JP2007070132A - Method for manufacturing single crystal silicon wafer, single crystal silicon wafer, and method for inspecting wafer - Google Patents

Method for manufacturing single crystal silicon wafer, single crystal silicon wafer, and method for inspecting wafer Download PDF

Info

Publication number
JP2007070132A
JP2007070132A JP2005256193A JP2005256193A JP2007070132A JP 2007070132 A JP2007070132 A JP 2007070132A JP 2005256193 A JP2005256193 A JP 2005256193A JP 2005256193 A JP2005256193 A JP 2005256193A JP 2007070132 A JP2007070132 A JP 2007070132A
Authority
JP
Japan
Prior art keywords
wafer
single crystal
crystal
pulling
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005256193A
Other languages
Japanese (ja)
Other versions
JP4715402B2 (en
Inventor
Hideshi Nishikawa
英志 西川
Hitoshi Sasaki
斉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2005256193A priority Critical patent/JP4715402B2/en
Publication of JP2007070132A publication Critical patent/JP2007070132A/en
Application granted granted Critical
Publication of JP4715402B2 publication Critical patent/JP4715402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a single crystal silicon wafer by which the single crystal silicon wafer having uniform gettering capability in the wafer surface can be manufactured without lowering productivity. <P>SOLUTION: The method for producing the single crystal silicon wafer has a process for pulling and growing a silicon single crystal by a Czochralski method. When the constant diameter part in a range of at least 30-70% of the whole length in the pulling direction of an ingot is pulled, the temperature during crystal growth is set to be 1,370-1310°C, the ratio Gc/Ge of the temperature gradient values in the crystal growth axis direction (wherein, Gc is an average temperature gradient at the central part of the crystal; and Ge is an average temperature gradient at the outer peripheral part of the crystal) is set to be ≥1.14 and ≤1.28 when the temperature during crystal growth is 1,370-1310°C, nitrogen is added in an amount of ≥0.8×10<SP>14</SP>atoms/cm<SP>3</SP>, and the growing is performed by pulling the ingot at a prescribed pulling rate in response to the nitrogen concentration so that the oxidation-induced stacking faults are generated on the whole wafer surface in the case when a high temperature oxidation heat treatment is carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体デバイスの製造に供される単結晶シリコンウェーハの製造方法、その単結晶シリコンウェーハ、及びそのようなウェーハを製造するためのウェーハ検査方法に関する。   The present invention relates to a method for manufacturing a single crystal silicon wafer used for manufacturing a semiconductor device, the single crystal silicon wafer, and a wafer inspection method for manufacturing such a wafer.

半導体デバイスに用いられるシリコン半導体ウェーハは、主にチョクラルスキー法(CZ法)により引き上げ育成されたシリコン単結晶から製造されている。CZ法は、石英ルツボ内の溶融したシリコンに種結晶を浸けて引き上げ、単結晶を成長させるものである。
CZ法において、石英ルツボから溶融した酸素は結晶中に取り込まれる。この酸素は、凝固直後は十分に固溶しているが、冷却するにつれ固溶度が減少するため、通常、結晶中に過飽和な状態で存在することになる。そしてこの過飽和な酸素は、デバイスの製造工程における熱処理中に酸化物として析出してくる。この酸素析出物あるいはそれに誘起される欠陥は、BMD(Bulk Micro Defect) と呼ばれ、デバイス活性領域に存在する場合はデバイス特性を劣化させる要因となるが、基板内部に存在する場合はデバイス製造工程で混入する金属不純物を捕獲するゲッタリング源として有効に作用する。
Silicon semiconductor wafers used for semiconductor devices are mainly manufactured from silicon single crystals that are pulled and grown by the Czochralski method (CZ method). In the CZ method, a seed crystal is immersed in molten silicon in a quartz crucible and pulled to grow a single crystal.
In the CZ method, oxygen melted from a quartz crucible is taken into the crystal. This oxygen is sufficiently dissolved immediately after solidification, but its solid solubility decreases as it cools, so it usually exists in a supersaturated state in the crystal. The supersaturated oxygen is deposited as an oxide during the heat treatment in the device manufacturing process. This oxygen precipitate or a defect induced by the oxygen precipitate is called BMD (Bulk Micro Defect), and if it exists in the device active region, it becomes a factor that degrades the device characteristics. It effectively acts as a gettering source for capturing metal impurities mixed in.

この酸素析出物を有効に活用するために、従来より、DZ−IG(Denuded Zone-Intrinsic Gettering)処理が行われている。この処理においては、まず、窒素ガス、酸素ガス若しくはこれらの混合ガス雰囲気で、ウェーハに1150℃程度で数時間の高温熱処理を施す。これによりウェーハ表層の酸素が外方拡散され、ウェーハ表層に存在する酸素の濃度が低下し、ウェーハ表層に、酸素析出物やそれに誘起される欠陥が存在しないディニューディッド層(Denuded Zone;DZ層) が形成される。その後、さらに500〜900℃で数時間の熱処理を施すことで、ウェーハ内部に酸素析出核が形成される。そして、デバイス工程で熱処理を受けることにより酸素析出核が酸素析出物として成長し、ゲッタリング層が形成される。このような処理を行うことにより、ウェーハ表層のデバイス活性領域は無欠陥の一方で、ウェーハ内部には汚染物をデバイス活性領域から除去する吸収層が存在する高品質なウェーハの形成が可能となる。   In order to effectively use this oxygen precipitate, a DZ-IG (Denuded Zone-Intrinsic Gettering) process has been conventionally performed. In this process, first, a high temperature heat treatment is performed on the wafer at about 1150 ° C. for several hours in an atmosphere of nitrogen gas, oxygen gas or a mixed gas thereof. As a result, oxygen on the surface of the wafer is diffused outward, and the concentration of oxygen present on the surface of the wafer is lowered, and a denewed layer (DZ layer) in which oxygen precipitates and defects induced by the oxygen are not present on the surface of the wafer. ) Is formed. Thereafter, heat treatment is further performed at 500 to 900 ° C. for several hours to form oxygen precipitation nuclei inside the wafer. Then, by undergoing heat treatment in the device process, oxygen precipitation nuclei grow as oxygen precipitates, and a gettering layer is formed. By performing such a process, it is possible to form a high-quality wafer in which the device active region on the surface layer of the wafer is defect-free while the wafer has an absorption layer that removes contaminants from the device active region. .

また、CZ法により製造されるシリコン単結晶には、前述した酸素析出物のような熱処理誘起欠陥とは別に、結晶育成時に形成されるCOP(Crystal Originated Particle)と呼ばれるサイズが0.1μm程度のGrown-in 欠陥が10〜10cm−3程度存在する。この欠陥は前述した手法では除去することができず、そのままでは半導体デバイスの特性を悪化させる要因となる。
このCOPの密度、サイズを低減させる方法として、水素ガスやアルゴンガス雰囲気で1200℃程度の高温熱処理を行う方法があり、簡便にウェーハ表層のCOP密度を低減させることができる方法として知られている。この処理は、前述した酸素外方拡散処理も兼ねており、この手法により得られたシリコンウェーハは、デバイス活性領域であるウェーハ表層に酸素析出物やCOPが不在な高品質ウェーハとなる。
In addition, the silicon single crystal produced by the CZ method has a size called COP (Crystal Originated Particle) formed at the time of crystal growth of about 0.1 μm separately from the heat treatment induced defects such as the oxygen precipitates described above. Grown-in defects are present in the order of 10 5 to 10 6 cm −3 . This defect cannot be removed by the above-described method, and as it is, causes a deterioration in the characteristics of the semiconductor device.
As a method of reducing the density and size of the COP, there is a method of performing a high-temperature heat treatment at about 1200 ° C. in an atmosphere of hydrogen gas or argon gas, which is known as a method that can easily reduce the COP density of the wafer surface layer. . This process also serves as the oxygen out-diffusion process described above, and the silicon wafer obtained by this method becomes a high-quality wafer in which oxygen precipitates and COP are absent on the wafer surface layer, which is a device active region.

この方法によりウェーハ表層域のCOP密度を効率良く低減するために、結晶育成時に冷却速度を速くすること、又は、結晶育成時に窒素を添加することが提案されている(特許文献1参照)。これによれば、結晶育成中の1100℃〜850℃の温度範囲での冷却中の単結晶の保持時間を80分未満にすること、あるいは、窒素を少なくとも1×1014 atoms/cm添加することにより、結晶育成時に形成されるCOPの密度は増大するがCOPのサイズを小さくすることができ、熱処理により欠陥が消滅し易くすることができる。 In order to efficiently reduce the COP density in the wafer surface layer region by this method, it has been proposed to increase the cooling rate during crystal growth or to add nitrogen during crystal growth (see Patent Document 1). According to this, the holding time of the single crystal during cooling in the temperature range of 1100 ° C. to 850 ° C. during crystal growth is set to less than 80 minutes, or nitrogen is added at least 1 × 10 14 atoms / cm 3 . As a result, the density of COP formed during crystal growth increases, but the size of COP can be reduced, and defects can be easily eliminated by heat treatment.

ところで、このように結晶育成時に窒素を添加することの利点及び欠点として、高温熱処理でも成長し得る酸素析出核の形成、及び、酸化誘起積層欠陥(Oxidation induced stacking fault;以下、OSF)の発生等が報告されている(非特許文献1参照)。酸素析出物のウェーハ面内分布については記載されていないが、OSFの発生は窒素濃度に強く依存しており、直径200mmの結晶に対して、窒素を5×1014 atoms/cm添加した場合はOSFの発生領域は外周〜50mm程度の範囲までなのに対して、窒素を3×1015 atoms/cm添加した場合はウェーハのほぼ全面にOSFが発生しており、窒素濃度によってウェーハ面内の均一性が異なることを示している。 By the way, the advantages and disadvantages of adding nitrogen at the time of crystal growth as described above include formation of oxygen precipitation nuclei that can grow even at high temperature heat treatment, generation of oxidation induced stacking faults (hereinafter referred to as OSF), and the like. Has been reported (see Non-Patent Document 1). Although there is no description about the distribution of oxygen precipitates in the wafer plane, the generation of OSF strongly depends on the nitrogen concentration, and when nitrogen is added at 5 × 10 14 atoms / cm 3 to a crystal having a diameter of 200 mm. In contrast, the OSF generation region extends from the outer periphery to the range of about 50 mm, but when nitrogen is added at 3 × 10 15 atoms / cm 3 , OSF is generated on almost the entire surface of the wafer, and the nitrogen concentration in the wafer surface increases. It shows that the uniformity is different.

このOSFの発生核は高温でも安定で、エピタキシャルウェーハの酸素析出を促進させる手段として用いることも提案されている(特許文献2参照)。エピタキシャル成長後も安定な酸素析出核は、当然、水素ガス又はアルゴンガスを含む雰囲気で1200℃程度の熱処理を行っても存在し得ることが十分に考えられる。従って、OSFをウェーハ全面に発生させることが可能であれば、ウェーハ全面にわたって安定な酸素析出物を形成させることが可能となるが、その際の窒素濃度は3×1015 atoms/cm程度必要とされる(非特許文献1参照)。 It has been proposed that the OSF nuclei are stable even at high temperatures and used as a means for promoting oxygen precipitation in the epitaxial wafer (see Patent Document 2). It is sufficiently conceivable that stable oxygen precipitation nuclei even after epitaxial growth can exist even if heat treatment at about 1200 ° C. is performed in an atmosphere containing hydrogen gas or argon gas. Therefore, if OSF can be generated on the entire surface of the wafer, stable oxygen precipitates can be formed on the entire surface of the wafer, but the nitrogen concentration at that time needs to be about 3 × 10 15 atoms / cm 3. (See Non-Patent Document 1).

また、OSFをウェーハ全面に発生させる結晶育成方法も提案されている(特許文献3参照)。この方法は、育成された結晶の最大外径をDmax 、最小外径をDmin とした時、(Dmax −Dmin )/Dmin ×100〔%〕で表される結晶変形率が1.5〜2.0%となる速度を最大引き上げ速度とし、この最大引き上げ速度の0.4〜0.8倍の引き上げ速度で育成する方法である。この方法によれば、窒素濃度が1×1012 atoms/cmでOSF発生領域の拡張が現れてきて、1×1014 atoms/cm以上で望ましいとされている
特開平10−98047号公報 特開平11−189493号公報 特開2000−272997号公報 第52回日本結晶成長学会、バルク成長分科会資料、”Nitrogen and Carbon Effect on the formation of Grown-in Defects and Oxygen Precipitation Behavior”
Further, a crystal growth method for generating OSF on the entire surface of the wafer has been proposed (see Patent Document 3). In this method, when the maximum outer diameter of the grown crystal is Dmax and the minimum outer diameter is Dmin, the crystal deformation rate represented by (Dmax−Dmin) / Dmin × 100 [%] is 1.5-2. In this method, the rate of 0% is set as the maximum pulling rate, and the growing is performed at a pulling rate 0.4 to 0.8 times the maximum pulling rate. According to this method, the expansion of the OSF generation region appears when the nitrogen concentration is 1 × 10 12 atoms / cm 3 , and it is desirable that the nitrogen concentration is 1 × 10 14 atoms / cm 3 or more.
JP-A-10-98047 JP-A-11-189493 JP 2000-272997 A 52nd Annual Meeting of Crystal Growth Society, Bulk Growth Subcommittee, “Nitrogen and Carbon Effect on the Formation of Grown-in Defects and Oxygen Precipitation Behavior”

しかしながら、前述したOSFをウェーハ全面に発生させる結晶育成方法においては、実際にウェーハ全面にOSFが発生した窒素濃度については明記されておらず、通常の引き上げ速度と比較して窒素濃度の低減化が図られたに過ぎず、非特許文献1に開示されている方法と比較して窒素濃度が低減したか否かについては定かでない。
また、この方法では、結晶成長速度を故意に低下させているために、窒素を添加せずに結晶成長を行った場合、OSFリング領域が結晶面内に出現してしまい、このOSFリング領域を境に内外領域で結晶欠陥の種類が異なることになる。このことは、酸素析出物形成挙動がウェーハ面内で異なることを意味する。
However, in the crystal growth method for generating the OSF on the entire surface of the wafer, the nitrogen concentration at which the OSF is actually generated on the entire surface of the wafer is not specified, and the nitrogen concentration can be reduced as compared with the normal pulling rate. It is only shown and it is not certain whether the nitrogen concentration has been reduced as compared with the method disclosed in Non-Patent Document 1.
In this method, since the crystal growth rate is intentionally reduced, when crystal growth is performed without adding nitrogen, the OSF ring region appears in the crystal plane, and this OSF ring region is The types of crystal defects are different between the inner and outer regions. This means that the oxygen precipitate formation behavior is different within the wafer plane.

また、前述した窒素を添加する方法においても、十分な析出均一性を得るのに必要な、OSF面内均一性・窒素濃度・結晶面内温度分布などが開示されていない。
従って、前述したような方法により高温で安定なBMD形成に有効なOSF発生核をウェーハ全面に形成させるには、窒素濃度を3×1015 atoms/cm程度に設定する必要がある。
In addition, the above-described method of adding nitrogen does not disclose OSF in-plane uniformity, nitrogen concentration, crystal in-plane temperature distribution, etc. necessary for obtaining sufficient precipitation uniformity.
Therefore, in order to form OSF generation nuclei effective for high-temperature stable BMD formation on the entire surface of the wafer by the method as described above, it is necessary to set the nitrogen concentration to about 3 × 10 15 atoms / cm 3 .

また、シリコン融液から窒素を添加する場合、偏析現象によって結晶の長さ方向で窒素濃度が変化してしまい、結晶全域にわたり、同じ窒素濃度で結晶育成を行うことはできない。また、シリコン中の窒素の固溶限界は5×1015 atoms/cm程度であり、結晶トップ部で窒素濃度を3×1015 atoms/cmに設定し結晶育成を行うと、窒素を添加しない場合と比較し、育成可能な結晶長が極端に短くなり、生産性が大幅に低下する。 In addition, when nitrogen is added from the silicon melt, the nitrogen concentration changes in the length direction of the crystal due to the segregation phenomenon, and the crystal growth cannot be performed at the same nitrogen concentration over the entire crystal region. Further, the solid solution limit of nitrogen in silicon is about 5 × 10 15 atoms / cm 3 , and when crystal growth is performed with the nitrogen concentration set to 3 × 10 15 atoms / cm 3 at the crystal top, nitrogen is added. Compared with the case where it does not, the crystal length which can be grown becomes extremely short, and productivity falls significantly.

結晶育成時の結晶成長軸方向の温度勾配を制御することにより窒素無添加でも全面OSF領域が得られ、この領域を用いればBMDの面内均一化が容易であることも開示されているが(特許文献4参照)、具体的な温度勾配の制御範囲や引き上げ速度範囲は開示されておらず、窒素濃度範囲も1×1010〜5×1015 atoms/ccと広く、生産性を低下させることなく全面OSF領域が得られる範囲は明らかでない。同様に、OSFとBMDが混在する領域で覆われたウェーハを用いることが提案されているが(特許文献5参照)、やはり生産性を低下させることなく実現する方法は開示されていない。
特開2001−139396号公報 特開2003−59932号公報
It is also disclosed that by controlling the temperature gradient in the crystal growth axis direction during crystal growth, the entire OSF region can be obtained even without addition of nitrogen, and if this region is used, in-plane homogenization of BMD is easy ( No specific temperature gradient control range or pulling speed range is disclosed, and the nitrogen concentration range is as wide as 1 × 10 10 to 5 × 10 15 atoms / cc, thus reducing productivity. The range in which the entire OSF region can be obtained is not clear. Similarly, although it has been proposed to use a wafer covered with a region where OSF and BMD are mixed (see Patent Document 5), a method for realizing it without reducing productivity is not disclosed.
JP 2001-139396 A JP 2003-59932 A

本発明はこのような課題に鑑みてなされたものであって、その目的は、生産性を低下させること無く、BMD密度分布の面内不均一性を解消しウェーハ面内で均一なゲッタリング能を有する単結晶シリコンウェーハを製造する単結晶シリコンウェーハの製造方法、そのような単結晶シリコンウェーハ、及びそのようなウェーハを製造するためのウェーハ検査方法を提供することにある。   The present invention has been made in view of such problems, and its object is to eliminate in-plane non-uniformity of the BMD density distribution without reducing productivity and to obtain a uniform gettering capability in the wafer surface. It is an object of the present invention to provide a method for manufacturing a single crystal silicon wafer, a single crystal silicon wafer, and a wafer inspection method for manufacturing such a wafer.

前記課題を解決するために、本願発明者は結晶育成条件について種々検討を行った。その結果、結晶育成時の結晶成長軸方向の温度勾配を制御することにより、生産性を低下させること無く、1×1015 atoms/cm以下の低窒素濃度であってもウェーハ全面にOSFを発生させる方法を見出した。このOSF核は、高温で安定な酸素析出核と同様の意味を持ち、水素ガスあるいはアルゴンガス雰囲気中で、1200℃程度の温度範囲で熱処理を行った後も安定に存在できるものである。 In order to solve the above problems, the present inventor has conducted various studies on crystal growth conditions. As a result, by controlling the temperature gradient in the crystal growth axis direction during crystal growth, OSF is applied to the entire wafer surface even at a low nitrogen concentration of 1 × 10 15 atoms / cm 3 or less without reducing productivity. I found a way to generate it. This OSF nucleus has the same meaning as an oxygen precipitation nucleus that is stable at a high temperature, and can exist stably even after heat treatment in a temperature range of about 1200 ° C. in a hydrogen gas or argon gas atmosphere.

結晶育成工程において、シリコン原料を融かす前に、シリコン窒化膜が形成されたシリコンウェーハを窒素ドープ材として添加し育成した結晶は、偏析現象により結晶全長にわたり窒素濃度が変化する。シリコン結晶中の窒素の固溶限界は5×1015 atoms/cm程度であり、これ以上の濃度ではもはや単結晶として結晶を育成することができない。
窒素の偏析係数から算出した結晶中の窒素濃度とOSF密度は正の相関を持ち、窒素濃度が1×1014 atoms/cmを越えるとOSFがウェーハ外周部から高密度に発生し、窒素濃度の増加に伴いその発生領域はウェーハ内部へと広がり、窒素濃度が2.6×1015 atoms/cmでウェーハ全面に均一に発生した。
In the crystal growth step, before the silicon raw material is melted, a crystal grown by adding a silicon wafer on which a silicon nitride film is formed as a nitrogen dope changes the nitrogen concentration over the entire length of the crystal due to a segregation phenomenon. The solid solution limit of nitrogen in the silicon crystal is about 5 × 10 15 atoms / cm 3 , and at a concentration higher than this, the crystal can no longer be grown as a single crystal.
The nitrogen concentration in the crystal calculated from the segregation coefficient of nitrogen and the OSF density have a positive correlation. When the nitrogen concentration exceeds 1 × 10 14 atoms / cm 3 , OSF is generated at a high density from the outer periphery of the wafer. With the increase in the area, the generation region spread into the wafer, and the nitrogen concentration was 2.6 × 10 15 atoms / cm 3 and was uniformly generated on the entire surface of the wafer.

これらの隣り合った結晶部位からウェーハを抜き取り、アルゴンガス雰囲気中で1200℃で1時間の熱処理を行った後、乾燥酸素ガス雰囲気中で1000℃で16時間のBMD成長熱処理を行い、エッチングを施し、BMDを顕在化させ面内の密度分布を調べたところ、窒素濃度が2.6×1015 atoms/cmの部位のみBMD密度が面内で均一になっていた。その他の結晶部位では、すなわち窒素濃度が1×1015 atoms/cm以下では、結晶外周部で密度低下若しくは密度増加が起こり、不均一なOSF分布に依存していた。
従って、OSFをウェーハ全面に均一に発生することが可能なウェーハは、1200℃程度の高温で熱処理を行った後もBMDがウェーハ面内に均一に形成され、面内で均一なゲッタリング能を持つ優れたウェーハとなる。
The wafer is extracted from these adjacent crystal parts, heat-treated at 1200 ° C. for 1 hour in an argon gas atmosphere, and then subjected to BMD growth heat treatment at 1000 ° C. for 16 hours in a dry oxygen gas atmosphere to perform etching. As a result of revealing the BMD and examining the in-plane density distribution, the BMD density was uniform in the plane only at the site where the nitrogen concentration was 2.6 × 10 15 atoms / cm 3 . At other crystal parts, that is, when the nitrogen concentration is 1 × 10 15 atoms / cm 3 or less, density decrease or density increase occurs at the outer periphery of the crystal and depends on non-uniform OSF distribution.
Therefore, in a wafer that can generate OSF uniformly over the entire surface of the wafer, even after heat treatment at a high temperature of about 1200 ° C., BMD is uniformly formed in the wafer surface, and uniform gettering ability is achieved in the surface. It has an excellent wafer.

このことから、さらに鋭意検討を行った結果、結晶育成中の1370℃から1310℃間の結晶成長軸方向の温度勾配値が結晶中心部をGc、結晶外周部をGeとした時、Gc/Ge=1.23になるように設計された結晶育成炉の場合、窒素をドープしなくてもウェーハ面内のほぼ全面にOSFを発生させることが可能であることを見出した。そして、このようなGc/Geの最適化によって、僅かな窒素濃度でOSFをウェーハ全面に発生させることが可能になることを見出した。   From this, as a result of further intensive studies, when the temperature gradient value in the crystal growth axis direction between 1370 ° C. and 1310 ° C. during crystal growth is Gc in the center of the crystal and Ge is in the outer periphery of the crystal, Gc / Ge In the case of a crystal growth furnace designed so that = 1.23, it has been found that OSF can be generated on almost the entire surface of the wafer without doping nitrogen. Then, it was found that such optimization of Gc / Ge makes it possible to generate OSF on the entire wafer surface with a slight nitrogen concentration.

すなわち本発明に係る単結晶シリコンウェーハの製造方法は、チョクラルスキー法によりシリコン単結晶を引き上げ育成する工程を有するシリコン単結晶ウェーハの製造方法であって、高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、結晶育成中の温度が1370℃〜1310℃の時の結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)、及び、窒素濃度に応じた引き上げ速度で引き上げ育成を行うことを特徴とする。   In other words, the method for producing a single crystal silicon wafer according to the present invention is a method for producing a silicon single crystal wafer having a step of pulling and growing a silicon single crystal by the Czochralski method, and inducing oxidation when a high temperature oxidation heat treatment is performed. Ratio Gc / Ge of temperature gradient values in the crystal growth axis direction when the temperature during crystal growth is 1370 ° C. to 1310 ° C. (where Gc is the average temperature gradient in the center of the crystal so that stacking faults occur on the entire wafer surface) , Ge: average temperature gradient of the outer periphery of the crystal) and pulling growth at a pulling rate according to the nitrogen concentration.

また、本発明に係る単結晶シリコンウェーハの製造方法は、チョクラルスキー法によりシリコン単結晶を引き上げ育成する工程を有するシリコン単結晶ウェーハの製造方法であって、インゴットの引き上げ方向における直胴部の全長の30〜70%の範囲の引き上げ育成を行う際に、結晶育成中の温度が1370℃〜1310℃であって、結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)を1.14以上1.28以下の範囲とし、窒素を0.8×1014 atoms/cm以上5×1015 atoms/cm以下の範囲で添加して引き上げ育成を行うことを特徴とする。 Moreover, the method for producing a single crystal silicon wafer according to the present invention is a method for producing a silicon single crystal wafer having a step of pulling and growing a silicon single crystal by the Czochralski method, wherein the straight body portion in the pulling direction of the ingot is When pulling and growing in the range of 30 to 70% of the total length, the temperature during crystal growth is 1370 ° C. to 1310 ° C., and the temperature gradient value ratio Gc / Ge (where Gc: crystal The average temperature gradient at the center, Ge: average temperature gradient at the outer periphery of the crystal) is in the range of 1.14 to 1.28, and nitrogen is 0.8 × 10 14 atoms / cm 3 to 5 × 10 15 atoms / cm. It is characterized in that it is added in a range of 3 or less and is raised and grown.

好適には、前記引き上げ育成は、高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、窒素濃度に応じた引き上げ速度で行う。
また好適には、前記酸化誘起積層欠陥の密度の最大値と最小値の比(最大値/最小値)が4以下である。
また好適には、水素ガス又はアルゴンガスを含む雰囲気で、1100℃〜1250℃で30分以上5時間以下の熱処理を施す工程を有する。
Preferably, the pulling growth is performed at a pulling rate according to the nitrogen concentration so that oxidation-induced stacking faults are generated on the entire surface of the wafer when a high temperature oxidation heat treatment is performed.
Preferably, the ratio (maximum value / minimum value) between the maximum value and the minimum value of the density of the oxidation-induced stacking faults is 4 or less.
Preferably, the method includes a step of performing a heat treatment at 1100 ° C. to 1250 ° C. for 30 minutes to 5 hours in an atmosphere containing hydrogen gas or argon gas.

また、本発明に係る単結晶シリコンウェーハは、チョクラルスキー法により引き上げ育成されて製造されるシリコン単結晶ウェーハであって、高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、結晶育成中の温度が1370℃〜1310℃の時の結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)、及び、窒素濃度に応じた引き上げ速度で引き上げ育成されたことを特徴とする。   In addition, the single crystal silicon wafer according to the present invention is a silicon single crystal wafer manufactured by pulling and growing by the Czochralski method, and oxidation-induced stacking faults are generated on the entire surface of the wafer when subjected to high temperature oxidation heat treatment. Thus, the ratio Gc / Ge of temperature gradient values in the crystal growth axis direction when the temperature during crystal growth is 1370 ° C. to 1310 ° C. (where Gc is the average temperature gradient of the crystal center, Ge is the average of the crystal periphery) It is characterized by being raised and grown at a pulling rate according to the temperature gradient) and the nitrogen concentration.

また、本発明に係る単結晶シリコンウェーハは、チョクラルスキー法により引き上げ育成されて製造されるシリコン単結晶ウェーハであって、インゴットの引き上げ方向における直胴部の全長の30〜70%の範囲の引き上げ育成を行う際に、結晶育成中の温度が1370℃〜1310℃であって、結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)を1.14以上1.28以下の範囲とし、窒素を0.8×1014 atoms/cm以上5×1015 atoms/cm以下の範囲で添加して引き上げ育成されたことを特徴とする。 Moreover, the single crystal silicon wafer according to the present invention is a silicon single crystal wafer that is manufactured by being pulled and grown by the Czochralski method, and is in the range of 30 to 70% of the total length of the straight body portion in the pulling direction of the ingot. When pulling growth is performed, the temperature during crystal growth is 1370 ° C. to 1310 ° C., and the temperature gradient value ratio Gc / Ge in the crystal growth axis direction (where Gc is the average temperature gradient at the center of the crystal, Ge: The average temperature gradient at the outer periphery of the crystal is in the range of 1.14 to 1.28, and nitrogen is added in the range of 0.8 × 10 14 atoms / cm 3 to 5 × 10 15 atoms / cm 3 and pulled up. It is characterized by being nurtured.

好適には、酸素析出評価熱処理を施した時に形成されるウェーハ面内の平均BMD密度が、1×10個/cm以上5×10個/cm以下、ウェーハ径方向におけるBMDの密度の最大値/最小値の比が3以下である。
また好適には、酸化誘起積層欠陥のウェーハ面内密度の最大値と最小値の比(最大値/最小値)が4以下である。
また好適には、水素ガス又はアルゴンガスを含む雰囲気で、1100℃〜1250℃で30分以上5時間以下の熱処理が施されて製造される。
Preferably, the average BMD density in the wafer surface formed when the oxygen precipitation evaluation heat treatment is performed is 1 × 10 4 pieces / cm 2 or more and 5 × 10 6 pieces / cm 2 or less, and the BMD density in the wafer radial direction The ratio of the maximum value / minimum value is 3 or less.
Preferably, the ratio (maximum value / minimum value) of the maximum value and the minimum value of the density in the wafer plane of the oxidation-induced stacking fault is 4 or less.
In addition, it is preferably manufactured by performing a heat treatment at 1100 ° C. to 1250 ° C. for 30 minutes to 5 hours in an atmosphere containing hydrogen gas or argon gas.

また、本発明に係るウェーハ検査方法は、チョクラルスキー法により引き上げ育成され高温酸化熱処理を施して製造されるシリコン単結晶ウェーハのBMD分布の良否を検査する方法であって、酸化誘起積層欠陥のウェーハ面内密度の分布を測定し、予め求められたBMD分布とOSF分布との関係により決定された良否範囲に前記測定されたOSF分布が属するか否かを判定し、その良否をBMD分布の良否と推定することを特徴とする。   The wafer inspection method according to the present invention is a method for inspecting the quality of the BMD distribution of a silicon single crystal wafer manufactured by pulling up and growing by the Czochralski method and performing a high temperature oxidation heat treatment. The wafer in-plane density distribution is measured, it is determined whether or not the measured OSF distribution belongs to the quality range determined by the relationship between the BMD distribution and the OSF distribution obtained in advance, and the quality is determined as the BMD distribution. It is characterized by estimating whether it is good or bad.

本発明によれば、生産性を低下させること無く、BMD密度分布の面内不均一性を解消しウェーハ面内で均一なゲッタリング能を有する単結晶シリコンウェーハを製造する単結晶シリコンウェーハの製造方法、そのような単結晶シリコンウェーハ、及びそのようなウェーハを製造するためのウェーハ検査方法を提供することができる。   According to the present invention, the manufacture of a single crystal silicon wafer that manufactures a single crystal silicon wafer having a uniform gettering ability in the wafer surface by eliminating in-plane non-uniformity of the BMD density distribution without reducing productivity. Methods, such single crystal silicon wafers, and wafer inspection methods for manufacturing such wafers can be provided.

本発明の実施形態について、図1〜図10を参照して説明する。
ここでは、2つの比較例及び3つの本発明に係る方法としての実施例について、シリコン単結晶の引き上げ育成を含む単結晶シリコンウェーハの製造条件及び製造方法について説明するとともにOSF密度及びBMD密度について評価結果を示し、本発明に係る単結晶シリコンウェーハ、その製造方法及び検査方法の実施形態について説明する。
An embodiment of the present invention will be described with reference to FIGS.
Here, two comparative examples and three examples of the method according to the present invention will be described with respect to the manufacturing conditions and manufacturing method of a single crystal silicon wafer including pulling growth of a silicon single crystal, and evaluated for OSF density and BMD density. A result is shown and embodiment of the single crystal silicon wafer which concerns on this invention, its manufacturing method, and an inspection method is described.

まず最初に、各例に共通的に適用するOSF密度及びBMD密度の評価方法について説明する。
各比較例及び実施例の条件に従って育成された結晶からウェーハを切り出した後、窒素ガス雰囲気で650℃で30分の酸素ドナー消去熱処理を施し、そのウェーハに対して各々次のような方法によりウェーハ面内のOSF密度及び、BMD密度の評価を行う。
First, an OSF density and BMD density evaluation method commonly applied to each example will be described.
After the wafer was cut out from the crystal grown according to the conditions of each comparative example and example, an oxygen donor erasing heat treatment was performed at 650 ° C. for 30 minutes in a nitrogen gas atmosphere. In-plane OSF density and BMD density are evaluated.

OSF密度評価方法
(1)水蒸気雰囲気中で1140℃で2時間の熱処理。
(2)ウェーハ表面に形成された酸化膜をHF:H2O =1:1の液で除去。
(3)HF:HNO3 :CrO3 :Cu(NO3)2 :H2 O:CH3 COOH=1200cc:600cc:250g:40g:1700cc:1200ccの液でウェーハ表面を2μm除去(これにより欠陥が顕在化)。
(4)光学顕微鏡でウェーハ径方向に5mmあるいは10mmピッチでOSF密度を測定。
OSF density evaluation method (1) Heat treatment at 1140 ° C. for 2 hours in a steam atmosphere.
(2) The oxide film formed on the wafer surface is removed with a solution of HF: H2O = 1: 1.
(3) HF: HNO 3: CrO 3: Cu (NO 3) 2: H 2 O: CH 3 COOH = 1200 μm: 600 cc: 250 g: 40 g: 1700 cc: 1200 cc The surface of the wafer was removed by 2 μm (thus making defects obvious).
(4) The OSF density is measured with an optical microscope at a 5 mm or 10 mm pitch in the wafer radial direction.

BMD密度評価方法
(1)乾燥酸素雰囲気で1000℃で16時間の熱処理。
(2)ウェーハ表面に形成された酸化膜をHF:H2O =1:1の液で除去。
(3)ウェーハを半分に劈開。
(4)HF:HNO3 :CrO3 :Cu(NO3)2 :H2 O:CH3 COOH=1200cc:600cc:250g:40g:1700cc:1200ccの液で劈開面を2μm除去(これにより欠陥が顕在化)。
(5)光学顕微鏡でウェーハ径方向に5mmあるいは10mmピッチでエッチピット密度を測定。
BMD density evaluation method (1) Heat treatment at 1000 ° C. for 16 hours in a dry oxygen atmosphere.
(2) The oxide film formed on the wafer surface is removed with a solution of HF: H2O = 1: 1.
(3) Cleave the wafer in half.
(4) HF: HNO 3: CrO 3: Cu (NO 3) 2: H 2 O: CH 3 COOH = 1200 μm: 600 cc: 250 g: 40 g: 1700 cc: 1200 cc of the cleaved surface was removed by 2 μm (thus causing defects to manifest).
(5) The etch pit density is measured at a pitch of 5 mm or 10 mm in the wafer radial direction with an optical microscope.

以下、比較例1及び比較例2、及び、実施例1〜実施例3について、単結晶シリコンウェーハの製造方法とその評価結果を示す。   Hereinafter, the manufacturing method of a single crystal silicon wafer and its evaluation result are shown about the comparative example 1 and the comparative example 2, and Examples 1-3.

比較例1
比較例1として、少なくともインゴットの引き上げ方向における全長の30〜70%の範囲の直胴部の引き上げを、結晶育成中の温度が1370℃〜1310℃であって、結晶面内の温度勾配比Gc/Geが1.00である結晶育成条件にて、8インチp型、抵抗率約10Ωcm、酸素濃度約12×1017 atoms/cmの窒素ドープ結晶の育成を行った。窒素ドープ法としては、結晶育成工程のシリコン原料を融かす工程前にシリコン窒化膜が形成されたシリコンウェーハを窒素ドープ材としてシリコン原料と一緒に仕込んだ。幅広い窒素濃度範囲の結晶を得るため、窒素ドープ材の仕込み量を変えた。結晶中の窒素濃度は、窒素の偏析係数から算出し、0.01〜4×1015 atoms/cmである。なお、引き上げの際に添加する窒素濃度については、インゴット全長の30〜70%のみならず、直胴部の全域について、設定された濃度を維持するものとする。
結晶育成後、窒素ガス雰囲気で650℃で30分の酸素ドナー消去熱処理を施したウェーハに加工し、前述したような方法により、ウェーハ面内のOSF密度及び、BMD密度の評価を行った。
Comparative Example 1
As Comparative Example 1, the temperature of the straight body in the range of 30 to 70% of the total length in the pulling direction of the ingot is at a temperature during crystal growth of 1370 ° C to 1310 ° C, and the temperature gradient ratio Gc in the crystal plane Under the crystal growth condition where / Ge is 1.00, an 8-inch p-type, a resistivity of about 10 Ωcm, and an oxygen concentration of about 12 × 10 17 atoms / cm 3 were grown. As the nitrogen doping method, a silicon wafer on which a silicon nitride film was formed was charged together with the silicon raw material as a nitrogen doping material before the step of melting the silicon raw material in the crystal growth step. In order to obtain crystals in a wide range of nitrogen concentration, the amount of nitrogen dope was changed. The nitrogen concentration in the crystal is calculated from the segregation coefficient of nitrogen and is 0.01 to 4 × 10 15 atoms / cm 3 . In addition, about the nitrogen concentration added in the case of pulling up, the set density | concentration shall be maintained not only about 30-70% of the ingot total length but the whole region of a straight body part.
After crystal growth, the wafer was processed into an oxygen donor erasing heat treatment at 650 ° C. for 30 minutes in a nitrogen gas atmosphere, and the OSF density and BMD density in the wafer surface were evaluated by the method described above.

図1に、アルゴンガス雰囲気で熱処理を行う前の比較例1のサンプルのOSF密度分布を示す。
図1に示すように、この例では、窒素濃度が1.2×1013 atoms/cmではOSFは発生せず、窒素濃度が1.35×1014 atoms/cmで周辺部にOSFが発生し、窒素濃度増加とともにウェーハ外周部から内部に向かってOSFが高密度に発生し、2.6×1015 atoms/cm以上でウェーハ全面に均一に発生している。
FIG. 1 shows the OSF density distribution of the sample of Comparative Example 1 before heat treatment in an argon gas atmosphere.
As shown in FIG. 1, in this example, when the nitrogen concentration is 1.2 × 10 13 atoms / cm 3 , OSF is not generated, and when the nitrogen concentration is 1.35 × 10 14 atoms / cm 3 , OSF is generated in the peripheral portion. As the nitrogen concentration increases, the OSF is generated with a high density from the outer peripheral portion of the wafer toward the inside, and is uniformly generated over the entire wafer at 2.6 × 10 15 atoms / cm 3 or more.

図2に、アルゴンガス雰囲気で熱処理を行う前後の比較例1のサンプルのBMD密度分布を示す。
図2に示すように、窒素濃度3.6〜5.5×1014 atoms/cmでウェーハ外周部から10〜20mmの位置でBMD密度の低下が起こっているが、アルゴンアニール処理前後でBMD密度分布に差は見られない。また、この窒素濃度範囲でのOSFは、BMD密度が低下している位置で高密度に発生している。
窒素濃度が7.8〜9.4×1014 atoms/cmと高くなると、ウェーハ外周部においてBMD密度の低下は起こらず、逆に増加している。また、低窒素濃度の場合と同様に、アルゴンアニール前後でBMD密度分布に差は見られない。この窒素濃度範囲でのOSFは、ウェーハ中心部近傍まで高密度に発生しているが、その分布は不均一である。
また、窒素濃度が2.6×1015 atoms/cmになると、BMDはウェーハ面内均一に形成され、かつOSFも均一に発生している。また、低窒素濃度の場合と同様に、アルゴンアニール前後でBMD密度分布に差は見られない。
FIG. 2 shows the BMD density distribution of the sample of Comparative Example 1 before and after heat treatment in an argon gas atmosphere.
As shown in FIG. 2, a decrease in BMD density occurs at a position of 10 to 20 mm from the outer periphery of the wafer at a nitrogen concentration of 3.6 to 5.5 × 10 14 atoms / cm 3. There is no difference in the density distribution. Further, the OSF in this nitrogen concentration range is generated at a high density at a position where the BMD density is lowered.
When the nitrogen concentration increases to 7.8 to 9.4 × 10 14 atoms / cm 3 , the BMD density does not decrease at the outer peripheral portion of the wafer, but increases. In addition, as in the case of the low nitrogen concentration, there is no difference in the BMD density distribution before and after argon annealing. The OSF in this nitrogen concentration range is generated at a high density up to the vicinity of the wafer center, but its distribution is non-uniform.
When the nitrogen concentration is 2.6 × 10 15 atoms / cm 3 , the BMD is uniformly formed in the wafer surface and the OSF is also uniformly generated. In addition, as in the case of the low nitrogen concentration, there is no difference in the BMD density distribution before and after argon annealing.

窒素濃度ごとのアルゴンアニール後のBMD密度の面内バラツキ(最大値/最小値)を表1に示す。
表1に示すように、アルゴンアニール後のBMD密度の面内バラツキ(最大値/最小値)は、最大で7倍近くになっている。
Table 1 shows the in-plane variation (maximum value / minimum value) of the BMD density after argon annealing for each nitrogen concentration.
As shown in Table 1, the in-plane variation (maximum value / minimum value) of the BMD density after argon annealing is close to 7 times at maximum.

Figure 2007070132
Figure 2007070132

このような比較例1の評価結果から、OSFは窒素濃度に依存して結晶外周部から発生すること、及び、OSF発生核は高温でも安定で、1200℃で1時間程度のアルゴンアニール処理では消滅すること無く安定に存在し、アルゴンアニール前後でBMD密度分布が大きく変わることは無いことが判る。
従って、BMD密度を面内均一に形成するためには、OSFをウェーハ面内均一に発生させるように窒素濃度を制御する必要があり、また、その濃度は、他の条件をこの比較例1と同様にすると、2.6×1015 atoms/cm以上が必要となることになる。
From the evaluation results of Comparative Example 1, OSF is generated from the outer periphery of the crystal depending on the nitrogen concentration, and the OSF generation nuclei are stable even at high temperatures and disappear by argon annealing at 1200 ° C. for about 1 hour. It can be seen that the BMD density distribution does not change significantly before and after argon annealing.
Therefore, in order to form the BMD density uniformly in the surface, it is necessary to control the nitrogen concentration so that the OSF is uniformly generated in the wafer surface. Similarly, 2.6 × 10 15 atoms / cm 3 or more is required.

比較例2
比較例2として、少なくともインゴットの引き上げ方向における全長の30〜70%の範囲の直胴部の引き上げを、結晶育成中の温度が1370℃〜1310℃であって、結晶面内の温度勾配比Gc/Geが0.97である結晶育成条件にて12インチp型、抵抗率約10Ωcm、酸素濃度約14×1017 atoms/cmの窒素ドープ結晶の育成を行った。窒素ドープ方法は、比較例1と同様の方法により行った。引き上げの際に添加する窒素濃度は直胴部の全域について各々設定された濃度を維持することは比較例1と同様である。
結晶育成後、窒素ガス雰囲気で650℃で30分の酸素ドナー消去熱処理を施したウェーハに加工し、前述したような方法によりウェーハ面内のOSF密度を評価した。
また、アルゴンガス雰囲気で1200℃で1時間の熱処理を行ったサンプルウェーハ面内のBMD密度を、前述したような方法により評価した。
Comparative Example 2
As Comparative Example 2, the temperature of the straight body in the range of 30 to 70% of the total length in the pulling direction of the ingot is at a temperature during crystal growth of 1370 ° C. to 1310 ° C., and the temperature gradient ratio Gc in the crystal plane A nitrogen-doped crystal having a 12-inch p-type, a resistivity of about 10 Ωcm, and an oxygen concentration of about 14 × 10 17 atoms / cm 3 was grown under crystal growth conditions with / Ge of 0.97. The nitrogen doping method was performed in the same manner as in Comparative Example 1. The nitrogen concentration added during the pulling is the same as that in Comparative Example 1 in that the concentration set for the entire area of the straight body portion is maintained.
After crystal growth, the wafer was processed into an oxygen donor erasing heat treatment at 650 ° C. for 30 minutes in a nitrogen gas atmosphere, and the OSF density in the wafer surface was evaluated by the method described above.
Moreover, the BMD density in the sample wafer surface which heat-processed at 1200 degreeC for 1 hour in argon gas atmosphere was evaluated by the method as mentioned above.

図3に、アルゴンガス雰囲気で熱処理を行う前のサンプルのOSF密度分布を示す。ウェーハ外周部から内部に向かって高密度に発生するも、その分布は不均一であった。
図4に、アルゴンガス雰囲気で熱処理を行う前後のサンプルのBMD密度分布を示す。面内分布はOSF密度分布の不均一を反映して、不均一であった。
アルゴンアニール後のBMD密度の面内ばらつき(最大値/最小値)を表2に示す。表2に示すように、アルゴンアニール後のBMD密度の面内ばらつき(最大値/最小値)は、最大で16倍になっている。
FIG. 3 shows the OSF density distribution of the sample before heat treatment in an argon gas atmosphere. Although it occurs at a high density from the outer periphery of the wafer toward the inside, the distribution is non-uniform.
FIG. 4 shows the BMD density distribution of the sample before and after heat treatment in an argon gas atmosphere. The in-plane distribution was non-uniform, reflecting the non-uniform OSF density distribution.
Table 2 shows the in-plane variation (maximum value / minimum value) of the BMD density after argon annealing. As shown in Table 2, the in-plane variation (maximum value / minimum value) of the BMD density after argon annealing is 16 times at maximum.

Figure 2007070132
Figure 2007070132

実施例1
比較例1として前述したように、結晶面内の温度勾配比Gc/Geが1.00である結晶育成条件の場合、ウェーハ面内のBMD密度分布を均一化させるには、窒素濃度が2.6×1015 atoms/cm以上必要であるが、シリコン結晶中の窒素の固溶限界は、5×1015 atoms/cm程度であり、これ以上の濃度ではもはや単結晶として育成することができない。
そこで、低窒素濃度でもOSFをウェーハ全面に発生させるために、結晶育成中のウェーハ面内の温度勾配分布が比較例と異なる結晶育成条件を用いる。具体的には、本発明に係る実施例1として、結晶中心部の温度勾配Gcと結晶外周部の温度勾配Geとの比Gc/Geが1.23である条件にて結晶を育成した。
Example 1
As described above as Comparative Example 1, in the case of the crystal growth condition where the temperature gradient ratio Gc / Ge in the crystal plane is 1.00, the nitrogen concentration is 2. in order to make the BMD density distribution in the wafer plane uniform. Although 6 × 10 15 atoms / cm 3 or more is necessary, the solid solution limit of nitrogen in the silicon crystal is about 5 × 10 15 atoms / cm 3 , and it can no longer grow as a single crystal at a concentration higher than this. Can not.
Therefore, in order to generate OSF on the entire wafer surface even at a low nitrogen concentration, a crystal growth condition in which the temperature gradient distribution in the wafer surface during crystal growth is different from that in the comparative example is used. Specifically, as Example 1 according to the present invention, a crystal was grown under the condition that the ratio Gc / Ge between the temperature gradient Gc at the center of the crystal and the temperature gradient Ge at the outer periphery of the crystal was 1.23.

育成された結晶を縦割り加工し、乾燥酸素雰囲気中で800℃で4時間、その後1000℃で16時間の熱処理を行った後、XRT写真にて観察した。その結果、ほぼウェーハ全面にOSF発生可能領域が観察された。
これにより、結晶面内の温度勾配比によっては、窒素をドープすること無くほぼウェーハ全面にOSFを発生させることが可能であり、ウェーハ全面にOSFを発生させるには僅かな窒素ドープ量で可能であることが推測される。
The grown crystal was subjected to vertical cutting, heat-treated in a dry oxygen atmosphere at 800 ° C. for 4 hours, and then at 1000 ° C. for 16 hours, and then observed with an XRT photograph. As a result, an OSF generation possible region was observed on almost the entire wafer surface.
As a result, depending on the temperature gradient ratio in the crystal plane, it is possible to generate OSF almost over the entire surface of the wafer without doping nitrogen, and a small amount of nitrogen doping is possible to generate OSF over the entire surface of the wafer. Presumed to be.

実施例2
実施例2として、少なくともインゴットの引き上げ方向における全長の30〜70%の範囲の直胴部の引き上げを、結晶育成中の温度が1370℃〜1310℃であって、結晶面内の温度勾配比Gc/Ge=1.10,1.14,1.25である結晶条件にて12インチp型、抵抗率約10Ωcm、酸素濃度約14×1017 atoms/cmの窒素ドープ結晶の育成を行い、OSF密度とアルゴンガス雰囲気で1200℃で1時間の熱処理を行った後のBMD密度分布を、各々前述したような方法により評価した。
Example 2
As Example 2, the temperature during the crystal growth is 1370 ° C. to 1310 ° C. and the temperature gradient ratio Gc in the crystal plane is at least 30% to 70% of the total length in the pulling direction of the ingot. A nitrogen-doped crystal having a 12-inch p-type, a resistivity of about 10 Ωcm, and an oxygen concentration of about 14 × 10 17 atoms / cm 3 is grown under the crystal conditions of /Ge=1.10, 1.14, 1.25, The OSD density and the BMD density distribution after heat treatment at 1200 ° C. for 1 hour in an argon gas atmosphere were evaluated by the methods described above.

図示をしないが、温度勾配比Gc/Ge=1.10では、比較例(Gc/Ge=1.00)とほぼ同じで、窒素濃度増加とともにウェーハ外周部からOSFが発生し、約2×1015 atoms/cmでウェーハ全面にOSFが発生している。 Although not shown, at a temperature gradient ratio Gc / Ge = 1.10, it is almost the same as the comparative example (Gc / Ge = 1.00), and OSF is generated from the outer periphery of the wafer as the nitrogen concentration increases, and about 2 × 10 OSF is generated on the entire surface of the wafer at 15 atoms / cm 3 .

Gc/Ge=1.14では、図5に示すように、窒素濃度が0.79×1014 atoms/cm以上でウェーハ全面にOSFが発生した。すなわち、Gc/Ge=1.14の場合、窒素を0.8×1014 atoms/cm以上ドープすることによりウェーハ全面均一にOSFを発生させることが可能であり、その面内バラツキ(最大値/最小値の比)は、表3に示すように4倍以下となる。 At Gc / Ge = 1.14, as shown in FIG. 5, OSF was generated on the entire wafer surface when the nitrogen concentration was 0.79 × 10 14 atoms / cm 3 or more. That is, when Gc / Ge = 1.14, it is possible to generate OSF uniformly on the entire wafer surface by doping nitrogen with 0.8 × 10 14 atoms / cm 3 or more. / Minimum value ratio) is 4 times or less as shown in Table 3.

Gc/Ge=1.25では、図6に示すように、評価を行った窒素濃度2.46×1014 atoms/cm以上8.47×1014 atoms/cm以下の範囲のいずれの場合においても、ウェーハ全面にOSFが発生した。また、その面内バラツキ(最大値/最小値の比)は、表3に示すように3倍以下となる。 When Gc / Ge = 1.25, as shown in FIG. 6, any case where the nitrogen concentration in the evaluation range is from 2.46 × 10 14 atoms / cm 3 to 8.47 × 10 14 atoms / cm 3. In FIG. 5, OSF was generated on the entire surface of the wafer. Further, the in-plane variation (maximum value / minimum value ratio) is three times or less as shown in Table 3.

Figure 2007070132
Figure 2007070132

Gc/Ge=1.14及び1.25の各場合におけるアルゴンアニール後のBMD密度分布を図7及び図8に示す。ウェーハ全面にOSFが発生していないGc/Ge=1.14、窒素濃度が0.74×1014 atoms/cmの場合を除いて、いずれの場合も比較例で見られたウェーハ外周部でのBMD密度の低下や増加は無く、ウェーハ面内のバラツキも、表4に示すように3倍以内である。 The BMD density distribution after argon annealing in each case of Gc / Ge = 1.14 and 1.25 is shown in FIGS. Except for the case where Gc / Ge = 1.14 where the OSF is not generated on the entire wafer surface and the nitrogen concentration is 0.74 × 10 14 atoms / cm 3 , in all cases, the wafer outer peripheral portion seen in the comparative example There is no decrease or increase in the BMD density, and the variation in the wafer surface is within 3 times as shown in Table 4.

Figure 2007070132
Figure 2007070132

実施例3
実施例3として、少なくともインゴットの引き上げ方向における全長の30〜70%の範囲の直胴部の引き上げを、結晶育成中の温度が1370℃〜1310℃であって、結晶面内の温度勾配比Gc/Ge=1.28である結晶育成条件にて12インチp型、抵抗率約10Ωcm、酸素濃度約14×1017 atoms/cmの窒素ドープ結晶の育成を行った。そして、OSF密度と、アルゴンガス雰囲気で1200℃で1時間の熱処理を行った後のBMD密度分布とを評価した。
Example 3
As Example 3, the temperature during the crystal growth is 1370 ° C. to 1310 ° C., and the temperature gradient ratio Gc in the crystal plane is at least 30% to 70% of the total length in the pulling direction of the ingot. A nitrogen-doped crystal having a 12-inch p-type, a resistivity of about 10 Ωcm, and an oxygen concentration of about 14 × 10 17 atoms / cm 3 was grown under the crystal growth conditions of /Ge=1.28. Then, the OSF density and the BMD density distribution after heat treatment at 1200 ° C. for 1 hour in an argon gas atmosphere were evaluated.

OSF密度を図9に示す。図9に示すように、評価を行った窒素濃度が0.70〜1.48×1014 atoms/cmのいずれの場合においてもウェーハ全面にOSFが発生している。また、その面内バラツキ(最大値/最小値の比)は、表5に示すように、窒素濃度が0.70×1014 atoms/cmの場合に5倍近い値となっているが、その他の場合は4倍以下となっている。 The OSF density is shown in FIG. As shown in FIG. 9, OSF is generated on the entire surface of the wafer in any case where the evaluated nitrogen concentration is 0.70 to 1.48 × 10 14 atoms / cm 3 . Further, the in-plane variation (maximum value / minimum value ratio), as shown in Table 5, is a value close to five times when the nitrogen concentration is 0.70 × 10 14 atoms / cm 3 . In other cases, it is 4 times or less.

Figure 2007070132
Figure 2007070132

アルゴンアニール後のBMD密度分布を図10に示す。OSF密度の面内バラツキが5倍近かった窒素濃度が0.70×1014 atoms/cmの場合は、ウェーハ中心部でのBMD密度の増加が見られているが、その他の場合はウェーハ外周部でのBMD密度の低下や増加は無く、ウェーハ面内のばらつきも表6に示すように3倍以内である。 FIG. 10 shows the BMD density distribution after argon annealing. When the in-plane variation of the OSF density is close to 5 times, when the nitrogen concentration is 0.70 × 10 14 atoms / cm 3 , the BMD density is increased at the center of the wafer. There is no decrease or increase in the BMD density at the portion, and the variation in the wafer surface is within 3 times as shown in Table 6.

Figure 2007070132
Figure 2007070132

以上説明したように、少なくともインゴットの引き上げ方向における全長の30〜70%の範囲の直胴部の引き上げを、結晶育成中の温度が1370℃〜1310℃であって、結晶育成中の1370℃〜1310℃の間の結晶成長軸方向の温度勾配値を、結晶中心部をGc、結晶外周部をGeとした時、その比Gc/Geが、1.14≦Gc/Ge≦1.28の結晶育成条件においては、窒素濃度が0.8×1014 atoms/cmであっても、ウェーハ全面にOSFを発生することができ、1200℃程度の高温で熱処理を行った後も、高密度にBMDをウェーハ面内均一に形成することができる。その結果、ウェーハ面内で均一なゲッタリング能を得ることができる。 As described above, at least the straight body portion is lifted in a range of 30 to 70% of the entire length in the pulling direction of the ingot, the temperature during crystal growth is 1370 ° C to 1310 ° C, and 1370 ° C during crystal growth When the temperature gradient value in the crystal growth axis direction between 1310 ° C. is Gc for the center of the crystal and Ge for the outer periphery of the crystal, the ratio Gc / Ge is 1.14 ≦ Gc / Ge ≦ 1.28. Under the growth conditions, even if the nitrogen concentration is 0.8 × 10 14 atoms / cm 3 , OSF can be generated on the entire surface of the wafer, and the density can be increased even after the heat treatment at about 1200 ° C. BMD can be formed uniformly in the wafer surface. As a result, uniform gettering capability can be obtained within the wafer surface.

なお、本実施形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また任意好適な種々の改変が可能である。   In addition, this embodiment is described in order to make an understanding of this invention easy, and does not limit this invention at all. Each element disclosed in the present embodiment includes all design changes and equivalents belonging to the technical scope of the present invention, and various suitable modifications can be made.

図1は、比較例1としての単結晶シリコン製造方法におけるウェーハ面内OSF密度分布を示す図である。FIG. 1 is a diagram showing an in-wafer in-plane OSF density distribution in the single crystal silicon manufacturing method as Comparative Example 1. FIG. 図2は、比較例1としての単結晶シリコン製造方法におけるアルゴンアニール前後のウェーハ面内BMD密度分布を示す図である。FIG. 2 is a diagram showing the in-plane BMD density distribution before and after argon annealing in the single crystal silicon manufacturing method as Comparative Example 1. FIG. 図3は、比較例2としての単結晶シリコン製造方法におけるウェーハ面内OSF密度分布を示す図である。FIG. 3 is a view showing an in-plane OSF density distribution in the single crystal silicon manufacturing method as Comparative Example 2. 図4は、比較例2としての単結晶シリコン製造方法におけるアルゴンアニール後のウェーハ面内BMD密度分布を示す図である。FIG. 4 is a diagram showing the in-plane BMD density distribution after argon annealing in the single crystal silicon manufacturing method as Comparative Example 2. 図5は、本発明の実施例2としての単結晶シリコン製造方法におけるウェーハ面内OSF密度分布を示す図であって、Gc/Ge=1.14の時の分布を示す図である。FIG. 5 is a diagram showing the OSF density distribution in the wafer plane in the single crystal silicon manufacturing method as Example 2 of the present invention, and is a diagram showing the distribution when Gc / Ge = 1.14. 図6は、本発明の実施例2としての単結晶シリコン製造方法におけるウェーハ面内OSF密度分布を示す図であって、Gc/Ge=1.25の時の分布を示す図である。FIG. 6 is a diagram showing the OSF density distribution in the wafer plane in the single crystal silicon manufacturing method as Example 2 of the present invention, and is a diagram showing the distribution when Gc / Ge = 1.25. 図7は、本発明の実施例2としての単結晶シリコン製造方法におけるアルゴンアニール後のウェーハ面内BMD密度分布を示す図であって、Gc/Ge=1.14の時の分布を示す図である。FIG. 7 is a view showing the in-plane BMD density distribution after argon annealing in the single crystal silicon manufacturing method as Example 2 of the present invention, and showing the distribution when Gc / Ge = 1.14. is there. 図8は、本発明の実施例2としての単結晶シリコン製造方法におけるアルゴンアニール後のウェーハ面内BMD密度分布を示す図であって、Gc/Ge=1.25の時の分布を示す図である。FIG. 8 is a diagram showing the in-plane BMD density distribution after argon annealing in the single crystal silicon manufacturing method as Example 2 of the present invention, and showing the distribution when Gc / Ge = 1.25. is there. 図9は、本発明の実施例3としての単結晶シリコン製造方法におけるウェーハ面内OSF密度分布を示す図であって、Gc/Ge=1.28の時の分布を示す図である。FIG. 9 is a diagram showing the OSF density distribution in the wafer plane in the single crystal silicon manufacturing method as Example 3 of the present invention, and is a diagram showing the distribution when Gc / Ge = 1.28. 図10は、本発明の実施例3としての単結晶シリコン製造方法におけるアルゴンアニール後のウェーハ面内BMD密度分布を示す図であって、Gc/Ge=1.28の時の分布を示す図である。FIG. 10 is a diagram showing a BMD density distribution in the wafer surface after argon annealing in the single crystal silicon manufacturing method as Example 3 of the present invention, and a distribution when Gc / Ge = 1.28. is there.

Claims (11)

チョクラルスキー法によりシリコン単結晶を引き上げ育成する工程を有するシリコン単結晶ウェーハの製造方法であって、
高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、結晶育成中の温度が1370℃〜1310℃の時の結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)、及び、窒素濃度に応じた引き上げ速度で引き上げ育成を行うことを特徴とする単結晶シリコンウェーハの製造方法。
A method for producing a silicon single crystal wafer having a step of pulling and growing a silicon single crystal by the Czochralski method,
A ratio Gc / Ge of temperature gradient values in the crystal growth axis direction when the temperature during crystal growth is 1370 ° C. to 1310 ° C. so that oxidation-induced stacking faults occur on the entire surface of the wafer when high-temperature oxidation heat treatment is performed. , Gc: average temperature gradient at the center of the crystal, Ge: average temperature gradient at the outer periphery of the crystal), and a method for producing a single crystal silicon wafer, characterized by performing pulling growth at a pulling rate according to the nitrogen concentration.
チョクラルスキー法によりシリコン単結晶を引き上げ育成する工程を有するシリコン単結晶ウェーハの製造方法であって、
インゴットの引き上げ方向における直胴部の全長の30〜70%の範囲の引き上げ育成を行う際に、結晶育成中の温度が1370℃〜1310℃であって、結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)を1.14以上1.28以下の範囲とし、窒素を0.8×1014 atoms/cm以上5×1015 atoms/cm以下の範囲で添加して引き上げ育成を行うことを特徴とする単結晶シリコンウェーハの製造方法。
A method for producing a silicon single crystal wafer having a step of pulling and growing a silicon single crystal by the Czochralski method,
When pulling and growing in the range of 30 to 70% of the total length of the straight body in the pulling direction of the ingot, the temperature during crystal growth is 1370 ° C to 1310 ° C, and the ratio of temperature gradient values in the crystal growth axis direction Gc / Ge (where Gc: average temperature gradient at the center of the crystal, Ge: average temperature gradient at the outer periphery of the crystal) is in the range of 1.14 to 1.28, and nitrogen is 0.8 × 10 14 atoms / cm A method for producing a single crystal silicon wafer, characterized by performing pulling growth by adding in a range of 3 to 5 × 10 15 atoms / cm 3 .
前記引き上げ育成は、高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、窒素濃度に応じた引き上げ速度で行うことを特徴とする請求項2に記載の単結晶シリコンウェーハの製造方法。   3. The single crystal silicon wafer according to claim 2, wherein the pulling growth is performed at a pulling rate according to a nitrogen concentration so that oxidation-induced stacking faults are generated on the entire surface of the wafer when a high temperature oxidation heat treatment is performed. Manufacturing method. 前記酸化誘起積層欠陥の密度の最大値と最小値の比(最大値/最小値)が4以下であることを特徴とする請求項2又は3に記載の単結晶シリコンウェーハの製造方法。   4. The method for producing a single crystal silicon wafer according to claim 2, wherein a ratio (maximum value / minimum value) between a maximum value and a minimum value of the density of the oxidation-induced stacking faults is 4 or less. 水素ガス又はアルゴンガスを含む雰囲気で、1100℃〜1250℃で30分以上5時間以下の熱処理を施す工程を有することを特徴とする請求項1〜4のいずれかに記載の単結晶シリコンウェーハの製造方法。   5. The single crystal silicon wafer according to claim 1, further comprising a step of performing a heat treatment at 1100 ° C. to 1250 ° C. for 30 minutes to 5 hours in an atmosphere containing hydrogen gas or argon gas. Production method. チョクラルスキー法により引き上げ育成されて製造されるシリコン単結晶ウェーハであって、高温酸化熱処理を施した場合に酸化誘起積層欠陥がウェーハ全面に発生するように、結晶育成中の温度が1370℃〜1310℃の時の結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)、及び、窒素濃度に応じた引き上げ速度で引き上げ育成されたことを特徴とする単結晶シリコンウェーハ。   A silicon single crystal wafer manufactured by pulling up and growing by the Czochralski method, and when the high temperature oxidation heat treatment is performed, the temperature during crystal growth is from 1370 ° C. so that oxidation-induced stacking faults are generated on the entire surface of the wafer. Ratio Gc / Ge of temperature gradient values in the crystal growth axis direction at 1310 ° C. (where Gc: average temperature gradient at the center of the crystal, Ge: average temperature gradient at the outer periphery of the crystal), and pulling up according to the nitrogen concentration A single crystal silicon wafer characterized by being pulled and grown at a speed. チョクラルスキー法により引き上げ育成されて製造されるシリコン単結晶ウェーハであって、インゴットの引き上げ方向における直胴部の全長の30〜70%の範囲の引き上げ育成を行う際に、結晶育成中の温度が1370℃〜1310℃であって、結晶成長軸方向の温度勾配値の比Gc/Ge(但し、Gc:結晶中心部の平均温度勾配、Ge:結晶外周部の平均温度勾配)を1.14以上1.28以下の範囲とし、窒素を0.8×1014 atoms/cm以上5×1015 atoms/cm以下の範囲で添加して引き上げ育成されたことを特徴とする単結晶シリコンウェーハ。 A silicon single crystal wafer manufactured by pulling and growing by the Czochralski method, and when performing pulling growth in the range of 30 to 70% of the total length of the straight body in the pulling direction of the ingot, the temperature during crystal growth Is a temperature gradient value ratio Gc / Ge in the crystal growth axis direction (where Gc: average temperature gradient at the center of the crystal, Ge: average temperature gradient at the outer periphery of the crystal) is 1.14. A single crystal silicon wafer characterized by being grown in a range of 1.28 or less and adding nitrogen in a range of 0.8 × 10 14 atoms / cm 3 or more and 5 × 10 15 atoms / cm 3 or less. . 酸素析出評価熱処理を施した時に形成されるウェーハ面内の平均BMD密度が、1×10個/cm以上5×10個/cm以下、ウェーハ径方向におけるBMDの密度の最大値/最小値の比が3以下であることを特徴とする請求項7に記載の単結晶シリコンウェーハ。 The average BMD density in the wafer surface formed when the oxygen precipitation evaluation heat treatment is performed is 1 × 10 4 pieces / cm 2 or more and 5 × 10 6 pieces / cm 2 or less, and the maximum value of BMD density in the wafer radial direction / The single crystal silicon wafer according to claim 7, wherein the ratio of the minimum values is 3 or less. 酸化誘起積層欠陥のウェーハ面内密度の最大値と最小値の比(最大値/最小値)が4以下であることを特徴とする請求項7又は8に記載の単結晶シリコンウェーハ。   The single crystal silicon wafer according to claim 7 or 8, wherein a ratio (maximum value / minimum value) of a maximum value and a minimum value of the wafer in-plane density of the oxidation-induced stacking fault is 4 or less. 水素ガス又はアルゴンガスを含む雰囲気で、1100℃〜1250℃で30分以上5時間以下の熱処理が施されたことを特徴とする請求項6〜9のいずれかに記載の単結晶シリコンウェーハ。   10. The single crystal silicon wafer according to claim 6, wherein heat treatment is performed at 1100 ° C. to 1250 ° C. for 30 minutes to 5 hours in an atmosphere containing hydrogen gas or argon gas. チョクラルスキー法により引き上げ育成され熱処理を施して製造されるシリコン単結晶ウェーハのBMD分布の良否を検査する方法であって、
酸化誘起積層欠陥のウェーハ面内密度の分布を測定し、予め求められたBMD分布とOSF分布との関係により決定された良否範囲に前記測定されたOSF分布が属するか否かを判定し、その良否をBMD分布の良否と推定することを特徴とするウェーハ検査方法。
It is a method for inspecting the quality of BMD distribution of a silicon single crystal wafer produced by raising and growing by the Czochralski method and performing heat treatment,
Measure the distribution of density of oxidation-induced stacking faults in the wafer surface, determine whether the measured OSF distribution belongs to the pass / fail range determined by the relationship between the BMD distribution and the OSF distribution obtained in advance, A wafer inspection method, wherein quality is estimated as quality of a BMD distribution.
JP2005256193A 2005-09-05 2005-09-05 Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method Active JP4715402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256193A JP4715402B2 (en) 2005-09-05 2005-09-05 Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256193A JP4715402B2 (en) 2005-09-05 2005-09-05 Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method

Publications (2)

Publication Number Publication Date
JP2007070132A true JP2007070132A (en) 2007-03-22
JP4715402B2 JP4715402B2 (en) 2011-07-06

Family

ID=37931912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256193A Active JP4715402B2 (en) 2005-09-05 2005-09-05 Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method

Country Status (1)

Country Link
JP (1) JP4715402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064953A (en) * 2008-09-10 2010-03-25 Siltronic Ag Semiconductor wafer composed of monocrystalline silicon and method for producing the same
KR20190135913A (en) 2018-05-29 2019-12-09 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal, epitaxial silicon wafer and silicon single crystal substrate
CN115404539A (en) * 2022-08-30 2022-11-29 西安奕斯伟材料科技有限公司 Method for pulling single crystal silicon rod by Czochralski method, single crystal silicon rod, silicon wafer and epitaxial silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189493A (en) * 1997-12-25 1999-07-13 Sumitomo Metal Ind Ltd Silicon single crystal and epitaxial wafer
JP2004304095A (en) * 2003-04-01 2004-10-28 Sumitomo Mitsubishi Silicon Corp Silicon wafer, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189493A (en) * 1997-12-25 1999-07-13 Sumitomo Metal Ind Ltd Silicon single crystal and epitaxial wafer
JP2004304095A (en) * 2003-04-01 2004-10-28 Sumitomo Mitsubishi Silicon Corp Silicon wafer, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064953A (en) * 2008-09-10 2010-03-25 Siltronic Ag Semiconductor wafer composed of monocrystalline silicon and method for producing the same
US8398766B2 (en) 2008-09-10 2013-03-19 Siltronic Ag Semiconductor wafer composed of monocrystalline silicon and method for producing it
KR20190135913A (en) 2018-05-29 2019-12-09 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal, epitaxial silicon wafer and silicon single crystal substrate
CN115404539A (en) * 2022-08-30 2022-11-29 西安奕斯伟材料科技有限公司 Method for pulling single crystal silicon rod by Czochralski method, single crystal silicon rod, silicon wafer and epitaxial silicon wafer

Also Published As

Publication number Publication date
JP4715402B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4670224B2 (en) Silicon wafer manufacturing method
JP5578172B2 (en) Annealed wafer manufacturing method and device manufacturing method
KR100788988B1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
TWI471940B (en) Silicon substrate manufacturing method and silicon substrate
KR101012350B1 (en) Annealed wafer and annealed wafer manufacturing method
JP4853027B2 (en) Method for producing silicon single crystal wafer
JP2004006615A (en) High resistance silicon wafer and its manufacturing method
JP2008066357A (en) Silicon single crystal wafer and method of manufacturing the same
JP2007045662A (en) Semiconductor silicon wafer and method for manufacturing the same
KR101703696B1 (en) Method of manufacturing silicon substrate and silicon substrate
JP2007235153A (en) High-resistance silicon wafer, and manufacturing method thereof
JP2010126401A (en) Silicon single crystal, method for growing the same, silicon wafer, and method for manufacturing the same
JP4131077B2 (en) Silicon wafer manufacturing method
JP4715402B2 (en) Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method
JP2006188423A (en) Silicon epitaxial wafer, anneal wafer and their manufacturing methods
JP2011222842A (en) Manufacturing method for epitaxial wafer, epitaxial wafer, and manufacturing method for imaging device
JP2005159028A (en) Anneal wafer and manufacturing method thereof
JP2006278892A (en) Quality evaluation method of silicon single-crystal wafer
JP6493105B2 (en) Epitaxial silicon wafer
JP2013175742A (en) Epitaxial wafer manufacturing method, epitaxial wafer and imaging device manufacturing method
JP4577320B2 (en) Silicon wafer manufacturing method
JP2011225409A (en) Method for manufacturing silicon single crystal
JP4715782B2 (en) Silicon single crystal growth method and silicon wafer
JP4577319B2 (en) Method for growing silicon single crystal
JP2001044207A (en) Ig processing method, ig wafer prepared thereby, and single-crystal silicon ingot used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250