JP2007080583A - Electrode for secondary battery, and secondary battery - Google Patents

Electrode for secondary battery, and secondary battery Download PDF

Info

Publication number
JP2007080583A
JP2007080583A JP2005264188A JP2005264188A JP2007080583A JP 2007080583 A JP2007080583 A JP 2007080583A JP 2005264188 A JP2005264188 A JP 2005264188A JP 2005264188 A JP2005264188 A JP 2005264188A JP 2007080583 A JP2007080583 A JP 2007080583A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
average particle
limn
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264188A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大澤
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005264188A priority Critical patent/JP2007080583A/en
Publication of JP2007080583A publication Critical patent/JP2007080583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery of a high output without reducing a volume energy density of the battery. <P>SOLUTION: This is an electrode for the secondary battery which contains spinel structure lithium manganate (LiMn<SB>2</SB>O<SB>4</SB>) and a complex oxide LiCovNixMnyMzO<SB>2</SB>expressed by a chemical formula 1 (1) (in the formula, v+x+y+z=1, M is one kind selected from a group composed of Al, Ga, and In, 0≤v≤0.5, 0.3≤x≤1.0, 0≤y≤0.5, and 0≤z≤0.1), and in which the average particle diameter of the complex oxide is smaller than the average particle diameter of the spinel structure lithium manganate (LiMn<SB>2</SB>O<SB>4</SB>), and its manufacturing method, the secondary battery using the electrode, and a vehicle using such a secondary battery are provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池用電極と、二次電池用電極の製造方法、かかる電極を用いた二次電池、かかる二次電池を搭載した車両に関する。   The present invention relates to a secondary battery electrode, a method for manufacturing a secondary battery electrode, a secondary battery using the electrode, and a vehicle equipped with the secondary battery.

二次電池には、自動車に使われる鉛電池のほかに、ニッカド電池、ニッケル水素電池、リチウムイオン電池などの種類がある。   In addition to lead batteries used in automobiles, secondary batteries include nickel-cadmium batteries, nickel-metal hydride batteries, and lithium-ion batteries.

これらのなかで、リチウムイオン二次電池が近年広範に用いられている。リチウムイオン二次電池では、充放電をすることにより、正極と負極との間をリチウムイオンが移動する。かかる二次電池の性能は、通常、エネルギー密度によって示される。リチウムイオン二次電池は、その他の二次電池と比較し、少ない体積で多くの放電エネルギーを確保できるという利点を持っている。   Among these, lithium ion secondary batteries have been widely used in recent years. In a lithium ion secondary battery, lithium ions move between the positive electrode and the negative electrode by charging and discharging. The performance of such secondary batteries is usually indicated by energy density. The lithium ion secondary battery has an advantage that a large volume of discharge energy can be secured with a small volume compared to other secondary batteries.

例えば特許文献1には、正極活物質にリチウムマンガン酸化物を用いることが記載されている。さらに、その粒子径を規制することによって、大電流放電での分極を小さくでき、電極内部へのリチウム拡散も速やかに行われ、留意の安定化に寄与でき、サイクル経過後においても電極の内部の不均一化を抑制することができ、性能低下を小さくできる、ことが記載されている。
特開平11−185821号公報
For example, Patent Document 1 describes using lithium manganese oxide as a positive electrode active material. Furthermore, by regulating the particle size, the polarization in a large current discharge can be reduced, the lithium diffusion into the electrode can be performed quickly, contributing to stabilization of attention, and even after the cycle has passed, It is described that non-uniformity can be suppressed and performance degradation can be reduced.
Japanese Patent Laid-Open No. 11-185821

電池の体積出力密度を向上させるために、電極活物質の平均粒子径を小さくすると、電池の体積エネルギーが低下してしまうという問題点があった。   If the average particle diameter of the electrode active material is reduced in order to improve the volume output density of the battery, there is a problem in that the volume energy of the battery decreases.

そこで、本発明の目的は、体積エネルギー密度を落とさずに高出力の二次電池用電極を提供することにある。   Accordingly, an object of the present invention is to provide an electrode for a secondary battery having a high output without reducing the volume energy density.

また本発明の目的は、かかる二次電池用電極を用いて高出力かつ高エネルギーの二次電池を提供することにある。   Another object of the present invention is to provide a secondary battery having a high output and high energy using such a secondary battery electrode.

さらに本発明の目的は、体積エネルギー密度を落とさずに高出力の二次電池用電極の製造方法を提供することにある。   Furthermore, the objective of this invention is providing the manufacturing method of the electrode for secondary batteries of a high output, without reducing volume energy density.

また本発明の目的は、前記二次電池を用いた車両を提供することにある。   Another object of the present invention is to provide a vehicle using the secondary battery.

本発明は、電極活物質としてスピネル構造マンガン酸リチウム(LiMn)と、化学式1で示される複合酸化物
LiCovNixMnyMzO (1)
(ただし、式中、v+x+y+z=1で、MはAl、Ga、およびInよりなる群から選ばれた少なくとも1種であり、0≦v≦0.5、0.3≦x<1、0≦y≦0.5、0≦z≦0.1である。)とを含み、該複合酸化物の平均粒子径が該スピネル構造マンガン酸リチウム(LiMn)の平均粒子径よりも小さいことを特徴とする二次電池用電極、に関する。
The present invention relates to a spinel structure lithium manganate (LiMn 2 O 4 ) as an electrode active material and a composite oxide LiCovNixMnyMzO 2 (1) represented by the chemical formula 1.
(In the formula, v + x + y + z = 1, M is at least one selected from the group consisting of Al, Ga, and In, and 0 ≦ v ≦ 0.5, 0.3 ≦ x <1, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1), and the average particle size of the composite oxide is smaller than the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ) The electrode for secondary batteries characterized by these.

また本発明は、化学式1で示される複合酸化物を用いてスラリーを調製した後、そのスラリーにスピネル構造マンガン酸リチウム(LiMn)を加えて電極被覆用のスラリーを調製することを特徴とする前記二次電池用電極の製造方法、に関する。 The present invention is also characterized in that after preparing a slurry using the composite oxide represented by Chemical Formula 1, a slurry for electrode coating is prepared by adding spinel-structure lithium manganate (LiMn 2 O 4 ) to the slurry. It relates to the manufacturing method of the said electrode for secondary batteries.

さらに本発明は、前記二次電池用電極を正極とすることを特徴とする二次電池、に関する。   Furthermore, this invention relates to the secondary battery characterized by making the said electrode for secondary batteries into a positive electrode.

また本発明は、前記二次電池を搭載した車両、に関する。   The present invention also relates to a vehicle equipped with the secondary battery.

本発明の二次電池用電極によれば、高出力かつ高エネルギー密度の電池用の電極を構成することができる。   According to the secondary battery electrode of the present invention, it is possible to constitute a battery electrode with high output and high energy density.

本発明の二次電池用電極の製造方法によれば、極めて簡便に高出力かつ高エネルギー密度の二次電池用電極を製造することができる。   According to the method for producing a secondary battery electrode of the present invention, a high output and high energy density secondary battery electrode can be produced very simply.

本発明の二次電池よれば、高出力かつ高エネルギー密度の電池を提供することができる。   According to the secondary battery of the present invention, a battery with high output and high energy density can be provided.

本発明の車両によれば、高性能の車両を提供することができる。   According to the vehicle of the present invention, a high-performance vehicle can be provided.

電気自動車及びハイブリッド電気自動車用電池として、正極にスピネル構造マンガン酸リチウム(LiMn)を用いたリチウムイオン電池が検討されている。この電池のメリット(低コスト)を損なうことなく、体積エネルギー密度と体積出力密度の両方に優れる電池が期待されている。この課題を解決するために鋭意検討した結果、本発明による化合物の組合せを用いて二次電池用電極、特に正極を作製すればよいことを見出した。 As batteries for electric vehicles and hybrid electric vehicles, lithium ion batteries using spinel structure lithium manganate (LiMn 2 O 4 ) as a positive electrode have been studied. A battery excellent in both volume energy density and volume output density is expected without impairing the merit (low cost) of this battery. As a result of intensive studies to solve this problem, it has been found that an electrode for a secondary battery, particularly a positive electrode, may be produced using the combination of the compounds according to the present invention.

(二次電池用電極)
通常、正極は正極集電体の両面に正極活物質を塗布することによって、また、負極は負極集電体の両面に負極活物質を塗布することによって作製される。
(Electrode for secondary battery)
Usually, the positive electrode is produced by applying a positive electrode active material on both sides of the positive electrode current collector, and the negative electrode is produced by applying a negative electrode active material on both sides of the negative electrode current collector.

集電体としては、リチウムイオン二次電池に使用されている各種の公知の材料を用いることができ、具体的には、正極集電体としてはアルミニウム箔などが、負極集電体としては銅箔などが挙げられる。   As the current collector, various known materials used in lithium ion secondary batteries can be used. Specifically, an aluminum foil or the like is used as the positive electrode current collector, and a copper is used as the negative electrode current collector. Examples include foil.

本発明の二次電池用電極は、電極活物質としてスピネル構造マンガン酸リチウム(LiMn)と、化学式1で示される複合酸化物
LiCovNixMnyMzO (1)
(ただし、式中、v+x+y+z=1で、MはAl、Ga、およびInよりなる群から選ばれた少なくとも1種であり、0≦v≦0.5、0.3≦x<1、0≦y≦0.5、0≦z≦0.1である。)とを含み、該複合酸化物の平均粒子径が該スピネル構造マンガン酸リチウム(LiMn)の平均粒子径よりも小さいことを特徴とする。
The electrode for a secondary battery of the present invention includes a spinel structure lithium manganate (LiMn 2 O 4 ) as an electrode active material and a complex oxide LiCovNixMnyMzO 2 (1) represented by the chemical formula 1.
(In the formula, v + x + y + z = 1, M is at least one selected from the group consisting of Al, Ga, and In, and 0 ≦ v ≦ 0.5, 0.3 ≦ x <1, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1), and the average particle size of the composite oxide is smaller than the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ) It is characterized by.

本発明の二次電池用電極では、スピネル構造マンガン酸リチウム(LiMn)と、化学式1で示される複合酸化物を主として含むが、その他にLiCoO,LixFeOy,LixVyOz、リチウム酸化物の一部を他の元素で置換した複合酸化物(化学式1で示されるものを除く)を用いてもよい。 The electrode for a secondary battery of the present invention mainly contains spinel-structure lithium manganate (LiMn 2 O 4 ) and a composite oxide represented by Chemical Formula 1, but in addition to LiCoO 2 , LixFeOy, LixVyOz, A composite oxide in which a part is substituted with another element (excluding those represented by Chemical Formula 1) may be used.

またNiの含有量xは0.3≦x≦0.8であるとより好ましい。この範囲にあることでよりサイクル耐久性が向上するためである。   The Ni content x is more preferably 0.3 ≦ x ≦ 0.8. This is because the cycle durability is further improved by being in this range.

スピネル構造マンガン酸リチウム(LiMn)を正極活物質とする電池を高出力化するために種々検討した結果、スピネル構造マンガン酸リチウム(LiMn)の電極活物質を小粒化すればよく、ハイブリッド電気自動車の超高出力電池を効果的に構成できることがわかった。ハイブリッド電気自動車用電池の使われ方としては、電気自動車走行を更に長くできるようなことも期待される。このための電池としては、高出力でありながら、なおかつある程度のエネルギーが要求される。ところが、スピネル構造マンガン酸リチウム(LiMn)の電極活物質を小粒化すると、体積当りの活物質密度が低下し、結果として体積当りのエネルギー密度が低下してしまう。自動車への搭載の現実性から、できるだけ電池の体積とコストを上げずにこの要求に応える必要がある。 As a result of various studies to increase the output of a battery using spinel-structure lithium manganate (LiMn 2 O 4 ) as a positive electrode active material, if the electrode active material of spinel-structure lithium manganate (LiMn 2 O 4 ) is reduced in size, Well, it was found that an ultra-high power battery of a hybrid electric vehicle can be effectively constructed. As a method of using a battery for a hybrid electric vehicle, it is expected that the electric vehicle can be run longer. A battery for this purpose requires high energy and a certain amount of energy. However, when the electrode active material of spinel structure lithium manganate (LiMn 2 O 4 ) is reduced in size, the active material density per volume decreases, and as a result, the energy density per volume decreases. From the reality of mounting on automobiles, it is necessary to meet this requirement without increasing the volume and cost of the battery as much as possible.

該複合酸化物の平均粒子径が該スピネル構造マンガン酸リチウム(LiMn)の平均粒子径よりも小さい場合には、高出力かつ高エネルギー密度の二次電池用の電極、特に正極を構成することができる。 When the average particle size of the composite oxide is smaller than the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ), it constitutes an electrode for a secondary battery having a high output and a high energy density, particularly a positive electrode. can do.

また、本発明の二次電池用電極は、前記化学式1で示される複合酸化物の平均粒子径は、前記スピネル構造マンガン酸リチウム(LiMn)の平均粒子径の1/1000以上1/3以下の範囲にあることが好ましい。 In the secondary battery electrode of the present invention, the average particle size of the composite oxide represented by the chemical formula 1 is 1/1000 or more of the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ). It is preferable that it is in the range of 3 or less.

電気出力を効果的に発現できるようにするためには、電極活物質の表面積が電極の反応抵抗に強い逆の相関があることから、化学式1で示される複合酸化物の粒子径は小さい方がよいが、余り小さすぎると電極集電体からの電子的接続がうまく取れずに、利用できない粒子が増加してしまい、結果として、出力密度もエネルギーも低下してしまう。したがって、上記の範囲とすることにより、電気出力を効果的に発現することができる。   In order to effectively express the electrical output, since the surface area of the electrode active material has a strong inverse correlation with the reaction resistance of the electrode, the smaller the particle size of the composite oxide represented by Chemical Formula 1 is, However, if it is too small, the electronic connection from the electrode current collector cannot be made well, resulting in an increase in the number of particles that cannot be used. As a result, the output density and energy are also reduced. Therefore, an electric output can be effectively expressed by setting it as said range.

さらに、本発明の二次電池は、前記複合酸化物の平均粒子径は、前記スピネル構造マンガン酸リチウム(LiMn)の平均粒子径の1/50以上1/5以下の範囲にあることが好ましい。 Furthermore, in the secondary battery of the present invention, the average particle size of the composite oxide is in the range of 1/50 to 1/5 of the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ). Is preferred.

電池の体積エネルギー密度を考えると、電極構成要素とその組成比を余り変更せずにすむように、粒子径の小さい方の化学式1で示される複合酸化物の粒子径を、大きい方のスピネル構造マンガン酸リチウム(LiMn)の粒子径に対し、1/50以上1/5以下とすることが更に好ましい。上記の範囲とすることにより、電池の体積エネルギー密度を高めること、または維持することができる。 Considering the volumetric energy density of the battery, the particle size of the composite oxide represented by Chemical Formula 1 with the smaller particle size is set to the larger spinel manganese so that the electrode components and the composition ratio thereof need not be changed much. More preferably, the particle diameter of lithium acid (LiMn 2 O 4 ) is 1/50 or more and 1/5 or less. By setting it as the above range, the volume energy density of the battery can be increased or maintained.

本発明の二次電池は、前記複合酸化物は、活物質量全体に対し、質量比で5%以上30%未満の範囲にあることが好ましい。   In the secondary battery of the present invention, it is preferable that the composite oxide is in a range of 5% to less than 30% by mass ratio with respect to the total amount of the active material.

電極、特に正極にスピネル構造マンガン酸リチウム(LiMn)を用いたリチウムイオン電池のメリットを損なうことなく、高エネルギーかつ高出力の電池を構成するためには、化学式1の活物質が多くなり過ぎないようにし、かつ、組み合わせの効果が発揮できる必要がある。したがって、この範囲とすることにより、高エネルギーかつ高出力の電池を構成することができる。 In order to construct a high energy and high output battery without impairing the merit of the lithium ion battery using the spinel structure lithium manganate (LiMn 2 O 4 ) for the electrode, particularly the positive electrode, there are many active materials of the chemical formula 1. It is necessary not to become too much and to be able to exert the effect of the combination. Therefore, a battery having a high energy and a high output can be configured by using this range.

(二次電池用電極の製造方法)
電極は、通常下記の方法で作製する。
(Method for producing secondary battery electrode)
The electrode is usually produced by the following method.

上記正極活物質を正極集電体上に被覆した正極を作製する場合には、公知の技術を採用できる。例えば、正極活物質を溶媒中でバインダーと混合してペースト状にし、このペーストを正極集電体に塗布し、乾燥する方法を用いることができる。なお、ペースト中に、カーボンブラック、グラファイト、アセチレンブラックなどの導電助剤を加えてもよい。正極活物質とバインダーとの混合割合は、電極の形状に合わせて適宜決定することが好ましく、被覆には公知の方法を用いる。負極を作製する場合には、上記の正極を作製する方法に準じて行うことができる。   In the case of producing a positive electrode in which the positive electrode active material is coated on a positive electrode current collector, a known technique can be employed. For example, a method can be used in which a positive electrode active material is mixed with a binder in a solvent to form a paste, and the paste is applied to a positive electrode current collector and dried. In addition, you may add conductive support agents, such as carbon black, a graphite, and acetylene black, in a paste. The mixing ratio of the positive electrode active material and the binder is preferably appropriately determined according to the shape of the electrode, and a known method is used for coating. When producing a negative electrode, it can carry out according to the method of producing said positive electrode.

バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレンなどが挙げられる。溶媒としては、バインダーを溶解させる各種極性溶媒が用いられ、具体的には、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、N−メチルピロリドン(NMP)などが挙げられる。   Examples of the binder include polyvinylidene fluoride (PVdF) and polytetrafluoroethylene. As the solvent, various polar solvents for dissolving the binder are used, and specific examples include dimethylformamide, dimethylacetamide, methylformamide, N-methylpyrrolidone (NMP) and the like.

これに対し、本発明の二次電池用電極の製造方法は、化学式1で示される複合酸化物
LiCovNixMnyMzO (1)
(ただし、式中、v+x+y+z=1で、MはAl、Ga、およびInよりなる群から選ばれた少なくとも1種であり、0≦v≦0.5、0.3≦x<1、0≦y≦0.5、0≦z≦0.1である。)を用いてスラリーを調製した後、そのスラリーにスピネル構造マンガン酸リチウム(LiMn)を加えて電極被覆用のスラリーを調製することを特徴とする。
In contrast, the manufacturing method of the secondary battery electrode of the present invention, the composite oxide LiCovNixMnyMzO 2 represented by the chemical formula 1 (1)
(In the formula, v + x + y + z = 1, M is at least one selected from the group consisting of Al, Ga, and In, and 0 ≦ v ≦ 0.5, 0.3 ≦ x <1, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1.), and then a slurry for electrode coating is prepared by adding spinel structure lithium manganate (LiMn 2 O 4 ) to the slurry. It is characterized by doing.

電極被覆用のスラリー調製段階で粒子径の小さい化学式1で表される複合酸化物を先に分散させた方が、高性能の電極が得られるとともに、小粒子径の該複合酸化物の分散性がよくなり、電極抵抗の低減への寄与が大きくなるためと考えられる。   It is possible to obtain a high-performance electrode and to disperse the composite oxide having a small particle diameter by first dispersing the composite oxide represented by the chemical formula 1 having a small particle diameter in the preparation of the electrode coating slurry. This is thought to be due to an increase in the contribution to the reduction of electrode resistance.

このような二次電池用電極の製造方法によって、化学式1で示される複合酸化物の平均粒子径がスピネル構造マンガン酸リチウム(LiMn)の平均粒子径よりも小さいという関係を満たす本発明の二次電池用電極が得られる。 The present invention satisfies the relationship that the average particle size of the composite oxide represented by Chemical Formula 1 is smaller than the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ) by such a method for manufacturing a secondary battery electrode. The secondary battery electrode is obtained.

(二次電池)
二次電池のなかで、リチウムイオン二次電池を代表例として本発明を説明する。添付図面に基づいて本発明のリチウムイオン二次電池について詳細に説明する。
(Secondary battery)
Among the secondary batteries, the present invention will be described using a lithium ion secondary battery as a representative example. The lithium ion secondary battery of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の二次電池の一例を示す概略断面図である。図1において、正極集電体33、正極活物質層13、電解質層17、負極電解質層15、及び負極集電体35の順に積層して、単電池層19を形成する。所定数の単電池層を積層した積層体から、正極集電体をまとめて正極タブ25及び負極集電体をまとめて負極タブ27とし、それぞれが外に出るように積層体の全体をポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂とアルミニウムなどの金属箔などからなるラミネートシート29で被覆する。   FIG. 1 is a schematic cross-sectional view showing an example of the secondary battery of the present invention. In FIG. 1, the positive electrode current collector 33, the positive electrode active material layer 13, the electrolyte layer 17, the negative electrode electrolyte layer 15, and the negative electrode current collector 35 are stacked in this order to form the single battery layer 19. From the laminate obtained by laminating a predetermined number of single battery layers, the positive electrode current collector is collected into the positive electrode tab 25 and the negative electrode current collector into the negative electrode tab 27, and the entire laminate is made of polyethylene, A laminate sheet 29 made of a polyolefin resin such as polypropylene and a metal foil such as aluminum is coated.

電解質層を形成する電解質としては、リチウムイオン二次電池の分野の公知の材料を用いることができる。具体的は、電解質を非水電解液中に分散させた非水電解質が挙げられる。ここで、非水電解液としては、リチウムイオン伝導性のある各種の溶液が好ましく、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状炭酸エステルを単体または組み合わせて用いることができる。また、電気伝導度を高くし、かつ、適切な粘度を有する電解液を得るため、ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),γ−ブチルラクトン、γ−バレロラクトン、酢酸エチル、プロピオン酸メチルなどを併用してもよい。また、電解質としては、LiPF,LiBF,LiClO,LiAsF,LiCFSOなどが用いられる。 As an electrolyte for forming the electrolyte layer, a known material in the field of lithium ion secondary batteries can be used. Specifically, a non-aqueous electrolyte in which an electrolyte is dispersed in a non-aqueous electrolyte can be used. Here, as the non-aqueous electrolyte, various solutions having lithium ion conductivity are preferable, and cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate can be used alone or in combination. Further, in order to obtain an electrolytic solution having high electrical conductivity and appropriate viscosity, dimethyl carbonate (DMC), diethyl carbonate (DEC), γ-butyl lactone, γ-valerolactone, ethyl acetate, methyl propionate Etc. may be used in combination. As the electrolyte, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3, or the like is used.

本発明の二次電池は、前記二次電池用電極を正極とすることを特徴とする。   The secondary battery of the present invention is characterized in that the secondary battery electrode is a positive electrode.

前述の二次電池用電極を正極として電池を構成すると、高出力で高エネルギー密度の電池を構成できるからである。   This is because a battery having a high output and a high energy density can be formed by configuring the battery using the above-described secondary battery electrode as a positive electrode.

また、本発明の二次電池は、負極活物質がカーボンからなることが好ましい。ここで、カーボンとしては、ハードカーボン、ソフトカーボン、グラファイト、または活性炭などが挙げられる。なお、ハードカーボンとは3000℃で熱処理しても黒鉛化しない炭素材料をいい、ソフトカーボンとは2800〜3000℃で熱処理した際に黒鉛化する炭素材料をいう。   In the secondary battery of the present invention, the negative electrode active material is preferably made of carbon. Here, examples of carbon include hard carbon, soft carbon, graphite, and activated carbon. Hard carbon refers to a carbon material that does not graphitize even when heat-treated at 3000 ° C., and soft carbon refers to a carbon material that graphitizes when heat-treated at 2800 to 3000 ° C.

正極に本発明の二次電池用電極を、負極にカーボンを用いると、高出力密度でなおかつ高エネルギー密度で耐久性のよい電池を構成できるからである。   This is because when the electrode for the secondary battery of the present invention is used for the positive electrode and carbon is used for the negative electrode, a battery having high output density and high energy density and good durability can be configured.

(二次電池を搭載した車両)
本発明の車両は、前記二次電池を搭載したことを特徴とする。
(Vehicle equipped with a secondary battery)
The vehicle of the present invention is equipped with the secondary battery.

前述の二次電池用電極を正極として用いれば、高性能の電動車両が構成できるからである。さらに、負極としてカーボンを用いることにより、より性能を高めることが可能である。   This is because a high-performance electric vehicle can be configured by using the above-described secondary battery electrode as a positive electrode. Furthermore, the performance can be further improved by using carbon as the negative electrode.

以下、本発明の実施例と比較例を説明する。   Examples of the present invention and comparative examples will be described below.

正極活物質には、平均粒子径20μmと平均粒子径2μmスピネル構造マンガン酸リチウム(LiMn)と、平均粒子径2μmのLiNi0.8Co0.15Al0.05、平均粒子径3μmのLiNi0.5Mn0.5と平均粒子径1.5μmのLiCo1/3Ni1/3Mn1/3を用いる。負極活物質には平均粒子径3μmのハードカーボンを用いる。バインダーにはPVdFを、導電助材にはアセチレンブラックを用いる。正極集電体には厚さ20μmのアルミ箔を、負極集電体には厚さ15μmの銅箔を用いる。 The positive electrode active material includes an average particle size of 20 μm, an average particle size of 2 μm, spinel-structure lithium manganate (LiMn 2 O 4 ), an average particle size of 2 μm of LiNi 0.8 Co 0.15 Al 0.05 O 2 , average particles LiNi 0.5 Mn 0.5 O 2 having a diameter of 3 μm and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 having an average particle diameter of 1.5 μm are used. Hard carbon having an average particle diameter of 3 μm is used for the negative electrode active material. PVdF is used for the binder and acetylene black is used for the conductive additive. An aluminum foil with a thickness of 20 μm is used for the positive electrode current collector, and a copper foil with a thickness of 15 μm is used for the negative electrode current collector.

(実施例1)
正極の作製は、表1に示す活物質の組み合わせ及び組成に従って行った。
Example 1
The positive electrode was produced in accordance with the active material combinations and compositions shown in Table 1.

電極組成比が活物質:アセチレンブラック:PVdF=86:7:7(質量比)になるようにした。まず、平均粒子径2μmのLiNi0.8Co0.15Al0.05(平均粒子径が小さい方の活物質)、アセチレンブラックとPVdFを計量し、これに適量のNMP(N−メチル−2−ピロリドン)を加え、ホモジナイザーでよく撹拌・混合した。 The electrode composition ratio was adjusted to be active material: acetylene black: PVdF = 86: 7: 7 (mass ratio). First, LiNi 0.8 Co 0.15 Al 0.05 O 2 (active material having a smaller average particle diameter), acetylene black and PVdF having an average particle diameter of 2 μm were weighed, and an appropriate amount of NMP (N-methyl) was measured. -2-pyrrolidone) was added and well stirred and mixed with a homogenizer.

その後、このスラリーに平均粒子径20μmのスピネル構造マンガン酸リチウム(LiMn)(平均粒子径が大きい方の活物質)と適量のNMPを加え、ホモジナイザーで更によく撹拌・混合してスラリーを調製した。 Then, spinel-structure lithium manganate (LiMn 2 O 4 ) (active material having a larger average particle size) with an average particle size of 20 μm and an appropriate amount of NMP are added to this slurry, and the slurry is further stirred and mixed with a homogenizer. Prepared.

ダイコーターを用い、このスラリーをアルミ箔に一定量塗布し、乾燥した。このようにしてアルミ箔の両面に電極層を形成し、ロールプレスでプレスをかけ、電極層部分が50mmx100mmになるように、しかも電極層がないリード部分を残して切り出した。電極層の厚さは、出来上り時点で、70μmになるように塗布条件を調整した。   A certain amount of this slurry was applied to an aluminum foil using a die coater and dried. In this way, electrode layers were formed on both surfaces of the aluminum foil and pressed by a roll press, and the electrode layer portion was cut out so that the electrode layer portion was 50 mm × 100 mm, leaving a lead portion without the electrode layer. The coating conditions were adjusted so that the thickness of the electrode layer was 70 μm at the time of completion.

負極の作製は、ハードカーボンとPVdFの質量比を90:10とした。ホモジナイザイーの容器に、ハードカーボンとPVdFと適量のNMPを加え、よく撹拌・混合してスラリーを調製した。   In the production of the negative electrode, the mass ratio of hard carbon to PVdF was 90:10. Hard carbon, PVdF, and an appropriate amount of NMP were added to a homogenizer container, and stirred well and mixed to prepare a slurry.

ダイコーターを用い、このスラリーを銅箔上に塗布し、乾燥した。正極と同様に同箔の両面に電極層を形成し、プレスをかけ、55mmx105mmになるように、しかも電極層がないリード部分を残して切り出した。電極層の厚さは、出来上り時点で、65μmになるように塗布条件を調整した。   Using a die coater, this slurry was applied onto a copper foil and dried. Similarly to the positive electrode, electrode layers were formed on both sides of the same foil, and pressed, and cut out so as to be 55 mm × 105 mm, leaving a lead portion without the electrode layer. The coating conditions were adjusted so that the thickness of the electrode layer was 65 μm at the time of completion.

電池の作製は、つぎのように行った。   The battery was produced as follows.

上記で切り出した正極と負極それぞれを90℃の真空乾燥機にて1日乾燥して用いた。正極と負極の間に、厚さ25μmのポリプロピレンの多孔質膜を介して最外側が負極になるように、10枚の正極を11枚の負極を交互に積層し、各正極と負極を束ねてリードを溶接した。この積層体を正負極のリードを取り出した構造とし、アルミニウムのラミネートフィルムバックに収め、注液機から電解液を注液し、減圧下シールをして電池とした。電解液としては、プロピレンカーボネートとジメチルカーボネートを1:1で混合した溶媒にLiPFの濃度が1mol/lとなるように混合したものを用いた。 Each of the positive electrode and negative electrode cut out above was dried for 1 day in a vacuum dryer at 90 ° C. and used. Between the positive electrode and the negative electrode, 10 positive electrodes and 11 negative electrodes are alternately stacked so that the outermost side becomes a negative electrode through a 25 μm thick porous polypropylene film, and the positive and negative electrodes are bundled together. The lead was welded. The laminate was made into a structure in which the positive and negative electrode leads were taken out, placed in an aluminum laminate film back, injected with an electrolytic solution from a liquid injector, and sealed under reduced pressure to obtain a battery. As the electrolytic solution, a solvent in which propylene carbonate and dimethyl carbonate were mixed at 1: 1 was mixed so that the concentration of LiPF 6 was 1 mol / l.

(実施例2)
実施例1において、平均粒子径が小さい方の活物質であって平均粒子径2μmのLiNi0.8Co0.15Al0.05の含有量を、実施例1の10質量%から15質量%に代えた以外は、実施例1と同様にして電池を作製した。
(Example 2)
In Example 1, the content of LiNi 0.8 Co 0.15 Al 0.05 O 2 , which is an active material having a smaller average particle diameter and having an average particle diameter of 2 μm, is changed from 10% by mass to 15% in Example 1. A battery was produced in the same manner as in Example 1 except that the mass% was changed.

(実施例3)
実施例1において、平均粒子径が小さい方の活物質を、平均粒子径2μmのLiNi0.8Co0.15Al0.05から、平均粒子径3μmのLiNi0.5Mn0.5に代えた以外は、実施例1と同様にして電池を作製した。
(Example 3)
In Example 1, the active material having a smaller average particle diameter was changed from LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 2 μm to LiNi 0.5 Mn 0.5 having an average particle diameter of 3 μm. A battery was fabricated in the same manner as in Example 1 except that O 2 was used.

(実施例4)
実施例1において、平均粒子径が小さい方の活物質を、平均粒子径2μmのLiNi0.8Co0.15Al0.05から、平均粒子径1.5μmのLiCo1/3Ni1/3Mn1/3に代えた以外は、実施例1と同様にして電池を作製した。
Example 4
In Example 1, the active material having a smaller average particle diameter was changed from LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 2 μm to LiCo 1/3 Ni 1 having an average particle diameter of 1.5 μm. A battery was fabricated in the same manner as in Example 1 except that / 3 Mn 1/3 O 2 was used.

(比較例1)
実施例1において、活物質を平均粒子径2μmスピネル構造マンガン酸リチウム(LiMn)のみに代えた以外は、実施例1と同様にして電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that in Example 1, the active material was replaced with only an average particle size of 2 μm spinel-structure lithium manganate (LiMn 2 O 4 ).

(比較例2)
実施例1において、活物質を平均粒子径20μmスピネル構造マンガン酸リチウム(LiMn)のみに代えた以外は、実施例1と同様にして電池を作製した。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that in Example 1, the active material was replaced with only the spinel-structure lithium manganate (LiMn 2 O 4 ) having an average particle size of 20 μm.

(電池の評価)
充放電は室温で行い、充電は1Aの定電流ー定電圧モードにて4.15Vまで合計2.5時間行う。放電は、1Aにてカットオフ電圧2.5Vまで定電流放電を行って放電容量を測定して、体積あたりのエネルギー密度を計算する。
(Battery evaluation)
Charging / discharging is performed at room temperature, and charging is performed in a constant current-constant voltage mode of 1 A to 4.15 V for a total of 2.5 hours. In discharging, constant current discharge is performed at 1 A to a cutoff voltage of 2.5 V, the discharge capacity is measured, and the energy density per volume is calculated.

電池出力の測定は、充電後低電流放電を行い10秒めでの電池端子電圧が2.5Vを下回らないような最大電流値とそのときの端子電圧の積を計算して、体積当たりの出力密度とする。   The battery output is measured by calculating the product of the maximum current value and the terminal voltage at that time so that the battery terminal voltage does not drop below 2.5V after low current discharge after charging, and the output density per volume. And

得られた結果を表1に示す。表1では、比較のため、実施例1の電池の体積エネルギー密度と体積出力密度をそれぞれ100として基準にして、他の実施例と比較例の電池のデータを相対値で示す。   The obtained results are shown in Table 1. In Table 1, for comparison, the data of the batteries of the other examples and the comparative example are shown as relative values with the volume energy density and the volume output density of the battery of Example 1 as the reference, respectively.

Figure 2007080583
Figure 2007080583

表1からわかるように、本発明によれば、材料コストに優るスピネル構造マンガン酸リチウム(LiMn)を正極とする二次電池のメリットを保持したまま、電池の体積エネルギー密度を大幅に損なうことなく、電池の体積エネルギー密度を改善できることがわかる。 As can be seen from Table 1, according to the present invention, the volume energy density of the battery is greatly increased while maintaining the merit of the secondary battery using the spinel structure lithium manganate (LiMn 2 O 4 ), which is superior in material cost, as the positive electrode. It can be seen that the volumetric energy density of the battery can be improved without loss.

具体的には、表1のなかの体積エネルギー密度と体積出力密度は、実施例1の場合を基準にして100として相対値にて示している。実施例1から4のこれらの値は、比較例1の場合に比べて、体積出力密度は同等であるが、体積エネルギー密度は倍増しており、比較例2に対しては、体積エネルギー密度は同等だが、体積出力密度は3倍近く増加している。従って、本発明により体積出力密度と体積エネルギー密度のどちらかを大幅に犠牲にすることなく両方の特性に優れた電池を構成できる。   Specifically, the volume energy density and the volume output density in Table 1 are shown as relative values as 100 based on the case of Example 1. These values of Examples 1 to 4 have the same volumetric power density as compared with Comparative Example 1, but the volumetric energy density is doubled. For Comparative Example 2, the volumetric energy density is Although equivalent, volumetric power density has increased nearly three times. Therefore, according to the present invention, a battery excellent in both characteristics can be configured without significantly sacrificing either volume output density or volume energy density.

本発明の二次電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the secondary battery of this invention.

符号の説明Explanation of symbols

13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
25 正極タブ、
27 負極タブ、
29 ラミネートシート、
33 正極集電体、
35 負極集電体。
13 positive electrode active material layer,
15 negative electrode active material layer,
17 electrolyte layer,
19 cell layer,
25 positive electrode tab,
27 negative electrode tab,
29 Laminate sheet,
33 positive electrode current collector,
35 Negative electrode current collector.

Claims (8)

電極活物質としてスピネル構造マンガン酸リチウム(LiMn)と、化学式1で示される複合酸化物
LiCovNixMnyMzO (1)
(ただし、式中、v+x+y+z=1で、MはAl、Ga、およびInよりなる群から選ばれた少なくとも1種であり、0≦v≦0.5、0.3≦x<1、0≦y≦0.5、0≦z≦0.1である。)とを含み、該複合酸化物の平均粒子径が該スピネル構造マンガン酸リチウム(LiMn)の平均粒子径よりも小さいことを特徴とする二次電池用電極。
Spinel structure lithium manganate (LiMn 2 O 4 ) as an electrode active material and composite oxide represented by Chemical Formula 1 LiCovNixMnyMzO 2 (1)
(In the formula, v + x + y + z = 1, M is at least one selected from the group consisting of Al, Ga, and In, and 0 ≦ v ≦ 0.5, 0.3 ≦ x <1, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.1), and the average particle size of the composite oxide is smaller than the average particle size of the spinel structure lithium manganate (LiMn 2 O 4 ) An electrode for a secondary battery.
前記複合酸化物の平均粒子径は、前記スピネル構造マンガン酸リチウム(LiMn)の平均粒子径の1/1000以上1/3以下の範囲にあることを特徴とする請求項1記載の電極。 2. The electrode according to claim 1, wherein an average particle diameter of the composite oxide is in a range of 1/1000 to 1/3 of an average particle diameter of the spinel structure lithium manganate (LiMn 2 O 4 ). . 前記複合酸化物の平均粒子径は、前記スピネル構造マンガン酸リチウム(LiMn)の平均粒子径の1/50以上1/5以下の範囲にあることを特徴とする請求項1または請求項2記載の電極。 The average particle diameter of the composite oxide is in the range of 1/50 to 1/5 of the average particle diameter of the spinel structure lithium manganate (LiMn 2 O 4 ). 2. The electrode according to 2. 前記複合酸化物は、活物質量全体に対し、質量比で5%以上30%未満の範囲にあることを特徴とする請求項1〜3のいずれか1項に記載の電極。   The electrode according to any one of claims 1 to 3, wherein the composite oxide is in a range of 5% to less than 30% by mass ratio with respect to the total amount of the active material. 化学式1で示される複合酸化物を用いてスラリーを調製した後、そのスラリーにスピネル構造マンガン酸リチウム(LiMn)を加えて電極被覆用のスラリーを調製することを特徴とする請求項1〜4のいずれか1項に記載の二次電池用電極の製造方法。 2. A slurry for preparing an electrode is prepared by preparing a slurry using the composite oxide represented by Chemical Formula 1, and then adding lithium spinel manganate (LiMn 2 O 4 ) to the slurry. The manufacturing method of the electrode for secondary batteries of any one of -4. 請求項1〜4のいずれか1項に記載の二次電池用電極を正極とすることを特徴とする二次電池。   The secondary battery electrode according to any one of claims 1 to 4, wherein the secondary battery electrode is a positive electrode. 負極活物質がカーボンであることを特徴とする請求項6記載の二次電池。   The secondary battery according to claim 6, wherein the negative electrode active material is carbon. 請求項6または請求項7に記載の二次電池を搭載した車両。   A vehicle equipped with the secondary battery according to claim 6 or 7.
JP2005264188A 2005-09-12 2005-09-12 Electrode for secondary battery, and secondary battery Pending JP2007080583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264188A JP2007080583A (en) 2005-09-12 2005-09-12 Electrode for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264188A JP2007080583A (en) 2005-09-12 2005-09-12 Electrode for secondary battery, and secondary battery

Publications (1)

Publication Number Publication Date
JP2007080583A true JP2007080583A (en) 2007-03-29

Family

ID=37940673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264188A Pending JP2007080583A (en) 2005-09-12 2005-09-12 Electrode for secondary battery, and secondary battery

Country Status (1)

Country Link
JP (1) JP2007080583A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293875A (en) * 2007-05-28 2008-12-04 Nec Tokin Corp Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2012517675A (en) * 2009-02-13 2012-08-02 成都晶元新材料技術有限公司 Cathode material for lithium ion battery to which nickel / cobalt / manganese multielements are added and method for producing the same
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2014513389A (en) * 2011-04-18 2014-05-29 エルジー ケム. エルティーディ. Positive electrode active material and lithium secondary battery including the same
WO2015125610A1 (en) * 2014-02-20 2015-08-27 Necエナジーデバイス株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816033B2 (en) 2006-05-29 2010-10-19 Lg Chem, Ltd. Cathode active material comprising mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese oxide and lithium secondary battery containing same
JP2008293875A (en) * 2007-05-28 2008-12-04 Nec Tokin Corp Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2012517675A (en) * 2009-02-13 2012-08-02 成都晶元新材料技術有限公司 Cathode material for lithium ion battery to which nickel / cobalt / manganese multielements are added and method for producing the same
JP2014513389A (en) * 2011-04-18 2014-05-29 エルジー ケム. エルティーディ. Positive electrode active material and lithium secondary battery including the same
JPWO2013008475A1 (en) * 2011-07-13 2015-02-23 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
CN103650218A (en) * 2011-07-13 2014-03-19 株式会社杰士汤浅国际 Nonaqueous electrolyte secondary battery
WO2013008475A1 (en) * 2011-07-13 2013-01-17 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
EP2733776A4 (en) * 2011-07-13 2015-03-18 Gs Yuasa Int Ltd Nonaqueous electrolyte secondary battery
WO2014041793A1 (en) * 2012-09-11 2014-03-20 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9660262B2 (en) 2012-09-11 2017-05-23 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery
WO2015125610A1 (en) * 2014-02-20 2015-08-27 Necエナジーデバイス株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
JP2015156290A (en) * 2014-02-20 2015-08-27 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using the same
CN106030863A (en) * 2014-02-20 2016-10-12 Nec能源元器件株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
CN110098376A (en) * 2014-02-20 2019-08-06 远景Aesc能源元器件有限公司 Lithium ion secondary battery anode and the lithium ion secondary battery for using it
CN110098376B (en) * 2014-02-20 2022-08-26 远景Aesc日本有限公司 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same

Similar Documents

Publication Publication Date Title
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
EP2991138B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP2007317639A (en) Cathode active material and lithium secondary cell containing this
WO2014077113A1 (en) Negative-electrode active substance, method for manufacturing same, and lithium secondary cell
JPWO2010140260A1 (en) Lithium secondary battery
KR102564970B1 (en) Negative electrode and secondary battery comprising the same
US20150016024A1 (en) Cathode active material having core-shell structure and producing method thereof
CN110265629B (en) Negative electrode and lithium ion secondary battery
JP2007080583A (en) Electrode for secondary battery, and secondary battery
JP2018045819A (en) Electrode and nonaqueous electrolyte battery
KR20210001708A (en) Negative electrode and secondary battery comprising the same
JP2006216305A (en) Secondary battery
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
WO2013094037A1 (en) Lithium secondary battery
US20190131623A1 (en) Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2009277432A (en) Electrode for secondary battery, manufacturing method thereof, and secondary battery
KR102567400B1 (en) Secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP2022547282A (en) BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5472743B2 (en) Lithium secondary battery
US10211456B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same