JP2007085255A - Auxiliary chamber internal combustion engine - Google Patents

Auxiliary chamber internal combustion engine Download PDF

Info

Publication number
JP2007085255A
JP2007085255A JP2005275467A JP2005275467A JP2007085255A JP 2007085255 A JP2007085255 A JP 2007085255A JP 2005275467 A JP2005275467 A JP 2005275467A JP 2005275467 A JP2005275467 A JP 2005275467A JP 2007085255 A JP2007085255 A JP 2007085255A
Authority
JP
Japan
Prior art keywords
thermoelectric element
heat exchange
sub
chamber
exchange surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005275467A
Other languages
Japanese (ja)
Inventor
Morihiro Nagamine
守洋 長嶺
Akihiko Kakuho
章彦 角方
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005275467A priority Critical patent/JP2007085255A/en
Publication of JP2007085255A publication Critical patent/JP2007085255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely avoid preignition by sufficiently cooling or heating an auxiliary chamber depending on operating conditions, and to enlarge lean limit by increasing an air-fuel mixture temperature and thereby to improve heat efficiency, in an auxiliary chamber internal combustion engine. <P>SOLUTION: The auxiliary chamber internal combustion engine comprises: the auxiliary chamber 2 having a capacity smaller than a main chamber 30 and disposed on a cylinder head 32 side; a communication passage 52 which is formed at the boundary between the auxiliary chamber 2 and the main chamber 30 and can exchange gas; and an ignition plug 4 igniting the air-fuel mixture in the auxiliary chamber 2. Ignition in the auxiliary chamber 2 makes torch-like flame blow out from the communication passage 52 into the main chamber 30 to burn the air-fuel mixture in the main chamber 30. A first thermoelectric element 6 having Peltier effect is disposed so that its first heat exchange surface 6a is thermally brought into contact with a part of the auxiliary chamber 2 or a part of a wall face of the auxiliary chamber 2. A heat accumulator 8 is disposed to be thermally brought into contact with a second heat exchange surface 6b opposite to the first heat exchange surface 6a of the first thermoelectric element 6. An energization direction toward the first thermoelectric element 6 is switched depending on operating conditions to change a heat transfer direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃焼室が主室および副室から成る副室式内燃機関に関し、特に、運転条件に応じて副室を冷却または加熱し、プレイグニッションの回避と熱効率の向上とを両立させる技術に関する。   The present invention relates to a sub-chamber internal combustion engine in which a combustion chamber is composed of a main chamber and a sub-chamber. .

特許文献1に記載の発明では、ディーゼル用燃焼室のキャビティにおけるピストン上面近傍に対し、ペルチエ効果(異種の金属の接触面を通じて電流が流れると、熱が移動して、発熱および吸熱が起こる現象)を有するコイルを設けている。
これにより、低温状況下の始動においてキャビティを加熱して着火性を向上させ、一方、燃焼室が高温のときにはキャビティを冷却し、燃焼室における局部加熱を防ごうとしている。
実開平3−59454号
In the invention described in Patent Document 1, the Peltier effect (the phenomenon that heat is generated and heat is absorbed when current flows through the contact surfaces of different metals) against the vicinity of the upper surface of the piston in the cavity of the diesel combustion chamber. The coil which has is provided.
This improves the ignitability by heating the cavity during start-up under low temperature conditions, while cooling the cavity when the combustion chamber is hot to prevent local heating in the combustion chamber.
Japanese Utility Model Publication No. 3-59454

しかしながら、内燃機関(副室式も含む)の燃焼室は非常に高温となり、特許文献1に記載の発明のようにコイルをピストンに設けることのみで加熱および冷却を行う構成では、加熱面と冷却面との間に十分な温度差を確保することは困難である。このため、実際には、コイルに電流を流しても十分な熱移動が生じず、冷却によってプレイグニッションを確実に回避するのが難しく、また、加熱によって着火性が向上する程度で、混合気温度をより高めて熱効率を向上させるようなことはできなかった。   However, the combustion chamber of the internal combustion engine (including the sub-chamber type) becomes very hot, and in the configuration in which heating and cooling are performed only by providing the coil on the piston as in the invention described in Patent Document 1, the heating surface and cooling are reduced. It is difficult to ensure a sufficient temperature difference with the surface. For this reason, in reality, sufficient heat transfer does not occur even when an electric current is passed through the coil, it is difficult to reliably avoid pre-ignition by cooling, and the mixture temperature is such that the ignitability is improved by heating. It was not possible to improve the thermal efficiency by further increasing the temperature.

また、キャビティを加熱または冷却しても、副室式内燃機関では効果が小さい。
本発明は、以上のような従来の問題点に鑑みてなされたものであり、副室式内燃機関において、運転条件に応じて副室を十分に冷却または加熱することにより、プレイグニッションを確実に回避できるとともに、混合気温度を高めてリーン限界を拡大して、熱効率を向上させることを目的とする。
Even if the cavity is heated or cooled, the effect is small in the sub-chamber internal combustion engine.
The present invention has been made in view of the above-described conventional problems, and in a sub-chamber internal combustion engine, pre-ignition is reliably ensured by sufficiently cooling or heating the sub-chamber according to operating conditions. In addition to being able to avoid this, the object is to increase the temperature of the air-fuel mixture and expand the lean limit to improve the thermal efficiency.

このため本発明は、主室より容積が小さくシリンダヘッド側に配置される副室と、前記副室と前記主室との境界にあってガス交換が可能な連通路と、前記副室内の混合気に点火する点火栓と、を備え、前記副室内での着火により前記連通路から前記主室内にトーチ状の火炎を噴出させて前記主室内の混合気を燃焼させる副室式内燃機関において、ペルチエ効果を有する第1熱電素子を、その第1熱交換面が、前記副室の一部、又は、前記副室壁面の一部と熱的に接するように、配置し、蓄熱材を、前記第1熱電素子の第1熱交換面に対して反対側の第2熱交換面と熱的に接するように配置し、運転条件に応じて、前記第1熱電素子への通電方向を切り換えて、熱移動方向を切り換える構成とした。   For this reason, the present invention provides a sub chamber having a smaller volume than the main chamber and disposed on the cylinder head side, a communication path at the boundary between the sub chamber and the main chamber and capable of gas exchange, and mixing in the sub chamber A sub-chamber internal combustion engine that burns the air-fuel mixture in the main chamber by injecting a torch-like flame into the main chamber from the communication passage by ignition in the sub-chamber. The first thermoelectric element having a Peltier effect is arranged so that the first heat exchange surface is in thermal contact with a part of the sub chamber or a part of the sub chamber wall surface, and the heat storage material is Arranged so as to be in thermal contact with the second heat exchange surface opposite to the first heat exchange surface of the first thermoelectric element, and depending on the operating conditions, switching the energization direction to the first thermoelectric element, The heat transfer direction is switched.

以上の構成によって、前記第1熱電素子に対する通電方向を、前記第1熱交換面が吸熱面となる通電方向とすると、前記第2熱交換面は加熱面となり、熱は前記副室から前記第1熱電素子を介して前記蓄熱材へ移動する。また、前記第1熱電素子に対する通電方向を、前記第1熱交換面が加熱面となる通電方向とすると、前記第2熱交換面は吸熱面となり、前記蓄熱材へ蓄熱した熱は前記第1熱電素子を介して前記副室へ移動する。   With the above configuration, when the energization direction to the first thermoelectric element is an energization direction in which the first heat exchange surface is an endothermic surface, the second heat exchange surface is a heating surface, and heat is transferred from the sub chamber to the first thermoelectric element. It moves to the heat storage material via one thermoelectric element. Further, when the energization direction to the first thermoelectric element is an energization direction in which the first heat exchange surface becomes a heating surface, the second heat exchange surface becomes a heat absorption surface, and the heat stored in the heat storage material is the first heat exchange surface. It moves to the sub chamber through a thermoelectric element.

これにより、運転条件に応じて、前記副室を直接に冷却または加熱するため、前記副室を十分に冷却または加熱できる。
したがって、前記副室の十分な冷却によってプレイグニッションを確実に回避し、同時に、前記副室の十分な加熱によって着火性を向上させ、さらには混合気温度を十分に高めてリーン限界を拡大することにより、熱効率を向上させることができる。
Thereby, since the said subchamber is directly cooled or heated according to a driving | running condition, the said subchamber can fully be cooled or heated.
Therefore, it is possible to reliably avoid pre-ignition by sufficiently cooling the sub chamber, and at the same time, improve the ignitability by sufficiently heating the sub chamber, and further increase the mixture temperature sufficiently to expand the lean limit. As a result, the thermal efficiency can be improved.

また、前記蓄熱材を設けたことにより、前記副室の冷却時に前記副室から前記蓄熱材へ移動した熱を、前記副室の加熱時に再利用できるため、熱エネルギーを有効利用でき、より熱効率が向上する。   Further, since the heat storage material is provided, the heat transferred from the sub chamber to the heat storage material when the sub chamber is cooled can be reused when the sub chamber is heated. Will improve.

以下に、本発明における第1実施形態について説明する。
まず、図1に示すように、燃焼室は、主室30(主燃焼室)、および主室30の中心部上方に設けられた副室2(副燃焼室)から成る。
主室30は、シリンダヘッド32と、シリンダブロック34と、ピストン36とに囲まれて形成され、吸気弁38を介して吸気ポート40と、排気弁42を介して排気ポート44とそれぞれ連通している。
Below, 1st Embodiment in this invention is described.
First, as shown in FIG. 1, the combustion chamber includes a main chamber 30 (main combustion chamber) and a sub chamber 2 (sub combustion chamber) provided above the center of the main chamber 30.
The main chamber 30 is formed surrounded by a cylinder head 32, a cylinder block 34, and a piston 36, and communicates with an intake port 40 via an intake valve 38 and an exhaust port 44 via an exhaust valve 42, respectively. Yes.

吸気弁38と排気弁42は、それぞれ、カム46,48の駆動によって、吸気ポート40、排気ポート44を開閉する。
副室2は、主室30より容積は小さく、シリンダヘッド32下側の略中心部において大略上下方向に延びた円筒状であり、底部を主室30へ向けて突出した略半球状の境界壁2aによって主室30と仕切られている。
The intake valve 38 and the exhaust valve 42 open and close the intake port 40 and the exhaust port 44 by driving cams 46 and 48, respectively.
The sub chamber 2 has a smaller volume than the main chamber 30, has a cylindrical shape extending substantially in the vertical direction at a substantially central portion below the cylinder head 32, and has a substantially hemispherical boundary wall protruding toward the main chamber 30 at the bottom. It is partitioned from the main room 30 by 2a.

境界壁2aを貫通して複数の連通路52が形成され、副室2内と主室30内とのガス交換を可能としている。
吸気ポート40の途中には、燃料噴射弁50が配置され、吸気ポート40内へ燃料を噴射する。なお、燃料噴射弁50の配置位置は、燃焼室上方や燃焼室側部でもよい。
副室2の円筒中心線上の上部には、点火栓4が配設され、その電極4aを副室2内において下方へ向けて突出させ、副室2内の混合気に火花点火を行う。
A plurality of communication passages 52 are formed through the boundary wall 2a, and gas exchange between the sub chamber 2 and the main chamber 30 is enabled.
A fuel injection valve 50 is arranged in the middle of the intake port 40 to inject fuel into the intake port 40. The arrangement position of the fuel injection valve 50 may be above the combustion chamber or on the side of the combustion chamber.
An ignition plug 4 is disposed at the upper part of the cylinder center line of the sub chamber 2, and the electrode 4 a protrudes downward in the sub chamber 2 to ignite the air-fuel mixture in the sub chamber 2.

ここで、ペルチエ効果を有した円筒状の第1熱電素子6は、副室2の周側壁を形成するように、シリンダヘッド32内に埋設されている。そして、該第1熱電素子6の熱交換面6aが副室2(内空間)に熱的に接することで、熱交換面6aと副室2との間で互いに熱交換可能となっている。
また、熱交換面6aに対して反対側の熱交換面6bと接するように蓄熱材8が配置され、熱交換面6bと熱交換可能となっている。
Here, the cylindrical first thermoelectric element 6 having the Peltier effect is embedded in the cylinder head 32 so as to form a peripheral side wall of the sub chamber 2. The heat exchange surface 6a of the first thermoelectric element 6 is in thermal contact with the sub chamber 2 (inner space), so that heat exchange between the heat exchange surface 6a and the sub chamber 2 is possible.
Moreover, the heat storage material 8 is arrange | positioned so that the heat exchange surface 6b on the opposite side with respect to the heat exchange surface 6a may be contact | connected, and heat exchange with the heat exchange surface 6b is possible.

上記構成において、圧縮行程では、主室30から副室2へ向けて、連通路52を通じて混合気が流入する。一方、燃焼膨張行程では、副室2内の燃焼に伴い、副室2から主室30へ向けて、連通路52を通じてトーチ状の火炎ジェットが噴出し、主室30内の混合気を燃焼させる。
ここで、機関負荷や機関回転速度といった運転条件に応じて、第1熱電素子6への通電方向を制御して、熱交換面6aの機能を切り換える。すなわち、第1熱電素子6に対する通電方向を、熱交換面6aが吸熱面となる通電方向とすると、熱交換面6bは加熱面となり、熱は副室2から第1熱電素子6を介して蓄熱材8へ移動し、副室2が冷却される。また、第1熱電素子6に対する通電方向を、熱交換面6aが加熱面となる通電方向へ切り換えると、熱交換面6bは吸熱面となって、蓄熱材8へ蓄熱した熱は第1熱電素子6を介して副室2へ移動し、副室2が加熱される。
In the above configuration, in the compression stroke, the air-fuel mixture flows from the main chamber 30 toward the sub chamber 2 through the communication passage 52. On the other hand, in the combustion expansion stroke, with combustion in the sub chamber 2, a torch-like flame jet is ejected from the sub chamber 2 toward the main chamber 30 through the communication passage 52 to burn the air-fuel mixture in the main chamber 30. .
Here, the function of the heat exchange surface 6a is switched by controlling the energization direction to the first thermoelectric element 6 in accordance with operating conditions such as engine load and engine speed. That is, if the energization direction to the first thermoelectric element 6 is an energization direction in which the heat exchange surface 6 a becomes the heat absorption surface, the heat exchange surface 6 b becomes a heating surface, and heat is stored from the sub chamber 2 via the first thermoelectric element 6. It moves to the material 8 and the subchamber 2 is cooled. Moreover, when the energization direction with respect to the 1st thermoelectric element 6 is switched to the energization direction in which the heat exchange surface 6a becomes a heating surface, the heat exchange surface 6b becomes a heat absorption surface, and the heat stored in the heat storage material 8 is the first thermoelectric element. It moves to the subchamber 2 through 6, and the subchamber 2 is heated.

以下、第1熱電素子6への運転条件に応じた具体的な通電方向の制御について説明する。
機関の高負荷領域においては、熱交換面6aを吸熱面とする通電方向へ切り換え、副室2を冷却して副室2内の局部加熱を防ぐ。機関負荷が大きくなると、図2に示すように当量比の増大制御によって着火性が向上し、プレイグニッションが発生する懸念があるが、このような懸念も上記副室2の冷却によって解消できる。
Hereinafter, specific control of the energization direction according to the operating conditions for the first thermoelectric element 6 will be described.
In the high load region of the engine, switching to the energization direction with the heat exchange surface 6a as the heat absorption surface is performed to cool the sub chamber 2 and prevent local heating in the sub chamber 2. When the engine load increases, as shown in FIG. 2, there is a concern that ignitability is improved by the increase control of the equivalence ratio and pre-ignition occurs, but such a concern can be solved by cooling the sub chamber 2.


一方、機関の中負荷または低負荷領域においては、熱交換面6aを加熱面とする通電方向とする。これにより、図3(b),(c)に示すように、副室2内の混合気温度が上昇し、着火性向上、リーン限界の拡大が可能となる。なお、図3、図6〜図10において、(a)は副室構成、(b)は熱移動方向、(c)は低負荷域における着火直前の高温領域を示す。ただし、図8では、(c)は低負荷域、(b)は高負荷域の図である。

On the other hand, in the middle load or low load region of the engine, the energization direction is such that the heat exchange surface 6a is the heating surface. As a result, as shown in FIGS. 3B and 3C, the temperature of the air-fuel mixture in the sub chamber 2 rises, and the ignitability can be improved and the lean limit can be increased. 3 and 6 to 10, (a) shows the sub chamber configuration, (b) shows the heat transfer direction, and (c) shows the high temperature region immediately before ignition in the low load region. However, in FIG. 8, (c) is a low load region, and (b) is a high load region.

同様に、機関の高速領域においては、熱交換面6aを吸熱面とする通電方向へ切り換え、高回転化によって燃焼室内の冷却効果が低下することを防ぐ。
一方、機関の低速領域においては、熱交換面6aを加熱面とする通電方向へ切り換え、着火遅れを防ぐ。
次に、第1熱電素子6への印加電圧の制御について、図4を参照して説明する。
Similarly, in the high-speed region of the engine, switching to the energization direction with the heat exchange surface 6a as the heat absorption surface prevents the cooling effect in the combustion chamber from deteriorating due to high rotation.
On the other hand, in the low speed region of the engine, switching to the energizing direction with the heat exchange surface 6a as the heating surface is performed to prevent ignition delay.
Next, control of the voltage applied to the first thermoelectric element 6 will be described with reference to FIG.

機関の高負荷領域においては、負荷が大きくなるにつれて、印加電圧が大きくなるように制御し、熱交換面6aの冷却効果を増大させる。
一方、機関の低負荷領域においては、負荷が小さくなるにつれて、印加電圧が大きくなるように制御し、熱交換面6aの加熱効果を増大させ、中負荷の運転領域では印加電圧をOFFとして、通電を停止する。
In the high load region of the engine, the applied voltage is controlled to increase as the load increases to increase the cooling effect of the heat exchange surface 6a.
On the other hand, in the low load region of the engine, the applied voltage is controlled to increase as the load decreases, the heating effect of the heat exchange surface 6a is increased, and the applied voltage is turned off in the intermediate load operation region. To stop.

このように、第1熱電素子6に対し、その通電方向に加えて印加電圧をも制御することで、副室2と蓄熱材8との間の熱移動量を制御し、当量比に応じて着火性を制御する。
以上の制御において、機関の高負荷または高速領域において蓄熱材8へ蓄熱した熱を、機関の低負荷または低速領域において副室2へ供給すると、熱エネルギーを有効活用でき、広範囲な運転領域において熱効率を向上できる。
Thus, by controlling the applied voltage in addition to the energization direction for the first thermoelectric element 6, the amount of heat transfer between the sub chamber 2 and the heat storage material 8 is controlled, and according to the equivalence ratio. Control ignitability.
In the above control, if the heat stored in the heat storage material 8 in the high load or high speed region of the engine is supplied to the sub chamber 2 in the low load or low speed region of the engine, the heat energy can be effectively used, and the heat efficiency in a wide range of operation Can be improved.

また、A/F制御範囲において、運転条件に応じて、第1熱電素子6の通電方向及び印加電圧を制御することで、副室2の冷却と加熱とを切り換え、点火栓4による火花点火と、高温な副室2内による熱面着火と、を切り換えることも可能である。
特に、機関の低負荷または低速領域において、熱面着火を行うことで、熱交換面6aによる加熱効果を強化し、着火安定性の向上、燃焼速度の向上、リーン限界の拡大が可能となる。
Further, in the A / F control range, by controlling the energization direction and applied voltage of the first thermoelectric element 6 according to the operating conditions, the cooling and heating of the sub chamber 2 are switched, and spark ignition by the spark plug 4 is performed. It is also possible to switch between hot surface ignition in the high temperature sub chamber 2.
In particular, by performing hot surface ignition in a low load or low speed region of the engine, the heating effect by the heat exchange surface 6a can be enhanced, and the ignition stability can be improved, the combustion speed can be improved, and the lean limit can be expanded.

以下、火花点火と熱面着火との切り換えにおける、第1熱電素子6への通電方向の制御について説明する。
この切り換えは、たとえば図5−b,cに示すマップの例に従って行うのがよい。なお、図5−aは、熱面着火を行わないマップである。
すなわち、機関の高負荷領域においては、熱交換面6aを吸熱面とする通電方向とすることで、副室2内の温度上昇を抑制しつつ火花点火を行い、機関の中低負荷領域においては、熱交換面6aを加熱面とする通電方向とすることで、副室2内の温度を高めて熱面着火を行う(図5−b)。ただし、機関の低負荷領域においては、熱交換面6aを加熱面とする通電方向とし、副室2内の混合気温度を上昇させて熱効率を高めつつも、着火については熱面着火に至らしめず、火花点火によって着火させる構成とすることもできる(図5−c)。
Hereinafter, control of the energization direction to the first thermoelectric element 6 in switching between spark ignition and hot surface ignition will be described.
This switching is preferably performed according to the map examples shown in FIGS. FIG. 5A is a map that does not perform hot surface ignition.
That is, in the high load region of the engine, by setting the energization direction with the heat exchange surface 6a as the heat absorption surface, spark ignition is performed while suppressing the temperature rise in the sub chamber 2, and in the medium and low load region of the engine. By setting the energization direction with the heat exchange surface 6a as a heating surface, the temperature in the sub chamber 2 is increased to perform hot surface ignition (FIG. 5-b). However, in the low load region of the engine, the heat exchange surface 6a is used as the heating surface, and while the mixture temperature in the sub chamber 2 is increased to increase the thermal efficiency, the ignition leads to the hot surface ignition. Alternatively, it may be configured to be ignited by spark ignition (FIG. 5-c).

次に、本発明における第2実施形態について説明する。
本実施形態の前記第1実施形態との相違点は、図6に示すように、略半球状の底部を形成する境界壁2aを、副室2の周側壁を構成する第1熱電素子6と別体(別部材)に形成し、境界壁2aの上端を第1熱電素子6の下端から離して配置することにより、両者を接触させず、間をあけて配置することにより断熱機能を有する熱境界(隙間)を形成した点である。
Next, a second embodiment of the present invention will be described.
As shown in FIG. 6, the present embodiment is different from the first embodiment in that a boundary wall 2 a that forms a substantially hemispherical bottom is replaced with a first thermoelectric element 6 that forms a peripheral side wall of the sub chamber 2. Heat formed with a separate body (separate member), with the upper end of the boundary wall 2a being away from the lower end of the first thermoelectric element 6, so that the two are not in contact with each other, and are disposed with a gap between them. This is a point where a boundary (gap) is formed.

これにより、境界壁2aと副室2の周側壁との間の熱移動が抑制される。したがって、機関の低負荷領域において、副室2の周側壁を構成する第1熱電素子6の近傍の点火栓4の電極4aに近い着火に関わる混合気のみの温度を上昇させ、連通路52およびその周辺の温度は主室30の温度と同程度に維持される。この結果、熱電素子の数を増やすことなく、かつ、主室30から副室2への混合気の導入を妨げることなく、副室2内における電極4a近傍の着火性を向上させることができる。   Thereby, the heat transfer between the boundary wall 2a and the peripheral side wall of the sub chamber 2 is suppressed. Therefore, in the low load region of the engine, the temperature of only the air-fuel mixture related to ignition near the electrode 4a of the spark plug 4 in the vicinity of the first thermoelectric element 6 constituting the peripheral side wall of the sub chamber 2 is increased, and the communication passage 52 and The surrounding temperature is maintained at the same level as the temperature of the main chamber 30. As a result, the ignitability in the vicinity of the electrode 4a in the sub chamber 2 can be improved without increasing the number of thermoelectric elements and without preventing the introduction of the air-fuel mixture from the main chamber 30 to the sub chamber 2.

次に、本発明における第3実施形態について説明する。
本実施形態の前記第2実施形態との相違点は、図7に示すように、ペルチエ効果を有する第2熱電素子14を設け、第2熱電素子14の熱交換面14aが境界壁2aと接し、熱交換面14aに対して反対側の熱交換面14bが蓄熱材8と接する構成とした点である。
第2熱電素子14への通電方向は、機関の低負荷・高負荷領域によらず、熱交換面14aを吸熱面とする通電方向とし、熱を境界壁2aから蓄熱材8へ移動させる。なお、第2熱電素子14への印加電圧は、運転条件によらず略一定値となるように制御する。
Next, a third embodiment of the present invention will be described.
The difference of this embodiment from the second embodiment is that, as shown in FIG. 7, a second thermoelectric element 14 having a Peltier effect is provided, and the heat exchange surface 14a of the second thermoelectric element 14 is in contact with the boundary wall 2a. The heat exchange surface 14b opposite to the heat exchange surface 14a is in contact with the heat storage material 8.
The energization direction to the second thermoelectric element 14 is the energization direction with the heat exchange surface 14a as the heat absorption surface regardless of the low load / high load region of the engine, and heat is transferred from the boundary wall 2a to the heat storage material 8. Note that the voltage applied to the second thermoelectric element 14 is controlled to be a substantially constant value regardless of the operating conditions.

これにより、機関の低負荷領域においては、副室2の周側壁を通じてのみ、混合気の温度が上昇させられることで、副室2内の着火に寄与しにくい底部(境界壁2a)の温度上昇を抑制できる。
この結果、主室30から副室2への混合気の導入を妨げることなく、副室2内のみにおいて着火性を向上させることができる。一方、主室30内においては、境界壁2aを冷却することで、境界壁2aの局部加熱によるプレイグニッションを回避できる。
Thereby, in the low load region of the engine, the temperature of the bottom (boundary wall 2a) that hardly contributes to ignition in the sub chamber 2 is increased by increasing the temperature of the air-fuel mixture only through the peripheral side wall of the sub chamber 2. Can be suppressed.
As a result, the ignitability can be improved only in the sub chamber 2 without hindering the introduction of the air-fuel mixture from the main chamber 30 to the sub chamber 2. On the other hand, in the main room 30, by cooling the boundary wall 2a, preignition due to local heating of the boundary wall 2a can be avoided.

また、機関の高負荷領域においては、副室2内においても局部加熱を防止できる。
次に、本発明における第4実施形態について説明する。
本実施形態の前記第1〜第3実施形態との相違点は、図8に示すように、ペルチエ効果を有する第3熱電素子16、および放熱板18を配設した点である。
第3熱電素子16は、その熱交換面16aが、第1熱電素子6とは反対側で、蓄熱材8と接するように配置されている。
Further, local heating can be prevented even in the sub chamber 2 in the high load region of the engine.
Next, a fourth embodiment of the present invention will be described.
The difference of this embodiment from the first to third embodiments is that a third thermoelectric element 16 having a Peltier effect and a heat radiating plate 18 are provided as shown in FIG.
The third thermoelectric element 16 is disposed such that its heat exchange surface 16 a is in contact with the heat storage material 8 on the side opposite to the first thermoelectric element 6.

また、放熱板18は、熱交換面16aに対して反対側の熱交換面16bと接するように配置されている。
第3熱電素子16への通電方向は、蓄熱材8が所定温度以上の場合又は機関の高負荷領域の場合において、熱交換面16aを吸熱面とするような通電方向とする。これにより、第1熱電素子6,14を介して副室2から蓄熱材8へ移動した熱は、さらに第3熱電素子16を介して放熱板18へ移動し、放熱板18によって放熱される。したがって、蓄熱材8が冷却され、蓄熱材8の過剰な加熱を回避できる。
Moreover, the heat sink 18 is arrange | positioned so that the heat exchange surface 16b on the opposite side with respect to the heat exchange surface 16a may be contact | connected.
The energization direction to the third thermoelectric element 16 is an energization direction in which the heat exchange surface 16a is a heat absorption surface when the heat storage material 8 is at a predetermined temperature or higher or in a high load region of the engine. Thereby, the heat transferred from the sub chamber 2 to the heat storage material 8 via the first thermoelectric elements 6 and 14 further moves to the heat radiating plate 18 via the third thermoelectric element 16 and is radiated by the heat radiating plate 18. Therefore, the heat storage material 8 is cooled, and excessive heating of the heat storage material 8 can be avoided.

第3熱電素子16への印加電圧は一定としてもよいが、運転条件に応じて制御してもよく、これにより副室2の周側壁の蓄熱量を制御できる。たとえば、機関が低負荷から高負荷へ向かうにつれて、第3熱電素子16への印加電圧を大きくし、蓄熱材8に対する冷却効果を増大させるように制御するとよい。
その他、蓄熱材8が所定温度以下に保たれるように、第3熱電素子16への印加電圧を制御してもよい。
Although the voltage applied to the third thermoelectric element 16 may be constant, it may be controlled according to the operating conditions, whereby the amount of heat stored in the peripheral side wall of the sub chamber 2 can be controlled. For example, as the engine goes from a low load to a high load, the voltage applied to the third thermoelectric element 16 may be increased so as to increase the cooling effect on the heat storage material 8.
In addition, the voltage applied to the third thermoelectric element 16 may be controlled so that the heat storage material 8 is kept at a predetermined temperature or lower.

次に、本発明における第5実施形態について説明する。
本実施形態の前記第1〜第4実施形態との相違点は、図9に示すように、ペルチエ効果を有する第4熱電素子20を設け、該第4熱電素子20を点火栓4と熱的に接する構成とし、熱交換可能とした点である。
第4熱電素子20は、その熱交換面20aが点火栓4の電極4aより上方の部分と熱交換可能に熱的に接した構成であり、熱交換面20aに対して反対側の熱交換面20bが蓄熱材8と接するように、第1熱電素子6よりも上方の位置に配置されている。ここでは、図9に示すように、点火栓4の固定具4bの熱伝導率を高くし、固定具4bと熱交換面20aとを接触させる。あるいは、熱交換面20aと点火栓4との間に、固定具4bとは別体で、熱伝導性の良い部材を介装してもよい。
Next, a fifth embodiment of the present invention will be described.
The difference between the present embodiment and the first to fourth embodiments is that, as shown in FIG. 9, a fourth thermoelectric element 20 having a Peltier effect is provided, and the fourth thermoelectric element 20 is thermally connected to the spark plug 4. It is the point which made it the structure which touches and heat-exchange was possible.
The fourth thermoelectric element 20 has a configuration in which the heat exchange surface 20a is in thermal contact with the portion above the electrode 4a of the spark plug 4 so that heat exchange is possible, and the heat exchange surface opposite to the heat exchange surface 20a. It arrange | positions in the position above the 1st thermoelectric element 6 so that 20b may contact the thermal storage material 8. FIG. Here, as shown in FIG. 9, the heat conductivity of the fixture 4b of the spark plug 4 is increased, and the fixture 4b and the heat exchange surface 20a are brought into contact with each other. Alternatively, a member having good thermal conductivity may be interposed between the heat exchange surface 20a and the spark plug 4 separately from the fixture 4b.

第4熱電素子20への通電方向は、機関が低負荷・高負荷領域によらず、熱交換面20aを吸熱面とするような通電方向とし、熱を点火栓4から蓄熱材8へ移動させる。これにより、点火栓4および電極4aの過熱を防止できる。
特に、機関の低負荷領域では、副室2内の混合気は、電極4aに比べて表面積が大きい副室2の周側壁を介して加熱されるため、点火栓4および電極4aに過剰な熱負荷を与えることなく着火性を向上できる。
The energization direction to the fourth thermoelectric element 20 is such that the heat exchange surface 20a is the heat absorption surface regardless of whether the engine is in a low load / high load region, and heat is transferred from the spark plug 4 to the heat storage material 8. . Thereby, overheating of the spark plug 4 and the electrode 4a can be prevented.
In particular, in the low load region of the engine, the air-fuel mixture in the sub chamber 2 is heated through the peripheral side wall of the sub chamber 2 having a larger surface area than the electrode 4a, so excessive heat is generated in the spark plug 4 and the electrode 4a. The ignitability can be improved without applying a load.

次に、本発明における第6実施形態について説明する。
本実施形態の前記第1〜第5実施形態との相違点は、図10に示すように、前記第1〜第5実施形態と同様の加熱・冷却機能を有する第1熱電素子6’の形状および配置を変更するとともに、熱伝導部材10、およびペルチエ効果を有する第5熱電素子26を配設した点である。
Next, a sixth embodiment of the present invention will be described.
The difference of the present embodiment from the first to fifth embodiments is that, as shown in FIG. 10, the shape of the first thermoelectric element 6 ′ having the same heating / cooling function as the first to fifth embodiments. In addition, the arrangement is changed, and the heat conducting member 10 and the fifth thermoelectric element 26 having the Peltier effect are arranged.

円筒状の第5熱電素子26は、前記第1〜第5実施形態における第1熱電素子6と同様に、副室2の周側壁を形成するようにシリンダヘッド32内に埋設されているが、その通電方向は、機関負荷が低負荷・高負荷の運転領域によらず、熱交換面26aを吸熱面とする通電方向とする。
一方、第1熱電素子6’を略板状とし、第5熱電素子26に比べて厚み(両熱交換面間の距離)を大きく形成して、第5熱電素子26の上方に配置する。この第1熱電素子6’の点火栓4側の熱交換面6a’に円柱状の熱伝導部材10の上部を近接して点火栓4の固定具4bに埋設固定し、熱伝導部材10は、その下端部10aが、副室2内に突出し、点火栓4の電極4aの近傍に位置するように設けられる。
The cylindrical fifth thermoelectric element 26 is embedded in the cylinder head 32 so as to form the peripheral side wall of the sub chamber 2 in the same manner as the first thermoelectric element 6 in the first to fifth embodiments. The energization direction is the energization direction in which the heat exchange surface 26a is the heat absorption surface, regardless of the operation region where the engine load is low or high.
On the other hand, the first thermoelectric element 6 ′ has a substantially plate shape, is formed to have a larger thickness (distance between both heat exchange surfaces) than the fifth thermoelectric element 26, and is disposed above the fifth thermoelectric element 26. The upper part of the cylindrical heat conduction member 10 is brought close to the heat exchange surface 6a ′ on the side of the spark plug 4 of the first thermoelectric element 6 ′ and embedded in the fixture 4b of the spark plug 4, and the heat conduction member 10 is The lower end portion 10 a is provided so as to protrude into the sub chamber 2 and to be positioned in the vicinity of the electrode 4 a of the spark plug 4.

これにより、第1熱電素子6’は、その熱交換面6a’が熱伝導部材10と接することで、副室2(内空間)に熱的に接し、熱交換面6a’に対して反対側の熱交換面6b’が蓄熱材8と熱的に接するように配置され、それぞれ熱交換可能となる。
上記構成により、機関の低負荷領域においては、熱伝導部材10の下端部10aの近傍のみにおいて混合気温度を上昇させ、副室2内の残留ガス温度の上昇を最小限に抑え、主室30から副室2への混合気の導入を妨げることなく、副室2内における電極4a近傍の着火性を向上させることができる。
Thus, the first thermoelectric element 6 ′ has its heat exchange surface 6a ′ in contact with the heat conducting member 10, so that it is in thermal contact with the sub chamber 2 (inner space) and is opposite to the heat exchange surface 6a ′. The heat exchange surface 6b 'is disposed so as to be in thermal contact with the heat storage material 8, and heat exchange is possible.
With the above configuration, in the low load region of the engine, the mixture temperature is raised only in the vicinity of the lower end portion 10a of the heat conducting member 10, and the rise in the residual gas temperature in the sub chamber 2 is minimized, and the main chamber 30 Thus, the ignitability in the vicinity of the electrode 4a in the sub chamber 2 can be improved without hindering the introduction of the air-fuel mixture into the sub chamber 2.

一方、機関の高負荷領域においては、第1熱電素子6’の熱交換面6a’が吸熱面となることで、熱伝導部材10から第1熱電素子6’への熱移動を行い、固定具4bも冷却されるので、副室2内の局部加熱をより効果的に防止できる。
なお、第5熱電素子26への印加電圧は、運転条件によらず略一定値となるように制御すればよいが、変更してもよい。
On the other hand, in the high load region of the engine, the heat exchanging surface 6a ′ of the first thermoelectric element 6 ′ becomes a heat absorbing surface, thereby performing heat transfer from the heat conducting member 10 to the first thermoelectric element 6 ′. Since 4b is also cooled, the local heating in the sub chamber 2 can be more effectively prevented.
The voltage applied to the fifth thermoelectric element 26 may be controlled so as to be a substantially constant value regardless of the operating conditions, but may be changed.

本発明の第1実施形態における正面図The front view in 1st Embodiment of this invention 本発明の第1実施形態における機関負荷と当量比との関係Relationship between engine load and equivalence ratio in the first embodiment of the present invention 本発明の第1実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region immediately before ignition in the first embodiment of the present invention 本発明の第1実施形態における機関負荷と第1熱電素子への印加電圧との関係Relationship between engine load and applied voltage to first thermoelectric element in the first embodiment of the present invention 本発明の第1実施形態における、機関負荷、機関回転速度に応じた第1熱電素子への印加電圧およびその第1熱交換面の熱作用In the first embodiment of the present invention, the applied voltage to the first thermoelectric element according to the engine load and the engine rotational speed and the thermal action of the first heat exchange surface 本発明の第2実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region just before ignition in the second embodiment of the present invention 本発明の第3実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region immediately before ignition in the third embodiment of the present invention 本発明の第4実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region just before ignition in the fourth embodiment of the present invention 本発明の第5実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region immediately before ignition in the fifth embodiment of the present invention 本発明の第6実施形態における副室構成、熱移動、および着火直前の高温領域の模式図Schematic diagram of sub chamber configuration, heat transfer, and high temperature region immediately before ignition in the sixth embodiment of the present invention

符号の説明Explanation of symbols

2 副室
2a 境界壁
4 点火栓
4a 電極
6 第1熱電素子
6a 熱交換面(第1熱交換面)
6b 熱交換面(第2熱交換面)
8 蓄熱材
10 熱伝導部材
10a 下端部
14 第2熱電素子
14a 熱交換面(第1熱交換面)
14b 熱交換面(第2熱交換面)
16 第3熱電素子
16a 熱交換面(第1熱交換面)
16b 熱交換面(第2熱交換面)
18 放熱板
20 第4熱電素子
20a 熱交換面(第1熱交換面)
20b 熱交換面(第2熱交換面
26 第5熱電素子
26a 熱交換面(第1熱交換面)
26b 熱交換面(第2熱交換面)
30 主室
32 シリンダヘッド
52 連通路
6’ 第1熱電素子
6a’ 熱交換面(第1熱交換面)
6b’ 熱交換面(第2熱交換面)
2 Sub chamber 2a Boundary wall 4 Spark plug 4a Electrode 6 First thermoelectric element 6a Heat exchange surface (first heat exchange surface)
6b Heat exchange surface (second heat exchange surface)
8 Thermal Storage Material 10 Thermal Conductive Member 10a Lower End 14 Second Thermoelectric Element 14a Heat Exchange Surface (First Heat Exchange Surface)
14b Heat exchange surface (second heat exchange surface)
16 3rd thermoelectric element 16a Heat exchange surface (1st heat exchange surface)
16b Heat exchange surface (second heat exchange surface)
18 heat sink 20 4th thermoelectric element 20a heat exchange surface (first heat exchange surface)
20b Heat exchange surface (second heat exchange surface 26 fifth thermoelectric element 26a heat exchange surface (first heat exchange surface)
26b Heat exchange surface (second heat exchange surface)
30 Main chamber 32 Cylinder head 52 Communication path 6 '1st thermoelectric element 6a' Heat exchange surface (first heat exchange surface)
6b 'heat exchange surface (second heat exchange surface)

Claims (19)

主室より容積が小さくシリンダヘッド側に配置される副室と、前記副室と前記主室との境界にあってガス交換が可能な連通路と、前記副室内の混合気に点火する点火栓と、を備え、前記副室内での着火により前記連通路から前記主室内にトーチ状の火炎を噴出させて前記主室内の混合気を燃焼させる副室式内燃機関において、
ペルチエ効果を有する第1熱電素子を、その第1熱交換面が、前記副室の一部、又は、前記副室壁面の一部と熱的に接するように、配置し、
蓄熱材を、前記第1熱電素子の第1熱交換面に対して反対側の第2熱交換面と熱的に接するように配置し、
運転条件に応じて、前記第1熱電素子への通電方向を切り換えて、熱移動方向を切り換えることを特徴とする副室式内燃機関。
A sub chamber having a smaller volume than the main chamber and disposed on the cylinder head side, a communication path at the boundary between the sub chamber and the main chamber and capable of gas exchange, and an ignition plug for igniting an air-fuel mixture in the sub chamber A sub-chamber internal combustion engine that burns an air-fuel mixture in the main chamber by injecting a torch-like flame from the communication passage into the main chamber by ignition in the sub-chamber,
The first thermoelectric element having a Peltier effect is arranged such that the first heat exchange surface is in thermal contact with a part of the sub chamber or a part of the sub chamber wall surface,
The heat storage material is disposed so as to be in thermal contact with the second heat exchange surface opposite to the first heat exchange surface of the first thermoelectric element,
A sub-chamber internal combustion engine characterized by switching the direction of energization to the first thermoelectric element and switching the direction of heat transfer according to operating conditions.
運転条件に応じて、前記第1熱電素子への印加電圧を制御し、副室における熱移動量を制御することを特徴とする請求項1に記載の副室式内燃機関。   2. The sub-chamber internal combustion engine according to claim 1, wherein a voltage applied to the first thermoelectric element is controlled in accordance with operating conditions to control a heat transfer amount in the sub-chamber. 前記第1熱電素子への通電方向を、
機関の高負荷領域においては、前記第1熱電素子の第1熱交換面を吸熱面とする通電方向へ、
機関の低中負荷領域においては、前記第1熱電素子の第1熱交換面を加熱面とする通電方向へ、
それぞれ切り換えることを特徴とする請求項1または請求項2に記載の副室式内燃機関。
The energization direction to the first thermoelectric element is
In the high load region of the engine, in the energization direction with the first heat exchange surface of the first thermoelectric element as the heat absorption surface,
In the low and medium load region of the engine, in the energization direction with the first heat exchange surface of the first thermoelectric element as the heating surface,
The sub-chamber internal combustion engine according to claim 1 or 2, wherein the internal combustion engine is switched.
前記第1熱電素子への印加電圧を、
機関の高負荷領域においては、負荷が大きくなるにつれて、大きくなるように制御し、
機関の低中負荷領域においては、負荷が小さくなるにつれて、大きくなるように制御することを特徴とする請求項3に記載の副室式内燃機関。
The voltage applied to the first thermoelectric element is
In the high load region of the engine, control is performed to increase as the load increases.
4. The sub-chamber internal combustion engine according to claim 3, wherein in the low-medium load region of the engine, the sub-chamber internal combustion engine is controlled to increase as the load decreases.
前記第1熱電素子への通電方向を、
機関の高速領域においては、前記第1熱電素子の第1熱交換面を吸熱面とする通電方向へ、
機関の低速領域においては、前記第1熱電素子の第1熱交換面を加熱面とする通電方向へ、
それぞれ切り換えることを特徴とする請求項1〜請求項4のいずれか1つに記載の副室式内燃機関。
The energization direction to the first thermoelectric element is
In the high speed region of the engine, in the energization direction with the first heat exchange surface of the first thermoelectric element as the heat absorption surface,
In the low speed region of the engine, in the energization direction with the first heat exchange surface of the first thermoelectric element as the heating surface,
The sub-chamber internal combustion engine according to any one of claims 1 to 4, wherein each is switched.
前記副室と前記主室との境界壁を、前記副室側壁と別体に形成し、熱的に非接触としたことを特徴とする請求項1〜請求項5のいずれか1つに記載の副室式内燃機関。   6. The boundary wall between the sub chamber and the main chamber is formed separately from the sub chamber side wall, and is made thermally non-contact. 6. Sub-chamber internal combustion engine. ペルチエ効果を有する第2熱電素子を、その第1熱交換面が前記境界壁と熱的に接し、該第1熱交換面に対して反対側の第2熱交換面が前記蓄熱材と熱的に接するように、配置し、
前記第2熱電素子への通電方向を、前記第2熱電素子の第1熱交換面を吸熱面とする通電方向とすることを特徴とする請求項6に記載の副室式内燃機関。
A second thermoelectric element having a Peltier effect has a first heat exchange surface in thermal contact with the boundary wall, and a second heat exchange surface opposite to the first heat exchange surface is in thermal contact with the heat storage material. So that it touches
The sub-chamber internal combustion engine according to claim 6, wherein the energization direction to the second thermoelectric element is an energization direction with the first heat exchange surface of the second thermoelectric element as a heat absorption surface.
ペルチエ効果を有する第3熱電素子を、その第1熱交換面が前記蓄熱材と熱的に接するように配置し、
放熱板を、前記第3熱電素子の第1熱交換面に対して反対側の第2熱交換面、と熱的に接するように配置し、
前記第3熱電素子への通電方向を、前記第3熱電素子の第1熱交換面を吸熱面とする通電方向とすることを特徴とする請求項1〜請求項7のいずれか1つに記載の副室式内燃機関。
A third thermoelectric element having a Peltier effect is disposed such that the first heat exchange surface is in thermal contact with the heat storage material,
Disposing the heat sink in thermal contact with the second heat exchange surface opposite to the first heat exchange surface of the third thermoelectric element;
The energization direction to the third thermoelectric element is an energization direction in which the first heat exchange surface of the third thermoelectric element is a heat absorption surface. Sub-chamber internal combustion engine.
前記第3熱電素子への印加電圧を、運転条件に応じて制御することを特徴とする請求項8に記載の副室式内燃機関。   The sub-chamber internal combustion engine according to claim 8, wherein a voltage applied to the third thermoelectric element is controlled in accordance with operating conditions. 前記第3熱電素子への印加電圧を、機関負荷が大きくなるにつれて、大きくなるように制御することを特徴とする請求項8または請求項9に記載の副室式内燃機関。   The sub-chamber internal combustion engine according to claim 8 or 9, wherein the voltage applied to the third thermoelectric element is controlled to increase as the engine load increases. 前記第3熱電素子への印加電圧を、前記蓄熱材の温度が所定値以下に保たれるように制御することを特徴とする請求項8〜請求項10のいずれか1つに記載の副室式内燃機関。   The sub-chamber according to any one of claims 8 to 10, wherein a voltage applied to the third thermoelectric element is controlled so that a temperature of the heat storage material is maintained at a predetermined value or less. Internal combustion engine. ペルチエ効果を有する第4熱電素子を、その第1熱交換面が点火プラグと熱的に接し、かつ、該第1熱交換面に対して反対側の第2熱交換面が前記蓄熱材と熱的に接するように、配置し、
前記第4熱電素子への通電方向を、前記第4熱電素子の第1熱交換面を吸熱面とする通電方向とすることを特徴とする請求項1〜請求項11のいずれか1つに記載の副室式内燃機関。
The fourth thermoelectric element having the Peltier effect is such that the first heat exchange surface is in thermal contact with the spark plug, and the second heat exchange surface opposite to the first heat exchange surface is the heat storage material and the heat. Placed so that
The energization direction to the fourth thermoelectric element is an energization direction in which the first heat exchange surface of the fourth thermoelectric element is a heat absorption surface. Sub-chamber internal combustion engine.
ペルチエ効果を有する第5熱電素子を、その第1熱交換面が、前記副室の一部、又は、前記副室壁面の一部と熱的に接するように、かつ、該第1熱交換面に対して反対側の第2熱交換面が前記蓄熱材と熱的に接するように、配置し、
棒状の端部を備えた熱伝導部材を、前記第1熱電素子の第1熱交換面と熱的に接するように、かつ、該端部が前記副室内における前記点火栓電極の近傍まで突出するように、配置し、
前記第5熱電素子への通電方向を、前記第5熱電素子の第1熱交換面を吸熱面とする通電方向とすることを特徴とする請求項1〜請求項12のいずれか1つに記載の副室式内燃機関。
The first heat exchange surface of the fifth thermoelectric element having a Peltier effect so that the first heat exchange surface is in thermal contact with a part of the sub chamber or a part of the wall surface of the sub chamber. Arranged so that the second heat exchange surface on the opposite side is in thermal contact with the heat storage material,
A heat conducting member having a rod-like end portion is in thermal contact with the first heat exchange surface of the first thermoelectric element, and the end portion projects to the vicinity of the spark plug electrode in the sub chamber. To place and
The energization direction to the fifth thermoelectric element is an energization direction in which the first heat exchange surface of the fifth thermoelectric element is a heat absorption surface. 13. Sub-chamber internal combustion engine.
前記点火栓による火花点火と、前記副室の一部又は前記副室壁面の一部からの熱面着火と、を、運転条件に応じて切り換えるように、前記第1熱電素子への通電方向を切り換えることを特徴とする請求項1〜請求項13のいずれか1つに記載の副室式内燃機関。   The direction of energization to the first thermoelectric element is switched so as to switch between spark ignition by the spark plug and hot surface ignition from a part of the sub chamber or a part of the wall surface of the sub chamber. The sub-chamber internal combustion engine according to any one of claims 1 to 13, wherein the internal combustion engine is switched. 前記第1熱電素子への印加電圧を運転条件に応じて制御することで、火花点火と熱面着火とを切り換えることを特徴とする請求項14に記載の副室式内燃機関。   The sub-chamber internal combustion engine according to claim 14, wherein a spark ignition and a hot surface ignition are switched by controlling a voltage applied to the first thermoelectric element according to an operating condition. 前記第1熱電素子への印加電圧を、
機関負荷が中負荷から高負荷へ向かうにつれて、大きくなるように制御し、
機関負荷が中負荷から低負荷へ向かうにつれて、大きくなるように制御することを特徴とする請求項15に記載の副室式内燃機関。
The voltage applied to the first thermoelectric element is
Control the engine load to increase as it goes from medium load to high load,
16. The sub-chamber internal combustion engine according to claim 15, wherein the engine load is controlled to increase as the engine load increases from a medium load to a low load.
機関の高負荷領域においては、前記第1熱電素子の第1熱交換面を吸熱面とする通電方向へ制御して、火花点火を行わせ、
機関の低中負荷領域においては、前記第1熱電素子の第1熱交換面を加熱面とする通電方向へ制御して、熱面着火を行わせることを特徴とする請求項14〜請求項16のいずれか1つに記載の副室式内燃機関。
In the high load region of the engine, the ignition direction is controlled by controlling the energization direction with the first heat exchange surface of the first thermoelectric element as the heat absorption surface,
17. In a low and medium load region of an engine, hot surface ignition is performed by controlling the first heat exchange surface of the first thermoelectric element in an energizing direction with a heating surface. A sub-chamber internal combustion engine according to any one of the above.
機関の高負荷領域においては、前記第1熱電素子の第1熱交換面を吸熱面とする通電方向へ制御して、火花点火を行わせ、
機関の低中負荷領域においては、前記第1熱電素子の第1熱交換面を加熱面とする通電方向へ制御して、機関の中負荷領域においては熱面着火を行わせ、機関の低負荷領域においては火花点火を行わせることを特徴とする請求項14〜請求項16のいずれか1つに記載の副室式内燃機関。
In the high load region of the engine, the ignition direction is controlled by controlling the energization direction with the first heat exchange surface of the first thermoelectric element as the heat absorption surface,
In the low and medium load region of the engine, the first heat exchange surface of the first thermoelectric element is controlled in the energization direction with the heating surface, and in the medium load region of the engine, the hot surface ignition is performed, and the low load of the engine The sub-chamber internal combustion engine according to any one of claims 14 to 16, wherein spark ignition is performed in the region.
機関の高速領域においては、前記第1熱電素子の第1熱交換面を吸熱面とする通電方向へ制御して、火花点火を行わせ、
機関の低中速領域においては、前記第1熱電素子の第1熱交換面を加熱面とする通電方向へ制御して、機関の中速領域においては火花点火を行わせ、機関の低速領域においては熱面着火を行わせることを特徴とする請求項14〜請求項18のいずれか1つに記載の副室式内燃機関。
In the high-speed region of the engine, the ignition direction is controlled by controlling the energization direction with the first heat exchange surface of the first thermoelectric element as the heat absorption surface,
In the low and medium speed region of the engine, the first heat exchange surface of the first thermoelectric element is controlled in the energizing direction with the heating surface, and spark ignition is performed in the medium speed region of the engine. The sub-chamber internal combustion engine according to any one of claims 14 to 18, wherein hot surface ignition is performed.
JP2005275467A 2005-09-22 2005-09-22 Auxiliary chamber internal combustion engine Pending JP2007085255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275467A JP2007085255A (en) 2005-09-22 2005-09-22 Auxiliary chamber internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275467A JP2007085255A (en) 2005-09-22 2005-09-22 Auxiliary chamber internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007085255A true JP2007085255A (en) 2007-04-05

Family

ID=37972484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275467A Pending JP2007085255A (en) 2005-09-22 2005-09-22 Auxiliary chamber internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007085255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069771A (en) * 2006-09-13 2008-03-27 Caterpillar Inc Thermoelectric system
US7775706B1 (en) * 2009-07-08 2010-08-17 Murray F Feller Compensated heat energy meter
JP2011099404A (en) * 2009-11-06 2011-05-19 Osaka Gas Co Ltd Engine and ignition plug included in the same
CN108691637A (en) * 2017-03-31 2018-10-23 本田技研工业株式会社 Internal combustion engine
JP2022063214A (en) * 2020-10-09 2022-04-21 マール パワートレイン,エルエルシー Method for operating hydrogen-fueled internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069771A (en) * 2006-09-13 2008-03-27 Caterpillar Inc Thermoelectric system
US7775706B1 (en) * 2009-07-08 2010-08-17 Murray F Feller Compensated heat energy meter
JP2011099404A (en) * 2009-11-06 2011-05-19 Osaka Gas Co Ltd Engine and ignition plug included in the same
CN108691637A (en) * 2017-03-31 2018-10-23 本田技研工业株式会社 Internal combustion engine
JP2022063214A (en) * 2020-10-09 2022-04-21 マール パワートレイン,エルエルシー Method for operating hydrogen-fueled internal combustion engine

Similar Documents

Publication Publication Date Title
JP2007085255A (en) Auxiliary chamber internal combustion engine
JP2007138909A (en) Pre-combustion chamber type internal-combustion engine
JP2007100612A (en) Auxiliary chamber type internal combustion engine
JP2006329092A (en) Auxiliary chamber type internal combustion engine
JP2018188990A (en) Internal combustion engine
JP6159421B2 (en) Combustion ignition system
JP2006316715A (en) Sub-chamber type internal combustion engine
KR20020001530A (en) In-cylinder injection type spark ignition internal combustion engine
JP2012047144A (en) Sub-chamber type gas engine
JP2012047115A (en) Auxiliary chamber type gas engine
JP2004514822A (en) Internal combustion engine having at least one cylinder and a reciprocating piston movable in the cylinder
JP2007077822A (en) Indirect injection internal combustion engine
JPS6231169B2 (en)
JP7339157B2 (en) Pre-chamber ignition system
JP2007212014A (en) Latent heat storage device and engine
JP2005188340A (en) Ignition plug of internal combustion engine
CN207664441U (en) A kind of internal combustion engine New Type of Ignition System
KR101645679B1 (en) Fuel preheating apparatus for improving fuel efficiency and reduction of exhaust
JP2021173213A (en) Combustion chamber structure of engine
JP2021161977A (en) Combustion chamber structure of engine
JPH0714595U (en) Cooled spark plug device
JP2006242078A (en) Intake and exhaust valve device for internal combustion engine
JP2000297734A (en) Ignition device for piston type internal combustion engine
JP2019100186A (en) Internal combustion engine and method for supplying fuel to internal combustion engine
WO2024139141A1 (en) Engine ignition system, ignition method, engine, vehicle and transport