JP2007083261A - Press-formed body using magnesium alloy large cross-rolled material - Google Patents

Press-formed body using magnesium alloy large cross-rolled material Download PDF

Info

Publication number
JP2007083261A
JP2007083261A JP2005272589A JP2005272589A JP2007083261A JP 2007083261 A JP2007083261 A JP 2007083261A JP 2005272589 A JP2005272589 A JP 2005272589A JP 2005272589 A JP2005272589 A JP 2005272589A JP 2007083261 A JP2007083261 A JP 2007083261A
Authority
JP
Japan
Prior art keywords
magnesium alloy
press
large cross
rolled material
formed body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272589A
Other languages
Japanese (ja)
Other versions
JP4599594B2 (en
Inventor
Yasumasa Chino
千野  靖正
Akira Kamiya
晶 神谷
Kensuke Sasa
健介 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005272589A priority Critical patent/JP4599594B2/en
Publication of JP2007083261A publication Critical patent/JP2007083261A/en
Application granted granted Critical
Publication of JP4599594B2 publication Critical patent/JP4599594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a press-formed body using a magnesium alloy large cross-rolled material. <P>SOLUTION: The press-formed body is obtained by subjecting a magnesium alloy sheet material fed to large cross rolling for a plurality of times by a rolling mill in a state where upper and lower roll shafts are crossed in a planar position at an angle of ≥1.5° to warm forming at a sample temperature of 150 to 230°C. The magnesium alloy press-formed body is produced by specifying alloy components and heat treatment conditions, and has an Erichsen value of ≥12 and fine crystals of ≤10 μm in the forming temperature region. A technique of producing the same and a magnesium alloy formed product are provided. In this way, the forming in the temperature region where an oily lubricant can be utilized is attained, and the magnesium alloy press-formed body can be suitably used for the press-formed body of house appliance products such as a digital camera, a notebook computer and an PDA (Personal Digital Assistant). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マグネシウム合金大クロス圧延材によるプレス成形体に関するものであり、更に詳しくは、大クロス圧延に供したマグネシウム合金板材を温間成形することにより、230℃以下の低温成形を可能とするマグネシウム合金プレス成形体の作製技術及びその成形製品に関するものである。本発明は、特に、複雑形状のマグネシウムプレス成形体の作製技術として有用であり、例えば、宇宙・航空材料・電子機器材料、自動車部材等、幅広い分野で利用することが可能なマグネシウム合金製部材及び筐体を作製し、提供することを可能とするマグネシウム合金プレス成形体に関する新技術・新製品を提供するものである。   The present invention relates to a press-formed body made of a magnesium alloy large cloth rolled material. More specifically, the present invention enables warm forming of a magnesium alloy sheet subjected to large cloth rolling at a temperature of 230 ° C. or lower. The present invention relates to a manufacturing technique of a magnesium alloy press-formed body and a molded product thereof. The present invention is particularly useful as a technique for producing a magnesium press-molded body having a complicated shape, and includes, for example, a magnesium alloy member that can be used in a wide range of fields, such as space / aviation materials / electronic device materials, automobile members, and the like. It provides new technologies and new products related to magnesium alloy press-molded bodies that can be manufactured and provided.

マグネシウムは、実用構造金属材料の中で最も低密度(=1.7g/cm)であり、金属材料特有の易リサイクル性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として注目されている。現在、日本におけるマグネシウム製品の多くは、ダイキャストやチクソキャスト等の鋳造法により作製されている。これらの手法により薄肉成形が可能となったことが、マグネシウム合金の工業化を助長した最大の要因である。特に、家電製品では、パソコン、携帯電話、デジタルカメラ等の家電製品筐体にマグネシウム合金鋳造材が利用されている。しかし、現状の鋳造法による生産法には、鋳造欠陥を補うための後処理が必要であること、歩留りが低いこと、及び部材の強度・剛性に問題があること等の問題が存在する。 Magnesium has the lowest density (= 1.7 g / cm 3 ) among practical structural metal materials, has easy recyclability unique to metal materials, and has abundant resources. It is attracting attention as a lightweight material. Currently, many magnesium products in Japan are manufactured by casting methods such as die casting and thixocasting. The fact that thin molding is possible by these methods is the biggest factor that promoted the industrialization of magnesium alloys. In particular, in household electrical appliances, magnesium alloy castings are used for household electrical appliance casings such as personal computers, mobile phones, and digital cameras. However, the current production methods using casting methods have problems such as the need for post-processing to compensate for casting defects, low yields, and problems with the strength and rigidity of members.

プレス成形は、一般的に歩留まりが高く、成形と同時に高強度・高靭性化を図ることができることから、マグネシウム合金製品の需要拡大の有効な手段と言える。特に、マグネシウム合金製板材から深絞り成形、張り出し成形、及びブロー成形等のプレス成形により成形体を作製する場合、薄肉かつ高強度な成形体を安価なプロセスで作製することができ、家電製品の筐体等、多くの需要が予測できる。しかしながら、プレス成形により作製されたマグネシウム合金製部材が流通した例はまだ少ない。   Press forming is generally an effective means of increasing the demand for magnesium alloy products, since the yield is generally high and high strength and toughness can be achieved simultaneously with forming. In particular, when a molded body is produced from a magnesium alloy plate material by press molding such as deep drawing, stretch molding, and blow molding, a thin and high-strength molded body can be produced by an inexpensive process. Many demands such as housing can be predicted. However, there are still few examples in which magnesium alloy members produced by press molding are distributed.

マグネシウム合金の非底面すべりの臨界分解せん断応力は、常温において他のすべり系と比較して非常に大きく、常温成形性は低い。更に、マグネシウム合金圧延材には、{0001}面が板面に対して平行に配向する集合組織が形成されるため、塑性変形時の板厚方向の歪みが期待できず、常温成形性を妨げる一因となっている。すなわち、上記問題がマグネシウム合金プレス成形体を実用化するための大きな妨げとなっている。   The critical decomposition shear stress of the non-bottom slip of the magnesium alloy is very large compared with other slip systems at room temperature, and the room temperature formability is low. Furthermore, since a texture in which the {0001} plane is oriented parallel to the plate surface is formed in the rolled magnesium alloy material, distortion in the plate thickness direction during plastic deformation cannot be expected, and room temperature formability is hindered. It is a factor. That is, the said problem has become a big hindrance for putting a magnesium alloy press-molded body into practical use.

冷間成形性に乏しいマグネシウム合金をプレス成形する手法としては、温間プレス成形が挙げられる。上記手法は、加工温度、加工速度、及び金型形状等の加工パラメータを制御してマグネシウム合金板材を成形するものであり、マグネシウム合金のすべり系が高温(300℃以上)で増加し、延性が増加することに注目した技術である。この温間プレス成形に関する先行技術としては、具体的には、例えば、マグネシウム薄板の深絞り成形方法(特許文献1参照)、プレス成形性に優れたマグネシウム合金薄板の製造方法(特許文献2参照)、マグネシウム合金製薄肉成形体の製造方法及び薄肉成形体(特許文献3参照)、マグネシウム合金製薄肉成形体の製造方法及び薄肉成形体(特許文献4参照)、マグネシウム合金製薄肉成形体の製造方法及び薄肉成形体(特許文献5参照)、等が挙げられる。   As a method for press-forming a magnesium alloy having poor cold formability, warm press forming may be mentioned. In the above method, a magnesium alloy sheet is formed by controlling processing parameters such as processing temperature, processing speed, and mold shape. The sliding system of the magnesium alloy increases at a high temperature (300 ° C. or higher), and ductility is increased. This is a technology that has been focused on increasing. Specific examples of prior art relating to this warm press forming include, for example, a deep drawing forming method for a magnesium thin plate (see Patent Document 1), and a manufacturing method for a magnesium alloy thin plate having excellent press formability (see Patent Document 2). Manufacturing method and thin-walled molded body of magnesium alloy (see Patent Document 3), Manufacturing method of thin-walled molded body of magnesium alloy and thin-walled molded body (see Patent Document 4), Manufacturing method of thin-walled molded body of magnesium alloy And a thin molded article (see Patent Document 5).

マグネシウム合金をプレス成形する他の手法の一つとしては、超塑性成形が挙げられる。金属材料は、結晶粒を微細化させると超塑性現象が発現する。超塑性変形とは、「多結晶材料の引張り変形において、変形応力が高いひずみ速度依存性を示し、局部収縮を生じることなく数百%以上の巨大伸びを示す現象」を指す。超塑性成形を利用したマグネシウム合金板材の成形方法に関する先行技術としては、例えば、マグネシウム合金部品とその製造方法(特許文献6参照)、マグネシウム部品とその製造方法(特許文献7参照)、マグネシウム素材のスピンドル加工方法及びその装置(特許文献8参照)、マグネシウム合金製板材の深絞り成形方法及びその成形体(特許文献9参照)、が挙げられる。   One of other methods for press-forming a magnesium alloy is superplastic forming. Metallic materials exhibit superplasticity when crystal grains are refined. Superplastic deformation refers to “a phenomenon in which deformation stress shows a high strain rate dependency in tensile deformation of a polycrystalline material and exhibits a huge elongation of several hundred% or more without causing local contraction”. Prior art relating to a method for forming a magnesium alloy sheet using superplastic forming includes, for example, a magnesium alloy part and a manufacturing method thereof (see Patent Document 6), a magnesium part and a manufacturing method thereof (see Patent Document 7), Examples thereof include a spindle machining method and apparatus (see Patent Document 8), a deep drawing method of a magnesium alloy plate material, and a molded body thereof (see Patent Document 9).

マグネシウム合金の温間成形法・超塑性成形法においては、底面すべりと非底面すべりの臨界分解せん断応力が比較し得る大きさとなる成形温度(約250℃以上)で成形を行う必要がある。一方、一般的な油性潤滑剤の引火点は約250℃であり、これ以上の温度では特殊な潤滑剤を利用する必要がある。250℃以上でも使用可能な、グラファイトグリス、2硫化モリブデン等の固体潤滑剤、プレコートタイプ潤滑剤を利用した場合、潤滑剤を除去するための機械的なバレル研磨等の作業を追加する必要があり、このことが高コスト化の一因とされている。   In the magnesium alloy warm forming method and superplastic forming method, it is necessary to perform forming at a forming temperature (about 250 ° C. or higher) at which the critical decomposition shear stress of the bottom surface slip and the non-bottom slip can be compared. On the other hand, the flash point of a general oil-based lubricant is about 250 ° C., and it is necessary to use a special lubricant at a temperature higher than this. When using solid lubricants such as graphite grease and molybdenum disulfide that can be used at 250 ° C or higher, and pre-coat type lubricants, it is necessary to add work such as mechanical barrel polishing to remove the lubricant. This is considered to be a cause of high cost.

前述の通り、マグネシウム合金圧延材には、{0001}面が板面に対して平行に配向する集合組織が形成されるため、鋼板、アルミニウム合金板と比較して冷間成形性が著しく劣る。一方、板厚方向にせん断変形を付与しつつ圧延を行う異周速圧延法(非特許文献1参照)、クロス圧延法(特許文献10参照)を利用すると、{0001}面の集合組織形成が抑制された圧延材が創製可能であり、それらの手法により作製された圧延材の成形性は、通常の圧延材より優れることが報告されている。   As described above, the magnesium alloy rolled material is formed with a texture in which the {0001} plane is oriented parallel to the plate surface, so that the cold formability is remarkably inferior as compared with the steel plate and the aluminum alloy plate. On the other hand, when using the different peripheral speed rolling method (see Non-Patent Document 1) and the cross-rolling method (see Patent Document 10) that perform rolling while applying shear deformation in the plate thickness direction, the texture formation of {0001} planes can be achieved. It has been reported that a suppressed rolled material can be created, and the formability of the rolled material produced by these methods is superior to that of a normal rolled material.

特開平6−55230号公報JP-A-6-55230 特開平6−293944号公報JP-A-6-293944 特開2000−246386号公報JP 2000-246386 A 特開2001−162346号公報JP 2001-162346 A 特開2001−170735号公報JP 2001-170735 A 特開2004−149841号公報JP 2004-149841 A 特開2003−311360号公報JP 2003-31360 A 特開2000−126827号公報JP 2000-1226827 A 特開2004−58111号公報JP 2004-58111 A 特開2004−10959号公報JP 2004-10959 A Y.Chino et al.: Mater.Trans.,Vol.43,pp.2554−2560(2002)Y. Chino et al. : Mater. Trans. , Vol. 43, pp. 2555-2560 (2002)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、金属材料の厚み方向にせん断変形を付与するために新たに提案された大クロス圧延法(特開2004−237351号公報)により作製されたマグネシウム合金圧延材に着目し、一般的な油性潤滑剤を使用して低温成形する新しい技術を開発することを目標として鋭意研究を重ねた結果、特定の組成のマグネシウム合金を用い、特定の熱処理条件、成形条件を選択することにより、油性潤滑剤が十分利用可能な230℃以下でも高い成形性が確保されることを見いだし、更に研究を重ねて、結果的に、230℃以下の低温成形により複雑形状を有するマグネシウム合金プレス成形体を得るための知見を得て、本発明を完成するに至った。本発明は、上記手法によりマグネシウム合金プレス成形体を作製する技術及び該技術により作製されたマグネシウム合金製プレス成形体及び成形製品を提供することを目的とするものである。   Under such circumstances, the present inventors, in view of the above prior art, newly proposed large cross rolling method (Japanese Patent Laid-Open No. 2004-237351) for imparting shear deformation in the thickness direction of the metal material. Focusing on the rolled magnesium alloy material produced by the Gazette), as a result of earnest research with the goal of developing a new technology for low-temperature forming using a general oil-based lubricant, a magnesium alloy with a specific composition By using and selecting specific heat treatment conditions and molding conditions, it has been found that high moldability is ensured even at 230 ° C. or less where the oil-based lubricant can be sufficiently utilized. Knowledge for obtaining a magnesium alloy press-formed body having a complicated shape by the following low-temperature forming was obtained, and the present invention was completed. An object of the present invention is to provide a technique for producing a magnesium alloy press-formed body by the above-described method, and a magnesium alloy press-formed body and a molded product produced by the technique.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)230℃以下の低温成形によるマグネシウム合金製プレス成形体であって、マグネシウム合金大クロス圧延材の温間成形体からなることを特徴とするマグネシウム合金プレス成形体。
(2)上下のロール軸が平面位置で1.5°以上の角度で交差した状態の圧延機による複数回の大クロス圧延に供したマグネシウム合金板材を、試料温度150℃以上230℃以下で温間成形した、前記(1)に記載のマグネシウム合金プレス成形体。
(3)大クロス圧延において、圧延板材のせん断歪が付与される方向を一定又は交互に変えて、複数回の大クロス圧延に供したマグネシウム合金板材を、温間成形した、前記(1)に記載のマグネシウム合金プレス成形体。
(4)添加合金元素の一部として、アルミニウムを1.0〜7.0mass%、亜鉛を0.5〜2.5mass%、マンガンを0.1〜0.8mass%含むマグネシウム合金を利用する、前記(1)に記載のマグネシウム合金プレス成形体。
(5)添加元素の一部として、亜鉛を0.5〜5.0mass%、ジルコニウムを0.1〜1.5mass%含むマグネシウム合金を利用する、前記(1)に記載のマグネシウム合金プレス成形体。
(6)添加元素の一部として、マンガンを0.5〜3mass%含むマグネシウム合金を利用する、前記(1)に記載のマグネシウム合金プレス成形体。
(7)大クロス圧延後に、300〜450℃で10分以上焼鈍を行った板材を利用する、前記(1)に記載のマグネシウム合金プレス成形体。
(8)組織の一部が10μm以下の結晶粒により構成される、前記(1)に記載のマグネシウム合金プレス成形体。
(9)成形前の大クロス圧延材もしくは成形後のプレス成形体の一部が150℃以上230℃以下の温度でエリクセン試験に供した際に、いずれかの試験温度にて12以上のエリクセン値を取る、前記(1)に記載のマグネシウム合金プレス成形体。
(10)230℃以下の低温成形によるマグネシウム合金製プレス成形体を製造する方法であって、マグネシウム合金大クロス圧延材を試料温度150℃以上230℃以下で温間成形することを特徴とするマグネシウム合金プレス成形体の製造方法。
(11)前記(1)から(9)のいずれかに記載のマグネシウム合金プレス成形体からなることを特徴とするマグネシウム合金成形製品。
The present invention for solving the above-described problems comprises the following technical means.
(1) A magnesium alloy press-molded body formed by a low-temperature molding at 230 ° C. or less, which is a warm molded body of a magnesium alloy large cross-rolled material.
(2) A magnesium alloy sheet material subjected to multiple large cross rollings with a rolling mill in which the upper and lower roll axes intersect at an angle of 1.5 ° or more at a planar position is heated at a sample temperature of 150 ° C. or more and 230 ° C. or less. The magnesium alloy press-molded body according to (1), which is formed by hot forming.
(3) In the large cross rolling, the direction in which the shear strain of the rolled sheet material is applied is changed constant or alternately, and the magnesium alloy sheet material subjected to multiple large cross rollings is warm-formed, in the above (1) The magnesium alloy press-molded body described.
(4) A magnesium alloy containing 1.0 to 7.0 mass% aluminum, 0.5 to 2.5 mass% zinc, and 0.1 to 0.8 mass% manganese is used as a part of the additive alloy element. The magnesium alloy press-molded body according to (1) above.
(5) The magnesium alloy press-molded body according to (1), wherein a magnesium alloy containing 0.5 to 5.0 mass% zinc and 0.1 to 1.5 mass% zirconium is used as a part of the additive element. .
(6) The magnesium alloy press-molded body according to (1), wherein a magnesium alloy containing 0.5 to 3 mass% of manganese is used as a part of the additive element.
(7) The magnesium alloy press-formed body according to (1) above, which utilizes a plate material that has been annealed at 300 to 450 ° C. for 10 minutes or more after large cross rolling.
(8) The magnesium alloy press-molded body according to (1), wherein a part of the structure is composed of crystal grains of 10 μm or less.
(9) When a large cross-rolled material before forming or a part of a press-formed product after forming is subjected to an Erichsen test at a temperature of 150 ° C. or higher and 230 ° C. or lower, an Eriksen value of 12 or higher at any test temperature The magnesium alloy press-molded body according to (1) above.
(10) A method for producing a magnesium alloy press-formed body by low-temperature forming at 230 ° C. or lower, wherein the magnesium alloy large cross-rolled material is warm-formed at a sample temperature of 150 ° C. or higher and 230 ° C. or lower. A method for producing an alloy press-formed body.
(11) A magnesium alloy molded product comprising the magnesium alloy press-molded body according to any one of (1) to (9).

次に、本発明について更に詳細に説明する。
本発明は、230℃以下の低温成形によるマグネシウム合金製プレス成形体であって、マグネシウム合金大クロス圧延材の温間成形体からなることを特徴とするマグネシウム合金プレス成形体の点、上下のロール軸が平面位置で1.5°以上の角度で交差した状態の圧延機による複数回の大クロス圧延に供したマグネシウム合金板材を、試料温度150℃以上230℃以下で温間成形した、前記のマグネシウム合金プレス成形体の点、230℃以下の低温成形によるマグネシウム合金製プレス成形体を製造する方法であって、マグネシウム合金大クロス圧延材を試料温度150℃以上230℃以下で温間成形することを特徴とするマグネシウム合金プレス成形体の製造方法の点、及び上記マグネシウム合金プレス成形体からなるマグネシウム合金成形製品の点、に特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention relates to a magnesium alloy press-molded body by low-temperature molding at 230 ° C. or lower, comprising a warm molded body of a magnesium alloy large cross-rolled material. Magnesium alloy sheet material subjected to multiple large cross rollings by a rolling mill in a state where the axes intersect at an angle of 1.5 ° or more at a planar position was warm-formed at a sample temperature of 150 ° C. or more and 230 ° C. or less, A method of manufacturing a magnesium alloy press-molded body by low-temperature molding of 230 ° C or lower, in terms of magnesium alloy press-molded body, and warm-molding a magnesium alloy large cross-rolled material at a sample temperature of 150 ° C or higher and 230 ° C or lower Of magnesium alloy press-molded body characterized by the above, and magnesium comprising the magnesium alloy press-molded body Point of gold molded product, and it has the characteristics to.

本発明者らは、油性潤滑剤が利用可能な230℃以下の成形温度においてマグネシウム合金板材を成形するための手段として、大クロス圧延に注目した。大クロス圧延とは、図1に示す様に、上下の圧延ロールをクロスさせた状態で圧延を実施する手法であり、圧延毎に試料の圧延方向を回転させるクロス圧延法(特開2004−10959号公報)とは異なるものである。クロス角1.5°未満の大クロス圧延に関しては、鋼板の板圧分布の制御、いわゆるエッジドロップ制御の有効な手段として比較的古くから利用されている(例えば、森本和夫:塑性と加工、Vol.417,pp.1122−1127(1995))。   The present inventors paid attention to large cross rolling as a means for forming a magnesium alloy sheet at a forming temperature of 230 ° C. or less at which an oil-based lubricant can be used. As shown in FIG. 1, large cross rolling is a technique in which rolling is performed in a state where upper and lower rolling rolls are crossed, and a cross rolling method in which the rolling direction of a sample is rotated for each rolling (JP 2004-10959 A). No.). For large cross rolling with a cross angle of less than 1.5 °, it has been used for a long time as an effective means of controlling the sheet pressure distribution of steel sheets, so-called edge drop control (for example, Kazuo Morimoto: Plasticity and processing, Vol. 417, pp. 1122-1127 (1995)).

近年、大クロス圧延のクロス角を1.5度以上(好ましくは3°以上)に設定することにより、材料の集合組織形成(面内異方性)を抑制し、優れた成形性を有する圧延材が作製可能であることが見いだされている(特開2004−237351号公報)。なお、図1に示す通り、大クロス圧延には、試料の圧延毎の圧延方向を一定とする方法と、圧延毎に試料の圧延方向を180°回転させる方法がある。ここでは、前者を一方向大クロス圧延、後者を交互大クロス圧延と呼ぶ。   In recent years, by setting the cross angle of large cross rolling to 1.5 degrees or more (preferably 3 degrees or more), the formation of texture of the material (in-plane anisotropy) is suppressed, and rolling with excellent formability It has been found that materials can be produced (Japanese Patent Laid-Open No. 2004-237351). As shown in FIG. 1, large cross rolling includes a method in which the rolling direction for each rolling of the sample is constant and a method in which the rolling direction of the sample is rotated 180 ° for each rolling. Here, the former is called unidirectional large cross rolling, and the latter is called alternating large cross rolling.

大クロス圧延法により金属圧延材の成形性が向上する理由としては、圧延と同時に圧延材にせん断変形が付与されることが挙げられる。金属板材をクロス圧延に供した場合、圧下と同時にスラスト力と呼ばれる圧延ロールの軸方向に沿った応力がマグネシウム板材に印加される(図1参照)。すなわち、上下ロールより異なる方向のスラスト力を受ける圧延材には、せん断変形が付与されることになる。一般的に、圧延集合組織は、試料の圧下時に形成されるものであり、せん断変形の付与は圧下に伴う集合組織形成を抑制する役割を果たす。結果として、異方性の少ない圧延材を作製することが可能である。本圧延法をマグネシウム合金の圧延に適用すると、圧延方向に平行に配向する{0001}面の集積を抑制し、マグネシウム合金板材の成形性を改善させることが可能である。   The reason why the formability of the rolled metal material is improved by the large cross rolling method is that shear deformation is imparted to the rolled material simultaneously with rolling. When the metal plate is subjected to cross rolling, stress along the axial direction of the rolling roll called thrust force is applied to the magnesium plate simultaneously with the reduction (see FIG. 1). That is, shear deformation is imparted to the rolled material that receives a thrust force in a different direction from the upper and lower rolls. Generally, a rolling texture is formed when a sample is reduced, and the application of shear deformation plays a role of suppressing the formation of a texture accompanying the reduction. As a result, it is possible to produce a rolled material with little anisotropy. When this rolling method is applied to the rolling of a magnesium alloy, it is possible to suppress the accumulation of {0001} planes oriented parallel to the rolling direction and improve the formability of the magnesium alloy sheet.

一方、ある一定以上の塑性加工をマグネシウム合金製板材に加えると、加工と同時に結晶粒が微細化されるという知見が導出されている(特開2004−058111号公報)。この現象は、金属組織の動的再結晶を誘起した結果である。動的再結晶とは、加工中に粒界近傍の転位群が転位の回復過程において再配列を起こす現象を指し、マクロ的には変形とともに結晶粒界の移動が起こり、結晶粒は微細化する現象を指す。大クロス圧延によりマグネシウム合金を圧延すると、圧延と同時に板材にせん断変形を加えることができ、通常圧延よりも多くの歪みを試料に印加することができ、効果的にマグネシウム合金圧延材の結晶粒を微細化することが可能である。   On the other hand, the knowledge that crystal grains are refined simultaneously with the processing when a certain level or more of plastic processing is added to the magnesium alloy sheet has been derived (Japanese Patent Laid-Open No. 2004-058111). This phenomenon is a result of inducing dynamic recrystallization of the metal structure. Dynamic recrystallization refers to a phenomenon in which dislocation groups near grain boundaries undergo rearrangement during the process of recovery of dislocations during processing. Macroscopically, grain boundaries move with deformation, and crystal grains become finer. Refers to the phenomenon. When a magnesium alloy is rolled by large cross rolling, shear deformation can be applied to the plate material simultaneously with the rolling, and more strain can be applied to the sample than in normal rolling. It can be miniaturized.

マグネシウム合金の主な変形機構の一つに粒界すべりが挙げられ、粒界拡散係数の高いマグネシウムは、常温でも粒界滑りにより材料が変形すると言われている(J.Koike et al.:Mater.Trans.,Vol.44,445−451(2003))。粒界滑りによる変形は、結晶が微細である程発現し易く、結晶粒を効果的に微細にできる大クロス圧延法をマグネシウム合金に適用することは、プレス成形体の延性を確保する上で重要な要素となる。   One of the main deformation mechanisms of a magnesium alloy is grain boundary sliding. Magnesium having a high grain boundary diffusion coefficient is said to be deformed by grain boundary sliding even at room temperature (J. Koike et al .: Mater). Trans., Vol. 44, 445-451 (2003)). Deformation due to grain boundary sliding is more likely to occur as the crystal is finer, and it is important to apply the large cross rolling method that can effectively make the crystal grain finer to the magnesium alloy to ensure the ductility of the press-formed body. It becomes an element.

HCP構造を有するマグネシウム合金は、FCC構造を有するアルミニウム合金等と比較して、0.2%耐力の結晶粒径依存性が強く、結晶粒を微細化させることにより効果的に成形体の強度を向上できる。それゆえに、マグネシウム合金に大クロス圧延法を適用することにより、マグネシウム合金圧延材の高強度化が可能であり、結果として高強度マグネシウム合金製プレス成形体を作製することも可能である。具体的には10μm以下の結晶粒径を有することにより、延性(成形性)を確保した上で、高強度マグネシウム合金プレス成形体を作製することが可能である。   Magnesium alloys having an HCP structure have a 0.2% proof stress, which is more dependent on crystal grain size than aluminum alloys having an FCC structure. It can be improved. Therefore, by applying the large cross rolling method to the magnesium alloy, it is possible to increase the strength of the magnesium alloy rolled material, and as a result, it is possible to produce a press-molded body made of a high strength magnesium alloy. Specifically, by having a crystal grain size of 10 μm or less, it is possible to produce a high-strength magnesium alloy press-formed body while ensuring ductility (formability).

パソコン・PDAの上蓋等を深絞り成形により作製する場合、少なくとも限界深絞り比(LDR、最大ブランク直径とポンチ直径の比)=1.5以上の特性が必要と考えられる。大クロス圧延により作製されたマグネシウム合金圧延材を利用すると、150℃以上の加工温度で成形試験を行うことにより、LDR=1.5以上の成形が可能であることが後記する実施例により明らかになっている。そのため、油性潤滑剤を利用しつつ、必要な成形を達成するためには、成形温度を150〜230℃に設定する必要がある。   When a personal computer / PDA top cover or the like is manufactured by deep drawing, it is considered that at least a critical deep drawing ratio (LDR, ratio of maximum blank diameter to punch diameter) = 1.5 or more is necessary. By using a magnesium alloy rolled material produced by large cross rolling, it is apparent from the example described later that LDR = 1.5 or more can be formed by performing a forming test at a processing temperature of 150 ° C. or higher. It has become. Therefore, in order to achieve the required molding while using an oil-based lubricant, the molding temperature needs to be set to 150 to 230 ° C.

大クロス圧延材のプレス成形中の延性を確保するために、また、成形中の結晶粒の成長を抑制して微細結晶を得るために、更には、成形後のマグネシウム合金板材の強度、腐食特性を保証するためには、マグネシウム合金の組成を規程する必要がある。具体的には、添加合金元素の一部として、アルミニウムを1.0〜7.0mass%、亜鉛を0.5〜2.5mass%、マンガンを0.1〜0.8mass%を添加した合金(商用合金としてはAZ31、AZ61が該当)が挙げられる。   In order to ensure ductility during press forming of large cross-rolled materials, to obtain fine crystals by suppressing the growth of crystal grains during forming, and further, strength and corrosion characteristics of the magnesium alloy sheet material after forming In order to guarantee the above, it is necessary to regulate the composition of the magnesium alloy. Specifically, an alloy in which 1.0 to 7.0 mass% of aluminum, 0.5 to 2.5 mass% of zinc, and 0.1 to 0.8 mass% of manganese are added as a part of the additive alloy elements ( Commercial alloys include AZ31 and AZ61).

また、添加元素の一部として、亜鉛を0.5〜5.0mass%、ジルコニウムを0.1〜1.5mass%含むマグネシウム合金(商用合金としてはZK40、ZK21が該当)、添加元素の一部として、マンガンを0.5〜3mass%含むマグネシウム合金(商用合金としてはM1が該当)を利用しても、成形性を確保した上で強度特性に優れたマグネシウム合金プレス成形体を作製することが可能である。   Further, as part of the additive element, a magnesium alloy containing 0.5 to 5.0 mass% zinc and 0.1 to 1.5 mass% zirconium (commercial alloys include ZK40 and ZK21), part of the additive element As described above, even if a magnesium alloy containing 0.5 to 3 mass% of manganese (M1 is applicable as a commercial alloy) is used, it is possible to produce a magnesium alloy press-molded body having excellent strength characteristics while ensuring formability. Is possible.

アルミニウムを1mass%以上添加すると、マグネシウム合金の固溶強化が期待できる。また、3mass%以上アルミニウムを添加すると材料の腐食特性が著しく向上する。一方、7.0mass%以上アルミニウム添加をすると、成形後のマグネシウム合金の延性を著しく劣化させてしまう。そのため、アルミニウムを添加する時は添加量を1.0mass%以上7.0mass%以内とすることが望ましい。   When aluminum is added in an amount of 1 mass% or more, solid solution strengthening of the magnesium alloy can be expected. Further, when aluminum is added in an amount of 3 mass% or more, the corrosion characteristics of the material are remarkably improved. On the other hand, if aluminum is added in an amount of 7.0 mass% or more, the ductility of the magnesium alloy after forming is significantly deteriorated. Therefore, when adding aluminum, it is desirable that the addition amount be 1.0 mass% or more and 7.0 mass% or less.

亜鉛の添加は、再生材の強度を保持するために必要である。一方、5.0mass%以上の亜鉛の添加は腐食特性を低下させることがあり、避けるべきである。マンガンは、耐食性を低下させる不純物元素である鉄の影響を緩和することができ、上記の範囲内で添加することにより、その効果を最も発揮することができる。   The addition of zinc is necessary to maintain the strength of the recycled material. On the other hand, addition of zinc at 5.0 mass% or more may deteriorate the corrosion characteristics and should be avoided. Manganese can alleviate the influence of iron, which is an impurity element that lowers the corrosion resistance, and by adding within the above range, the effect can be most exerted.

マンガンの添加は、マグネシウム合金板材の結晶粒径を制御する上で不可欠である。マンガンを適量添加しないと、圧延時もしくはプレス成形時に粒成長が起こり、材料延性・強度に悪影響を及ぼす。具体的には、マンガンを0.1mass%以上添加することが望まれる。一方、マンガンを3.0mass%以上添加すると、粗大なマンガン・アルミニウムによる金属間化合物が材料内部に形成され、材料の延性・強度を劣化させる原因となる。   The addition of manganese is indispensable for controlling the crystal grain size of the magnesium alloy sheet. If an appropriate amount of manganese is not added, grain growth occurs during rolling or press forming, which adversely affects material ductility and strength. Specifically, it is desirable to add 0.1 mass% or more of manganese. On the other hand, when 3.0 mass% or more of manganese is added, a coarse intermetallic compound of manganese / aluminum is formed inside the material, causing deterioration of the ductility / strength of the material.

大クロス圧延中に起きる圧延材の加工硬化の影響をなくすために、プレス成形前に圧延材の熱処理(完全焼き鈍し)を行うことが望ましい。具体的には300〜450℃にて10分以上の熱処理に供した後にプレス成形に供することが望ましい。450℃以上に熱処理温度を設定すると、静的再結晶により結晶粒の異常粒成長が起こる恐れがあるため留意すべきである。   In order to eliminate the influence of work hardening of the rolled material that occurs during large cross rolling, it is desirable to perform a heat treatment (complete annealing) of the rolled material before press forming. Specifically, it is desirable to subject to press molding after being subjected to heat treatment at 300 to 450 ° C. for 10 minutes or more. It should be noted that when the heat treatment temperature is set to 450 ° C. or higher, abnormal grain growth of crystal grains may occur due to static recrystallization.

従来のマグネシウム合金成形法では、底面すべりと非底面すべりの臨界分解せん断応力が比較し得る大きさとなる成形温度(約250℃以上)で成形を行う必要があるが、一方、一般的な油性潤滑剤の引火点約250℃であり、特殊な潤滑剤を利用する必要がある。250℃以上でも使用可能な固体潤滑材を利用した場合、バレル研磨等の追加作業が必要である。これに対して、本発明は、大クロス圧延に供したマグネシウム合金板材を温間成形することにより、試料温度150℃以上230℃以下での低温成形によるマグネシウム合金プレス成形体の作製を可能にするものであり、本発明は、低温(150℃以上230℃以下)での成形を達成したマグネシウム合金製プレス成形体を提供することを可能とするものである。   In the conventional magnesium alloy molding method, it is necessary to perform molding at a molding temperature (approximately 250 ° C. or higher) at which the critical decomposition shear stress of the bottom and non-bottom slips can be compared. The flash point of the agent is about 250 ° C., and it is necessary to use a special lubricant. When a solid lubricant that can be used at 250 ° C. or higher is used, additional work such as barrel polishing is required. On the other hand, the present invention makes it possible to produce a magnesium alloy press-formed body by low-temperature forming at a sample temperature of 150 ° C. or higher and 230 ° C. or lower by warm-forming a magnesium alloy sheet subjected to large cross rolling. Therefore, the present invention makes it possible to provide a magnesium alloy press-molded body that achieves molding at a low temperature (150 ° C. or higher and 230 ° C. or lower).

本発明のマグネシウム合金プレス成形体の特性は、成形温度域におけるエリクセン値が何れかの成形温度において12以上の値をとること、組織の一部の結晶が10μm以下の微細結晶であること、限界深絞り比(LDR)は1.5以上であること、圧延方向に平行に配向する{0001}面の集積が、公知の圧延材よりも弱まっていることである。   The characteristics of the magnesium alloy press-molded body of the present invention are that the Erichsen value in the molding temperature range is 12 or more at any molding temperature, that some crystals of the structure are fine crystals of 10 μm or less, The deep drawing ratio (LDR) is 1.5 or more, and the accumulation of {0001} planes oriented parallel to the rolling direction is weaker than that of a known rolled material.

本発明により、次のような効果が奏される。
(1)本発明のマグネシウム合金大クロス圧延材によるプレス成形体は、大クロス圧延に供したマグネシウム合金を、特定の組成、熱処理条件、成形条件に供することにより作製されるものであり、油性潤滑剤が利用可能な温度域でも成形することを可能としたものである。
(2)複雑形状を有するプレス成形体を作製し、提供することができる。
(3)組織の一部が10μm以下の微細結晶粒により構成されるマグネシウム合金プレス成形体を作製することができる。結果的に、微細結晶を有する高強度プレス成形製品を提供することができる。
(4)高い限界深絞り比(LDR)と高いエリクセン値を示し、高い成形性を有する大クロス圧延材を用いたプレス成形製品を提供することができる。
The following effects are exhibited by the present invention.
(1) A press-formed body made of a magnesium alloy large cloth rolled material according to the present invention is produced by subjecting a magnesium alloy subjected to large cloth rolling to a specific composition, heat treatment conditions, and molding conditions. It is possible to mold even in a temperature range where the agent can be used.
(2) A press-formed body having a complicated shape can be produced and provided.
(3) A magnesium alloy press-molded body in which a part of the structure is composed of fine crystal grains of 10 μm or less can be produced. As a result, a high-strength press-molded product having fine crystals can be provided.
(4) It is possible to provide a press-formed product using a large cross-rolled material having a high limit deep drawing ratio (LDR) and a high Erichsen value and having high formability.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

400℃(24時間)の予備熱処理を経たAZ31Bマグネシウム合金(Mg−3mass%Al−1mass%Zn−0.5mass%Mn)を供試材として利用した。機械加工により50mm×60mm×6mmに切り出した供試材を、クロス角7.5°の大クロス圧延に供し、厚み1mmの圧延材を作製した。圧延時の試料温度は400℃、ロール温度は常温である。なお、圧延毎の試料の加熱時間は20分とした。圧延毎の圧下率は20%とし、試料の圧延方向が常に一定である圧延材(一方向大クロス圧延材)と試料の圧延方向を圧延毎に180°回転する圧延材(交互大クロス圧延材)を作製した。比較材として、クロス角0°の通常圧延材(一方向通常圧延材及び交互通常圧延材)も作製し、比較例として利用した。   An AZ31B magnesium alloy (Mg-3 mass% Al-1 mass% Zn-0.5 mass% Mn) that had undergone a pre-heat treatment at 400 ° C. (24 hours) was used as a test material. The test material cut out by machining to 50 mm × 60 mm × 6 mm was subjected to large cross rolling with a cross angle of 7.5 ° to produce a rolled material having a thickness of 1 mm. The sample temperature during rolling is 400 ° C., and the roll temperature is room temperature. The heating time of the sample for each rolling was 20 minutes. The rolling reduction for each rolling is 20%, the rolled material (unidirectional large cross rolled material) in which the rolling direction of the sample is always constant, and the rolled material (alternate large cross rolled material) that rotates the rolling direction of the sample 180 ° for each rolling. ) Was produced. As a comparative material, a normal rolled material having a cross angle of 0 ° (unidirectional normal rolled material and alternating normal rolled material) was also produced and used as a comparative example.

成形前に400℃(30min)の条件でマグネシウム合金板材の熱処理を実施した。熱処理後の圧延材(0001)面集合組織をSchulzの反射法により測定した。圧延材の結晶粒径と集合組織を図2に示す。集合組織の測定は、圧延面から0.5mm切削した面で実施した。いずれの集合組織も(0001)面が圧延面と平行に揃う集合組織を呈しているものの、一方向クロス圧延材、交互クロス圧延材の(0001)面の最大値は一方向通常圧延材、交互通常圧延材よりも低くなっており、集合組織形成が抑制されていることが確認された。また、一方向クロス圧延材、交互クロス圧延材の結晶粒径は、一方向通常圧延材、交互通常圧延材よりも低い値を取った。   The magnesium alloy sheet was heat-treated at 400 ° C. (30 min) before forming. The rolled material (0001) surface texture after heat treatment was measured by the Schulz reflection method. The crystal grain size and texture of the rolled material are shown in FIG. The texture was measured on a surface cut 0.5 mm from the rolled surface. Although all textures have a texture where the (0001) plane is aligned parallel to the rolling surface, the maximum value of the (0001) surface of the unidirectional cross rolled material and the alternating cross rolled material is the unidirectional normal rolled material, alternating It was lower than that of the normal rolled material, and it was confirmed that texture formation was suppressed. Moreover, the grain size of the unidirectional cross-rolled material and the alternating cross-rolled material was lower than that of the unidirectional normal-rolled material and the alternating normal-rolled material.

大クロス圧延材のプレス成形体を作製するために、深絞り成形を実施した。ここでは、φ50mm〜66mm(厚み1mm)のブランクを対象として、φ33mmのポンチにて、試料温度140〜200℃の温間深絞りを行った。試験材は、一方向クロス圧延材と一方向通常圧延材とした。なお、ポンチ肩半径は3mm、ダイス穴径は34.9mm、ダイス肩半径は3mmとした。成形速度は6mm/minとし、しわ押さえ力は4kNとした。潤滑剤にはグラファイトグリスを利用した。   In order to produce a press-formed body of a large cross-rolled material, deep drawing was performed. Here, for a blank having a diameter of 50 mm to 66 mm (thickness 1 mm), warm deep drawing was performed at a sample temperature of 140 to 200 ° C. with a punch having a diameter of 33 mm. The test material was a unidirectional cross rolled material and a unidirectional normal rolled material. The punch shoulder radius was 3 mm, the die hole diameter was 34.9 mm, and the die shoulder radius was 3 mm. The molding speed was 6 mm / min, and the wrinkle pressing force was 4 kN. Graphite grease was used as the lubricant.

試験結果を表1に示す。表1は、各種AZ31Bマグネシウム合金圧延材の温間深絞り試験の結果を示した表であり、一方向大クロス圧延材が一方向通常圧延材よりも高い限界深絞り比(LDR)を取ることを示した表である。通常圧延材は、150℃において、いずれのブランクも成形ができずLDRが算出されなかった。150℃での大クロス圧延材のLDRは1.5であった。160℃、200℃においても、大クロス圧延材のLDRは、通常圧延材のそれよりも高い値を取り、大クロス圧延材を利用することにより、複雑形状を有するプレス成形体が作製できることが示唆された。   The test results are shown in Table 1. Table 1 is a table showing the results of a warm deep drawing test of various AZ31B magnesium alloy rolled materials, in which a unidirectional large cross-rolled material takes a higher limit deep drawing ratio (LDR) than a unidirectional normal rolled material. It is the table | surface which showed. In general, the rolled material could not be formed into any blank at 150 ° C., and LDR was not calculated. The LDR of the large cross-rolled material at 150 ° C. was 1.5. Even at 160 ° C. and 200 ° C., the LDR of the large cross-rolled material is higher than that of the normal rolled material, and it is suggested that a press-formed body having a complicated shape can be produced by using the large cross-rolled material. It was done.

大クロス圧延材のプレス成形体を作製するために、エリクセン試験による張り出し成形を実施した。エリクセン試験はJIS Z2247,JIS B7729に準拠する。ここでは、温間成形性を評価するために試験片及び金型の温度を160〜220℃に保持してエリクセン試験を実施した。ブランク形状は、圧延材形状の都合上φ60mm(厚み1mm)とし、一方向大クロス圧延材、一方向通常圧延材、交互大クロス圧延材、交互通常圧延材の成形体を作製した。成形速度は5mm/minとし、しわ押さえ力は10kNとした。潤滑剤にはグラファイトグリスを利用した。   In order to produce a press-formed body of a large cross-rolled material, stretch forming by an Erichsen test was performed. The Eriksen test conforms to JIS Z2247 and JIS B7729. Here, in order to evaluate the warm formability, the Erichsen test was carried out while maintaining the temperature of the test piece and the mold at 160 to 220 ° C. The blank shape was set to φ60 mm (thickness 1 mm) for the convenience of the rolled material shape, and a molded body of a unidirectional large cross rolled material, a unidirectional normal rolled material, an alternating large cross rolled material, and an alternating normal rolled material was produced. The molding speed was 5 mm / min, and the wrinkle pressing force was 10 kN. Graphite grease was used as the lubricant.

エリクセン試験の結果を表2にまとめて示す。表2は、各種AZ31Bマグネシウム合金圧延材の温間エリクセン試験の結果を示した表であり、一方向大クロス圧延材が一方向通常圧延材よりも高いエリクセン値及び小さい結晶粒径を取ることを示した表であり、交互大クロス圧延材が交互通常圧延材よりも高いエリクセン値及び小さい結晶粒径を取ることを示した表である。エリクセン値とは、張り出し成形体の破断時の高さ(mm)を示す。いずれの試験温度においても、一方向大クロス圧延材の方が、一方向通常圧延材よりも高い値を取り、交互大クロス圧延材の方が交互通常圧延材よりも高いエリクセン値を取った。なお、全体的に、交互圧延材の方が、一方向圧延材よりも高いエリクセン値を取った。特に、温度220℃での一方向大クロス圧延材及び交互大クロス圧延材のエリクセン値は、それぞれ14.4、15.6であり、高いエリクセン値を示し、一方向通常圧延材及び交互通常圧延材よりも60%以上高い成形性を示した。   The results of the Eriksen test are summarized in Table 2. Table 2 is a table showing the results of the warm Erichsen test of various AZ31B magnesium alloy rolled materials, and that the unidirectional large cross-rolled material takes a higher Erichsen value and a smaller crystal grain size than the unidirectional normal rolled material. It is the table | surface which was shown, and is a table | surface which showed that an alternating large cross-rolled material takes a higher Erichsen value and a small crystal grain size than an alternating normal rolling material. The Erichsen value indicates the height (mm) at the time of fracture of the overhang molded article. At any test temperature, the unidirectional large cross-rolled material has a higher value than the unidirectional normal rolled material, and the alternating large cross-rolled material has a higher Erichsen value than the alternating normal rolled material. In addition, as a whole, the alternately rolled material has a higher Erichsen value than the unidirectionally rolled material. In particular, the Erichsen values of the unidirectional large cross-rolled material and the alternating large cross-rolled material at a temperature of 220 ° C. are 14.4 and 15.6, respectively, indicating high Erichsen values. The moldability was 60% higher than that of the material.

右欄に記載した結晶粒径は、エリクセン試験後の成形体最上部の組織を観察した結果である。大クロス圧延に供した成形体の結晶粒径は、いずれも9μm未満であった。成形前よりも結晶が微細になった原因としては、成形中に動的再結晶が起こり、結晶粒が微細化されたためと推測される。   The crystal grain size described in the right column is the result of observing the structure of the uppermost part of the compact after the Erichsen test. The crystal grain sizes of the compacts subjected to large cross rolling were all less than 9 μm. The reason why the crystal became finer than before molding is presumed to be that dynamic recrystallization occurred during molding and the crystal grains were refined.

以上説明したように、本発明は、マグネシウム合金大クロス圧延材によるプレス成形体に係るものであり、本発明は、大クロス圧延に供したマグネシウム合金を、特定の組成、熱処理条件、成形条件で温間成形することで、油性潤滑剤が利用可能な温度域での成形を達成することを可能とするものである。本発明は、デジタルカメラ、ノートパソコン、PDA等、主に家電製品のプレス成形体を中心として積極的に適用することが可能なアルミニウム合金プレス成形体を提供することを実現するものであり、高い技術的意義を有する。   As described above, the present invention relates to a press-formed body made of a magnesium alloy large cloth rolled material, and the present invention relates to a magnesium alloy subjected to large cloth rolling with a specific composition, heat treatment condition, and molding condition. By performing warm molding, it is possible to achieve molding in a temperature range where an oil-based lubricant can be used. The present invention realizes to provide an aluminum alloy press-formed body that can be positively applied mainly to press-formed bodies of home appliances such as digital cameras, notebook computers, PDAs, etc. Has technical significance.

一方向大クロス圧延法(上段)及び交互大クロス圧延法(下段)の模式図を示したものであり、大クロス圧延法を利用した時に圧延材に印加されるスラスト力を示したものである。Schematic diagram of unidirectional large cross rolling method (top) and alternating large cross rolling method (bottom), showing thrust force applied to rolled material when using large cross rolling method . 各種圧延法により作製したAZ31Bマグネシウム合金の(0001)面集合組織と結晶粒径を示したものであり、左上は一方向大クロス圧延法による圧延材を、右上は一方向通常圧延法による圧延材を、左下は交互大クロス圧延法による圧延材を、右下は交互通常圧延材による圧延材を示す。The (0001) plane texture and grain size of AZ31B magnesium alloy produced by various rolling methods are shown. The upper left is a rolled material by a unidirectional large cross rolling method, and the upper right is a rolled material by a unidirectional normal rolling method. The lower left shows a rolled material by an alternating large cross rolling method, and the lower right shows a rolled material by an alternating normal rolled material.

Claims (11)

230℃以下の低温成形によるマグネシウム合金製プレス成形体であって、マグネシウム合金大クロス圧延材の温間成形体からなることを特徴とするマグネシウム合金プレス成形体。   A magnesium alloy press-molded body made of a magnesium alloy large cross-rolled material by low-temperature molding at 230 ° C or lower, characterized in that the magnesium alloy press-molded body. 上下のロール軸が平面位置で1.5°以上の角度で交差した状態の圧延機による複数回の大クロス圧延に供したマグネシウム合金板材を、試料温度150℃以上230℃以下で温間成形した、請求項1に記載のマグネシウム合金プレス成形体。   A magnesium alloy sheet material subjected to multiple large cross rollings by a rolling mill in which the upper and lower roll axes intersect at an angle of 1.5 ° or more at a planar position was warm-formed at a sample temperature of 150 ° C. or higher and 230 ° C. or lower. The magnesium alloy press-formed body according to claim 1. 大クロス圧延において、圧延板材のせん断歪が付与される方向を一定又は交互に変えて、複数回の大クロス圧延に供したマグネシウム合金板材を、温間成形した、請求項1に記載のマグネシウム合金プレス成形体。   2. The magnesium alloy according to claim 1, wherein, in the large cross rolling, the magnesium alloy plate material subjected to multiple large cross rollings is warm-formed by changing the direction in which the shear strain of the rolled plate material is applied constant or alternately. Press molded body. 添加合金元素の一部として、アルミニウムを1.0〜7.0mass%、亜鉛を0.5〜2.5mass%、マンガンを0.1〜0.8mass%含むマグネシウム合金を利用する、請求項1に記載のマグネシウム合金プレス成形体。   The magnesium alloy containing 1.0 to 7.0 mass% of aluminum, 0.5 to 2.5 mass% of zinc, and 0.1 to 0.8 mass% of manganese is used as a part of the additive alloy element. 2. Magnesium alloy press-formed product according to 1. 添加元素の一部として、亜鉛を0.5〜5.0mass%、ジルコニウムを0.1〜1.5mass%含むマグネシウム合金を利用する、請求項1に記載のマグネシウム合金プレス成形体。   2. The magnesium alloy press-formed body according to claim 1, wherein a magnesium alloy containing 0.5 to 5.0 mass% zinc and 0.1 to 1.5 mass% zirconium is used as a part of the additive element. 添加元素の一部として、マンガンを0.5〜3mass%含むマグネシウム合金を利用する、請求項1に記載のマグネシウム合金プレス成形体。   The magnesium alloy press-formed body according to claim 1, wherein a magnesium alloy containing 0.5 to 3 mass% of manganese is used as a part of the additive element. 大クロス圧延後に、300〜450℃で10分以上焼鈍を行った板材を利用する、請求項1に記載のマグネシウム合金プレス成形体。   The magnesium alloy press-formed body according to claim 1, wherein a plate material that has been annealed at 300 to 450 ° C. for 10 minutes or more after large cross rolling is used. 組織の一部が10μm以下の結晶粒により構成される、請求項1に記載のマグネシウム合金プレス成形体。   The magnesium alloy press-molded body according to claim 1, wherein a part of the structure is composed of crystal grains of 10 µm or less. 成形前の大クロス圧延材もしくは成形後のプレス成形体の一部が150℃以上230℃以下の温度でエリクセン試験に供した際に、いずれかの試験温度にて12以上のエリクセン値を取る、請求項1に記載のマグネシウム合金プレス成形体。   When a large cross-rolled material before forming or a part of a press-formed product after forming is subjected to an Erichsen test at a temperature of 150 ° C. or higher and 230 ° C. or lower, an Erichsen value of 12 or higher is taken at any test temperature. The magnesium alloy press-formed body according to claim 1. 230℃以下の低温成形によるマグネシウム合金製プレス成形体を製造する方法であって、マグネシウム合金大クロス圧延材を試料温度150℃以上230℃以下で温間成形することを特徴とするマグネシウム合金プレス成形体の製造方法。   A method for producing a magnesium alloy press-formed body by low-temperature forming at 230 ° C. or lower, wherein the magnesium alloy large cross-rolled material is warm-formed at a sample temperature of 150 ° C. or higher and 230 ° C. or lower. Body manufacturing method. 請求項1から9のいずれかに記載のマグネシウム合金プレス成形体からなることを特徴とするマグネシウム合金成形製品。   A magnesium alloy molded product comprising the magnesium alloy press-formed product according to any one of claims 1 to 9.
JP2005272589A 2005-09-20 2005-09-20 Press molded body made of magnesium alloy large cross rolled material Expired - Fee Related JP4599594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272589A JP4599594B2 (en) 2005-09-20 2005-09-20 Press molded body made of magnesium alloy large cross rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272589A JP4599594B2 (en) 2005-09-20 2005-09-20 Press molded body made of magnesium alloy large cross rolled material

Publications (2)

Publication Number Publication Date
JP2007083261A true JP2007083261A (en) 2007-04-05
JP4599594B2 JP4599594B2 (en) 2010-12-15

Family

ID=37970773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272589A Expired - Fee Related JP4599594B2 (en) 2005-09-20 2005-09-20 Press molded body made of magnesium alloy large cross rolled material

Country Status (1)

Country Link
JP (1) JP4599594B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
JP2010133005A (en) * 2008-10-28 2010-06-17 National Institute Of Advanced Industrial Science & Technology Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same
JP2010202898A (en) * 2009-02-27 2010-09-16 National Institute Of Advanced Industrial Science & Technology High-strength magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
JP2010202897A (en) * 2009-02-27 2010-09-16 National Institute Of Advanced Industrial Science & Technology Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
WO2010110505A1 (en) * 2009-03-23 2010-09-30 주식회사 지알로이테크놀로지 Magnesium-zinc based alloy materials having excellent high-speed formability at low temperature, and manufacturing method for alloy plate
JP2010236014A (en) * 2009-03-31 2010-10-21 National Institute Of Advanced Industrial Science & Technology Working and heat treatment method and magnesium alloy plate
JP2011184726A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology General-purpose magnesium alloy sheet material exhibiting cold formability equal to that of aluminum alloy and method of producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308055A (en) * 1991-04-03 1992-10-30 Kobe Steel Ltd Rolled al-mg alloy sheet for forming at cryogenic temperature
JPH06293944A (en) * 1993-04-06 1994-10-21 Nippon Steel Corp Production of magnesium alloy sheet excellent in press formability
JP2003311360A (en) * 2002-04-24 2003-11-05 Matsushita Electric Ind Co Ltd Magnesium alloy parts and production method thereof
JP2004010959A (en) * 2002-06-06 2004-01-15 Mitsui Mining & Smelting Co Ltd Property improving method of magnesium sheet and plate,and magnesium alloy sheet and plate
JP2004058111A (en) * 2002-07-30 2004-02-26 National Institute Of Advanced Industrial & Technology Deep drawing method of magnesium alloy plate, and deep-drawn body
JP2004237351A (en) * 2003-02-10 2004-08-26 Mitsubishi Heavy Ind Ltd Rolling method for band material and rolling apparatus
JP2004346351A (en) * 2003-05-20 2004-12-09 Toyo Kohan Co Ltd Method for producing magnesium sheet
JP2004351486A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing magnesium alloy plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308055A (en) * 1991-04-03 1992-10-30 Kobe Steel Ltd Rolled al-mg alloy sheet for forming at cryogenic temperature
JPH06293944A (en) * 1993-04-06 1994-10-21 Nippon Steel Corp Production of magnesium alloy sheet excellent in press formability
JP2003311360A (en) * 2002-04-24 2003-11-05 Matsushita Electric Ind Co Ltd Magnesium alloy parts and production method thereof
JP2004010959A (en) * 2002-06-06 2004-01-15 Mitsui Mining & Smelting Co Ltd Property improving method of magnesium sheet and plate,and magnesium alloy sheet and plate
JP2004058111A (en) * 2002-07-30 2004-02-26 National Institute Of Advanced Industrial & Technology Deep drawing method of magnesium alloy plate, and deep-drawn body
JP2004237351A (en) * 2003-02-10 2004-08-26 Mitsubishi Heavy Ind Ltd Rolling method for band material and rolling apparatus
JP2004346351A (en) * 2003-05-20 2004-12-09 Toyo Kohan Co Ltd Method for producing magnesium sheet
JP2004351486A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing magnesium alloy plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070821A (en) * 2008-09-19 2010-04-02 Osaka Prefecture Univ Magnesium alloy sheet having excellent room temperature formability and method for treating magnesium alloy sheet
JP2010133005A (en) * 2008-10-28 2010-06-17 National Institute Of Advanced Industrial Science & Technology Commercial magnesium alloy sheet material whose cold formability is improved, and method for producing the same
JP2010202898A (en) * 2009-02-27 2010-09-16 National Institute Of Advanced Industrial Science & Technology High-strength magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
JP2010202897A (en) * 2009-02-27 2010-09-16 National Institute Of Advanced Industrial Science & Technology Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
WO2010110505A1 (en) * 2009-03-23 2010-09-30 주식회사 지알로이테크놀로지 Magnesium-zinc based alloy materials having excellent high-speed formability at low temperature, and manufacturing method for alloy plate
JP2010236014A (en) * 2009-03-31 2010-10-21 National Institute Of Advanced Industrial Science & Technology Working and heat treatment method and magnesium alloy plate
JP2011184726A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology General-purpose magnesium alloy sheet material exhibiting cold formability equal to that of aluminum alloy and method of producing the same

Also Published As

Publication number Publication date
JP4599594B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
JP5467294B2 (en) Easy-formable magnesium alloy sheet and method for producing the same
JP4189687B2 (en) Magnesium alloy material
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP4599594B2 (en) Press molded body made of magnesium alloy large cross rolled material
JP4734578B2 (en) Magnesium alloy sheet processing method and magnesium alloy sheet
JP5252363B2 (en) Magnesium alloy press-molded body and method for producing the same
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP5660525B2 (en) General-purpose magnesium alloy sheet that exhibits formability similar to that of aluminum alloy and method for producing the same
JP5590660B2 (en) Magnesium alloy sheet with improved cold formability and in-plane anisotropy and method for producing the same
JP5376507B2 (en) Magnesium alloy sheet having excellent cold formability and method for producing the same
JP2012122102A (en) Magnesium alloy sheet material improved in cold formability and strength, and method for producing the same
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5376508B2 (en) High strength magnesium alloy sheet having excellent cold formability and method for producing the same
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2010229467A (en) Method of producing magnesium alloy thin plate
JP2009256706A (en) Magnesium alloy sheet to be formed and manufacturing method therefor
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
RU2345173C1 (en) Method of producing superductile plates from aluminium alloys of aluminium-magnesium-lithium system
JP2012201928A (en) Magnesium alloy sheet material excellent in cold workability, and method for producing the same
JP2005139495A (en) Aluminum alloy sheet for forming, and its production method
RU2635650C1 (en) Method of thermomechanical processing of high-alloyed pseudo- (titanium alloys alloyed by rare and rare-earth metals
JP2021055168A (en) Magnesium alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees