JP2007084389A - Method for reforming fluid organic compound - Google Patents

Method for reforming fluid organic compound Download PDF

Info

Publication number
JP2007084389A
JP2007084389A JP2005276702A JP2005276702A JP2007084389A JP 2007084389 A JP2007084389 A JP 2007084389A JP 2005276702 A JP2005276702 A JP 2005276702A JP 2005276702 A JP2005276702 A JP 2005276702A JP 2007084389 A JP2007084389 A JP 2007084389A
Authority
JP
Japan
Prior art keywords
organic compound
reaction layer
fluid organic
reaction
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005276702A
Other languages
Japanese (ja)
Other versions
JP4799976B2 (en
Inventor
Naotaka Tanahashi
尚貴 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2005276702A priority Critical patent/JP4799976B2/en
Publication of JP2007084389A publication Critical patent/JP2007084389A/en
Application granted granted Critical
Publication of JP4799976B2 publication Critical patent/JP4799976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reforming a fluid organic compound by which the fluid organic compound containing no halogen and no sulfur can be reformed easily in excellent productivity to obtain hydrogen or the like at a low cost. <P>SOLUTION: The method for reforming the fluid organic compound containing no halogen and no sulfur comprises a step of introducing the fluid organic compound and at least one reactive gas selected from H<SB>2</SB>O, CO<SB>2</SB>, CO and O<SB>2</SB>into a reaction bed and making them pass through the reaction bed to advance a degradation reaction and/or a reformation reaction of the fluid organic compound. The reaction bed is formed from a microwave-pyrogenic material. The reaction bed is irradiated with a microwave to heat the reaction bed to preset temperature or keep the reaction bed at the preset temperature and advance the degradation reaction and/or the reformation reaction of the fluid organic compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ハロゲン及び硫黄を含まない流体有機化合物を分解反応及び/又は改質反応により改質処理をする方法に関し、具体的には、炭化水素等の流体有機化合物を、反応性気体と反応させて改質するのに好適な流体有機化合物の改質処理方法に係る。   The present invention relates to a method for reforming a fluid organic compound containing no halogen and sulfur by a decomposition reaction and / or a reforming reaction. Specifically, a fluid organic compound such as a hydrocarbon is reacted with a reactive gas. The present invention relates to a method for modifying a fluid organic compound that is suitable for modification.

ここでハロゲン及び硫黄を含有しない流体有機化合物には、ガスないし液体の炭化水素(脂肪族、脂環式、芳香族を含む)ばかりでなく、ポリエチレン、ポリプロピレン等のハロゲン元素・硫黄元素非含有の有機廃プラスチック類の熱分解ガス・液体を含む。また、流体とは、常温流体の化合物ばかりでなく、反応に際して、流体となっている全ての状態を含む。   Here, the fluid organic compounds containing no halogen and sulfur include not only gas or liquid hydrocarbons (including aliphatic, alicyclic and aromatic), but also those containing no halogen or sulfur elements such as polyethylene and polypropylene. Includes pyrolysis gas and liquid of organic waste plastics. Further, the fluid includes not only a normal temperature fluid compound but also all states that become a fluid upon reaction.

昨今、環境的見地から燃料電池に対する関心が高まり、将来、燃料電池の原料となる水素の需要が増大することが予測され、低コストで水素を製造する技術の開発が要請されている。   In recent years, interest in fuel cells has increased from an environmental standpoint, and it is predicted that the demand for hydrogen as a raw material for fuel cells will increase in the future, and development of technology for producing hydrogen at low cost has been demanded.

他方、同様に環境的見地から、廃プラスチック類における、ハロゲン及び硫黄を含まないもの(熱可塑性エラストマーを含む)の比重が増大しつつある。   On the other hand, from the environmental standpoint, the specific gravity of waste plastics that do not contain halogen and sulfur (including thermoplastic elastomers) is increasing.

これらを熱処理すると、熱分解で炭化水素類が多量に発生するため、炭化水素等を水蒸気や酸素で改質して、水素を得ることが考えられる。   When these are heat-treated, a large amount of hydrocarbons are generated by thermal decomposition. Therefore, it is conceivable to reform hydrocarbons with steam or oxygen to obtain hydrogen.

例えば、特許文献1には、有機化合物(炭化水素やアルコール)又は一酸化炭素を含む反応流体から触媒反応により水素を発生させる触媒体を、流体流路内に配設してなる改質反応装置であって、該触媒体の少なくとも一部分が通電により発熱可能に構成されている触媒反応装置が記載されている。そして、該装置を用いて、有機化合物と水蒸気(改質用ガス)等とを反応物質として含む反応流体を通過させて、該有機化合物を改質処理して、水素等の改質ガスを調製する技術が記載されている(特許文献1の段落0038〜0040、図10参照)。   For example, Patent Document 1 discloses a reforming reaction apparatus in which a catalyst body that generates hydrogen by a catalytic reaction from a reaction fluid containing an organic compound (hydrocarbon or alcohol) or carbon monoxide is disposed in a fluid flow path. A catalyst reaction apparatus is described in which at least a part of the catalyst body is configured to be capable of generating heat when energized. Then, using this apparatus, a reaction fluid containing an organic compound and water vapor (reforming gas) as a reactant is passed through to reform the organic compound to prepare a reformed gas such as hydrogen. (See paragraphs 0038 to 0040 of Patent Document 1 and FIG. 10).

この技術は、改質処理における加熱は、抵抗発熱を前提としており、触媒体(触媒担持体)を兼ねる発熱体はFe−Cr−Al、Fe−Al、Fe−Cr等の合金からなるハニカム構造体等で形成するものである(同段落0041参照)。
特開平11−130405号公報
In this technique, heating in the reforming treatment is premised on resistance heat generation, and the heating element that also serves as the catalyst body (catalyst carrier) is a honeycomb structure made of an alloy such as Fe-Cr-Al, Fe-Al, Fe-Cr, etc. It is formed by a body or the like (see paragraph 0041).
JP-A-11-130405

本発明は、上記先行技術文献に記載されていない新規な構成で、ハロゲンおよび硫黄を含まない流体有機化合物の改質を簡易にかつ生産性を良好に行うことができる流体有機化合物の改質処理方法を提供することを課題(目的)とする。   The present invention is a fluid organic compound modification process that can easily modify a fluid organic compound that does not contain halogen and sulfur and has good productivity with a novel configuration that is not described in the above prior art document. It is an object (purpose) to provide a method.

本発明の流体有機化合物の改質処理方法は、下記構成により上記目的(課題)を解決するものである。   The fluid organic compound modification treatment method of the present invention solves the above object (problem) by the following constitution.

ハロゲン及び硫黄を含まない流体有機化合物と、H2O、CO2、CO及びO2の群から選択される少なくとも1種以上の反応気体(改質用ガス)とを反応層に導入し通過させて、前記流体有機化合物を分解反応及び/又は改質反応させるに際して、
前記反応層の少なくとも一部にマイクロ波を吸収し発熱する物質(以下、「マイクロ波発熱物質」という。)で形成するとともに、前記反応層にマイクロ波を照射して、前記反応層を設定温度に加熱又は維持することを特徴とする。
A fluid organic compound that does not contain halogen and sulfur and at least one or more reaction gases (reforming gas) selected from the group of H 2 O, CO 2 , CO, and O 2 are introduced into the reaction layer and passed therethrough. When the fluid organic compound is decomposed and / or reformed,
At least a part of the reaction layer is formed of a substance that absorbs microwaves and generates heat (hereinafter referred to as “microwave exothermic substance”), and the reaction layer is irradiated with microwaves to set the reaction layer at a set temperature. It is characterized by heating or maintaining.

上記反応層をマイクロ波発熱物質とすることにより、マイクロ波照射したとき、直接加熱(誘電加熱:内部加熱)が可能となる。このため、被処理有機化合物の分解反応及び/又は改質反応に最適な温度に制御して均一加熱可能となる。マイクロ波加熱は抵抗加熱に比して温度制御・均一加熱が容易である。また、マイクロ波により有機化合物(誘電体)も直接加熱(誘電加熱)され熱分解が促進されやすくなる。さらに、特許文献1の抵抗発熱体の如く直接通電しないため、水蒸気改質においても、漏電対策が不要となる。また、廃プラスチックの熱分解成分(炭化水素等)を原料と使用でき、低コストで水素等を製造可能となる。   By using the reaction layer as a microwave exothermic substance, direct heating (dielectric heating: internal heating) is possible when microwave irradiation is performed. For this reason, it becomes possible to perform uniform heating by controlling the temperature optimal for the decomposition reaction and / or reforming reaction of the organic compound to be treated. In microwave heating, temperature control and uniform heating are easier than resistance heating. In addition, the organic compound (dielectric material) is also directly heated (dielectric heating) by the microwave, and thermal decomposition is easily promoted. Furthermore, since the current is not directly energized unlike the resistance heating element of Patent Document 1, no countermeasure against electric leakage is required even in steam reforming. Moreover, the thermal decomposition component (hydrocarbon etc.) of waste plastic can be used as a raw material, and hydrogen etc. can be manufactured at low cost.

流体有機化合物を反応気体と混合して、反応層に導入して通過させるに際して、分解反応及び/又は改質反応されて、メタン、アルコール、水素、一酸化炭素等の改質ガス(有価ガス)に変換されたり、さらには、無害な水蒸気と二酸化炭素に変換されたりする。ここで、「分解反応及び/又は改質反応されて」とは、流体有機化合物の分解反応生成物が、さらに、低分子の炭化水素等に分解反応される場合、該分解反応後、又は、分解反応されずに直接、有価ガス又は無害ガスに改質(酸化を含む。)される場合を意味する。   When a fluid organic compound is mixed with a reaction gas and introduced into the reaction layer and passed through, it undergoes a decomposition reaction and / or a reforming reaction to produce a reformed gas (valuable gas) such as methane, alcohol, hydrogen, carbon monoxide, etc. Or even harmless water vapor and carbon dioxide. Here, “being decomposed and / or reformed” means that when the decomposition reaction product of the fluid organic compound is further decomposed into a low-molecular hydrocarbon or the like, after the decomposition reaction, or It means a case where reforming (including oxidation) is carried out directly to a valuable gas or a harmless gas without a decomposition reaction.

流体有機化合物(分解生成物を含む。)の改質反応の各例を下記する。   Examples of reforming reactions of fluid organic compounds (including decomposition products) will be described below.

1)脂肪族炭化水素の触媒酸化による直接改質・・・
2Cn2n+2+(3n+1)O2→2nCO2+2(n+1)H2O+Q1
2)脂肪族炭化水素の水蒸気(H2O)による改質・・・
n2n+2+nH2O→nCO+(2n+1)H2−Q2
3)脂肪族炭化水素の二酸化炭素(CO2)による改質・・・
n2n+2+nCO2→2nCO+2(n+1)H2−Q3
4)脂肪族炭化水素の一酸化炭素による改質・・・
CH4+CO→C22+H2O−Q4
26+CO+H2O→2CH3COOH−Q4´
5)脂肪族アルコールの水蒸気(H2O)による改質・・・
n2n+1(OH)+nH2O→nCO2+(2n+1)H2−Q5
上記1)以外の反応はいずれも吸熱反応であり、高温加熱(500℃)することにより右側へ反応が促進される。上記1)の触媒酸化反応は発熱反応であり、初期段階で主として発生し、マイクロ波加熱に加えて反応層の加熱を促進させると考えられる。
1) Direct reforming of aliphatic hydrocarbons by catalytic oxidation ...
2C n H 2n + 2 + (3n + 1) O 2 → 2nCO 2 +2 (n + 1) H 2 O + Q1
2) Reforming of aliphatic hydrocarbons with water vapor (H 2 O)
C n H 2n + 2 + nH 2 O → nCO + (2n + 1) H 2 -Q2
3) Reforming of aliphatic hydrocarbons with carbon dioxide (CO 2 )
C n H 2n + 2 + nCO 2 → 2nCO + 2 (n + 1) H 2 -Q3
4) Reforming of aliphatic hydrocarbons with carbon monoxide
CH 4 + CO → C 2 H 2 + H 2 O-Q4
C 2 H 6 + CO + H 2 O → 2CH 3 COOH-Q4 ′
5) Modification of aliphatic alcohol with water vapor (H 2 O)
C n H 2n + 1 (OH ) + nH 2 O → nCO 2 + (2n + 1) H 2 -Q5
Reactions other than the above 1) are endothermic reactions, and the reaction is promoted to the right side by heating at a high temperature (500 ° C.). The catalytic oxidation reaction of the above 1) is an exothermic reaction and is mainly generated in the initial stage and is considered to promote heating of the reaction layer in addition to microwave heating.

上記2)、3)において、燃料ガスの場合は、このままでもよいが、本発明では有用ガスを水素として燃料電池に使用する場合は、下記COシフト反応や、CO選択酸化反応により、生成ガスのCOを低減させる、さらなる改質処理が必要である。COが燃料電池の電極を被毒させるおそれがあるためである。(特許文献1段落0018参照)。   In the above 2) and 3), in the case of the fuel gas, it may be left as it is. However, in the present invention, when the useful gas is used as a fuel cell in the fuel cell, the generated gas is converted by the following CO shift reaction or CO selective oxidation reaction. Further reforming treatments that reduce CO are necessary. This is because CO may poison the fuel cell electrode. (See Patent Document 1, paragraph 0018).

6)COシフト反応・・・CO+H2O→CO2+H2+Q6
7)CO選択酸化反応・・・CO+1/2O2→CO2+Q7
上記構成において、前記反応層は、粒状充填剤(ペレット等の造粒物を含む。以下同じ。)若しくは多孔質成形体で形成する固定型(図1参照)、又は、該粒状充填剤を反応層の形成部位に連続的又は間欠的に導入及び排出する移動型(図2参照)とすることができる。この反応層を移動型とする場合は、反応層に触媒毒(例えば、CO)等により分解触媒の触媒作用が低下する前に反応層から系外へ移動するため、長時間の連続運転が可能となる。さらには、粒状充填剤を再利用する構成とすることもできる。
6) CO shift reaction: CO + H 2 O → CO 2 + H 2 + Q6
7) CO selective oxidation reaction: CO + 1 / 2O 2 → CO 2 + Q7
In the above configuration, the reaction layer reacts with a granular filler (including a granulated product such as pellets, the same applies hereinafter) or a fixed mold formed of a porous molded body (see FIG. 1), or the granular filler. It can be a mobile type (see FIG. 2) that is continuously or intermittently introduced into and discharged from the layer formation site. When this reaction layer is a mobile type, the reaction layer moves out of the system before the catalytic action of the decomposition catalyst decreases due to catalyst poison (for example, CO), so continuous operation for a long time is possible. It becomes. Furthermore, it can also be set as the structure which reuses a granular filler.

上記各反応層における設定温度は、通常、約140〜900℃の範囲から適宜選択する。   The set temperature in each of the reaction layers is usually appropriately selected from the range of about 140 to 900 ° C.

上記各構成において、反応層の全部又は一部を、有機化合物の分解改質触媒成分(以下単に「分解触媒成分」という。)とすることが望ましい。分解反応が相対的に低温で効率的に可能となり、省エネになり、温度制御も容易となる。   In each of the above-described configurations, it is desirable that all or part of the reaction layer is an organic compound decomposition reforming catalyst component (hereinafter simply referred to as “decomposition catalyst component”). The decomposition reaction can be efficiently performed at a relatively low temperature, energy saving and temperature control are facilitated.

反応層を形成するマイクロ波発熱物質としては、通常、金属酸化物、金属炭化物若しくは炭素又はそれらの複合体から選択される1種又は2種以上からなる、又はそれらを主体とするものとする。   The microwave exothermic material forming the reaction layer is usually composed of one or more selected from metal oxides, metal carbides or carbons, or a composite thereof, or mainly composed of them.

上記マイクロ波発熱物質(マイクロ波吸収物質)としての金属酸化物は、遷移金属酸化物の群並びにアルミニウム、鉛、インジウム及び錫からなる典型金属酸化物の群から1種又は2種以上選択することが望ましい。これらは、有機化合物の分解反応に対して選択性を有するとともに触媒活性の高いものが多く、分解触媒成分を兼ねることができる。特に、触媒活性が高いマイクロ波発熱物質としては、β−アルミナ、γ−アルミナ、酸化チタン、酸化鉄、酸化ジルコニウム及び酸化セリウムを挙げることができる。   The metal oxide as the microwave heating material (microwave absorbing material) is selected from one or more kinds of transition metal oxides and typical metal oxides composed of aluminum, lead, indium and tin. Is desirable. Many of these have selectivity for the decomposition reaction of organic compounds and have high catalytic activity, and can also serve as decomposition catalyst components. In particular, examples of microwave exothermic substances having high catalytic activity include β-alumina, γ-alumina, titanium oxide, iron oxide, zirconium oxide, and cerium oxide.

上記マイクロ波発熱物質としての複合体は、赤泥、無機汚泥、クリンカ(石炭ボトムアッシュ)、カルシウムフェライト、酸化鉄含有汚泥、煙道・ボイラースケール処理後ブラスト材、アルミドロス、焼却灰、ゼオライト、アルミン酸ナトリウム及び石炭フライアッシュの群から1種又は2種以上選択することが望ましい。上記特定金属酸化物と同様の理由からである。   Composites as microwave heating materials include red mud, inorganic sludge, clinker (coal bottom ash), calcium ferrite, iron oxide-containing sludge, flue / boiler scale treated blast material, aluminum dross, incinerated ash, zeolite, It is desirable to select one or more from the group of sodium aluminate and coal fly ash. This is because of the same reason as the specific metal oxide.

上記構成の流体有機化合物の改質処理方法に使用する装置の構成は、例えば、下記の如くになる。   The configuration of the apparatus used in the fluid organic compound modification method having the above-described configuration is, for example, as follows.

ハロゲン及び硫黄を含まない流体有機化合物を反応性気体と反応させて、分解・改質反応又は改質反応を行うための処理装置であって、
反応容器と流体供給手段とマイクロ波加熱手段とを備え、
前記反応容器は、少なくとも一部に吸着機能を有するマイクロ波発熱物質を含む反応層を内部に備えるとともに、該反応層に前記流体有機化合物を導入するための流体入口部と、前記反応層を通過後の改質ガスを排出するガス出口部を備え、
前記流体供給手段は、前記流体入口部に前記流体有機化合物と前記反応性気体とを流量を制御して供給可能に接続され、
前記マイクロ波加熱手段は、前記反応層を設定温度に加熱又は維持することが可能なものであることを特徴とする。
A processing apparatus for performing a decomposition / reforming reaction or a reforming reaction by reacting a fluid organic compound containing no halogen and sulfur with a reactive gas,
A reaction vessel, a fluid supply means and a microwave heating means,
The reaction vessel includes a reaction layer containing a microwave exothermic substance having at least a part of an adsorption function therein, a fluid inlet for introducing the fluid organic compound into the reaction layer, and passing through the reaction layer It has a gas outlet that discharges the reformed gas later.
The fluid supply means is connected to the fluid inlet portion so as to be able to supply the fluid organic compound and the reactive gas while controlling the flow rate.
The microwave heating means is capable of heating or maintaining the reaction layer at a set temperature.

本発明は上記のような解決手段(発明特定事項)により、揮発性の流体有機化合物を、反応層をマイクロ波加熱(内部加熱)により短時間で加熱して、反応気体と反応させて水素等の有価ガスを低コストで得ることができるとともに、無害な二酸化炭素や水蒸気に変換することができる。また、反応層を形成する材料としてマイクロ波発熱物質とともに分解触媒成分を含むものを、安価な産業廃棄物の内から適宜選択することができ、処理コストの低減に寄与する。   In the present invention, by the above-described solution (invention specific matter), a volatile fluid organic compound is heated in a short time by microwave heating (internal heating) to react with a reaction gas, hydrogen, etc. Can be obtained at low cost and can be converted into harmless carbon dioxide and water vapor. In addition, a material containing a decomposition catalyst component together with a microwave exothermic material as a material for forming the reaction layer can be appropriately selected from inexpensive industrial waste, which contributes to a reduction in processing costs.

以下、本発明についてさらに詳細な説明を行う。以下の説明で組成を示す「%」は、特に断らない限り「質量%」を意味する。   The present invention will be described in further detail below. In the following description, “%” indicating the composition means “% by mass” unless otherwise specified.

図3に本発明で使用する流体有機化合物の改質処理装置であるマイクロ波分解・改質反応装置の概念図を、図4に詳細要部概念図をそれぞれ示す。ここでは、有機化合物としてガス体(気体)を主として例に採り説明する。   FIG. 3 is a conceptual diagram of a microwave decomposition / reformation reaction apparatus that is a fluid organic compound reforming treatment apparatus used in the present invention, and FIG. Here, a gas body (gas) will be mainly described as an example of the organic compound.

本装置は、基本的には、流体有機化合物(被処理ガス)Gが導入され、反応層12を有する反応容器14と、反応層12を所定温度に維持するマイクロ波加熱手段16、16Aとを備えている。反応容器14の大きさは、所要処理量により異なるが、例えば、内径:10〜100cm×高さ:10〜200cmとし、反応層の容量1〜1500Lとする。   This apparatus basically includes a reaction vessel 14 having a reaction layer 12 into which a fluid organic compound (treatment gas) G is introduced, and microwave heating means 16 and 16A for maintaining the reaction layer 12 at a predetermined temperature. I have. Although the magnitude | size of the reaction container 14 changes with required processing amount, it is set as the capacity | capacitance of 1-1500L of internal diameter: 10-100cm x height: 10-200cm, for example.

ここで、反応容器14は、断熱材18で囲繞され、反応層12の下端高さ位置には被処理ガス(原料)GIの入口部(ガス導入口)20を、反応層12の上端高さ直上位置には処理済みの改質ガス(製品)GOの出口部(ガス導出口)22が形成されている。   Here, the reaction vessel 14 is surrounded by a heat insulating material 18, the inlet (gas inlet) 20 of the gas to be processed (raw material) GI is provided at the lower end height position of the reaction layer 12, and the upper end height of the reaction layer 12. An outlet (gas outlet) 22 for the treated reformed gas (product) GO is formed immediately above the position.

改質ガス(H2)は原料ガス(有機化合物及び反応性ガス)より通常軽いため、製品ガス回収の見地、及び、反応層12を形成する粒状充填剤に向流接触(ガス流れに対する接触性が良好となる。)の見地から、本図例の構成とすることが望ましい。なお、原料ガスGIの反応層12への導入は、原料ガス供給側からのポンプによる加圧押込み又は製品ガス排出側からのポンプによる吸引の一方又は双方により行う。 Since the reformed gas (H 2 ) is usually lighter than the raw material gas (organic compound and reactive gas), it is countercurrent contact (contact with gas flow) from the viewpoint of product gas recovery and the granular filler forming the reaction layer 12 From the standpoint of (2), it is desirable to adopt the configuration of this example. The introduction of the source gas GI to the reaction layer 12 is performed by one or both of pressurizing and pushing with a pump from the source gas supply side or suction with a pump from the product gas discharge side.

ここで、入口部20と出口部22との位置関係は、上下逆としてもよい。   Here, the positional relationship between the inlet 20 and the outlet 22 may be upside down.

特に、有機化合物が液体の場合は、有機化合物を上方から流入させ、反応性ガス(H2O、CO2、CO又はO2)を下方から流入させ、上方に図示しない製品(ガス)回収口を設ける。 In particular, when the organic compound is a liquid, the organic compound is allowed to flow from above, and a reactive gas (H 2 O, CO 2 , CO, or O 2 ) is allowed to flow from below, and a product (gas) recovery port (not shown) is drawn upward. Is provided.

また、上記原料ガス導入口20の対向位置には、予備ガス導入口21が形成されている。ガス状の有機化合物には、予め上記改質用ガスを混合して反応流体として原料入口から導入してもよいが、予備ガス導入口から改質用ガスを導入してもよい。   A preliminary gas inlet 21 is formed at a position opposite to the source gas inlet 20. The above-mentioned reforming gas may be mixed with the gaseous organic compound in advance and introduced as a reaction fluid from the raw material inlet, but the reforming gas may be introduced from the preliminary gas inlet.

反応容器の天井部を形成する上蓋24は、その下面に複数個の制御のための温度・湿度等の計測ポート26、27を備えるとともに、反応容器14内の温度の均一化を図るために攪拌ファン28が取付けられている。なお、マイクロ波の漏洩を防止するために、上蓋24の開閉時にインターロック(マイクロ波出力ゼロ状態)されるようになっている。   The upper lid 24 forming the ceiling portion of the reaction vessel is provided with a plurality of control ports 26 and 27 for controlling temperature, humidity, etc. on the lower surface thereof, and agitated to make the temperature inside the reaction vessel 14 uniform. A fan 28 is attached. In addition, in order to prevent leakage of microwaves, an interlock (microwave output zero state) is made when the upper lid 24 is opened and closed.

そして、反応容器14の底部のガス導入部位置には、粒状充填剤が通過可能でガス流れを均一化するガス整流部材30が取付けられている。   A gas rectifying member 30 that allows the particulate filler to pass therethrough and makes the gas flow uniform is attached to the gas introduction portion at the bottom of the reaction vessel 14.

マイクロ波加熱手段16、16Aは、個別に出力調節可能にインバータ32に接続されたマイクロ波発振器34と、反応容器14に接続される導波管36とを備えたもので、図例では上・下2組設けられている。なお、上側のマイクロ波加熱手段の導波管36には、パワーモニター38が取付けられて、マイクロ波出力信号を取り出して、マイクロ波出力を制御可能となっている。   The microwave heating means 16 and 16A are provided with a microwave oscillator 34 connected to the inverter 32 so that the output can be individually adjusted, and a waveguide 36 connected to the reaction vessel 14. Two lower sets are provided. A power monitor 38 is attached to the waveguide 36 of the upper microwave heating means so that the microwave output can be taken out and the microwave output can be controlled.

反応層12は、粒状充填剤Fで形成するとともに、連続又は間欠的に反応層12へ充填剤を導入・導出可能な移動型(移動反応層)とする。固定粒状充填剤Fの形成粒子の形態は、球状、ペレット状、筒状等任意である。なお、反応層12は、多孔性成形体(固定反応層)とすることもできる。多孔性成形体の態様としては、ハニカム、多孔板積層体、連泡成形体等が考えられる。また、多孔性成形体を、成形体本体(母材)の少なくとも一部をマイクロ波発熱物質であるもので形成し、該成形体本体の表面に白金やパラジウム等の貴金属触媒を担持させる構成も可能である。   The reaction layer 12 is formed of the granular filler F and is of a movable type (moving reaction layer) in which the filler can be introduced into and derived from the reaction layer 12 continuously or intermittently. The form of the formed particles of the fixed granular filler F is arbitrary such as a spherical shape, a pellet shape, and a cylindrical shape. The reaction layer 12 may be a porous molded body (fixed reaction layer). As a mode of the porous molded body, a honeycomb, a porous plate laminate, a continuous foam molded body, and the like are conceivable. Further, the porous molded body may be formed by forming at least a part of a molded body (base material) using a microwave exothermic material, and supporting a noble metal catalyst such as platinum or palladium on the surface of the molded body. Is possible.

上記移動反応層12の空隙率は、被処理ガスが大きな圧損を発生させずに通過可能なものとし、通常、30〜70%の範囲で適宜設定する。また、粒状充填剤Fの形成粒子の、上記空隙率を形成可能な径とし、通常、2〜12mmとする。   The porosity of the mobile reaction layer 12 is such that the gas to be processed can pass through without causing a large pressure loss, and is usually set appropriately within a range of 30 to 70%. Moreover, it is set as the diameter which can form the said porosity of the formation particle | grains of the granular filler F, and usually shall be 2-12 mm.

そして、反応層12に粒状充填剤Fを導入・排出する粒状充填剤の導入手段40及び排出手段42を備えている。導入手段40は、特に限定されないが、図例では、供給ホッパ41から供給パイプ46を介して、自重落下により連続又は間欠供給可能となっている。   Then, a particulate filler introducing means 40 and a discharging means 42 for introducing and discharging the particulate filler F to and from the reaction layer 12 are provided. Although the introduction means 40 is not particularly limited, in the example shown in the figure, continuous or intermittent supply is possible from the supply hopper 41 via the supply pipe 46 due to falling of its own weight.

そして、反応層12の底部側からは排出シュート44を介して排出コンベア45により連続的又は間欠的に粒状充填剤を排出可能とされている。   The particulate filler can be discharged from the bottom side of the reaction layer 12 continuously or intermittently by the discharge conveyor 45 through the discharge chute 44.

排出手段42は、図例のようなねじコンベアでなくても、ベルトコンベア、エプロンコンベア、バケットコンベアでもよい。また、間欠的に粒状充填剤を排出する場合は、プランジャー方式や、開閉ダンパを利用した自由落下方式としてもよい。   The discharging means 42 may not be a screw conveyor as shown in the figure, but may be a belt conveyor, an apron conveyor, or a bucket conveyor. Moreover, when discharging | emitting a granular filler intermittently, it is good also as a free fall system using a plunger system or an opening-and-closing damper.

反応層12に対応する位置で反応容器14の内壁には反応層12と同様なマイクロ波発熱特性を有する材料で形成したマイクロ波発熱筒部(成形体)48を配することが望ましい。反応層の温度の均一化を図るためである。また、反応容器12ガス導入口20の周囲及びガス導入口20下方の排出シュート44周囲には、外部加熱手段である保温ヒータ50、50Aが配設されている。前者50は、反応層12へ導入する原料ガスの温度を一定にして反応処理温度を安定化させるため、及び/又は、流体有機化合物(原料流体)が液状の場合にガス化させるためであり、後者50Aは、反応層12の下部位置の排出シュートにおいて、所定温度(例えば400℃以上)に制御してタールによるガス閉塞を防止するためである。なお、図4において、52、52Aはメインテナンスのための点検口(ユーテリティポート)であり、54は架台である。   It is desirable to arrange a microwave heating cylinder (molded body) 48 formed of a material having the same microwave heating characteristics as the reaction layer 12 on the inner wall of the reaction vessel 14 at a position corresponding to the reaction layer 12. This is to make the temperature of the reaction layer uniform. Further, heat retaining heaters 50 and 50A, which are external heating means, are disposed around the reaction vessel 12 gas inlet 20 and around the discharge chute 44 below the gas inlet 20. The former 50 is for stabilizing the reaction treatment temperature by making the temperature of the raw material gas introduced into the reaction layer 12 constant, and / or for gasifying when the fluid organic compound (raw material fluid) is liquid, The latter 50A is for preventing gas clogging by tar by controlling the discharge chute at the lower position of the reaction layer 12 to a predetermined temperature (for example, 400 ° C. or higher). In FIG. 4, 52 and 52A are maintenance ports (utility ports) for maintenance, and 54 is a frame.

反応容器14内の温度・湿度及び粒状充填剤の充填・排出速度は、計測ポート26、27及び発振器34のパワーモニター38に信号が入力されて、PID(Proportional Integral Differential:比例積分微分)方式により連続制御可能となっている。   The temperature / humidity in the reaction vessel 14 and the charging / discharging speed of the granular filler are input to the power monitor 38 of the measurement ports 26 and 27 and the oscillator 34, and are measured by a PID (Proportional Integral Differential) method. Continuous control is possible.

上記において、反応層12は、少なくとも反応吸収成分を含み、さらには、分解触媒成分を含むものとする。そして、反応層12は、全部又は一部をマイクロ波発熱物質で形成する。   In the above, the reaction layer 12 includes at least a reaction absorption component, and further includes a decomposition catalyst component. The reaction layer 12 is entirely or partially formed of a microwave exothermic material.

ここで、マイクロ波発熱物質は、反応吸収成分、分解触媒成分と別の充填剤(化合物)で形成することもできるが、通常、反応吸収成分及び分解触媒成分の一部又は全部とを形成するものとする。   Here, the microwave exothermic material can be formed of a reaction absorbing component and a decomposition catalyst component and another filler (compound), but usually forms part or all of the reaction absorption component and the decomposition catalyst component. Shall.

上記マイクロ波発熱物質とは、誘電損失(誘電率(ε)×誘電力率(tanδ))の大きな物質(化合物)からなるものをいう。通常、誘電率が高いものは、誘電損失が大きく、誘電加熱されやすい。マイクロ波発熱物質として、相対的に誘電率が高い、金属酸化物(複合体を含む。)や金属炭化物を好適に使用できる。以下に例示する化学式で示す物質の括弧内の数字は、比誘電率である。比誘電率は、主として日本化学会編「化学便覧改訂3版基礎編Vol. II」(昭−59)丸善、p505から引用したものである。   The microwave exothermic substance is a substance made of a substance (compound) having a large dielectric loss (dielectric constant (ε) × dielectric power factor (tan δ)). In general, a material having a high dielectric constant has a large dielectric loss and is easily heated by a dielectric. As the microwave heat generating material, metal oxides (including composites) and metal carbides having a relatively high dielectric constant can be preferably used. A number in parentheses of a substance represented by the chemical formula illustrated below is a relative dielectric constant. The relative permittivity is mainly quoted from “Chemical Handbook Revised Edition, 3rd edition, Volume II” (Akira-59) Maruzen, p505, edited by the Chemical Society of Japan.

上記金属酸化物としては、遷移金属酸化物並びにアルミニウム(Al)、鉛(Pb)、インジウム(In)及び錫(Sn)の各典型金属酸化物を挙げることができる。   Examples of the metal oxide include transition metal oxides and typical metal oxides of aluminum (Al), lead (Pb), indium (In), and tin (Sn).

遷移金属酸化物・・・FeO(14.2)、Fe23、Fe34、TiO2(85.8)、Cr23(12.0)、ZrO2(12.5)、CeO2(24.0)等。 Transition metal oxide: FeO (14.2), Fe 2 O 3 , Fe 3 O 4 , TiO 2 (85.8), Cr 2 O 3 (12.0), ZrO 2 (12.5), CeO 2 (24.0) etc.

典型金属酸化物・・・Al23(11.5)、PbO(14.3)、In23、SnO、SnO2等。 Typical metal oxide: Al 2 O 3 (11.5), PbO (14.3), In 2 O 3 , SnO, SnO 2 and the like.

金属炭化物・・・SiC(10.2)、Fe3C等。 Metal carbide: SiC (10.2), Fe 3 C, etc.

なお、誘電率が低くても、C(5.5)等の高い抵抗発熱特性を示す物質や、SiO2(4.5)等の高い保水(保湿)性を示す物質をマイクロ波発熱物質として使用可能である。保水(保湿)性が良好であると、誘電率(誘電損失)の高いH2O(80.5)を保持させることにより、見掛け誘電損失を高くすることができ、高いマイクロ発熱特性を付与できる。 Even if the dielectric constant is low, a substance exhibiting high resistance heat generation characteristics such as C (5.5) or a substance exhibiting high water retention (humidity retention) such as SiO 2 (4.5) is used as the microwave heat generation substance. It can be used. When the water retention (moisture retention) property is good, by maintaining H 2 O (80.5) having a high dielectric constant (dielectric loss), the apparent dielectric loss can be increased and high micro heat generation characteristics can be imparted. .

これらの金属酸化物うちでβ・γ−アルミナ(Al23)、酸化チタン(TiO2)、酸化鉄(Fe23、Fe34)、酸化ジルコニウム(ZrO2)、酸化セリウム(CeO2)等は、有機化合物の分解に好適な触媒活性を示し、分解触媒成分の全部又は一部とすることができ、しかも、マイクロ波発熱効率が高くて望ましい。 Among these metal oxides, β · γ-alumina (Al 2 O 3 ), titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 , Fe 3 O 4 ), zirconium oxide (ZrO 2 ), cerium oxide ( CeO 2 ) and the like exhibit catalytic activity suitable for the decomposition of organic compounds, can be used as all or part of the decomposition catalyst component, and are desirable because they have high microwave heat generation efficiency.

そして、上記複合体としては、Al23−SiO2、CaO−Fe23、TiO2−V25等を挙げることができる。さらには、赤泥(主成分:Fe23−Fe34)、無機汚泥(主成分:FeO、Fe23、Fe34)、アルミドロス残灰(主成分:Al23)、焼却灰(Al23−SiO2)、ゼオライト(主成分:Na2O−Al23−SiO2−Fe23)、石炭フライアッシュ(石炭灰ともいう。)(主成分:Al23−SiO2−Fe23)等の産業廃棄物(未利用資源)も用いることができる。 Then, as the complex, can be exemplified Al 2 O 3 -SiO 2, CaO -Fe 2 O 3, TiO 2 -V 2 O 5 or the like. Further, red mud (main component: Fe 2 O 3 —Fe 3 O 4 ), inorganic sludge (main components: FeO, Fe 2 O 3 , Fe 3 O 4 ), aluminum dross residual ash (main component: Al 2 O) 3 ), incinerated ash (Al 2 O 3 —SiO 2 ), zeolite (main component: Na 2 O—Al 2 O 3 —SiO 2 —Fe 2 O 3 ), coal fly ash (also referred to as coal ash) (mainly Component: Industrial waste (unused resources) such as Al 2 O 3 —SiO 2 —Fe 2 O 3 ) can also be used.

そして、上記のようにマイクロ波発熱物質及び分解触媒成分を含む充填剤で反応層を形成した流体有機化合物の処理装置の使用態様は下記の如くである。   And the usage aspect of the processing apparatus of the fluid organic compound which formed the reaction layer with the filler containing a microwave exothermic substance and a decomposition catalyst component as mentioned above is as follows.

まず、マイクロ波加熱手段(マイクロ波発振器34)16により反応層をマイクロ波加熱して昇温させた状態で、原料ガス(有機化合物)及び改質用ガス(H2O、CO2又はO2)からなる反応流体を反応層12へポンプ(図示せず)で押込む(導入する)。 First, the raw material gas (organic compound) and the reforming gas (H 2 O, CO 2, or O 2 ) in a state where the reaction layer is heated by microwave heating by the microwave heating means (microwave oscillator 34) 16. ) Is pushed (introduced) into the reaction layer 12 by a pump (not shown).

このとき、反応層12の平均温度は、反応流体組成・充填剤の種類など、さらには、変換目的物(改質ガス)により異なるが、内部温度140〜900℃範囲で適宜設定する。例えば、触媒酸化の場合は、200〜350℃の範囲で、反応気体による改質の場合は、500〜700℃の範囲でそれぞれ適宜設定することが望ましい。   At this time, the average temperature of the reaction layer 12 is appropriately set in the internal temperature range of 140 to 900 ° C., although it varies depending on the reaction fluid composition, the type of filler, and the conversion target (reformed gas). For example, in the case of catalytic oxidation, it is desirable to set the temperature appropriately in the range of 200 to 350 ° C., and in the case of reforming with a reactive gas, the temperature is preferably set in the range of 500 to 700 ° C.

そして、分解触媒成分とマイクロ波照射の相互作用で、流体有機化合物は相対的に低い温度で改質処理が可能となる。   The fluid organic compound can be reformed at a relatively low temperature by the interaction between the decomposition catalyst component and the microwave irradiation.

この流体有機化合物としては、ハロゲン・硫黄元素非含有のガス状ないし液体状の化合物を挙げることができる。例えば、Cn2n+2、Cn2nの一般式で示される各種飽和・不飽和脂肪族炭化水素(脂環式を含む。)、さらには、ベンゼンおよびその誘導体(キシレン、トルエン等)の芳香族炭化水素を使用可能である。さらに、ポリエチレン、ポリプロピレン、オレフィン系エラストマー等のハロゲン及び硫黄を含まないポリマー(廃プラスチック)の場合には、別に設けた熱分解室によりガス化ないし液化して、本反応容器内の反応層へ導入する。 Examples of the fluid organic compound include gaseous or liquid compounds containing no halogen or sulfur element. For example, various saturated / unsaturated aliphatic hydrocarbons (including alicyclic) represented by the general formulas of C n H 2n + 2 and C n H 2n , and benzene and its derivatives (xylene, toluene, etc.) Aromatic hydrocarbons can be used. Furthermore, in the case of polymers (waste plastics) that do not contain halogen and sulfur, such as polyethylene, polypropylene, and olefin elastomers, they are gasified or liquefied in a separate pyrolysis chamber and introduced into the reaction layer in the reactor. To do.

そして、反応層を通過した流体有機化合物は、そのままの状態で、又は、熱分解させた後に、触媒酸化反応により無害なガス(H2OやCO2)に変換させたり、反応性ガスにより前述のような改質反応により改質させたりする。すなわち、改質されたガスは、燃料ガス(H2やCO)として、又は、冷却して燃料油として有価的に使用できる。 The fluid organic compound that has passed through the reaction layer is converted into a harmless gas (H 2 O or CO 2 ) by a catalytic oxidation reaction as it is or after being thermally decomposed, or by the reactive gas. Or by a reforming reaction such as That is, the reformed gas can be used as a fuel gas (H 2 or CO) or as a fuel oil after cooling and valuable.

<試験例>
本発明で使用する金属酸化物やそれらの複合体が良好なマイクロ波昇温特性を示すことを裏付ける試験例について説明をする。
<Test example>
Test examples that support the fact that the metal oxides and their composites used in the present invention exhibit good microwave temperature rise characteristics will be described.

(1)昇温試験1:
下記市販の6種類の各原料粉末200gをφ90×65mmのアルミナフェルトに充填し、1kWのマイクロ波(2.45GHz)を照射して、昇温試験を行った。
(1) Temperature rise test 1:
200 g of each of the following 6 commercially available raw material powders were filled in φ90 × 65 mm alumina felt and irradiated with 1 kW microwave (2.45 GHz), and a temperature rise test was performed.

原料粉末:α−アルミナ、β−アルミナ、アルミン酸ナトリウム、カルシウムフェライト、ゼオライト及び石炭フライアッシュ
その結果を示す図5から、α−アルミナを除き、β−アルミナ、カルシウムフェライト等の各原料粉末は良好なマイクロ波昇温特性を示すことが確認できた。
Raw material powder: α-alumina, β-alumina, sodium aluminate, calcium ferrite, zeolite and coal fly ash From FIG. 5 showing the results, except for α-alumina, each raw material powder such as β-alumina and calcium ferrite is good. It was confirmed that the microwave temperature rising characteristics were exhibited.

(2)昇温試験2:
市販のゼオライト150gと消石灰50gとに、又はカルシウムフェライト150gと消石灰50gとに、それぞれ適量の水を加えて混合して、φ5mm×5mmのペレット化物を調製した。各ペレット化物を、上記と同一仕様のアルミナフェルトに充填し、同様にして昇温試験を行った。
(2) Temperature rise test 2:
An appropriate amount of water was added to 150 g of commercially available zeolite and 50 g of slaked lime, or 150 g of calcium ferrite and 50 g of slaked lime, and mixed to prepare a pelletized product of φ5 mm × 5 mm. Each pelletized product was filled in an alumina felt having the same specifications as described above, and a temperature rise test was performed in the same manner.

その結果を示す図6は、本発明に使用する金属酸化物やその複合体は、マイクロ波を吸収し難い消石灰を混合してペレット化しても、良好な昇温特性を示すことが確認できた。   FIG. 6 showing the results confirmed that the metal oxide and the composite used in the present invention showed good temperature rise characteristics even when mixed with slaked lime that hardly absorbs microwaves and pelletized. .

<実施例>
図4に示す装置(内容積30L、マイクロ波出力3kW)の内部に、上記の昇温試験で使用したカルシウムフェライト75%−消石灰25%の混合ペレット15kgを充填し600℃に加熱した。本改質装置の上流部に設置した熱分解装置によりポリスチレン3kgを450℃、Ar−大気調整雰囲気下で処理し、発生した熱分解ガスを本改質装置に流入させた。本改質装置出口ガスをガスクロマトグラフィーで分析した結果、水素15〜22%、一酸化炭素1〜5%、二酸化炭素3〜12%が得られた。
<Example>
The apparatus shown in FIG. 4 (internal volume 30 L, microwave output 3 kW) was filled with 15 kg of mixed pellets of 75% calcium ferrite-25% slaked lime used in the temperature increase test and heated to 600 ° C. 3 kg of polystyrene was treated at 450 ° C. in an Ar-atmosphere adjusted atmosphere by a pyrolysis apparatus installed upstream of the reformer, and the generated pyrolysis gas was allowed to flow into the reformer. As a result of analyzing the reformer outlet gas by gas chromatography, hydrogen of 15 to 22%, carbon monoxide of 1 to 5%, and carbon dioxide of 3 to 12% were obtained.

本発明の流体有機化合物の改質処理方法において反応層が固定型である場合のモデル図である。It is a model figure in case the reaction layer is a stationary type in the modification | reformation processing method of the fluid organic compound of this invention. 同じく反応層が移動型である場合のモデル図である。It is a model figure in case a reaction layer is a moving type similarly. 本発明の流体有機化合物の改質処理方法に使用する分解・改質反応処理装置の概念図である。It is a conceptual diagram of the decomposition | disassembly and modification | reformation reaction processing apparatus used for the modification | reformation processing method of the fluid organic compound of this invention. 同じく詳細概念要部図である。It is a detailed conceptual main part figure similarly. 市販のマイクロ波発熱体である粉末原料についてのマイクロ波発熱特性の試験結果を示すグラフ図である。It is a graph which shows the test result of the microwave heat_generation | fever characteristic about the powder raw material which is a commercially available microwave heat generating body. マイクロ波発熱体を消石灰と混合ペレット化したものについてのマイクロ波発熱特性の試験結果を示すグラフ図である。It is a graph which shows the test result of the microwave heat_generation | fever characteristic about what made the microwave heat generating body and mixed pellets with slaked lime.

符号の説明Explanation of symbols

12・・・反応層(固定反応層)
14・・・反応容器
16、16A・・・マイクロ波加熱手段
20・・・流体入口部
22・・・改質ガス出口部
40・・・粒状充填剤導入手段
42・・・粒状充填剤排出手段
12 ... Reaction layer (fixed reaction layer)
DESCRIPTION OF SYMBOLS 14 ... Reaction container 16, 16A ... Microwave heating means 20 ... Fluid inlet part 22 ... Reformed gas outlet part 40 ... Granular filler introduction means 42 ... Granular filler discharge means

Claims (18)

ハロゲン及び硫黄を含まない流体有機化合物と、H2O、CO2、CO及びO2の群から選択される少なくとも1種以上の反応気体とを、反応層に導入して通過させ、前記流体有機化合物を分解反応及び/又は改質反応させるに際して、
前記反応層の少なくとも一部にマイクロ波を吸収し発熱する物質(以下、「マイクロ波発熱物質」という。)で形成するとともに、前記反応層にマイクロ波を照射して、前記反応層を設定温度に加熱又は維持することを特徴とする流体有機化合物の改質処理方法。
A fluid organic compound containing no halogen and sulfur and at least one reaction gas selected from the group consisting of H 2 O, CO 2 , CO and O 2 are introduced into the reaction layer and passed therethrough, When a compound is decomposed and / or modified,
At least a part of the reaction layer is formed of a substance that absorbs microwaves and generates heat (hereinafter referred to as “microwave exothermic substance”), and the reaction layer is irradiated with microwaves to set the reaction layer at a set temperature. A method for reforming a fluid organic compound, characterized by heating or maintaining the fluid.
前記反応層が、粒状充填剤(ペレット等の造粒物を含む。以下同じ。)及び/又は多孔質成形体からなる固定型であることを特徴とする請求項1記載の流体有機化合物の改質処理方法。   2. The fluid organic compound modification according to claim 1, wherein the reaction layer is a fixed type composed of a granular filler (including granules such as pellets; the same shall apply hereinafter) and / or a porous molded body. Quality processing method. 前記反応層が、粒状充填剤を反応層の形成部位に連続的又は間欠的に導入及び排出させて形成される移動型の反応層であることを特徴とする請求項1記載の流体有機化合物の改質処理方法。   2. The fluid organic compound according to claim 1, wherein the reaction layer is a mobile reaction layer formed by continuously or intermittently introducing and discharging a particulate filler to and from a site where the reaction layer is formed. Modification processing method. 前記反応層の形成部位から排出された前記粒状充填剤を再利用することを特徴とする請求項3記載の流体有機化合物の改質処理方法。   4. The method for modifying a fluid organic compound according to claim 3, wherein the particulate filler discharged from the site where the reaction layer is formed is reused. 前記反応層の設定温度を140〜900℃の範囲から選択することを特徴とする請求項1〜4のいずれかに記載の流体有機化合物の改質処理方法。   The method for modifying a fluid organic compound according to any one of claims 1 to 4, wherein a set temperature of the reaction layer is selected from a range of 140 to 900 ° C. 前記反応層の少なくとも一部を、前記流体有機化合物の分解改質触媒成分(以下、単に「分解触媒成分」という。)とすることを特徴とする請求項1〜5のいずれかに記載の流体有機化合物の改質処理方法。   6. The fluid according to claim 1, wherein at least a part of the reaction layer is a decomposition reforming catalyst component of the fluid organic compound (hereinafter simply referred to as “decomposition catalyst component”). A method for modifying organic compounds. 前記マイクロ波発熱物質が、金属酸化物、金属炭化物若しくは炭素又はそれらの複合体から選択される1種又は2種以上からなる、又はそれらを主体とするものであることを特徴とする請求項1〜6のいずれかに記載の流体有機化合物の改質処理方法。   2. The microwave heat generating material is one or more selected from metal oxide, metal carbide, carbon, or a composite thereof, or is mainly composed of them. A method for modifying a fluid organic compound according to any one of -6. 前記マイクロ波発熱物質としての金属酸化物が、遷移金属酸化物並びにアルミニウム、鉛、インジウム及び錫の典型金属酸化物の群から1種又は2種以上選択されるものであることを特徴とする請求項7記載の流体有機化合物の改質処理方法。   The metal oxide as the microwave heat generating material is selected from the group consisting of transition metal oxides and typical metal oxides of aluminum, lead, indium and tin. Item 8. A method for modifying a fluid organic compound according to Item 7. 前記金属酸化物が、β−アルミナ、γ−アルミナ、酸化チタン、酸化鉄、酸化ジルコニウム及び酸化セリウムのいずれかであることを特徴とする請求項8記載の流体有機化合物の改質処理方法。   The fluid organic compound reforming method according to claim 8, wherein the metal oxide is any one of β-alumina, γ-alumina, titanium oxide, iron oxide, zirconium oxide, and cerium oxide. 前記マイクロ波発熱物質としての複合体が、赤泥、無機汚泥、クリンカ(石炭ボトムアッシュ)、カルシウムフェライト、酸化鉄含有汚泥、煙道・ボイラースケール処理後ブラスト材、アルミドロス、焼却灰、ゼオライト、アルミン酸ナトリウム及び石炭フライアッシュの群から1種又は2種以上選択されるものであることを特徴とする請求項7記載の流体有機化合物の改質処理方法。   The composite as the microwave exothermic material is red mud, inorganic sludge, clinker (coal bottom ash), calcium ferrite, iron oxide containing sludge, flue / boiler scale treated blast material, aluminum dross, incinerated ash, zeolite, 8. The method of modifying a fluid organic compound according to claim 7, wherein one or two or more types are selected from the group consisting of sodium aluminate and coal fly ash. ハロゲン及び硫黄を含まない流体有機化合物を反応性気体と反応させて、分解・改質反応又は改質反応を行うための処理装置であって、
反応容器と流体供給手段とマイクロ波加熱手段とを備え、
前記反応容器は、少なくとも一部に吸着機能を有するマイクロ波発熱物質を含む反応層を内部に備えるとともに、該反応層に前記流体有機化合物を導入するための流体入口部と、前記反応層を通過後の改質ガスを排出するガス出口部とを備え、
前記流体供給手段は、前記流体入口部に前記流体有機化合物と前記反応性気体との流量を制御して供給可能に接続され、
前記マイクロ波加熱手段は、前記反応層を設定温度に加熱又は維持することが可能なものであることを特徴とする流体有機化合物の改質処理装置。
A processing apparatus for performing a decomposition / reforming reaction or a reforming reaction by reacting a fluid organic compound containing no halogen and sulfur with a reactive gas,
A reaction vessel, a fluid supply means and a microwave heating means,
The reaction vessel includes a reaction layer containing a microwave exothermic substance having at least a part of an adsorption function therein, a fluid inlet for introducing the fluid organic compound into the reaction layer, and passing through the reaction layer A gas outlet for discharging the reformed gas after
The fluid supply means is connected to the fluid inlet portion so as to be able to supply by controlling the flow rates of the fluid organic compound and the reactive gas,
The fluid organic compound reforming apparatus, wherein the microwave heating means is capable of heating or maintaining the reaction layer at a set temperature.
前記反応層が、粒状充填剤又は多孔質成形体からなる固定型であることを特徴とする請求項11記載の流体有機化合物の改質処理装置。   12. The fluid organic compound reforming apparatus according to claim 11, wherein the reaction layer is a fixed mold made of a granular filler or a porous molded body. 前記反応層が、粒状充填剤を該反応層の形成部位に連続的に又は間欠的に供給・排出させて形成される移動型であることを特徴とする請求項11記載の流体有機化合物の改質処理装置。   12. The fluid organic compound modification according to claim 11, wherein the reaction layer is a mobile type formed by supplying or discharging a particulate filler continuously or intermittently to a site where the reaction layer is formed. Quality processing equipment. 前記反応層の少なくとも一部を、前記有機化合物の分解触媒成分とすることを特徴とする請求項11〜13のいずれかに記載の流体有機化合物の改質処理装置。 The fluid organic compound reforming apparatus according to claim 11, wherein at least a part of the reaction layer is used as a decomposition catalyst component of the organic compound. 前記マイクロ波発熱物質が、金属酸化物、金属炭化物若しくは炭素又はそれらの複合体から選択される1種又は2種以上からなる、又はそれらを主体とするものであることを特徴とする請求項11〜14のいずれかに記載の流体有機化合物の改質処理装置。   12. The microwave exothermic material is one or more selected from a metal oxide, a metal carbide, carbon, or a composite thereof, or is mainly composed of them. The fluid organic compound modification treatment apparatus according to any one of -14. 前記マイクロ波発熱物質としての金属酸化物が、遷移金属酸化物並びにアルミニウム、鉛、インジウム及び錫の典型金属酸化物の群から1種又は2種以上選択されるものであることを特徴とする請求項15記載の流体有機化合物の改質処理装置。   The metal oxide as the microwave heat generating material is selected from the group consisting of transition metal oxides and typical metal oxides of aluminum, lead, indium and tin. Item 15. The fluid organic compound reforming apparatus according to Item 15. 前記金属酸化物が、β−アルミナ、γ−アルミナ、酸化チタン、酸化鉄、酸化ジルコニウム及び酸化セリウムのいずれかであることを特徴とする請求項16記載の流体有機化合物の改質処理装置。   17. The fluid organic compound reforming apparatus according to claim 16, wherein the metal oxide is any one of β-alumina, γ-alumina, titanium oxide, iron oxide, zirconium oxide, and cerium oxide. 前記マイクロ波発熱物質としての複合体が、赤泥、無機汚泥、クリンカ(石炭ボトムアッシュ)、カルシウムフェライト、酸化鉄含有汚泥、煙道・ボイラースケール処理後ブラスト材、アルミドロス、焼却灰、ゼオライト、アルミン酸ナトリウム及び石炭フライアッシュの群から1種又は2種以上選択されるものであることを特徴とする請求項15記載の流体有機化合物の改質処理装置。   The composite as the microwave exothermic material is red mud, inorganic sludge, clinker (coal bottom ash), calcium ferrite, iron oxide containing sludge, flue / boiler scale treated blast material, aluminum dross, incinerated ash, zeolite, The fluid organic compound reforming apparatus according to claim 15, wherein the apparatus is selected from the group consisting of sodium aluminate and coal fly ash.
JP2005276702A 2005-09-22 2005-09-22 Method for modifying fluid organic compounds Expired - Fee Related JP4799976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276702A JP4799976B2 (en) 2005-09-22 2005-09-22 Method for modifying fluid organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276702A JP4799976B2 (en) 2005-09-22 2005-09-22 Method for modifying fluid organic compounds

Publications (2)

Publication Number Publication Date
JP2007084389A true JP2007084389A (en) 2007-04-05
JP4799976B2 JP4799976B2 (en) 2011-10-26

Family

ID=37971768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276702A Expired - Fee Related JP4799976B2 (en) 2005-09-22 2005-09-22 Method for modifying fluid organic compounds

Country Status (1)

Country Link
JP (1) JP4799976B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284529A (en) * 2007-05-21 2008-11-27 Chuan-Lian Tzeng Microwave treatment apparatus for treating volatile organic compound
JP2011213437A (en) * 2010-03-31 2011-10-27 Anritsu Sanki System Co Ltd Bucket conveyor
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
CN102602886A (en) * 2012-03-19 2012-07-25 宁波诺丁汉大学 Device for preparing synthesis gas through microwave strengthened hydrocarbon in a pyrolysis coupling catalyzing reforming manner
US11059720B1 (en) 2020-01-28 2021-07-13 Saudi Arabian Oil Company Catalyst carrier for dry reforming processes
US11059030B1 (en) 2020-01-28 2021-07-13 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for bi-reforming processes
US11066299B1 (en) 2020-01-28 2021-07-20 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for steam reforming processes
US11242246B2 (en) 2020-01-28 2022-02-08 Saudi Arabian Oil Company Catalyst carrier for autothermal reforming processes
US11242245B2 (en) 2020-01-28 2022-02-08 Saudi Arabian Oil Company Catalyst carrier for steam reforming processes
US11247898B2 (en) 2020-01-28 2022-02-15 Saudi Arabian Oil Company Catalyst carrier for bi-reforming processes
US11286160B2 (en) 2020-01-28 2022-03-29 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for autothermal reforming processes
US11338270B2 (en) 2020-01-28 2022-05-24 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for autothermal reforming processes
US11365120B2 (en) 2020-01-28 2022-06-21 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for steam reforming processes
US11396006B2 (en) 2020-01-28 2022-07-26 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for bi-reforming processes
US11478777B2 (en) 2020-01-28 2022-10-25 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for dry reforming processes
US11498053B2 (en) 2020-01-28 2022-11-15 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for dry reforming processes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301122A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JPH04363189A (en) * 1991-06-11 1992-12-16 Mitsui Eng & Shipbuild Co Ltd Reheating method for waste incineration ash
JPH10288027A (en) * 1997-04-17 1998-10-27 Zexel Corp High frequency heating catalyst
JP2000103601A (en) * 1998-09-29 2000-04-11 Takuma Co Ltd Reforming of methanol and apparatus therefor
JP2001500787A (en) * 1997-07-15 2001-01-23 ダイムラー クライスラー・アクチェンゲゼルシャフト Method and apparatus for removing gaseous organic matter from air
JP2002068704A (en) * 2000-08-25 2002-03-08 Kawasaki Heavy Ind Ltd Catalyst heating device of reformer for fuel battery
JP2002255508A (en) * 2000-12-18 2002-09-11 Toyota Central Res & Dev Lab Inc Hydrogen production method and hydrogen production system
JP2003095614A (en) * 2001-09-18 2003-04-03 Toshiba International Fuel Cells Corp Apparatus for producing hydrogen
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2004536007A (en) * 2001-04-27 2004-12-02 デイビッド システムズ アンド テクノロジー ソシエダッド リミターダ Method for converting a fuel usable in an internal combustion engine or a gas turbine into a synthesis gas by plasma catalytic conversion and a plasma catalytic converter used for the method
JP2006083042A (en) * 2004-09-17 2006-03-30 Saitama Prefecture Hydrogen producing method
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2007000822A (en) * 2005-06-27 2007-01-11 Chubu Electric Power Co Inc Method for processing fluid organic compound

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301122A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JPH04363189A (en) * 1991-06-11 1992-12-16 Mitsui Eng & Shipbuild Co Ltd Reheating method for waste incineration ash
JPH10288027A (en) * 1997-04-17 1998-10-27 Zexel Corp High frequency heating catalyst
JP2001500787A (en) * 1997-07-15 2001-01-23 ダイムラー クライスラー・アクチェンゲゼルシャフト Method and apparatus for removing gaseous organic matter from air
JP2000103601A (en) * 1998-09-29 2000-04-11 Takuma Co Ltd Reforming of methanol and apparatus therefor
JP2002068704A (en) * 2000-08-25 2002-03-08 Kawasaki Heavy Ind Ltd Catalyst heating device of reformer for fuel battery
JP2002255508A (en) * 2000-12-18 2002-09-11 Toyota Central Res & Dev Lab Inc Hydrogen production method and hydrogen production system
JP2004536007A (en) * 2001-04-27 2004-12-02 デイビッド システムズ アンド テクノロジー ソシエダッド リミターダ Method for converting a fuel usable in an internal combustion engine or a gas turbine into a synthesis gas by plasma catalytic conversion and a plasma catalytic converter used for the method
JP2003095614A (en) * 2001-09-18 2003-04-03 Toshiba International Fuel Cells Corp Apparatus for producing hydrogen
JP2004203679A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Hydrogen donor and hydrogen storage and transport method using the same
JP2006083042A (en) * 2004-09-17 2006-03-30 Saitama Prefecture Hydrogen producing method
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2007000822A (en) * 2005-06-27 2007-01-11 Chubu Electric Power Co Inc Method for processing fluid organic compound

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284529A (en) * 2007-05-21 2008-11-27 Chuan-Lian Tzeng Microwave treatment apparatus for treating volatile organic compound
JP2011213437A (en) * 2010-03-31 2011-10-27 Anritsu Sanki System Co Ltd Bucket conveyor
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
CN102602886A (en) * 2012-03-19 2012-07-25 宁波诺丁汉大学 Device for preparing synthesis gas through microwave strengthened hydrocarbon in a pyrolysis coupling catalyzing reforming manner
US11059720B1 (en) 2020-01-28 2021-07-13 Saudi Arabian Oil Company Catalyst carrier for dry reforming processes
US11059030B1 (en) 2020-01-28 2021-07-13 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for bi-reforming processes
US11066299B1 (en) 2020-01-28 2021-07-20 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for steam reforming processes
WO2021154911A1 (en) * 2020-01-28 2021-08-05 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for bi-reforming processes
WO2021154788A1 (en) * 2020-01-28 2021-08-05 Saudi Arabian Oil Company Catalyst carrier for dry reforming processes
US11242246B2 (en) 2020-01-28 2022-02-08 Saudi Arabian Oil Company Catalyst carrier for autothermal reforming processes
US11242245B2 (en) 2020-01-28 2022-02-08 Saudi Arabian Oil Company Catalyst carrier for steam reforming processes
US11247898B2 (en) 2020-01-28 2022-02-15 Saudi Arabian Oil Company Catalyst carrier for bi-reforming processes
US11286160B2 (en) 2020-01-28 2022-03-29 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for autothermal reforming processes
US11338270B2 (en) 2020-01-28 2022-05-24 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for autothermal reforming processes
US11365120B2 (en) 2020-01-28 2022-06-21 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for steam reforming processes
US11396006B2 (en) 2020-01-28 2022-07-26 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for bi-reforming processes
US11478777B2 (en) 2020-01-28 2022-10-25 Saudi Arabian Oil Company Catalyst compositions having enhanced acidity for dry reforming processes
US11498053B2 (en) 2020-01-28 2022-11-15 Saudi Arabian Oil Company Nickel-containing catalyst composition having enhanced acidity for dry reforming processes

Also Published As

Publication number Publication date
JP4799976B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4799976B2 (en) Method for modifying fluid organic compounds
Shen et al. Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier
Moghtaderi et al. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion
KR101357977B1 (en) Internal combustion exchanger reactor for endothermic reaction in fixed bed
Rosso et al. Zinc oxide sorbents for the removal of hydrogen sulfide from syngas
Chen et al. Evaluation of multi-functional iron-based carrier from bauxite residual for H2-rich syngas production via chemical-looping gasification
Roland et al. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3
Rapagnà et al. Steam-gasification of biomass in a fluidised-bed of olivine particles
Lee et al. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst
CN1683477B (en) A high temperature reformer
Siriwardane et al. Chemical-looping combustion of simulated synthesis gas using nickel oxide oxygen carrier supported on bentonite
JP4781734B2 (en) Method for treating fluid organic compounds
Wang et al. Study of limestone calcination with CO2 capture: decomposition behavior in a CO2 atmosphere
TW200538388A (en) Reactor and apparatus for hydrogen generation
KR101813225B1 (en) Apparatus and reactor comprising distribution plate for reducing flow rate of fluidized medium
Song et al. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal
Dupont et al. Production of hydrogen by unmixed steam reforming of methane
CN110431639B (en) Thermal volume reduction of radioactive waste
Akiti et al. A regenerable calcium-based core-in-shell sorbent for desulfurizing hot coal gas
CN101357750B (en) Method and device of microwave excitation molten salt catalytic reforming gasification carbon group compound
JP2017521353A (en) Method for producing hydrogen
Elgarni et al. Characterization, kinetics and stability studies of NiO and CuO supported by Al2O3, ZrO2, CeO2 and their combinations in chemical looping combustion
US8974699B2 (en) Method for producing synthesis gases
JPH05306109A (en) Production device of activated carbon with high surface area
JP2007254238A (en) Method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees