凹面である外輪軌道5を、その内周面に形成している。
又、上記内輪2aは、上記外輪軌道5と対向する1対の内輪軌道6、6を、その外周面に形成している。この内輪2aに就いては、上記従来構造の第2例の場合とは異なり、両端部外周面に鍔部10、10(図11参照)を設けてはいない。
又、上記各球面ころ3、3は、上記外輪軌道5と上記両内輪軌道6、6との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられている。
1 to 4 show a first embodiment of the present invention corresponding to claims 1, 2, 4, and 5. The self-aligning roller bearing with a retainer of the present embodiment is similar to the second example of the conventional structure shown in FIG. 11 described above, and the outer ring 1, the inner ring 2a, the plurality of spherical rollers 3, 3 are mutually connected. It consists of a pair of independent cages 4b and 4b (combined so as to be relatively rotatable).
Outer ring 1 of these forms outer ring raceway 5 which is a spherical concave surface having a single center on its inner peripheral surface.
The inner ring 2 a has a pair of inner ring raceways 6, 6 facing the outer ring raceway 5 on the outer peripheral surface thereof. Regarding the inner ring 2a, unlike the second example of the conventional structure, the flanges 10 and 10 (see FIG. 11) are not provided on the outer peripheral surfaces of both ends.
The spherical rollers 3 and 3 are divided into two rows between the outer ring raceway 5 and the inner ring raceways 6 and 6, and a plurality of the spherical rollers 3 and 3 are provided so as to be freely rollable in both rows.

又、上記両保持器4b、4bはそれぞれ、銅或いは真鍮等の銅系合金、又は、ステンレス鋼等の鉄系合金製の素材に切削加工乃至研削加工を施す事により一体に造られたもので、上記各球面ころ3、3を転動自在に保持する為の複数のポケット9、9を備えている。この為に上記両保持器4b、4bはそれぞれ、上記両列の球面ころ3、3同士の間に配置された円環状のリム部7aと、複数の柱部8a、8aとを備える。これら各柱部8a、8aは、それぞれの基端部をこのリム部7aの軸方向側面の円周方向等間隔複数個所に結合した(一体に連続させた)状態で、上記外輪1及び内輪2aの軸方向に配置されている。又、上記各柱部8a、8aは、それぞれの先端部を、他の部分に結合しない自由端としている。即ち、これら各柱部8a、8aの先端部には、これら各柱部8a、8aの先端部同士を連結する連結部は設けていない。そして、円周方向に隣り合う柱部8a、8aの円周方向側面と上記リム部7aの軸方向片側面とで三方を囲まれる部分を、上記各ポケット9としている。   Each of the cages 4b and 4b is integrally formed by cutting or grinding a material made of a copper alloy such as copper or brass, or an iron alloy such as stainless steel. A plurality of pockets 9 and 9 are provided for holding the spherical rollers 3 and 3 in a rollable manner. For this purpose, each of the cages 4b and 4b includes an annular rim portion 7a disposed between the two rows of spherical rollers 3 and 3 and a plurality of column portions 8a and 8a. Each of the column portions 8a, 8a is connected to the circumferentially equidistant positions on the axial side surface of the rim portion 7a (continuously integrated) with the outer ring 1 and the inner ring 2a. Are arranged in the axial direction. In addition, each of the column portions 8a and 8a has a respective distal end portion as a free end that is not coupled to other portions. That is, the connection part which connects the front-end | tip parts of each of these pillar parts 8a and 8a is not provided in the front-end | tip part of each of these pillar parts 8a and 8a. And each pocket 9 is a portion surrounded on three sides by the circumferential side surfaces of the column portions 8a, 8a adjacent in the circumferential direction and the one axial side surface of the rim portion 7a.

特に、本実施例を構成する上記両保持器4b、4bの場合には、上記各ポケット9、9の円周方向両側を仕切る、上記各柱部8a、8aの円周方向両側面を、上記各球面ころ3、3の転動面と相似形で凹凸が逆である、凹曲面部11、11としている。これら各凹曲面部11、11は、上記保持器4bの軸方向及び径方向に関して、互いに異なる曲率半径RP 、rP を有する。何れの方向の曲率半径RP 、rP も、上記各ポケット9、9内に保持された上記各球面ころ3、3の転動面と上記各凹曲面部11、11との間に、潤滑油を送り込み可能なポケット隙間を介在させる程度に、上記各球面ころ3、3の転動面の曲率半径RR 、rR よりも大きくしている。 In particular, in the case of the two cages 4b and 4b constituting the present embodiment, the circumferential side surfaces of the pillars 8a and 8a that partition the circumferential sides of the pockets 9 and 9 are The concave curved surface portions 11 and 11 are similar in shape to the rolling surfaces of the respective spherical rollers 3 and 3 and have concave and convex portions opposite to each other. The concave curved surface portions 11 and 11 have different radii of curvature R P and r P with respect to the axial direction and the radial direction of the cage 4b. The curvature radii R P and r P in any direction are lubricated between the rolling surfaces of the spherical rollers 3 and 3 held in the pockets 9 and the concave curved surface portions 11 and 11, respectively. The radius of curvature R R and r R of the rolling surface of each of the spherical rollers 3 and 3 is set to such an extent that a pocket gap through which oil can be fed is interposed.

上記ポケット隙間の(これら各球面ころ3、3の)径方向に関する(上記各球面ころ3、3の中心軸と上記各ポケット9、9の中心軸とを一致させた状態での)厚さtは、自動調心ころ軸受の諸元(サイズ)により多少異なるが、例えば各種産業機械装置のロール等の回転支持部に組み込む自動調心ころ軸受の場合で、0.1〜0.5mm程度、或いは各球面ころ3、3の最大径の0.4〜2%程度である。上記各凹曲面部11、11の各方向の曲率半径RP 、rP は、これら各球面ころ3、3の転動面の、対応する方向の曲率半径RR 、rR よりも、上記ポケット隙間分だけ大きく(RP =RR +t、rP =rR +tと)している。尚、軸方向の曲率半径RP は、径方向の曲率半径rP に比べて遥かに大きい(RP ≫rP )ので、RP =RR としても、ほぼ同様の機能を得られる。従って、上記軸方向の曲率半径RP は、RR 〜RR +tの間で設定すれば良い。 Thickness t of the pocket gap with respect to the radial direction (of the spherical rollers 3 and 3) (when the central axis of the spherical rollers 3 and 3 coincides with the central axis of the pockets 9 and 9) Is slightly different depending on the specifications (size) of the self-aligning roller bearing. For example, in the case of a self-aligning roller bearing incorporated in a rotation support part such as a roll of various industrial machine devices, about 0.1 to 0.5 mm, Or it is about 0.4 to 2% of the maximum diameter of each spherical roller 3 and 3. The radius of curvature R P , r P in each direction of each concave curved surface portion 11, 11 is larger than the radius of curvature R R , r R in the corresponding direction of the rolling surface of each spherical roller 3, 3. It is increased by the gap (R P = R R + t, r P = r R + t). Since the radius of curvature R P in the axial direction is much larger than the radius of curvature r P in the radial direction (R P >> r P ), substantially the same function can be obtained even when R P = R R. Therefore, the radius of curvature R P in the axial direction may be set between R R and R R + t.

又、上記各柱部8a、8aの円周方向両側面に形成した上記各凹曲面部11、11と、上記リム部7aの軸方向片側面とは、上記各球面ころ3、3の端面外周縁部との干渉を防止する為の逃げ凹部12、12を介して連続させている(図4参照)。本実施例の場合には、これら各逃げ凹部12、12を、曲率半径R12が1mm以上の凹曲面としている。これら各逃げ凹部12、12の両側端縁のうち、上記各凹曲面部11、11側の端縁はこれら各凹曲面部11、11の端部と、上記リム部7aの円周方向に凹む方向に連続している。これに対して、上記リム部7aの軸方向片側面側の端縁は、このリム部7aの軸方向片側面と滑らかに連続している。 The concave curved surface portions 11 and 11 formed on both sides in the circumferential direction of the column portions 8a and 8a and the one side surface in the axial direction of the rim portion 7a are outside the end surfaces of the spherical rollers 3 and 3. It is made to continue through the escape recessed parts 12 and 12 for preventing interference with a peripheral part (refer FIG. 4). In the case of the present embodiment, each of these relief recesses 12 and 12 is a concave curved surface having a curvature radius R 12 of 1 mm or more. Among the side edges of each of the relief recesses 12 and 12, the edge on the side of the concave curved surface portions 11 and 11 is recessed in the circumferential direction of the end of each concave curved surface portion 11 and 11 and the rim portion 7a. It is continuous in the direction. On the other hand, the end edge on the one side surface in the axial direction of the rim portion 7a is smoothly continuous with the one side surface in the axial direction of the rim portion 7a.

又、上記リム部7aの軸方向片側面のうち、上記各ポケット9、9の円周方向中央部で、且つ、径方向に関して外方に偏った部分に、欠円形乃至は欠円環状の導油凹部13を形成している。この導油凹部13のうち、上記リム部7aの径方向に関して外端部は、このリム部7aの外周面に開口している。これに対して、上記導油凹部13の他の部分は、このリム部7aの内側面に開口している他は、このリム部7aの内周面に開口してはいない。即ち、上記導油凹部13は、前記外輪1の軸方向中央部に形成した給油孔14から、この外輪1の軸方向中央部内側に送り込んだ潤滑油を、上記リム部7aの内側面側に送り出す様に作用する。   In addition, of one side surface in the axial direction of the rim portion 7a, a circularly or circularly annular guide is provided at a circumferentially central portion of each of the pockets 9 and 9 and outwardly with respect to the radial direction. An oil recess 13 is formed. Of the oil guide recess 13, the outer end of the rim portion 7 a is opened on the outer peripheral surface of the rim portion 7 a in the radial direction. On the other hand, other portions of the oil guide recess 13 are not opened on the inner peripheral surface of the rim portion 7a except that they are opened on the inner surface of the rim portion 7a. That is, the oil guide recess 13 is formed on the inner surface side of the rim portion 7a with the lubricating oil fed into the axial center portion of the outer ring 1 from the oil supply hole 14 formed in the axial center portion of the outer ring 1. Acts like sending out.

更に、本実施例の場合には、前記各柱部8a、8aの長さL8 を、前記各球面ころ3、3の軸方向長さL3 の1/2よりも大きく(L8 >L3 /2)している。そして、円周方向に隣り合う上記各柱部8a、8aの先端部円周方向側面同士の間隔dを、上記各球面ころ3の最大直径Dよりも小さく(d<D)している。この様に、上記円周方向に隣り合う柱部8a、8aの先端部円周方向側面同士の間隔dが上記各球面ころ3、3の最大直径Dよりも小さい程度(D−d:ばれ止め量)は、上記各柱部8a、8aを円周方向に弾性変形させつつ、前記各ポケット9、9内に上記各球面ころ3、3を押し込める程度に規制する。この程度は、保持器付自動調心ころ軸受の大きさ、上記両保持器4b、4bの材質等に応じて設計的に定める。例えば、保持器付自動調心ころ軸受の大きさが、内径が40〜60mm程度、外径が100〜120mm程度、保持器の材質が銅若しくは銅系合金である場合に、上記ばれ止め量を100〜300μm程度とする。 Furthermore, in the case of the present embodiment, the length L 8 of each of the column portions 8a, 8a is larger than ½ of the axial length L 3 of each of the spherical rollers 3, 3 (L 8 > L 3/2 ). And the space | interval d of the front-end | tip part circumferential direction side surfaces of each said column part 8a, 8a adjacent to the circumferential direction is made smaller than the maximum diameter D of each said spherical roller 3 (d <D). In this way, the distance d between the circumferential side surfaces of the tip end portions of the column portions 8a, 8a adjacent to each other in the circumferential direction is smaller than the maximum diameter D of each of the spherical rollers 3, 3 (Dd: anti-detention). The amount is regulated to such an extent that the spherical rollers 3 and 3 can be pushed into the pockets 9 and 9 while elastically deforming the pillars 8a and 8a in the circumferential direction. This degree is determined by design according to the size of the self-aligning roller bearing with cage, the material of the both cages 4b and 4b, and the like. For example, when the size of the self-aligning roller bearing with cage is about 40 to 60 mm in inner diameter, about 100 to 120 mm in outer diameter, and the material of the cage is copper or a copper-based alloy, The thickness is about 100 to 300 μm.

上述の様な上記各柱部8a、8aの円周方向両側面の形状及び上記導油凹部13は、図4に示す様な、回転式の削り工具15により、これら各柱部8a、8aよりも幅広に形成した素柱部の円周方向両側面を切削乃至は研削する事により形成する。即ち、上記各柱部8a、8aを有する保持器4bを造るには、先ず、円環状の素材から、この保持器4bよりも容積が大きい中間素材を、削り加工等により造る。この中間素材は、円環状のリム部7aと、それぞれの基端部をこのリム部7aの軸方向側面の円周方向複数個所に結合する(一体に連続させる)と共にそれぞれの先端部を他の部分に結合しない自由端とした、上記複数の素柱部とから成る。これら各素柱部の円周方向両側面同士の間隔は、上記各球面ころ3、3の外径よりも小さくしている。尚、上記各素柱部の円周方向両側面の形状は、これら円周方向両側面の同士の間隔が上記条件(各球面ころ3、3の外径よりも小さい)を満たす限り、特に限定しない。但し、上記中間素材の加工容易性、並びに、上記削り工具15による前記各凹曲面部11、11の加工容易性を考慮した場合には、互いに平行な平坦面又は母線形状が直線である円筒状凹面とする事が好ましい。この様に、互いに対向する上記各素柱部の円周方向両側面を、互いに平行な平坦面又は円筒状凹面とする場合には、この平坦面同士の間隔又は円筒状凹面の内径は、上記各球面ころ3、3の転動面の軸方向端部の外径以下で、上記削り工具15のうちの、円周方向に隣り合う素柱部同士の間に挿入される部分の最大外径以上とする。   The shape of both side surfaces in the circumferential direction of the column parts 8a and 8a as described above and the oil guide recess 13 are formed from the column parts 8a and 8a by a rotary cutting tool 15 as shown in FIG. Is formed by cutting or grinding both sides in the circumferential direction of the wide pillar portion. That is, in order to manufacture the cage 4b having the pillars 8a and 8a, first, an intermediate material having a volume larger than that of the cage 4b is made from an annular material by cutting or the like. This intermediate material has an annular rim portion 7a and each base end portion coupled to a plurality of circumferential positions on the axial side surface of the rim portion 7a (continuously integrated), and each tip portion is connected to another portion. It consists of the above-mentioned plurality of elemental column parts made into a free end which is not joined to a part. The distance between the circumferential side surfaces of each of the elementary column portions is smaller than the outer diameter of each of the spherical rollers 3 and 3. In addition, the shape of both side surfaces in the circumferential direction of each of the elementary column portions is particularly limited as long as the distance between the both side surfaces in the circumferential direction satisfies the above condition (smaller than the outer diameter of each spherical roller 3, 3). do not do. However, in consideration of the processability of the intermediate material and the processability of the concave curved surface portions 11 and 11 by the cutting tool 15, a flat surface parallel to each other or a cylindrical shape whose generatrix is a straight line A concave surface is preferred. In this way, when the circumferentially opposite side surfaces of each of the elemental column portions facing each other are flat surfaces or cylindrical concave surfaces parallel to each other, the interval between the flat surfaces or the inner diameter of the cylindrical concave surface is The maximum outer diameter of the portion of the cutting tool 15 that is inserted between the adjacent pillar portions in the circumferential direction, which is equal to or less than the outer diameter of the axial end portion of the rolling surface of each spherical roller 3, 3. That's it.

上述の様な各素柱部の円周方向両側面を上記各凹曲面部11、11に加工するには、円周方向に隣り合う素柱部同士の間部分に、外周面が凸曲面である、上記削り工具15を挿入する。この削り工具15の外周面である凸曲面の断面形状のうち、軸方向に関する断面形状の曲率半径DP は、上記各凹曲面部11、11の軸方向の曲率半径RP と等しく、上記各球面ころ3、3の転動面の軸方向の曲率半径RR よりも、前記ポケット隙間の厚さt分だけ大きい(DP =RP =RR +t)。これに対して、削り工具15の外周面である凸曲面の断面形状のうち、円周方向に関する断面形状の曲率半径dP は、上記各凹曲面部11、11の円周方向の曲率半径rP よりも、次述する削り工具15の公転半径r0 分だけ小さい(dP =rP −r0 =rR +t−r0 )。又、この削り工具15の先端面には、円すい状の切削用凸部16を突設している。更に、図示の例の場合には、上記削り工具15の先端部外周面に、曲率半径が1mm以上である断面円弧状の、凸曲面部分17を形成している。 In order to process the both sides in the circumferential direction of each elemental column as described above into the respective concave curved surface parts 11, 11, the outer peripheral surface is a convex curved surface between the elemental column parts adjacent to each other in the circumferential direction. A certain cutting tool 15 is inserted. Of the cross-sectional shape of the convex curved surface that is the outer peripheral surface of the cutting tool 15, the curvature radius D P of the cross-sectional shape in the axial direction is equal to the curvature radius R P of the concave curved surface portions 11, 11 in the axial direction. It is larger than the radius of curvature R R in the axial direction of the rolling surfaces of the spherical rollers 3 and 3 by the thickness t of the pocket gap (D P = R P = R R + t). On the other hand, the curvature radius d P of the cross-sectional shape in the circumferential direction among the cross-sectional shape of the convex curved surface that is the outer peripheral surface of the cutting tool 15 is the curvature radius r in the circumferential direction of the concave curved surface portions 11 and 11. It is smaller than P by the revolution radius r 0 of the cutting tool 15 described below (d P = r P −r 0 = r R + t−r 0 ). Further, a conical cutting convex portion 16 projects from the tip surface of the cutting tool 15. Further, in the case of the illustrated example, a convex curved surface portion 17 having a circular arc shape with a curvature radius of 1 mm or more is formed on the outer peripheral surface of the tip portion of the cutting tool 15.

上記各凹曲面部11、11を形成するには、上述の様な削り工具15を、上記円周方向に隣り合う素柱部同士の間部分に、この削り工具15の中心軸x15と、加工すべきポケット9となるベき部分の中心軸x9 とを平行にして、この削り工具15の先端面のうちで上記切削用凸部16の周囲に位置する部分が、前記リム部7aの片側面に当接する迄挿入する。尚、このリム部7aの径方向に関して、上記加工すべきポケット9となるベき部分の中心軸x9 は、このリム部7aの中央位置よりも外側に位置させる。そして、この状態で上記削り工具15を、自身の中心軸x15を中心として自転させつつ、上記ポケット9となるべき部分の中心軸x9 回りを、上記公転半径r0 で公転させる。この公転に伴って、上記切削用凸部16により、前記リム部7aの側面を削り取る。但し、上記公転半径r0 は、初めからこの値にするのではなく、徐々に大きくする。そして、上記削り工具15の外周面を、外径が大きくなった部分から上記各素柱部の円周方向両側面に接触させて、これら各素柱部の円周方向両側面に、上記削り工具15の外周面の軸方向に関する断面形状を転写する。但し、上記リム部7aに対するこの削り工具15の軸方向位置は、切削加工の初めから終わり迄動かさない。従って、上記切削用凸部16による上記リム部7aの削り取りは、上記公転運動の初めから行なわれる。この為、この切削用凸部16の大きさは、この公転運動を行なえる程度の大きさとする。尚、図面では、この切削用凸部16を、実際よりも大きく描いている。 In order to form each of the concave curved surface portions 11, 11, the above-mentioned cutting tool 15 is placed between the pillar portions adjacent to each other in the circumferential direction, and the center axis x 15 of the cutting tool 15, A portion of the front end surface of the cutting tool 15 positioned around the cutting convex portion 16 with the central axis x 9 of the portion to be processed as the pocket 9 parallel to the cutting convex portion 16 of the rim portion 7a. Insert until it touches one side. Incidentally, with respect to the radial direction of the rim portion 7a, the center axis x 9 of base-out portion to be the pocket 9 should be above processing, it is positioned outside the center position of the rim portion 7a. In this state, the cutting tool 15 revolves around the central axis x 9 of the portion to be the pocket 9 with the revolving radius r 0 while rotating about the central axis x 15 of itself. Along with this revolution, the side surface of the rim portion 7 a is scraped off by the cutting convex portion 16. However, the revolution radius r 0 is not increased from the beginning but gradually increased. Then, the outer peripheral surface of the cutting tool 15 is brought into contact with both sides in the circumferential direction of each of the elemental column parts from the portion having an increased outer diameter, and the above-described cutting is performed on both sides in the circumferential direction of the respective elemental column parts. The cross-sectional shape in the axial direction of the outer peripheral surface of the tool 15 is transferred. However, the axial position of the cutting tool 15 relative to the rim portion 7a does not move from the beginning to the end of the cutting process. Accordingly, the cutting of the rim portion 7a by the cutting convex portion 16 is performed from the beginning of the revolution movement. For this reason, the size of the cutting convex portion 16 is set to such a size that the revolving motion can be performed. In the drawing, the cutting projection 16 is drawn larger than the actual size.

上述の様な公転運動の結果、これら各素柱部の円周方向両側面の軸方向に関する断面形状の曲率半径が、前述した様なRP (=RR +t)なる値になると同時に、上記リム部7aの軸方向片側面で上記各ポケット9に対向する部分に、前記導油凹部13が形成される。一方、各素柱部の円周方向両側面の、上記リム部7aの径方向に関する断面形状は、上記削り工具15の公転半径が、上記r0 なる値になった状態で、前述した様なrP (=dP +r0 =rR +t)になる。この状態で、前述した様な、前記各球面ころ3、3の転動面と、厚さがtであるポケット隙間を介して対向する、上記各凹曲面部11、11が形成される。又、この状態で、それぞれの円周方向両側面にこれら各凹曲面部11、11を形成した上記各柱部8a、8aの基端部円周方向両側面と、前記リム部7aの軸方向片側面との連続部に、上記凸曲面部分17により、曲率半径が1mm以上である、前記逃げ凹部12、12が形成される。 As a result of the revolving motion as described above, the radius of curvature of the cross-sectional shape with respect to the axial direction of both sides in the circumferential direction of each of the pillar portions becomes the value R P (= R R + t) as described above, and at the same time The oil guide recess 13 is formed in a portion facing the pocket 9 on one side surface in the axial direction of the rim portion 7a. On the other hand, the circumferential side surfaces of the respective Motobashira portions, cross-sectional shape in the radial direction of the rim portion 7a, the revolution radius of the cutting tool 15, in a condition that the above r 0 becomes a value, such as described above r P (= d P + r 0 = r R + t). In this state, the concave curved surface portions 11 and 11 are formed so as to face the rolling surfaces of the spherical rollers 3 and 3 through a pocket gap having a thickness t as described above. Further, in this state, both the circumferential side surfaces of the columnar portions 8a and 8a in which the concave curved surface portions 11 and 11 are formed on both circumferential side surfaces and the axial direction of the rim portion 7a. The relief recesses 12 and 12 having a radius of curvature of 1 mm or more are formed by the convex curved surface portion 17 in a continuous portion with one side surface.

それぞれが上述の様にして造られる、前述の様な構成を有する保持器4b、4bを組み込んだ本実施例の保持器付自動調心ころ軸受の場合には、上記各球面ころ3、3の姿勢を安定させてこれら各球面ころ3、3がスキューする事を防止できる。この為、スキューに起因する振動の発生や発熱を抑えて、高速運転が可能になる。即ち、前記各ポケット9、9の円周方向両側を仕切る、上記各柱部8a、8aの円周方向両側面を構成する、上記各凹曲面部11、11が、上記各球面ころ3、3の転動面よりも僅かに大きな曲率半径RP 、rP を有する凹曲面である為、上記各ポケット9、9内に保持された上記各球面ころ3、3の姿勢が安定する。この為、これら各球面ころ3、3に著しいスキューが発生する事がなく、これら各球面ころ3、3の転動面と、前記外輪軌道5及び前記両内輪軌道6、6との転がり接触部で著しい滑り摩擦が発生する事を防止できる。この結果、前記外輪1と前記内輪2aとの相対回転に要する抵抗、並びに、運転時に発生する振動を抑える事ができて、高速運転が可能になる。 In the case of the self-aligning roller bearing with a retainer of the present embodiment in which the retainers 4b and 4b having the above-described structures, each of which is manufactured as described above, are incorporated, It is possible to stabilize the posture and prevent the spherical rollers 3 and 3 from skewing. For this reason, generation of vibration and heat generation due to skew are suppressed, and high-speed operation becomes possible. That is, the concave curved surface portions 11, 11 constituting the both side surfaces in the circumferential direction of the column portions 8 a, 8 a that partition both sides in the circumferential direction of the pockets 9, 9 are the spherical rollers 3, 3, respectively. Therefore, the spherical rollers 3 and 3 held in the pockets 9 and 9 are stabilized in posture because they are concave curved surfaces having radii of curvature R P and r P that are slightly larger than the rolling surfaces. Therefore, there is no significant skew in the spherical rollers 3 and 3, and rolling contact portions between the rolling surfaces of the spherical rollers 3 and 3 and the outer ring raceway 5 and the inner ring raceways 6 and 6. It is possible to prevent the occurrence of significant sliding friction. As a result, resistance required for relative rotation between the outer ring 1 and the inner ring 2a and vibration generated during operation can be suppressed, and high-speed operation is possible.

又、上述の様に、上記各球面ころ3、3の姿勢を安定させるべく、上記各柱部8a、8aの円周方向両側面を上記各凹曲面部11、11とし、上記各球面ころ3、3の転動面と上記両保持器4b、4bのポケット9、9の内面との間の隙間を小さくしても、上記リム部7aの側面に形成した導油凹部13により、上記各球面ころ3、3の表面と上記各ポケット9、9の内面との摺動部に潤滑油を十分に送り込める。この為、この摺動部の摩擦抵抗を低く抑えて、この面からも、上記運転時に発生する振動を抑える事ができ、より一層の高速運転が可能になる。   Further, as described above, in order to stabilize the posture of the spherical rollers 3 and 3, both side surfaces in the circumferential direction of the column portions 8 a and 8 a are the concave curved surface portions 11 and 11, and the spherical rollers 3. 3, even if the gap between the rolling surfaces 3 and the inner surfaces of the pockets 9, 9 of both the cages 4 b, 4 b is reduced, the spherical surfaces are formed by the oil guide recesses 13 formed on the side surfaces of the rim portion 7 a. Lubricating oil can be sufficiently fed into the sliding portions between the surfaces of the rollers 3 and 3 and the inner surfaces of the pockets 9 and 9. For this reason, the frictional resistance of the sliding portion can be kept low, and the vibration generated during the operation can be suppressed from this surface as well, so that even higher speed operation can be achieved.

更に、本実施例の場合には、上記各柱部8a、8aの長さL8 を上記各球面ころ3、3の軸方向長さL3 の1/2よりも大きくして、円周方向に隣り合う柱部8a、8aの先端部円周方向側面同士の間隔dを上記各球面ころ3の最大直径Dよりも小さくしているので、上記各ポケット9、9を構成する、円周方向に隣り合う各柱部8a、8aの先端部が上記各球面ころ3、3を抱き込んで、上記各ポケット9、9からこれら各球面ころ3、3が、上記外輪1及び上記内輪2aの軸方向に抜け出る事を防止する。従って、前述の図8、10に示した従来構造の様に、内輪2の軸方向両端部外周面に鍔部10、10を形成する必要がなくなる。この為、上記外輪1の内周面と上記内輪2aの外周面との間の空間の開口端部の面積を広くできる。そして、上記各球面ころ3、3の転動面と前記外輪軌道5及び前記両内輪軌道6、6との転がり接触部の潤滑を、上記導油凹部13を通じての潤滑油供給に加え、飛沫潤滑により行なう場合に、上記空間内に入り込む潤滑剤(潤滑油)の流量を多くして、高速運転を行なう面から有利になる。 Further, in the case of the present embodiment, the length L 8 of each of the column portions 8a, 8a is set to be larger than ½ of the axial length L 3 of each of the spherical rollers 3, 3, so that the circumferential direction Since the distance d between the tip side circumferential direction side surfaces of the column parts 8a, 8a adjacent to each other is smaller than the maximum diameter D of each spherical roller 3, the circumferential direction constituting each pocket 9, 9 The end portions of the column portions 8a, 8a adjacent to each other embrace the spherical rollers 3, 3, and the spherical rollers 3, 3 from the pockets 9, 9 are connected to the shafts of the outer ring 1 and the inner ring 2a. Prevents getting out in the direction. Therefore, unlike the conventional structure shown in FIGS. 8 and 10 described above, it is not necessary to form the flanges 10 and 10 on the outer peripheral surfaces of the both ends in the axial direction of the inner ring 2. For this reason, the area of the open end of the space between the inner peripheral surface of the outer ring 1 and the outer peripheral surface of the inner ring 2a can be increased. Then, lubrication of the rolling contact portion between the rolling surface of each of the spherical rollers 3 and 3 and the outer ring raceway 5 and the both inner ring raceways 6 and 6 is added to the lubrication oil supply through the oil guide recess 13 and splash lubrication. In this case, the flow rate of the lubricant (lubricating oil) entering the space is increased, which is advantageous in terms of high speed operation.

又、上記内輪2aの軸方向両端部外周面に鍔部を形成する必要がなく、この内輪2aの外径を、この内輪2aの軸方向両端部で最も小さくできるので、この内輪2aの外周面と上記外輪1の内周面との間の空間に、上記両保持器4b、4b並びに複数の球面ころ3、3を組み付ける作業を容易に行なえる。更に、上記内輪2aの加工作業が容易になって、この内輪2aを含む、保持器付自動調心ころ軸受のコストを抑えられる。   Further, it is not necessary to form flanges on the outer peripheral surfaces of both ends of the inner ring 2a in the axial direction, and the outer diameter of the inner ring 2a can be made the smallest at both end portions in the axial direction of the inner ring 2a. In the space between the outer ring 1 and the inner peripheral surface of the outer ring 1, the work for assembling the two retainers 4 b and 4 b and the plurality of spherical rollers 3 and 3 can be easily performed. Further, the processing of the inner ring 2a is facilitated, and the cost of the self-aligning roller bearing with a cage including the inner ring 2a can be reduced.

又、本実施例の場合には、上記両保持器4b、4bの径方向位置を、上記各柱部8a、8aの円周方向両側面と上記各球面ころ3の転動面との係合に基づいて規制する、所謂転動体案内により規制している。即ち、上記各柱部8a、8aの円周方向両側面を構成する前記各凹曲面部11、11の曲率中心を、これら各柱部8a、8aの内接円と外接円との間に設定している。そして、上記各凹曲面部11、11を上記各球面ころ3の転動面に摺接若しくは近接対向させて、上記両保持器4b、4bの径方向位置が大きくずれ動かない様にしている。これに伴って、前記リム部7aの外周面が上記外輪1の内周面と、同じく内周面は上記内輪2aの外周面と、十分に離隔している。本実施例の場合には、この様な構成により、上記両保持器4b、4bの径方向位置を規制する為の係合部の摩擦速度を低く抑えて、保持器付自動調心ころ軸受の動トルク並びに運転に伴う発熱を低く抑えられる様にしている。   In the case of the present embodiment, the radial positions of the two retainers 4b and 4b are set such that the circumferential side surfaces of the pillars 8a and 8a are engaged with the rolling surfaces of the spherical rollers 3. This is regulated by so-called rolling element guidance that is regulated based on the above. That is, the center of curvature of each of the concave curved surface portions 11 and 11 constituting the circumferential side surfaces of each of the column portions 8a and 8a is set between the inscribed circle and the circumscribed circle of each of the column portions 8a and 8a. is doing. The concave curved surface portions 11 and 11 are brought into sliding contact with or in close proximity to the rolling surfaces of the spherical rollers 3, so that the radial positions of the two retainers 4b and 4b do not move greatly. Accordingly, the outer peripheral surface of the rim portion 7a is sufficiently separated from the inner peripheral surface of the outer ring 1 and the inner peripheral surface is sufficiently separated from the outer peripheral surface of the inner ring 2a. In the case of the present embodiment, with such a configuration, the friction speed of the engaging portion for restricting the radial position of both the cages 4b and 4b is kept low, and the self-aligning roller bearing with cage is reduced. The dynamic torque and the heat generated by the operation are kept low.

更に、本実施例の場合には、前述の様に、一方の列の球面ころ3を保持する為の保持器4bと、他方の列の球面ころ3を保持する為の保持器4bとを、相対回転を可能に互いに独立させている為、両列の球面ころ3、3の公転速度に差が生じた場合でも、これら両列の球面ころ3、3を保持している上記両保持器4b、4b同士が互いに独立して回転する。この為、公転速度が速い列の球面ころ3が、同じく遅い列の球面ころ3を引き摺ったり、公転速度が遅い列の球面ころ3が、同じく速い列の球面ころ3の公転運動に対して制動を加える事がなくなる。この結果、やはり、保持器付自動調心ころ軸受の動トルク並びに運転に伴う発熱を低く抑えられる。   Further, in the case of the present embodiment, as described above, the cage 4b for holding the spherical roller 3 in one row and the cage 4b for holding the spherical roller 3 in the other row are as follows. Since the relative rotation is made possible independently of each other, even when there is a difference in the revolution speed of the spherical rollers 3 and 3 in both rows, both the cages 4b holding the spherical rollers 3 and 3 in both rows are held. 4b rotate independently of each other. For this reason, the spherical roller 3 in the row with the fast revolution speed drags the spherical roller 3 in the slow row, or the spherical roller 3 in the row with the slow revolution speed brakes the revolution motion of the spherical roller 3 in the fast row. Will not be added. As a result, the dynamic torque of the self-aligning roller bearing with cage and the heat generated by the operation can be kept low.

図5は、請求項1、3、4、6に対応する、本発明の実施例2を示している。本実施例の場合には、上述した実施例1の場合とは逆に、リム部7aの軸方向片側面のうち、各ポケット9、9の円周方向中央部で、且つ、径方向に関して内方に偏った部分に、欠円形乃至は欠円環状の導油凹部13aを形成している。この導油凹部13aのうち、上記リム部7aの径方向に関して内端部は、このリム部7aの内周面に開口している。これに対して、上記導油凹部13aの他の部分は、このリム部7aの内側面に開口している他は、このリム部7aの外周面に開口してはいない。   FIG. 5 shows Embodiment 2 of the present invention corresponding to claims 1, 3, 4 and 6. In the case of the present embodiment, contrary to the case of the first embodiment described above, of the axial side surface of the rim portion 7a, it is the central portion in the circumferential direction of the pockets 9, 9 and the inner side in the radial direction. An oil guide recess 13a having a circular shape or a circular shape is formed in a portion that is biased in the direction. Of the oil guide recess 13a, the inner end portion of the rim portion 7a in the radial direction is open to the inner peripheral surface of the rim portion 7a. On the other hand, other portions of the oil guide recess 13a are not opened on the outer peripheral surface of the rim portion 7a except that the other portions are opened on the inner surface of the rim portion 7a.

この様な導油凹部13aを形成するには、上記実施例1の場合とは逆に、削り工具15の公転中心をポケット9の径方向中央位置よりも径方向内方に偏らせる。この様にして形成する、上述の様な導油凹部13aは、内輪2a(図1〜2参照)の軸方向中央部に形成した給油孔(図示せず)を通じて、この内輪2aの軸方向中央部外側に送り込んだ潤滑油を取り込んでから、上記リム部7aの内側面側に送り出す様に作用する。この為、上記内輪2a側から給油する構造で、上記各ポケット9内に十分量の潤滑油を送り込む事が可能になる。上記導油凹部13a内への潤滑油(給油孔を通じて送られるものに限らず、飛沫潤滑のものも)の取り込みは、遠心力を利用して、効率良く行なえる。
給油孔を内輪側に移した事に伴って、導油凹部13aを径方向内側に偏らせて設けた点以外の構成及び作用は、上記実施例1の場合と同様である。
In order to form such an oil guide recess 13 a, the revolution center of the cutting tool 15 is biased radially inward from the radial center position of the pocket 9, contrary to the case of the first embodiment. The oil guide recess 13a as described above is formed in this way through an oil supply hole (not shown) formed in the axial center of the inner ring 2a (see FIGS. 1 and 2). After the lubricating oil sent to the outside of the part is taken in, it acts to send it out to the inner side of the rim part 7a. For this reason, it is possible to feed a sufficient amount of lubricating oil into each of the pockets 9 with a structure in which oil is supplied from the inner ring 2a side. Incorporation of lubricating oil (not limited to that sent through the oil supply hole, but also splash lubricated) into the oil guide recess 13a can be efficiently performed using centrifugal force.
The configuration and operation are the same as in the case of the first embodiment except that the oil guide recess 13a is biased inward in the radial direction as the oil supply hole is moved to the inner ring side.

図6は、本発明の実施例3を示している。本実施例の場合には、両列の球面ころ3、3を保持する為の保持器4cとして、前述の図8〜10に示した従来構造の第1例の保持器4の場合と同様に、一体型のものを使用している。本実施例の場合には、この様な一体型の保持器4cを使用している為、上記両列の球面ころ3、3の公転速度に差が生じる傾向になっても、これら両列の球面ころ3、3を拘束し、同じ速度で公転させる。この場合に、保持器を別体型とした上述の実施例1、2の構造の様に、保持器付自動調心ころ軸受の動トルク及び運転に伴う発熱を低く抑える事はできないが、両列の保持器4b、4bのリム部7a、7a(図1参照)が公転速度差に基づいて擦れ合う事を防止できる。そして、これら両リム部7a、7a同士が摩擦して摩耗粉が発生する事を防止できる。従って、銅或は真鍮等の銅系合金、又は、ステンレス鋼等の鉄系合金等の金属製の保持器を使用した場合に、金属の摩耗粉がグリースに混入して転がり接触部を損傷する事を防止する等の面からは、本実施例の様な、一体型の保持器4cを使用する事が有効である。別体型、一体型、何れの保持器を使用するかは、保持器の材質、使用時の回転速度、使用時に加わるアキシアル荷重の大きさ等、各種条件に応じて選択する。例えば、合成樹脂製の保持器の場合には実施例1、2の様な別体型のものを、金属製の保持器の場合には本実施例の様な一体型のものを、それぞれ使用する事が考えられる。その他の作用・効果に就いては、前述した実施例1及び上述した実施例2の場合と同様に得られる。   FIG. 6 shows a third embodiment of the present invention. In the case of the present embodiment, the retainer 4c for retaining both rows of the spherical rollers 3, 3 is the same as the retainer 4 of the first example of the conventional structure shown in FIGS. , Using an integrated type. In the case of this embodiment, since such an integrated cage 4c is used, even if there is a tendency that the revolution speeds of the spherical rollers 3 and 3 in both rows tend to be different, The spherical rollers 3 and 3 are restrained and revolved at the same speed. In this case, the dynamic torque of the self-aligning roller bearing with cage and the heat generated by the operation cannot be kept low as in the structures of Examples 1 and 2 in which the cage is a separate type. It is possible to prevent the rim portions 7a and 7a (see FIG. 1) of the cages 4b and 4b from rubbing against each other based on the revolution speed difference. And it can prevent that these both rim | limb parts 7a and 7a are frictioned and an abrasion powder generate | occur | produces. Therefore, when using metal cages such as copper or brass alloys such as copper or iron alloys such as stainless steel, metal wear powder enters the grease and damages the rolling contact. From the standpoint of preventing this, it is effective to use the integrated cage 4c as in the present embodiment. Whether to use a separate type or an integrated type is selected according to various conditions such as the material of the cage, the rotational speed during use, and the magnitude of the axial load applied during use. For example, in the case of a synthetic resin cage, use a separate type as in Examples 1 and 2, and in the case of a metal cage, use an integral type as in this example. Things can be considered. Other operations and effects can be obtained in the same manner as in the first embodiment and the second embodiment described above.

本発明の実施例1を示す半部断面図。FIG. 2 is a half sectional view showing Example 1 of the present invention. 図1のA−A断面図。AA sectional drawing of FIG. 同拡大B−B断面図。The expanded BB sectional drawing. 実施例1に組み込んでいる保持器を取り出して、柱部の円周方向両側面を加工する為の削り工具と共に示す斜視図。The perspective view which takes out the holder | retainer built in Example 1, and shows with the cutting tool for processing the circumferential direction both sides | surfaces of a pillar part. 本発明の実施例2を示す、図4と同様の図。The figure similar to FIG. 4 which shows Example 2 of this invention. 同実施例3を示す半部断面図。Sectional sectional drawing which shows the Example 3. FIG. 従来構造の第1例を示す正面図。The front view which shows the 1st example of a conventional structure. 図7の拡大C−C断面図。The expanded CC sectional view of FIG. 従来構造の第1例に組み込んでいる保持器を取り出して示す部分斜視図。The partial perspective view which takes out and shows the holder | retainer integrated in the 1st example of the conventional structure. 図8のD−D断面図。DD sectional drawing of FIG. 従来構造の第2例を示す部分断面図。The fragmentary sectional view which shows the 2nd example of a conventional structure.

符号の説明Explanation of symbols

1 外輪
2、2a 内輪
3 球面ころ
4、4a、4b、4c 保持器
5 外輪軌道
6 内輪軌道
7、7a リム部
8、8a 柱部
9 ポケット
10 鍔部
11 凹曲面部
12 逃げ凹部
13、13a 導油凹部
14 給油孔
15 削り工具
16 切削用凸部
17 凸曲面部分
DESCRIPTION OF SYMBOLS 1 Outer ring 2, 2a Inner ring 3 Spherical roller 4, 4a, 4b, 4c Cage 5 Outer ring raceway 6 Inner ring raceway 7, 7a Rim part 8, 8a Pillar part 9 Pocket 10 collar part 11 Concave surface part 12 Escape concave part 13, 13a Guide Oil concave portion 14 Oil supply hole 15 Cutting tool 16 Cutting convex portion 17 Convex curved surface portion

Claims (6)

球状凹面である外輪軌道を、その内周面に形成した外輪と、この外輪軌道と対向する1対の内輪軌道を、その外周面に形成した内輪と、これら外輪軌道と内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられた球面ころと、これら各球面ころを転動自在に保持する複数のポケットを備えた保持器とから成り、この保持器は、上記両列の球面ころ同士の間に配置された円環状のリム部と、それぞれの基端部をこのリム部の軸方向側面の円周方向複数個所に結合した状態で上記各球面ころの軸方向に配置され、それぞれの先端部を他の部分に結合しない自由端とした複数の柱部とを備え、円周方向に隣り合う柱部同士の間部分を上記各ポケットとしたものである保持器付自動調心ころ軸受に於いて、上記各柱部の円周方向両側面は、潤滑油を送り込み可能なポケット隙間を介して上記各球面ころの転動面と対向する凹曲面であり、この凹曲面の断面形状を上記保持器の軸方向及び径方向で表わした場合に、軸方向に関する断面形状の曲率半径は、上記各球面ころの転動面の軸方向に関する曲率半径以上であり、径方向に関する断面形状の曲率半径は、上記転動面の円周方向に関する曲率半径よりも、上記ポケット隙間に見合う分だけ大きく、上記リム部の軸方向両側面のうちで上記各ポケットに対向する部分に導油凹部が設けられている事を特徴とする保持器付自動調心ころ軸受。   An outer ring raceway which is a spherical concave surface, an outer ring formed on the inner peripheral surface thereof, a pair of inner ring races opposed to the outer ring raceway, an inner ring formed on the outer peripheral surface thereof, and between the outer ring raceway and the inner ring raceway. Divided into two rows, a plurality of spherical rollers are provided for each row, and a retainer having a plurality of pockets for holding each spherical roller in a freely rollable manner. The vessel has an annular rim portion disposed between the spherical rollers in both rows, and each spherical surface in a state where the respective base end portions are coupled to a plurality of circumferential positions on the axial side surface of the rim portion. A plurality of column portions arranged in the axial direction of the rollers and having respective tip portions as free ends that are not coupled to other portions, and the portions between the column portions adjacent to each other in the circumferential direction as the respective pockets In the self-aligning roller bearing with cage, The surface is a concave curved surface facing the rolling surface of each spherical roller through a pocket gap through which lubricating oil can be fed, and the sectional shape of the concave curved surface is expressed in the axial direction and radial direction of the cage Further, the radius of curvature of the cross-sectional shape in the axial direction is equal to or greater than the radius of curvature of the rolling surface of each spherical roller in the axial direction, and the radius of curvature of the cross-sectional shape in the radial direction is the curvature in the circumferential direction of the rolling surface. An automatic adjustment with a cage, characterized in that an oil guide recess is provided in a portion of each side surface in the axial direction of the rim portion facing the pockets, which is larger than the radius by an amount corresponding to the pocket gap. Center roller bearing. リム部の軸方向に見た状態での導油凹部の形状が円形で、この導油凹部の一部が、このリム部の外周縁に開口している、請求項1に記載した保持器付自動調心ころ軸受。   The shape of the oil guide recess when viewed in the axial direction of the rim portion is circular, and a part of the oil guide recess opens at the outer peripheral edge of the rim portion. Spherical roller bearing. リム部の軸方向に見た状態での導油凹部の形状が円形で、この導油凹部の一部が、このリム部の内周縁に開口している、請求項1に記載した保持器付自動調心ころ軸受。   The shape of the oil guide recess when viewed in the axial direction of the rim portion is circular, and a part of the oil guide recess opens at the inner periphery of the rim portion. Spherical roller bearing. 請求項1に記載した保持器付自動調心ころ軸受に組み込む保持器の製造方法であって、円環状のリム部と、それぞれの基端部をこのリム部の軸方向側面の円周方向複数個所に結合すると共にそれぞれの先端部を他の部分に結合しない自由端とし、円周方向両側面同士の間隔を各球面ころの外径よりも小さくした複数の素柱部のうち、円周方向に隣り合う素柱部同士の間部分に、外周面が凸曲面であり、この凸曲面の断面形状のうち、軸方向に関する断面形状の曲率半径が上記各球面ころの転動面の軸方向に関する曲率半径以上であり、円周方向に関する断面形状の曲率半径が上記転動面の円周方向に関する曲率半径よりも小さく、先端面に切削用凸部を有する削り工具を挿入し、この削り工具を、自転させつつポケットとなるべき部分の中心軸回りで公転させて、上記各素柱部の円周方向両側面を削ると共に、上記切削用凸部により、上記リム部の軸方向両側面のうちで上記各ポケットに対向する部分に導油凹部を形成する自動調心ころ軸受用保持器の製造方法。   A method for manufacturing a cage to be incorporated in a self-aligning roller bearing with a cage according to claim 1, wherein a plurality of circumferential rim portions and a plurality of circumferential rim portions on the axial side surface of the rim portion are provided. Among the plurality of elemental column parts that are coupled to the parts and have free ends that are not coupled to the other parts, and the distance between the circumferential side surfaces is smaller than the outer diameter of each spherical roller, in the circumferential direction The outer peripheral surface is a convex curved surface at the portion between the adjacent columnar portions, and the radius of curvature of the sectional shape with respect to the axial direction of the sectional shape of the convex curved surface is related to the axial direction of the rolling surface of each spherical roller. Insert a cutting tool that has a radius of curvature equal to or greater than the radius of curvature of the cross-sectional shape in the circumferential direction and smaller than the radius of curvature of the rolling surface in the circumferential direction, and has a cutting projection on the tip surface. , The center of the part that should become a pocket while rotating Revolving around and cutting both circumferential side surfaces of each of the pillars, and by the cutting projections, oil guiding recesses are formed in portions facing the pockets on both axial sides of the rim portion. Of manufacturing a spherical roller bearing retainer. 削り工具の公転中心が、ポケットの径方向中央位置よりも径方向外方に偏っている、請求項4に記載した自動調心ころ軸受用保持器の製造方法。   The manufacturing method of the cage for a self-aligning roller bearing according to claim 4, wherein the revolution center of the cutting tool is biased radially outward from the radial center position of the pocket. 削り工具の公転中心が、ポケットの径方向中央位置よりも径方向内方に偏っている、請求項4に記載した自動調心ころ軸受用保持器の製造方法。   The manufacturing method of the cage for a self-aligning roller bearing according to claim 4, wherein the revolution center of the cutting tool is biased radially inward from the radial center position of the pocket.
JP2006230866A 2005-08-26 2006-08-28 Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing Pending JP2007085542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230866A JP2007085542A (en) 2005-08-26 2006-08-28 Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005245754 2005-08-26
JP2006230866A JP2007085542A (en) 2005-08-26 2006-08-28 Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing

Publications (1)

Publication Number Publication Date
JP2007085542A true JP2007085542A (en) 2007-04-05

Family

ID=37972702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230866A Pending JP2007085542A (en) 2005-08-26 2006-08-28 Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing

Country Status (1)

Country Link
JP (1) JP2007085542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100642A (en) * 2013-04-03 2014-10-15 株式会社捷太格特 Prong type cage for double row roller bearing and double row roller bearing
JP2014228037A (en) * 2013-05-21 2014-12-08 株式会社ジェイテクト Comb-shaped holder for double row roller bearing, and double row roller bearing
CN105508417A (en) * 2015-12-29 2016-04-20 瓦房店轴承集团有限责任公司 Self-aligning roller bearing for retainer compound guiding large cement roller press

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100642A (en) * 2013-04-03 2014-10-15 株式会社捷太格特 Prong type cage for double row roller bearing and double row roller bearing
JP2014202255A (en) * 2013-04-03 2014-10-27 株式会社ジェイテクト Comb-shaped cage for double row roller bearing, and double row roller bearing
JP2014228037A (en) * 2013-05-21 2014-12-08 株式会社ジェイテクト Comb-shaped holder for double row roller bearing, and double row roller bearing
CN105508417A (en) * 2015-12-29 2016-04-20 瓦房店轴承集团有限责任公司 Self-aligning roller bearing for retainer compound guiding large cement roller press

Similar Documents

Publication Publication Date Title
JP4985861B2 (en) Spherical roller bearing with cage
JP2007120687A (en) Self-aligning roller bearing with retainer
US8007184B2 (en) Self-aligning roller bearing with retainer and manufacturing method for self-aligning roller bearing retainer
JP2007127167A (en) Self-aligning roller bearing with retainer
EP2787224B1 (en) Prong type resin cage for double row roller bearing and double row roller bearing
JP3039087B2 (en) Spherical roller bearing with cage
EP2787231B1 (en) Prong type cage for double row roller bearing and double row roller bearing
JP2006242284A (en) Roller bearing with collar
JP2009068592A (en) Self-aligning roller bearing with retainer and manufacturing method of retainer for self-aligning roller bearing
JP2007303608A (en) Double-row roller bearing with cage
JP2007278406A (en) Roller bearing with cage
JP2006266277A (en) Self-aligning roller bearing with cage
JP4661424B2 (en) Rotation support
JP4618197B2 (en) Cylindrical roller bearings and cages for cylindrical roller bearings
JP2006071016A (en) Retainer for ball bearing
JP2007085542A (en) Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing
JP2009275722A (en) Rolling bearing
JP2015102144A (en) Self-aligning roller bearing
JP2008267400A (en) Ball bearing
JP2006308043A (en) Self-aligning roller bearing with cage
JP2010025191A (en) Self-aligning roller bearing
JP2007303607A (en) Double-row roller bearing with cage
JP2009092162A (en) Roller bearing
WO2023063043A1 (en) Cylindrical roller bearing
JP2006250302A (en) Self-aligning roller bearing with retainer and manufacturing method for retainer