JP2007083876A - Air-conditioner having cold accumulator - Google Patents

Air-conditioner having cold accumulator Download PDF

Info

Publication number
JP2007083876A
JP2007083876A JP2005275182A JP2005275182A JP2007083876A JP 2007083876 A JP2007083876 A JP 2007083876A JP 2005275182 A JP2005275182 A JP 2005275182A JP 2005275182 A JP2005275182 A JP 2005275182A JP 2007083876 A JP2007083876 A JP 2007083876A
Authority
JP
Japan
Prior art keywords
cold storage
air conditioning
air
compressor
cooling coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275182A
Other languages
Japanese (ja)
Other versions
JP5054909B2 (en
Inventor
Shigehiro Hashizume
慈洋 橋詰
Masashi Inoue
正志 井上
Takahiro Sasaki
敬弘 佐々木
Akira Yoshikoshi
明 吉越
Katsuhiro Saito
克弘 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005275182A priority Critical patent/JP5054909B2/en
Publication of JP2007083876A publication Critical patent/JP2007083876A/en
Application granted granted Critical
Publication of JP5054909B2 publication Critical patent/JP5054909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioner having a cold accumulator which shortens the restoration time of the refrigerant vapor pressure in the defrosting operation while maintaining the cold accumulation capacity. <P>SOLUTION: In the air-conditioner having the cold accumulator, an air-conditioning evaporator 4, and a cooling coil 8 for cold accumulation are juxtaposed in a refrigerating cycle. An air-conditioning solenoid valve 7 and cold accumulation solenoid valve 11 which are respectively provided on inlet sides of the air-conditioning evaporator 4 and the cooling coil 8 for cold accumulation, are operated while controlling the opening/closing alternately for the predetermined time. A frost thermometer 13 is provided on the air-conditioning evaporator 4. When the frost thermometer 13 detects the low temperature at or below the predetermined value, the operation of a compressor 1 is stopped, and the defrosting operation is started. A cold accumulation continuing means is provided, which maintains the compressor 1 of the refrigerating cycle in an operational state in the cold accumulation operational mode in which the solenoid valve 11 for cold accumulation provided on the inlet side of the cooling coil 8 for cold accumulation is opened, and the air-conditioning solenoid valve 7 provided on the inlet side of the air-conditioning evaporator 4 is closed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両用の空気調和装置に適用される蓄冷装置付き空調装置に関する。   The present invention relates to an air conditioner with a cool storage device applied to an air conditioner for a vehicle.

従来より、たとえばトラックのキャビン用空調装置として、蓄冷装置付きの冷凍サイクル(冷媒回路)を備えた蓄冷装置付き空調装置が知られている。この空調装置では、たとえば運転手が仮眠する場合などエンジンを停止した状態でキャビン内の冷房が可能となるように、車両走行中に冷熱を蓄熱しておく蓄冷用冷却コイルを備えている。
蓄冷用冷却コイルは、冷凍サイクル中において、エンジンが駆動される車両走行中等にキャビン内の空調に使用される空調用エバポレータと並列に設置され、エンジンで駆動されるコンプレッサから交互に冷媒の供給を受けて蓄冷するものである。
DESCRIPTION OF RELATED ART Conventionally, the air conditioner with a cool storage apparatus provided with the refrigerating cycle (refrigerant circuit) with a cool storage apparatus is known as an air conditioner for truck cabins, for example. In this air conditioner, for example, a cooling coil for storing cold energy for storing cold energy while the vehicle is running is provided so that the cabin can be cooled while the engine is stopped, for example, when the driver takes a nap.
The cooling coil for cold storage is installed in parallel with the air conditioning evaporator used for air conditioning in the cabin during traveling of the vehicle in which the engine is driven during the refrigeration cycle, and alternately supplies refrigerant from the compressor driven by the engine. Receiving and storing cold.

空調用エバポレータまたは蓄冷用コイルに供給する冷媒は、それぞれの上流側に設置した電磁弁を開閉制御することにより行われる。具体的に説明すると、空調用エバポレータ側に所定時間(たとえば45秒)冷媒を流して空調(冷房)した後、電磁弁の開閉状態を切り換えることにより、蓄冷用コイル側に所定時間(たとえば15秒)冷媒を流して蓄冷するという運転が交互に繰り返される。このような蓄冷装置付き空調装置には、高車速時や軽負荷時において空調用エバポレータが凍結するのを防止する目的でフロストサーモが設けられており、このフロストサーモが所定の低温を検出して作動するとコンプレッサの運転を停止し、空調用エバポレータへの冷媒供給を停止するというデフロスト運転が行われるようになっている。   The refrigerant supplied to the air conditioning evaporator or the cold storage coil is performed by opening / closing controlling the solenoid valves installed on the upstream side. More specifically, after the refrigerant is supplied to the air conditioning evaporator side for a predetermined time (for example, 45 seconds) and air-conditioned (cooled), the solenoid valve is opened and closed to switch the open / close state of the solenoid valve for a predetermined time (for example, 15 seconds) ) The operation of storing the refrigerant by flowing the refrigerant is repeated alternately. In such an air conditioner with a regenerator, a frost thermostat is provided for the purpose of preventing the air conditioning evaporator from freezing at high vehicle speeds or light loads, and this frost thermometer detects a predetermined low temperature. When operated, the operation of the compressor is stopped, and a defrost operation is performed in which the refrigerant supply to the air conditioning evaporator is stopped.

しかし、このような空調及び蓄冷の切換では、高車速時や軽負荷時にフロストサーモが作動してデフロスト運転が行われると、運転モードに係わらずコンプレッサの運転が停止される。このため、蓄冷運転の順番になってもコンプレッサが停止して冷媒の供給を受けることができなくなるので、蓄冷運転の実施時間が短くなって冷熱の蓄熱量を減少させ、蓄冷用冷却コイルの冷却能力を十分に確保できなくなるという問題が生じてくる。
このような問題を解決するため、空調用エバポレータにフロストサーモを設け、このフロストサーモが空調用エバポレータのフロストを検知した場合には、空調用エバポレータの入口側に設置された電磁弁を閉成すると共に、蓄冷用冷却コイルの入口側に設置された電磁開閉弁を開成する手段を備えた蓄冷装置付き空調装置が提案されている。このような蓄冷装置付き空調装置は、フロストサーモが作動してデフロスト運転を行ってもコンプレッサを停止させることはなく、しかも、空調用エバポレータへの冷媒の流入を止めて蓄冷用冷却コイルへ冷媒を導入するため、蓄冷用コイルの蓄冷能力が向上するとされる。(たとえば、特許文献1参照)
特開平10−129244号公報(図2参照)
However, in such switching between air conditioning and cold storage, the compressor operation is stopped regardless of the operation mode when the frost thermostat is activated and the defrost operation is performed at high vehicle speed or light load. For this reason, the compressor stops and can no longer receive the supply of refrigerant even in the order of the cold storage operation, so that the time for performing the cold storage operation is shortened and the amount of cold heat stored is reduced, and the cooling coil for cooling is stored. There arises a problem that sufficient ability cannot be secured.
In order to solve such a problem, a frost thermo is provided in the air conditioning evaporator, and when this frost thermo detects the frost of the air conditioning evaporator, the solenoid valve installed on the inlet side of the air conditioning evaporator is closed. In addition, an air conditioner with a regenerator that includes means for opening an electromagnetic on-off valve installed on the inlet side of the regenerator cooling coil has been proposed. Such an air conditioner with a regenerator does not stop the compressor even when the frost thermo is operated and performs a defrost operation, and also stops the flow of the refrigerant into the air conditioner evaporator and supplies the refrigerant to the regenerator cooling coil. In order to introduce, it is supposed that the cold storage capacity of the cold storage coil is improved. (For example, see Patent Document 1)
Japanese Patent Laid-Open No. 10-129244 (see FIG. 2)

しかしながら、上述した特許文献1の従来技術によれば、フロストサーモが作動してデフロスト運転を行う場合には、蓄冷運転モードのままでコンプレッサは常に運転されている。このため、空調用エバポレータのフロストを防止するために蓄冷運転の時間が短縮されるという問題は解消される反面、コンプレッサは常に運転状態にあるため、空調用エバポレータ内で低下した冷媒蒸気圧力の復帰に時間がかかるという問題が生じてくる。すなわち、電磁弁の開閉切換のみでは、デフロスト運転を開始してから冷媒蒸気圧力がデフロスト運転終了圧力まで上昇し、デフロスト運転を完了するまでに要する時間が長くなるので、その分だけ空調運転を実施できる時間が短くなるという問題を生じてくる。
このように、停止状態にあるコンプレッサを電磁弁の開閉切換とともに運転開始して空調運転及びデフロスト運転を行う場合と比較して、コンプレッサを運転したまま電磁弁の開閉切換を行って空調運転及びデフロスト運転を開始する場合は、デフロスト運転時における冷媒蒸気圧力の上昇(回復)に時間がかかってしまい、その分空調運転の時間が短縮されるという問題が生じてくる。
However, according to the prior art of Patent Document 1 described above, when the frost thermo is operated to perform the defrost operation, the compressor is always operated in the cold storage operation mode. For this reason, the problem of shortening the cool storage operation time to prevent the frost of the air conditioning evaporator is solved, but the compressor is always in an operating state, so that the refrigerant vapor pressure that has decreased in the air conditioning evaporator is restored. The problem arises that it takes time. In other words, only by switching the opening and closing of the solenoid valve, the refrigerant vapor pressure rises to the defrost operation end pressure after starting the defrost operation, and the time required to complete the defrost operation becomes longer. The problem arises that the time that can be shortened.
In this way, compared with the case where the compressor in the stopped state is started to operate together with the switching of the solenoid valve and the air conditioning operation and the defrost operation are performed, the switching of the solenoid valve is performed while the compressor is operated to perform the air conditioning operation and the defrost operation. When the operation is started, it takes time to increase (recover) the refrigerant vapor pressure during the defrost operation, which causes a problem that the time for the air-conditioning operation is shortened accordingly.

このような背景から、デフロスト運転による蓄冷時間の低下を防止するとともに、デフロスト運転時における冷媒蒸気圧力の上昇(回復)を速やかにして、蓄冷運転とデフロスト運転とを両立させることができる蓄冷装置付き空調装置の開発が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、蓄冷能力を維持しながら、デフロスト運転時における冷媒蒸気圧力の回復時間を短縮することができる蓄冷装置付き空調装置を提供することにある。
With such a background, the cool storage time can be prevented from decreasing due to the defrost operation, and the refrigerant vapor pressure can be quickly increased (recovered) during the defrost operation, so that the cool storage operation and the defrost operation can be made compatible. Development of air conditioning equipment is desired.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an air conditioner with a regenerator capable of shortening the recovery time of the refrigerant vapor pressure during defrost operation while maintaining the regenerator capacity. To provide an apparatus.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明は、冷凍サイクル中に空調用エバポレータと蓄冷用冷却コイルとを並列に設け、前記空調用エバポレータ及び前記蓄冷用冷却コイルの入口側にそれぞれ設けた開閉手段を所定時間交互に開閉制御して運転するとともに、前記空調用エバポレータにフロスト検知手段を設け、該フロスト検知手段が所定値以下の低温を検出した場合にコンプレッサの運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、
前記蓄冷用冷却コイルの入口側に設けた開閉手段を開とし前記空調用エバポレータの入口側に設けた開閉手段を閉とする蓄冷運転モード時に、前記冷凍サイクルのコンプレッサを運転状態に維持する蓄冷継続手段を設けたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
According to the present invention, an air conditioning evaporator and a cold storage cooling coil are provided in parallel during a refrigeration cycle, and opening / closing means provided on the inlet side of the air conditioning evaporator and the cold storage cooling coil are alternately controlled to open and close for a predetermined time. In the air conditioner with a regenerator that operates, the frost detecting means is provided in the evaporator for air conditioning, and when the frost detecting means detects a low temperature below a predetermined value, the operation of the compressor is stopped and the defrost operation is started.
Continuation of cold storage for maintaining the compressor of the refrigeration cycle in the cold storage operation mode in which the opening / closing means provided on the inlet side of the cooling coil for cold storage is opened and the opening / closing means provided on the inlet side of the air conditioning evaporator is closed Means is provided.

このような蓄冷装置付き空調装置によれば、蓄冷コイルの入口側に設けた開閉手段を開とし空調用エバポレータの入口側に設けた開閉手段を閉とする蓄冷運転モード時に、冷凍サイクルのコンプレッサを運転状態に維持する蓄冷継続手段を設けたので、冷凍サイクルに冷媒を供給するコンプレッサは、蓄冷用冷却コイルに冷媒を供給する蓄冷運転時は常に運転状態となり、さらに、空調用エバポレータに冷媒を供給する空調運転時はデフロスト運転時を除いて運転状態となる。このため、蓄冷運転はコンプレッサの停止による影響を受けることなく実施され、しかも、デフロスト運転時においては、コンプレッサが停止した状態から短時間で冷媒蒸気圧力を上昇(回復)させることができる。   According to such an air conditioner with a regenerator, the compressor of the refrigeration cycle is operated in the cold storage operation mode in which the open / close means provided on the inlet side of the regenerator coil is opened and the open / close means provided on the inlet side of the air conditioning evaporator is closed. Since the cold storage continuation means for maintaining the operation state is provided, the compressor that supplies the refrigerant to the refrigeration cycle is always in the operation state during the cold storage operation for supplying the refrigerant to the cold storage cooling coil, and further supplies the refrigerant to the air conditioning evaporator. When the air conditioning operation is performed, the operation state is entered except during the defrost operation. For this reason, the cold storage operation is performed without being affected by the stop of the compressor, and during the defrost operation, the refrigerant vapor pressure can be increased (recovered) in a short time from the state where the compressor is stopped.

上記の蓄冷装置付き空調装置においては、前記蓄冷継続手段が、前記蓄冷コイルの入口側に設けられた開閉手段が開の時に前記コンプレッサを運転状態に維持するリレー回路であることが好ましく、これにより、リレーを1個追加するだけの簡単な変更で蓄冷能力を維持し、さらに、デフロスト運転の状態から短時間で回復させることができる。   In the air conditioner with a cool storage device, the cool storage continuation means is preferably a relay circuit that maintains the compressor in an operating state when the opening / closing means provided on the inlet side of the cool storage coil is open. The cold storage capacity can be maintained with a simple change by adding only one relay, and the state of defrost operation can be recovered in a short time.

上述した本発明によれば、蓄冷用冷却コイルの入口側に設けた開閉手段を開とし空調用エバポレータの入口側に設けた開閉手段を閉とする蓄冷運転モード時に、冷凍サイクルのコンプレッサを運転状態に維持する蓄冷継続手段を設けたことにより、蓄冷運転時にはコンプレッサの停止による影響を受けることはなく、しかも、デフロスト運転から正常な空調運転に短時間で回復させることもできる。このため、蓄冷能力を維持するとともに、デフロスト運転時間を短縮して空調運転の実施時間を延長することができる冷凍装置付き空調装置を提供するという顕著な効果が得られる。換言すれば、蓄冷運転時には十分な蓄冷能力を確保し、かつ、デフロスト運転を短時間で終了できるというように、蓄冷運転とデフロスト運転とを両立した蓄冷装置付き空調装置を提供することができる。
また、上述した本発明の効果は、リレー1個を追加するだけというようにプログラムの変更等を伴わない簡単な改造で達成できるため、既設の装置を容易に改造することも可能である。
According to the present invention described above, the compressor of the refrigeration cycle is operated in the cold storage operation mode in which the open / close means provided on the inlet side of the cool storage cooling coil is opened and the open / close means provided on the inlet side of the air conditioning evaporator is closed. By providing the cold storage continuation means that maintains the temperature, the compressor is not affected by the stop of the compressor during the cold storage operation, and the normal air-conditioning operation can be recovered from the defrost operation in a short time. For this reason, the remarkable effect of providing the air conditioning apparatus with a refrigeration apparatus that can maintain the cold storage capacity and shorten the defrost operation time and extend the execution time of the air conditioning operation can be obtained. In other words, it is possible to provide an air conditioner with a cold storage device that can achieve both cold storage operation and defrost operation so that sufficient cold storage capacity can be ensured during cold storage operation and the defrost operation can be completed in a short time.
In addition, since the above-described effect of the present invention can be achieved by a simple modification without changing a program, such as adding only one relay, it is possible to easily modify an existing apparatus.

以下、本発明に係る蓄冷装置付き空調装置の一実施形態を、図面に基いて具体的に説明する。
図1に示す冷媒回路図は、主として車両用空調装置に適用されるものであり、たとえばトラック等の車両に装備される蓄冷装置付き空調装置に採用されている。図1において、1はコンプレッサ、2はコンデンサ、3はレシーバ、4は空調用エバポレータ、5は感温筒6を備えた温度式の膨張弁(以下、「空調用膨張弁」ともいう)、7は空調電磁弁、8は蓄冷用冷却コイル、9は感温筒10を備えた温度式の膨張弁(以下、「蓄冷用膨張弁」ともいう)、11は蓄冷電磁弁、12は逆止弁、13は空調用エバポレータの温度を検知し作動するフロストサーモ、14は装置全体の制御装置である。
Hereinafter, an embodiment of an air conditioner with a regenerator according to the present invention will be specifically described with reference to the drawings.
The refrigerant circuit diagram shown in FIG. 1 is mainly applied to a vehicle air conditioner, and is adopted, for example, in an air conditioner with a cool storage device installed in a vehicle such as a truck. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a receiver, 4 is an air conditioning evaporator, 5 is a temperature type expansion valve (hereinafter also referred to as “air conditioning expansion valve”) having a temperature sensing cylinder 6, 7 Is an air conditioning electromagnetic valve, 8 is a cooling coil for cold storage, 9 is a temperature type expansion valve (hereinafter also referred to as “cold storage expansion valve”), 11 is a cold storage electromagnetic valve, and 12 is a check valve. , 13 is a frost thermostat that operates by detecting the temperature of the air conditioning evaporator, and 14 is a control device for the entire apparatus.

上記の各要素から構成される蓄冷装置付き空調装置において、冷媒回路中に並列に配置された空調用エバポレータ4及び蓄冷用冷却コイル8には、各々の冷媒配管上流側に空調電磁弁7及び畜冷電磁弁11が設けられている。制御装置14は、空調電磁弁7または蓄冷電磁弁11に対して交互に通電することで開閉制御し、空調用エバポレータ4と蓄冷用冷却コイル8とに冷媒を交互に流す。この場合、空調用エバポレータ4の運転時間及び蓄冷用冷却コイル8の運転時間は、たとえば所定の時間比(空調運転時間t1:蓄冷運転時間t2)となるように設定され、この時間比に基づいて制御装置14が空調電磁弁7及び蓄冷電磁弁11の開閉を制御する。
なお、上述した運転時間t1,t2の一例をあげると、たとえば空調用エバポレータ4に冷媒を流す空調運転時間t1を45秒とし、蓄冷用冷却コイル8に冷媒を流す蓄冷運転時間t2を20秒とする。
In the air conditioner with a regenerator configured from the above-described elements, the air conditioning evaporator 4 and the regenerator cooling coil 8 arranged in parallel in the refrigerant circuit include the air conditioner solenoid valve 7 and the animal A cold solenoid valve 11 is provided. The control device 14 performs opening / closing control by alternately energizing the air conditioning electromagnetic valve 7 or the cold storage electromagnetic valve 11, and causes the refrigerant to flow alternately through the air conditioning evaporator 4 and the cold storage cooling coil 8. In this case, the operation time of the air conditioning evaporator 4 and the operation time of the cold storage cooling coil 8 are set to be a predetermined time ratio (air conditioning operation time t1: cool storage operation time t2), for example, based on this time ratio. The control device 14 controls opening and closing of the air conditioning electromagnetic valve 7 and the cold storage electromagnetic valve 11.
As an example of the above-described operation times t1 and t2, for example, the air conditioning operation time t1 for flowing the refrigerant to the air conditioning evaporator 4 is 45 seconds, and the cold storage operation time t2 for flowing the refrigerant to the cold storage cooling coil 8 is 20 seconds. To do.

図2は、蓄冷装置付き空調装置の運転パターンを示す図である。
図2(a)において、空調電磁弁7及び蓄冷電磁弁11は、運転時間t1,t2の順で交互に導通及び閉止を繰り返すことで運転モードを切り換えており、空調電磁弁7に導通した時には、空調電磁弁7が開いて空調用エバポレータ4にコンプレッサ1から冷媒の供給を受ける。このとき、蓄冷用電磁弁11は閉止されているので、蓄冷用電磁弁11が閉じて蓄冷用コイル8への冷媒供給は行われない。
一方、空調電磁弁7の導通を閉止した時には、空調用電磁弁7が閉じて空調用エバポレータ4への冷媒供給は停止される。このとき、蓄冷用電磁弁11に導通されて開となるので、冷媒は蓄冷用冷却コイル8に供給される。
なお、空調用エバポレータ4及び蓄冷用コイル8に供給される冷媒は、膨張弁5,9で減圧された液冷媒である。
FIG. 2 is a diagram illustrating an operation pattern of an air conditioner with a cool storage device.
In FIG. 2A, the air conditioning solenoid valve 7 and the cold storage solenoid valve 11 are switched between operation modes by alternately repeating conduction and closing in the order of the operation times t1 and t2, and when the air conditioning solenoid valve 7 is conducted. Then, the air conditioning electromagnetic valve 7 is opened, and the refrigerant is supplied from the compressor 1 to the air conditioning evaporator 4. At this time, since the cold storage electromagnetic valve 11 is closed, the cold storage electromagnetic valve 11 is closed and the refrigerant supply to the cold storage coil 8 is not performed.
On the other hand, when the conduction of the air conditioning electromagnetic valve 7 is closed, the air conditioning electromagnetic valve 7 is closed and the supply of the refrigerant to the air conditioning evaporator 4 is stopped. At this time, the refrigerant is opened by being connected to the cold storage electromagnetic valve 11, so that the refrigerant is supplied to the cold storage cooling coil 8.
The refrigerant supplied to the air conditioning evaporator 4 and the cold storage coil 8 is a liquid refrigerant decompressed by the expansion valves 5 and 9.

空調用エバポレータ4に液冷媒が供給される空調運転時には、液冷媒が車室内の空気から吸熱して気化するので、車室内の冷房運転が可能となる。また、蓄冷用コイル8に液冷媒が供給される蓄冷運転時には、液冷媒が水等の蓄冷材から吸熱して気化するので、蓄冷材を凍らせることにより冷熱が蓄熱される。
ところで、上述した空調運転及び蓄冷運転においては、図2(b)及び図2(c)に示すように、空調用エバポレータ4の適所に設けたフロストサーモ13が検出した温度に応じてコンプレッサ1の運転をON・OFF制御し、空調用エバポレータ4の凍結を防止している。すなわち、上述した空調運転時においては、空調用エバポレータ4が凍結するのを防止するため、フロストサーモ13が所定値(たとえば0℃)以下の低温を検出して作動(ON)すると、この作動によりコンプレッサ1の運転が停止される。そして、冷媒供給の停止により空調用エバポレータ4の温度が所定値まで上昇すると、これを検出したフロストサーモ13が不作動(OFF)となるので、この不作動により、運転モードが空調運転にあればコンプレッサ1の運転を再開する。
During the air conditioning operation in which the liquid refrigerant is supplied to the air conditioning evaporator 4, the liquid refrigerant absorbs heat from the air in the vehicle interior and vaporizes, so that the air conditioning operation in the vehicle interior can be performed. Further, during the cold storage operation in which the liquid refrigerant is supplied to the cold storage coil 8, the liquid refrigerant absorbs heat from the cold storage material such as water and is vaporized, so that the cold energy is stored by freezing the cold storage material.
By the way, in the air conditioning operation and the cold storage operation described above, as shown in FIGS. 2B and 2C, the compressor 1 according to the temperature detected by the frost thermo 13 provided at an appropriate position of the air conditioning evaporator 4 is used. The operation is ON / OFF controlled to prevent the air conditioning evaporator 4 from freezing. That is, during the air conditioning operation described above, when the frost thermostat 13 detects and operates (ON) a low temperature below a predetermined value (for example, 0 ° C.) to prevent the air conditioning evaporator 4 from freezing, The operation of the compressor 1 is stopped. Then, when the temperature of the air conditioning evaporator 4 rises to a predetermined value due to the stop of the refrigerant supply, the frost thermo 13 that has detected this becomes inactive (OFF). The operation of the compressor 1 is resumed.

しかし、上述したフロストサーモ13の作動時に運転モードが蓄冷運転を選択していれば、コンプレッサ1の運転は停止することなく継続される。すなわち、蓄冷運転中にフロストサーモ13が作動すると、コンプレッサ1の運転は空調運転に切り替わるまで継続され、空調運転中にフロストサーモ13が作動した場合には、空調運転から蓄冷運転に切り替わるのと同時にコンプレッサ1の運転が再開される。そして、この蓄冷運転が終了してもフロストサーモ13が作動していれば、空調運転に切り替わるのと同時にコンプレッサ1の運転が停止される。
このように、蓄冷用冷却コイル8の入口側に設けた蓄冷電磁弁(開閉手段)11を開とし、空調用エバポレータ4の入口側に設けた空調電磁弁(開閉手段)7を閉とする蓄冷運転モード時に、制御装置14に接続された後述する蓄冷継続手段が冷凍サイクルのコンプレッサ1を運転状態に維持する。換言すれば、フロストサーモ13の作動は、蓄冷運転時においてはコンプレッサ1のON・OFF制御に関与せず、空調運転時にのみ関与することとなる。
However, if the operation mode has selected the cold storage operation during the operation of the frost thermo 13 described above, the operation of the compressor 1 is continued without stopping. That is, when the frost thermo 13 is activated during the cold storage operation, the operation of the compressor 1 is continued until the air conditioning operation is switched, and when the frost thermo 13 is activated during the air conditioning operation, simultaneously with the switching from the air conditioning operation to the cold storage operation. The operation of the compressor 1 is resumed. If the frost thermostat 13 is operating even after the cold storage operation is completed, the operation of the compressor 1 is stopped simultaneously with the switching to the air conditioning operation.
Thus, the cold storage electromagnetic valve (opening / closing means) 11 provided on the inlet side of the cold storage cooling coil 8 is opened, and the air conditioning electromagnetic valve (opening / closing means) 7 provided on the inlet side of the air conditioning evaporator 4 is closed. During the operation mode, a cold storage continuation unit, which will be described later, connected to the control device 14 maintains the compressor 1 of the refrigeration cycle in an operating state. In other words, the operation of the frost thermo 13 is not involved in the ON / OFF control of the compressor 1 during the cold storage operation, and is involved only during the air conditioning operation.

また、蓄冷運転モード時にコンプレッサ1を運転状態に維持することにより、コンプレッサ1は、蓄冷用冷却コイル8に冷媒を供給する蓄冷運転時は常に運転状態となり、さらに、空調用エバポレータ4に冷媒を供給する空調運転時はデフロスト運転時を除いて運転状態となる。このため、蓄冷運転はコンプレッサ1の停止による影響を受けることなく実施され、しかも、デフロスト運転時においては、コンプレッサ1が停止した状態から短時間で冷媒蒸気圧力を上昇(回復)させることができる。
上述した本発明の運転制御では、フロストサーモ13が作動(ON)した場合、蓄冷運転時にコンプレッサ1がONとなるため、図2(d)に太い実線で示すように、冷媒蒸気圧力の回復はコンプレッサ1の運転時(t2)に傾斜が緩やかになるため、時間Δt1だけ長くなる。しかし、図2に破線で示す特許文献1の場合と比較すれば、デフロスト運転終了圧力に到達するまでに、時間Δt2(Δt1<Δt2)の短縮がなされる。
なお、図中に細い実線で示しているのは、フロストサーモ13が作動(ON)した場合にコンプレッサ1を完全に停止させた場合であり、最も短時間で冷媒蒸気圧力が回復している。
Further, by maintaining the compressor 1 in the operation state during the cold storage operation mode, the compressor 1 is always in the operation state during the cold storage operation for supplying the refrigerant to the cold storage cooling coil 8 and further supplies the refrigerant to the air conditioning evaporator 4. When the air conditioning operation is performed, the operation state is entered except during the defrost operation. For this reason, the cold storage operation is performed without being affected by the stop of the compressor 1, and in the defrost operation, the refrigerant vapor pressure can be increased (recovered) in a short time from the state in which the compressor 1 is stopped.
In the operation control of the present invention described above, when the frost thermo 13 is activated (ON), the compressor 1 is turned ON during the cold storage operation, so that the recovery of the refrigerant vapor pressure is as shown by the thick solid line in FIG. Since the inclination becomes gentle during the operation of the compressor 1 (t2), it becomes longer by the time Δt1. However, as compared with the case of Patent Document 1 indicated by a broken line in FIG. 2, the time Δt2 (Δt1 <Δt2) is shortened until the defrost operation end pressure is reached.
In the figure, a thin solid line indicates a case where the compressor 1 is completely stopped when the frost thermo 13 is activated (ON), and the refrigerant vapor pressure is recovered in the shortest time.

上述したフロストサーモ13の作動に応じたコンプレッサ1のON・OFF制御は、以下に説明する蓄冷継続手段を設けることにより実施可能となる。
図3に要部を示す回路図において、電源20に接続された制御装置14は、空調電磁弁7、蓄冷電磁弁11及びマグネットクラッチ21を操作するために3つのリレー操作スイッチ(以下、「スイッチ」と呼ぶ)R1,R2,R3を備えている。なお、図中の符号22は、吐出温度の異常を検出した場合にコンプレッサ1を停止させる目的で設けられ、通常は接続状態にある吐出温サーモスイッチである。
The ON / OFF control of the compressor 1 according to the operation of the frost thermo 13 described above can be performed by providing a cold storage continuation means described below.
In the circuit diagram showing the main part in FIG. 3, the control device 14 connected to the power source 20 has three relay operation switches (hereinafter referred to as “switches”) for operating the air conditioning electromagnetic valve 7, the cold storage electromagnetic valve 11 and the magnet clutch 21. R1, R2 and R3. Reference numeral 22 in the figure is a discharge temperature thermoswitch that is provided for the purpose of stopping the compressor 1 when an abnormality in the discharge temperature is detected and is normally in a connected state.

スイッチR1は、図示省略のエンジンにより駆動されるコンプレッサ1のON・OFF切換を行うものである。このスイッチR1は、空調運転の開始により動作してリレー接点S1をONの通電状態にする。この結果、マグネットクラッチ21が電源に接続されると、マグネットクラッチ21が繋がってエンジンからコンプレッサ1に駆動力が伝達されるため、コンプレッサ1はONとなる。また、このスイッチR1は、フロストサーモ13が作動した場合にコンプレッサ1を停止するように動作するので、すなわち、フロストサーモ13が作動するとリレー接点S1はOFFの状態となる。
スイッチR2は、制御装置14の制御により動作し、リレー接点S2をON・OFFして空調用電磁弁7の開閉操作を行うものである。このスイッチR2が動作してリレー接点S2をONの通電状態にすれば、電源20から通電を受ける空調電磁弁7が開となって空調運転モードとなる。
The switch R1 performs ON / OFF switching of the compressor 1 driven by an engine (not shown). This switch R1 is operated by the start of the air-conditioning operation and puts the relay contact S1 into an energized state. As a result, when the magnet clutch 21 is connected to the power source, the magnet clutch 21 is connected and the driving force is transmitted from the engine to the compressor 1, so that the compressor 1 is turned on. The switch R1 operates so as to stop the compressor 1 when the frost thermo 13 is activated. That is, when the frost thermo 13 is activated, the relay contact S1 is turned off.
The switch R2 is operated under the control of the control device 14, and opens / closes the air conditioning solenoid valve 7 by turning ON / OFF the relay contact S2. When this switch R2 is operated and the relay contact S2 is turned on, the air conditioning solenoid valve 7 that is energized from the power source 20 is opened and the air conditioning operation mode is set.

スイッチR3は、制御装置14の制御により動作し、蓄冷用電磁弁11の開閉操作を行うとともに、蓄冷電磁弁11が開の時にコンプレッサ1の運転状態を維持する蓄冷継続手段となる。このスイッチR3が動作すると、蓄冷電磁弁11の開閉操作を行うリレー接点S3aと、上述したリレー接点S1と並列に設けてマグネットクラッチ21に通電するリレー接点S3bとが同時にONの通電状態となる。このため、スイッチR3が動作してリレー接点S3aをONの通電状態にすれば、電源20から通電を受ける蓄冷電磁弁11は開となる。さらに、フロストサーモ13が動作してリレー接点S1がOFFの状態にあっても、マグネットクラッチ21は通電状態にあるリレー接点S3bを介して電源20に接続されるため、蓄冷運転中はコンプレッサ1の運転が継続される。   The switch R3 operates under the control of the control device 14 to perform opening / closing operation of the regenerative electromagnetic valve 11 and serves as a regenerative continuation means for maintaining the operation state of the compressor 1 when the regenerative electromagnetic valve 11 is open. When this switch R3 is operated, the relay contact S3a that opens and closes the regenerative solenoid valve 11 and the relay contact S3b that is provided in parallel with the above-described relay contact S1 and energizes the magnet clutch 21 are simultaneously turned ON. For this reason, if switch R3 operates and relay contact S3a is made into the energization state of ON, cold storage electromagnetic valve 11 which receives energization from power supply 20 will be opened. Further, even when the frost thermo 13 operates and the relay contact S1 is in the OFF state, the magnet clutch 21 is connected to the power source 20 via the relay contact S3b in the energized state. Driving continues.

このように、リレー接点S3bをひとつ追加するだけの簡単な改良により、蓄冷運転時においては、フロストサーモ13が動作してもコンプレッサ1を停止することなく運転を継続させて蓄冷することができる。なお、図示は省略したが、冷媒回路専用に電動のコンデンサファンを備えている場合には、上述したマグネットスイッチ21と同様に蓄冷運転時にコンデンサファンの運転を継続するため、コンデンサファン駆動用の電動機を操作するリレー接点がもう一つ必要になる。
すなわち、蓄冷用冷却コイル8の入口側に設けられた蓄冷電磁弁(開閉手段)11が開の時、コンプレッサ1を運転状態に維持するためにリレー接点S3bを追加して設けたリレー回路が蓄冷継続手段として機能する。
Thus, by a simple improvement by adding only one relay contact S3b, during the cold storage operation, even if the frost thermo 13 is operated, the operation can be continued and the cold storage can be performed without stopping the compressor 1. Although not shown in the drawings, when an electric condenser fan is provided exclusively for the refrigerant circuit, the condenser fan operation is continued during the cold storage operation similarly to the magnet switch 21 described above. Another relay contact is required to operate the.
That is, when the regenerative solenoid valve (opening / closing means) 11 provided on the inlet side of the regenerative cooling coil 8 is open, a relay circuit additionally provided with a relay contact S3b to maintain the compressor 1 in an operating state is Functions as a continuation means.

上述したように、本発明の蓄冷装置付き空調装置は、蓄冷用冷却コイル8の入口側に設けた蓄冷電磁弁11を開とし空調用エバポレータ4の入口側に設けた空調電磁弁7を閉とする蓄冷運転モード時に、冷凍サイクルのコンプレッサ1を運転状態に維持する蓄冷継続手段としてリレー接点S3bを追加して設けたことにより、蓄冷運転時にはコンプレッサ1の停止による影響を受けることはなく、しかも、デフロスト運転から正常な空調運転に短時間で回復させることもできる。このため、蓄冷能力を維持するとともに、デフロスト運転時間を短縮して空調運転の実施時間を延長することができる。換言すれば、蓄冷運転時には十分な蓄冷能力を確保し、かつ、デフロスト運転を短時間で終了できるというように、蓄冷運転とデフロスト運転とを両立することができる。
しかも、リレー接点S3bを1個を追加するだけというように、プログラムの変更等を伴わない簡単な改造で達成できるため、既設の装置を容易に改造することも可能である。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
As described above, the air conditioner with a cool storage device of the present invention opens the cool storage electromagnetic valve 11 provided on the inlet side of the cool storage cooling coil 8 and closes the air conditioning solenoid valve 7 provided on the inlet side of the air conditioning evaporator 4. In the cold storage operation mode, the relay contact S3b is additionally provided as a cold storage continuation means for maintaining the compressor 1 of the refrigeration cycle in the operating state, so that it is not affected by the stop of the compressor 1 during the cold storage operation, It is also possible to recover from defrost operation to normal air conditioning operation in a short time. For this reason, while maintaining cold storage capability, the defrost operation time can be shortened and the implementation time of an air conditioning operation can be extended. In other words, the cold storage operation and the defrost operation can be made compatible so that a sufficient cold storage capacity can be ensured during the cold storage operation and the defrost operation can be completed in a short time.
Moreover, since it can be achieved by a simple modification without changing the program, such as adding only one relay contact S3b, the existing apparatus can be easily modified.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係る蓄冷装置付き空調装置の一実施形態を示す冷媒回路の構成図である。It is a block diagram of the refrigerant circuit which shows one Embodiment of the air conditioner with a cool storage apparatus which concerns on this invention. (a)運転モードの切換、(b)コンプレッサのON・OFF、(c)フロストサーモのON・OFF及び(d)冷媒蒸気圧力の上昇を横軸の時間とともに示した説明図である。It is explanatory drawing which showed (a) switching of the operation mode, (b) ON / OFF of a compressor, (c) ON / OFF of a frost thermo, and (d) rise of refrigerant vapor pressure with the time of a horizontal axis. 蓄冷継続手段の一例を示す要部の回路図である。It is a circuit diagram of the principal part which shows an example of a cool storage continuation means.

符号の説明Explanation of symbols

1 コンプレッサ
2 コンデンサ
4 空調用エバポレータ
5,9 膨張弁
7 空調電磁弁
8 蓄冷用冷却コイル
11 蓄冷電磁弁
13 フロストサーモ
14 制御装置
S1,S2,S3a,S3b リレー接点
DESCRIPTION OF SYMBOLS 1 Compressor 2 Capacitor 4 Evaporator for air conditioning 5,9 Expansion valve 7 Air conditioning solenoid valve 8 Cooling coil for cool storage 11 Cooling solenoid valve 13 Frost thermo 14 Control device S1, S2, S3a, S3b Relay contact

Claims (2)

冷凍サイクル中に空調用エバポレータと蓄冷用冷却コイルとを並列に設け、前記空調用エバポレータ及び前記蓄冷用冷却コイルの入口側にそれぞれ設けた開閉手段を所定時間交互に開閉制御して運転するとともに、前記空調用エバポレータにフロスト検知手段を設け、該フロスト検知手段が所定値以下の低温を検出した場合にコンプレッサの運転を停止してデフロスト運転を開始する蓄冷装置付き空調装置において、
前記蓄冷用冷却コイルの入口側に設けた開閉手段を開とし前記空調用エバポレータの入口側に設けた開閉手段を閉とする蓄冷運転モード時に、前記冷凍サイクルのコンプレッサを運転状態に維持する蓄冷継続手段を設けたことを特徴とする蓄冷装置付き空調装置。
During the refrigeration cycle, an air conditioning evaporator and a cold storage cooling coil are provided in parallel, and the opening and closing means provided on the inlet side of the air conditioning evaporator and the cold storage cooling coil are operated by alternately opening and closing for a predetermined time, and are operated. In the air conditioner with a regenerator, the frost detecting means is provided in the evaporator for air conditioning, and when the frost detecting means detects a low temperature below a predetermined value, the operation of the compressor is stopped and the defrost operation is started.
Continuation of cold storage for maintaining the compressor of the refrigeration cycle in the cold storage operation mode in which the opening / closing means provided on the inlet side of the cooling coil for cold storage is opened and the opening / closing means provided on the inlet side of the air conditioning evaporator is closed An air conditioner with a cool storage device, characterized in that means are provided.
前記蓄冷継続手段が、前記蓄冷用冷却コイルの入口側に設けられた開閉手段が開の時に前記コンプレッサを運転状態に維持するリレー回路であることを特徴とする請求項1に記載の蓄冷装置付き空調装置。   The cold storage device according to claim 1, wherein the cold storage continuation means is a relay circuit that maintains the compressor in an operating state when the opening / closing means provided on the inlet side of the cold storage cooling coil is open. Air conditioner.
JP2005275182A 2005-09-22 2005-09-22 Air conditioner with regenerator Expired - Fee Related JP5054909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275182A JP5054909B2 (en) 2005-09-22 2005-09-22 Air conditioner with regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275182A JP5054909B2 (en) 2005-09-22 2005-09-22 Air conditioner with regenerator

Publications (2)

Publication Number Publication Date
JP2007083876A true JP2007083876A (en) 2007-04-05
JP5054909B2 JP5054909B2 (en) 2012-10-24

Family

ID=37971320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275182A Expired - Fee Related JP5054909B2 (en) 2005-09-22 2005-09-22 Air conditioner with regenerator

Country Status (1)

Country Link
JP (1) JP5054909B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144856A (en) * 1981-03-05 1982-09-07 Nippon Denso Co Air conditioner for vehicle
JPS61208477A (en) * 1985-03-13 1986-09-16 株式会社デンソー Cold accumulation type chill car
JPS62283016A (en) * 1986-05-30 1987-12-08 Diesel Kiki Co Ltd Cooling and refrigeration controlling system of vehicle
JPS63192606A (en) * 1987-02-05 1988-08-10 Nissan Motor Co Ltd Cooling/refrigerating device for vehicle
JPH02220923A (en) * 1989-02-21 1990-09-04 Nippon Kuraimeito Syst:Kk Air conditioner for vehicle
JPH0367972A (en) * 1989-08-02 1991-03-22 Daikin Ind Ltd Device for controlling operation of refrigerating apparatus
JPH09300949A (en) * 1996-05-17 1997-11-25 Mitsubishi Heavy Ind Ltd Vehicular air conditioner with accumulator cooling device
JPH10129244A (en) * 1996-11-05 1998-05-19 Mitsubishi Heavy Ind Ltd Air conditioner provided with cold accumulator
JPH11321293A (en) * 1998-05-19 1999-11-24 Denso Corp Cooling device for vehicle
JP2001058512A (en) * 1999-08-24 2001-03-06 Denso Corp Cooling unit for vehicle use
JP2001287539A (en) * 2000-04-07 2001-10-16 Denso Corp Vehicular cool storage type air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144856A (en) * 1981-03-05 1982-09-07 Nippon Denso Co Air conditioner for vehicle
JPS61208477A (en) * 1985-03-13 1986-09-16 株式会社デンソー Cold accumulation type chill car
JPS62283016A (en) * 1986-05-30 1987-12-08 Diesel Kiki Co Ltd Cooling and refrigeration controlling system of vehicle
JPS63192606A (en) * 1987-02-05 1988-08-10 Nissan Motor Co Ltd Cooling/refrigerating device for vehicle
JPH02220923A (en) * 1989-02-21 1990-09-04 Nippon Kuraimeito Syst:Kk Air conditioner for vehicle
JPH0367972A (en) * 1989-08-02 1991-03-22 Daikin Ind Ltd Device for controlling operation of refrigerating apparatus
JPH09300949A (en) * 1996-05-17 1997-11-25 Mitsubishi Heavy Ind Ltd Vehicular air conditioner with accumulator cooling device
JPH10129244A (en) * 1996-11-05 1998-05-19 Mitsubishi Heavy Ind Ltd Air conditioner provided with cold accumulator
JPH11321293A (en) * 1998-05-19 1999-11-24 Denso Corp Cooling device for vehicle
JP2001058512A (en) * 1999-08-24 2001-03-06 Denso Corp Cooling unit for vehicle use
JP2001287539A (en) * 2000-04-07 2001-10-16 Denso Corp Vehicular cool storage type air conditioner

Also Published As

Publication number Publication date
JP5054909B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US11179994B2 (en) Heat pump for automobile
JP4248962B2 (en) Method and apparatus for moving air in a heat exchanger
JP2018128243A (en) Heat pump device with defrosting function
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
JP2010234837A (en) Air conditioner for vehicle
JP2014088153A (en) Vehicle air conditioner
KR101362144B1 (en) Air conditioning system for electric vehicle
EP3689652B1 (en) Vehicular air-conditioning device
JP4333586B2 (en) Refrigeration cycle apparatus and control method thereof
JP5054909B2 (en) Air conditioner with regenerator
JP2006336949A (en) Heat storage type air conditioner
JP2007083877A (en) Air-conditioner having cold accumulator
JP2009298391A (en) Control
JP2012076589A (en) Air conditioner for vehicle
JP2010076587A (en) Cabin air-conditioner of transport vehicle
JPH11321293A (en) Cooling device for vehicle
KR100390437B1 (en) method for controlling driving in the refrigerator with 2 evaporators
JPH0771844A (en) Refrigeration cycle device for vehicle
JP2005180752A (en) Refrigerating machine for transportation and its operation control method
JPH10129244A (en) Air conditioner provided with cold accumulator
JP2006132800A (en) Refrigerating cycle device
KR100898052B1 (en) Method for controlling an operation of refrigerators
JP2006224824A (en) Refrigeration/cooling device
JPH10315753A (en) Refrigerating and air-conditioning device
JP2540740B2 (en) Freezing / heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R151 Written notification of patent or utility model registration

Ref document number: 5054909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees