JP2007069192A - Apparatus for magnetically treating water - Google Patents

Apparatus for magnetically treating water Download PDF

Info

Publication number
JP2007069192A
JP2007069192A JP2005291648A JP2005291648A JP2007069192A JP 2007069192 A JP2007069192 A JP 2007069192A JP 2005291648 A JP2005291648 A JP 2005291648A JP 2005291648 A JP2005291648 A JP 2005291648A JP 2007069192 A JP2007069192 A JP 2007069192A
Authority
JP
Japan
Prior art keywords
magnetic
water
inlet
magnet
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291648A
Other languages
Japanese (ja)
Inventor
Haruo Matsuda
治夫 松田
Koji Soga
孝司 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005291648A priority Critical patent/JP2007069192A/en
Publication of JP2007069192A publication Critical patent/JP2007069192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for magnetically treating water cheap, having a high-water treatment effect and durable by providing strong magnetic force with a cheap permanent magnet. <P>SOLUTION: In the apparatus for magnetically treating water, magnetic treatment is effectively carried out by providing an inflow port shunt 2 including a plurality of inflow port shunts having a small area with one several to one several tenths of the area of the inflow port of water supplied to the magnetic treatment apparatus, sandwiching a plurality of capillaries 5 connected to the inflow port shunt by a counter heteropolar magnet 4, and leading the inflow water crossing a large number of magnetic lines of force having the strong magnetic force due to the gap between the heteropolar magnets without resistance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、給水管、給湯管、冷却水管、空調冷温水管等の内部腐食を防止する水の磁気処理装置に関し、特に、永久磁石の磁力を強めるために流入口に分割部を設け、流入口の面積を変えずに幅の狭い複数の水路に分割し、水路を挟んで向かい合う永久磁石の間隔を狭くすることによって磁力が強くなり、強い磁力線の範囲内のみを水が磁力線に対して直角に通過することによって水を無駄なく磁気処理し、効果を一層確実にし、安価で小型の装置を可能にした水の磁気処理装置に関する。  The present invention relates to a water magnetic treatment apparatus for preventing internal corrosion such as a water supply pipe, a hot water supply pipe, a cooling water pipe, and an air conditioning cold / hot water pipe, and in particular, a dividing portion is provided at an inlet to increase the magnetic force of a permanent magnet. By dividing into multiple narrow water channels without changing the area of the water and narrowing the gap between the permanent magnets facing each other across the water channel, the magnetic force becomes stronger, and the water is perpendicular to the magnetic field lines only within the range of the strong magnetic field lines. The present invention relates to a magnetic treatment apparatus for water that passes through and magnetically processes water without waste, further ensuring the effect, and enabling an inexpensive and small-sized apparatus.

磁石を用いて水を磁気処理する装置は従来から種々あった。その原理は水力磁石のN極とS極の間に存在する磁力線を直角に速度をもって横切る時、ロ−レンツ力によって起電力が生じる磁性流体力学に基づいたものである。
ロ−レンツ効果による起電力を発生させるためには、水がN極とS極の間にある磁力線を速い速度で直角に横切る効率が高くて磁力が強いほど効果がある。水は入口から出口へ向かって最短距離を流れるが、流れがすべて磁力線を直角に横切るとは限らないので水の流れ方が重要になる。従って、従来の磁気処理装置では、磁石積層柱の周囲を回転しながら磁力線を横切る工夫をしたり、複数の磁石積層柱を異極同士が相対するように間隔を置いて並立させ、それらの間の異極間にある磁力線を直角に横切る工夫がなされてきた。
しかし、様々な工夫にも拘らず磁気処理効果が十分に上がらなかった理由は、螺旋構造体においては流速によって螺旋の角度を変えなければ水が螺旋状に流れない場合もあり、また、並立する磁石積層柱間を流す方法においては、磁石積層柱間が狭いと水の抵抗があり、水が流れにくいため磁石積層柱間の間隔を広げなければならず、広げると磁力線の磁力が弱まる欠点があった。従って磁石積層柱間の間隔を狭くして磁力を高めようとしても間隔を狭くするには限界があった。
また、水が入口から出口へ向かって流れるとき、水は必ずしも磁力の強い磁力線間のみを横切るわけではなく、永久磁石間の少しでも幅の広い部分を流れ、そのような幅の広い部分は当然磁力線の磁力も弱いので、本来有している磁力が100%活用されないという欠点があった。また、従来の方式では、磁力を強くするため高価な希土類の磁石を使用したり、磁石間を極度に狭くしたものもあったが、水の抵抗が増すので水路を増やすと同時に磁石数も増やさなければならず、重量増と価格増からこの方法にも限界があった。
There have been various apparatuses for magnetically treating water using a magnet. The principle is based on magnetohydrodynamics in which an electromotive force is generated by a Lorentz force when a magnetic field line existing between the north and south poles of a hydromagnet is traversed at a right angle with a velocity.
In order to generate an electromotive force due to the Lorentz effect, the higher the magnetic force is, the more effective the water is at a high speed and perpendicularly crosses the magnetic field lines between the N and S poles. Water flows the shortest distance from the inlet to the outlet, but the flow of water is important because not all flows cross the magnetic field at right angles. Therefore, in the conventional magnetic processing apparatus, a device that crosses the magnetic field lines while rotating around the magnet laminated columns is arranged, or a plurality of magnet laminated columns are arranged side by side so that different poles face each other. The device has been devised to cross the magnetic field lines between the different poles at right angles.
However, the reason why the magnetic treatment effect was not sufficiently improved in spite of various contrivances is that in the spiral structure, water may not flow spirally unless the angle of the spiral is changed depending on the flow velocity. In the method of flowing between the magnet stacking columns, if the space between the magnet stacking columns is narrow, there is water resistance, and it is difficult for water to flow, so the interval between the magnet stacking columns must be widened. there were. Therefore, there is a limit to narrowing the gap even if the gap between the magnet stacked columns is narrowed to increase the magnetic force.
In addition, when water flows from the inlet to the outlet, the water does not necessarily cross only between the magnetic lines of strong magnetic force, but flows through even a wide part between the permanent magnets, and such a wide part is naturally Since the magnetic force of the magnetic field lines is also weak, there is a disadvantage that the magnetic force originally possessed is not utilized 100%. In addition, some conventional methods used expensive rare earth magnets to increase the magnetic force, or extremely narrow gaps between the magnets, but the resistance of water increased, so the number of magnets increased at the same time as increasing the water channel. This method had its limits due to the increase in weight and price.

安価な永久磁石で強力な磁力を水に与え、安価で水処理効果が高く持続性のある水の磁気処理装置を提供することを第一の課題とする。
従来の磁気処理装置では、磁気処理効果を高め且つその効果を持続させるために強い磁力を必要とした。即ち水の磁気処理の主たる目的は、水分子が構成している構造体において水分子同士を電気的引力で結びつけている水素結合の破断にあるので、電気的に破断するためのロ−レンツ効果による起電力を高めるためにも強い磁力を必要とした。しかしながら水が通過する永久磁石の異極間の幅を狭めると、磁力は強いが水の抵抗が大きくなり、流入量も少なくなるので磁気処理効果を上げるには磁石数を増やさなければならなかった。
これを解決するために、水が通過する永久磁石間の距離を縮めて磁力を高め、狭くて磁力の高い水路のみを水が抵抗なく流れるように流入口から複数の細管に分流して水を誘導し、同時に通過する水が方向の異なる磁力線を交互に連続的に直角に複数回通過するようにした交番磁界と、磁力を高めることによって水が速度をもって通過するときに生じるロ−レンツ効果による起電力とによって、従来の半分の磁石数でもそれ以上の磁気処理効果が得られる構造の磁気処理装置を提供することを第二の課題とする。
It is a first object to provide a water-based magnetic treatment apparatus that gives a strong magnetic force to water with an inexpensive permanent magnet and is inexpensive, has a high water treatment effect, and is durable.
In the conventional magnetic processing apparatus, a strong magnetic force is required to enhance the magnetic processing effect and maintain the effect. In other words, the main purpose of the magnetic treatment of water is to break the hydrogen bond that connects water molecules by electrical attraction in the structure formed by water molecules, so the Lorentz effect for electrically breaking In order to increase the electromotive force due to, strong magnetic force was required. However, if the width between the opposite poles of the permanent magnet through which water passes is reduced, the magnetic force is strong, but the resistance of the water increases and the amount of inflow decreases, so the number of magnets must be increased to increase the magnetic treatment effect. .
In order to solve this, the distance between permanent magnets through which water passes is reduced to increase the magnetic force, and the water is diverted from the inlet to a plurality of narrow tubes so that the water flows without resistance through only a narrow and high magnetic channel. Due to the alternating magnetic field in which the water passing through and passing simultaneously through the magnetic field lines of different directions alternately and perpendicularly multiple times, and the Lorentz effect that occurs when the water passes at a speed by increasing the magnetic force It is a second object to provide a magnetic processing apparatus having a structure that can achieve a magnetic processing effect higher than that of the conventional half of the number of magnets by the electromotive force.

本発明は、磁気処理装置へ供給する水の流入口の面積の数分の一から数十分の一の小面積の複数の分流流入口を有する流入口分流部を前記流入口に接続させ、その各分流流入口に接続した複数の細管を向かい合う異極同士の磁石で挟み、更に、水の流れ方向にN極面とS極面の位置を変えた磁石を連続して位置づけ、その結果細管を挟む磁極が交互に変化しながら細管の軸方向に複数並ぶことになり、流入口から流入した水が複数の小口径の細管に分流されて流れるとき、水は抵抗なく異極磁石間に充満した強磁力で且つ多量の磁力線を横切ることになる。水流方向に交互に位置するN極とS極の方向の異なる磁力線を水が連続して多数回通過する交番磁界の存在と、磁石のN極とS極の間に存在する強力な磁力線を水が直角に速度をもって横切るときに生じるロ−レンツ効果による起電力とによって、通過する水分子か水素結合により構成する水構造体は物理的にも電気的にも解きほぐされ、水分子は単分子化され、或いはより小さな構造体にされ、水中に存在する多種のイオンを囲む水和が促進される等水の磁気処理が効果的に行われる。流入口の直径が大きくなり水量が増える場合は細管の数を増やすことによって解決される。細管を挟む磁石の形は円形、角形等、形はこだわらない。
永久磁石は安価で入手し易いフェライト磁石で十分効果がある。フェライト磁石を直列接続で並べ磁極面で細管を挟む場合(請求項2)は、50mm角形、または50mmΦ円形であっても挟まれた細管部分では2000ガウス以上の磁力が得られ、請求項1で述べた並列接続の磁石棒で細管を挟む場合は、磁極片の異極同士間に飛ぶ磁力は4000ガウス以上に及ぶので、高価な希土類の磁石でなくても充分に水の磁気処理効果を高めることができる。非磁性体の細管の材質は、厚さが薄くて丈夫なSUS304が望ましいが、その他の材質でも目的を達することができる。細管の断面は円形、角形、楕円形形等、形にはこだわらず多種の量産品があり比較的安価に入手することができる。
本発明は、磁極のN極とS極を極端に接近させた磁力の強い部分にのみ抵抗なく水を通し、更に、N極とS極の位置を交互に変えながら水の流れ方向に複数個の永久磁石を並べた中に水を通すことによって交番磁界により磁気処理効果を高めるものである。
永久磁石の磁力線の飛ばし方には、磁石の側面を異極同士向かい合わせる場合(図1)と、磁石の面を磁極面同士向かい合わせる場合(図2)とがある。
磁石の側面を用いる場合は、磁石積層柱を構成する磁石の同極同士の間に金属板を挟んで磁極片とし、磁石積層柱の磁極片の切り口がN、S相対するようにして細管を挟み、水の流れに対向させ、向かい合う磁石積層柱の中の磁極が互いに異極同士となるように配置する。
磁極面を用いる場合は、磁極面同士が吸引するように異極面同士で細管を挟み、水の流れに対向させ、向かい合う磁極が互いに異極同士となるように配置する。
これを筒状のハウジングに納め、そのハウジングの一端に流入口を接続させ、他端に流出口を設け、流入口から流入した水が永久磁石間を通過するとき、方向の異なる多量の磁力線を交互に直角に横切ることによって水の磁気処理を行うものである。
The present invention connects an inlet branch part having a plurality of branch inlets having a small area of a fraction to a fraction of a fraction of the area of an inlet of water supplied to the magnetic processing apparatus to the inlet, A plurality of capillaries connected to the respective diversion inlets are sandwiched between magnets of opposite polarities facing each other, and further, magnets whose positions of the N pole face and the S pole face are changed in the water flow direction are continuously located. When the water flowing in from the inflow port is divided and flowed into multiple small-diameter tubes, the water fills between different magnets without resistance. The strong magnetic force and a large amount of magnetic field lines are crossed. The presence of an alternating magnetic field in which water passes through the magnetic field lines that are alternately located in the direction of the water flow and different in the directions of the north and south poles, and the strong magnetic field lines that exist between the north and south poles of the magnet. The water structure formed by passing water molecules or hydrogen bonds is physically and electrically unwound by the electromotive force generated by the Lorentz effect that occurs when the water traverses at a right angle with a velocity. The magnetic treatment of water is effectively performed such that the hydration around the various ions present in the water is promoted by being converted into a smaller structure or a smaller structure. If the diameter of the inlet increases and the amount of water increases, this can be solved by increasing the number of capillaries. The shape of the magnet that sandwiches the narrow tube is circular, square, etc. The shape is not particular.
Permanent magnets are ferrite magnets that are inexpensive and easily available, and are sufficiently effective. When ferrite magnets are arranged in series and a thin tube is sandwiched between magnetic pole faces (Claim 2), a magnetic force of 2000 gauss or more is obtained in the sandwiched thin tube portion even if it is a 50 mm square or 50 mmΦ circle. When a thin tube is sandwiched between the magnetic poles connected in parallel as described above, the magnetic force flying between the different poles of the pole pieces reaches 4000 gauss or more, so that the magnetic treatment effect of water is sufficiently enhanced even if it is not an expensive rare earth magnet. be able to. The material of the non-magnetic thin tube is preferably SUS304, which is thin and strong, but other materials can achieve the purpose. The cross section of the thin tube is circular, square, elliptical, etc., and there are various mass-produced products that can be obtained at a relatively low cost.
In the present invention, water is passed through only the strong magnetic part where the N pole and S pole of the magnetic pole are extremely close to each other without resistance, and a plurality of N poles and S poles are arranged in the water flow direction while alternately changing the positions of the N pole and S pole. The magnetic treatment effect is enhanced by an alternating magnetic field by passing water through the permanent magnets arranged.
There are two ways to move the lines of magnetic force of the permanent magnet: the case where the side surfaces of the magnet are opposed to each other (FIG. 1) and the case where the surfaces of the magnet are opposed to each other (FIG. 2).
When using the side surface of the magnet, a magnetic plate is formed by sandwiching a metal plate between the same poles of the magnets constituting the magnet laminated column, and the narrow tube is formed so that the cut ends of the magnet laminated column are N and S facing each other. The magnetic poles are sandwiched between and opposed to the flow of water, and are arranged so that the magnetic poles in the magnet stacked columns facing each other are different from each other.
When magnetic pole surfaces are used, the thin tubes are sandwiched between different polar surfaces so that the magnetic pole surfaces attract each other, and are opposed to the flow of water, so that the opposite magnetic poles are different from each other.
This is housed in a cylindrical housing, an inlet is connected to one end of the housing, an outlet is provided at the other end, and when the water flowing in from the inlet passes between the permanent magnets, a large amount of magnetic field lines with different directions are generated. Magnetic treatment of water is performed by alternately crossing at right angles.

本発明の磁気処理装置を空調設備の冷温水管、冷却水管等の循環系の配管や給水、給湯等一過水系配管の適所に配設すると、中を通過する水は上述のように位置づけられた磁石が放射する強力で多量の磁力線によって磁気処理される。水量が多い場合は磁石数を増やすことによって対応することができる。異極同士の磁石間の距離が短く磁力の強い磁極間のみを水の抵抗が少なくて無駄なく水を通過させることを可能にした。効果的な磁気処理を行うためには強力な磁力を必要とする。しかし、強い永久磁石はネオビジュ−ムやアルニコのように高価なため、装置の大部分を構成する磁石数を減らさざるをえなくなり、磁石数を減らせば当然交番磁界の数も減ることになり、必然的に磁気処理効果の持続時間は短くなるので交番磁界を増やすためにも安価な磁石で強い磁力が望まれていた。
このため、マンションやオフィスビル用、工場などの大型磁気処理装置は勿論の事、家庭用給水及び工業用の小型磁気処理装置では交番磁界の数は減少し、或いはほとんど行われていない場合もある。
しかし、本発明の流入口分流部を有する磁気処理装置は小形の永久磁石を使用しても強い磁力と多数の交番磁界を有する磁気処理装置を安価に提供することが可能である。水が速度をもって磁力線を横切る時のロ−レンツ効果による起電力は磁力が強い方が大きい。水の磁気処理の主たる目的は水の構造体に於て水分子同士を結び付けている水素結合の破断である。ロ−レンツ効果による起電力で電気的に水素結合を破断することも重要であるが、むしろ、主として複数回にわたって水が通過する交番磁界が有効であり、磁力の強い磁力線の多い交番磁界の存在の方がより重要である。交番磁界を構成する磁力線は、磁力が強いほど磁気処理効果は高い。即ち、水分子は主に水素結合で結合した構造体を形成しているが、水分子は双極子能率をもっているので、磁界を通過する時に水分子の酸素側は負の電荷を有しているために磁石のN極側に吸い寄せられ、水素側は正の電荷を有しているためS極側に吸い寄せられる。しかし、本装置では磁極が交互にN、S逆転しながら水の流れ方向に並んでいるため磁力線を横ぎる水分子は絶えず方向を変え回転を繰り返さざるをえなくなり、水分子を結び付けている水素結合は物理的に切断されることになる。水素結合は静電引力による結合であるから起電力が強ければより効果的であるが、磁力の強い交番磁界を通過する水分子は度重なる回転運動により物理的に切り離され、水の単分子化、或いはより小さい構造体にされる。水の単分子化が増えると水和が促進され、磁鉄鉱による防錆被膜の生成、スケ−ルの付着防止などが促進される利点が生じる。
磁気処理された水が通過する給水管や空調冷温水管を構成する鋼管の内壁表面が防錆効果の高い磁鉄鉱に変化する理由は、最初に鋼管内壁から溶出した二価の鉄イオンが磁気処理によって単分子化した水分子の水和によって囲まれ、それ以上の酸化が阻止され、二価の鉄イオンの増加から1個の二価の鉄イオンと2個の三価の鉄イオンの化合による磁鉄鉱の増加が促進されるためであり、これにより防錆効果を生じるものである。
また、同じ理由で水分子がカルシュウムイオンを十重二十重に囲む水和を強化するので、カルシウムイオンの管壁への付着が阻止され、既存のスケ−ルを剥離除去することは出来ないが、スケ−ル付着を阻止することによって配管の障害を防止する。磁気処理された水の構造は磁気処理されない水の構造より細かく、細胞への浸透力が高く細胞内に入りやすい性質があり、生物(動植物)が必要とする水として有用である。
この装置の特徴は、供給する水の流入口に隣接して流入口分流部を設け、この部分で流入する水を複数の細管に分流するため個々の水路の幅が小さく、異極で向かい合わせた永久磁石間の距離が最小限に接近しているので、磁力が最も強い場所を水が抵抗なく適切な速度で通過することにある。水の通路を挟む異極磁石間の距離が狭いので磁力が強く、しかも水路に沿って複数の交番磁界が構成されているので、水は全く抵抗がなく速度をもって流れるので磁気処理の効果が高まる。つまり、異極磁石間を流れる水分子は、大量で強力な磁力線の束を等間隔に磁極方向を変えながら横切るため交番磁界による効果が高く、また、ロ−レンツ効果による起電力も量が多い。
安価な永久磁石を用いても強力な磁力線を放出するので、高価な希土類の永久磁石を使用しなくても、また大量の磁石を使用しくても、少ない磁石で高い磁気処理効果が得られ、永久磁石による小さな設備で大容量の水の磁気処理が可能となる。磁気処理により構造が小さくなった水も時間の経過とともに再び水素結合によって水本来の形に戻るものであるが、磁力が強く交番磁界の数が多いほど磁気処理効果が高くなると同時に持続性も伸びるので元の形に戻りにくくなり、防錆効果が高まる。また、流入口から供給された水は強制的に細管に分流され、すべて磁力の高い部分のみを通過するので、水の磁気処理が無駄なく行われる効果がある。
When the magnetic processing apparatus of the present invention is disposed at a suitable place in a circulation system pipe such as a cold / hot water pipe or a cooling water pipe of an air conditioning facility, or in a single super-water system pipe such as water supply or hot water supply, the water passing therethrough is positioned as described above. It is magnetically processed by the powerful and many lines of magnetic force emitted by the magnet. If the amount of water is large, it can be dealt with by increasing the number of magnets. The distance between the magnets of different poles is short, and only between the magnetic poles with strong magnetic force, the water resistance is low and it is possible to pass water without waste. A powerful magnetic force is required for effective magnetic treatment. However, since strong permanent magnets are expensive like neo-boom and alnico, it is necessary to reduce the number of magnets constituting most of the device, and if the number of magnets is reduced, the number of alternating magnetic fields will naturally decrease. Since the duration of the magnetic treatment effect is inevitably shortened, an inexpensive magnet and a strong magnetic force are desired to increase the alternating magnetic field.
For this reason, the number of alternating magnetic fields is reduced or rarely used in small-sized magnetic treatment apparatuses for residential water supply and industrial use as well as large-scale magnetic treatment apparatuses for condominiums, office buildings, factories, etc. .
However, the magnetic processing apparatus having the inlet branch part of the present invention can provide a magnetic processing apparatus having a strong magnetic force and a large number of alternating magnetic fields at low cost even if a small permanent magnet is used. The electromotive force due to the Lorentz effect when water crosses the magnetic field line with speed is larger when the magnetic force is stronger. The main purpose of the magnetic treatment of water is the breaking of hydrogen bonds that bind water molecules together in the water structure. It is also important to electrically break hydrogen bonds by electromotive force due to the Lorentz effect, but rather an alternating magnetic field through which water passes mainly multiple times is effective, and there is an alternating magnetic field with many magnetic lines of force. Is more important. The magnetic field lines constituting the alternating magnetic field have a higher magnetic treatment effect as the magnetic force is higher. That is, water molecules form a structure bonded mainly by hydrogen bonds, but water molecules have a dipole efficiency, so the oxygen side of water molecules has a negative charge when passing through a magnetic field. Therefore, it is attracted to the N pole side of the magnet, and since the hydrogen side has a positive charge, it is attracted to the S pole side. However, in this device, the magnetic poles are alternately aligned in the water flow direction while N and S are reversed, so the water molecules crossing the magnetic field lines must change direction and repeat rotation, and the hydrogen that binds the water molecules. The bond will be physically broken. Hydrogen bonds are due to electrostatic attraction, so it is more effective if the electromotive force is strong, but water molecules passing through an alternating magnetic field with strong magnetic force are physically separated by repeated rotational motion, and the water becomes a single molecule. Or a smaller structure. When water monomolecularization is increased, hydration is promoted, and there is an advantage that the formation of a rust-preventing film by magnetite, the prevention of adhesion of scale, and the like are promoted.
The reason why the inner wall surface of the steel pipe that constitutes the water supply pipe and air conditioning cold / hot water pipe through which the magnetically treated water passes changes to magnetite with a high rust-preventing effect is that the divalent iron ions eluted from the inner wall of the steel pipe by the magnetic treatment first. Magnetite surrounded by hydration of monomolecular water molecules, preventing further oxidation, and the combination of one divalent iron ion and two trivalent iron ions from the increase of divalent iron ions This is because an increase in the rust is promoted, thereby producing a rust prevention effect.
Also, for the same reason, water molecules strengthen the hydration that surrounds the calcium ions doubly, preventing the calcium ions from adhering to the tube wall and peeling off the existing scale. However, it prevents the failure of the piping by preventing the adhesion of the scale. The structure of water that has been magnetically processed is finer than the structure of water that has not been magnetically processed, and has a property of being easily penetrated into cells and is useful as water required by living organisms (animals and plants).
The feature of this device is that an inlet diversion part is provided adjacent to the inlet of the water to be supplied, and the water flowing in this part is diverted into a plurality of narrow tubes, so the width of each water channel is small, facing each other at different polarities. In addition, since the distance between the permanent magnets is close to the minimum, water passes through the place where the magnetic force is strongest at an appropriate speed without resistance. The magnetic force is strong because the distance between the heteropolar magnets sandwiching the water passage is narrow, and since multiple alternating magnetic fields are constructed along the water channel, water flows at a speed without any resistance, increasing the effect of magnetic treatment . In other words, water molecules flowing between different polar magnets traverse a large bundle of strong magnetic lines of force while changing the magnetic pole direction at equal intervals, so the effect of the alternating magnetic field is high, and the amount of electromotive force due to the Lorentz effect is also large. .
Even if an inexpensive permanent magnet is used, strong magnetic field lines are emitted, so even if an expensive rare earth permanent magnet is not used or a large number of magnets are used, a high magnetic treatment effect can be obtained with a small number of magnets. Magnetic processing of large volumes of water is possible with small equipment using permanent magnets. Water whose structure has been reduced by magnetic treatment also returns to its original form by hydrogen bonding over time, but the stronger the magnetic force and the greater the number of alternating magnetic fields, the higher the magnetic treatment effect and the longer the sustainability. Therefore, it becomes difficult to return to the original shape, and the rust prevention effect is enhanced. Further, the water supplied from the inlet is forcibly diverted to the narrow tube, and all passes through only the portion having a high magnetic force, so that there is an effect that the magnetic treatment of the water is performed without waste.

本装置を給水、給湯などの一過水糸配管や空調設備の冷温水管、冷却水管などの循環系の配管の適所に配設すると、中を通過する水は永久磁石が放射する強力で多量の磁力線によって磁気処理される。水量が多い場合は磁石の数を増やすことによって対応することが出来る。これによって異極同士の磁石間の距離が短いので磁力の強い磁石間のみを抵抗少なく無駄なく水を通過させることが可能となった。
効果的な磁気処理を行うためには強力な磁力を必要とするが、従来のものでは現実的には不可能であった。磁力の強い永久磁石はネオビジュ−ムやアルニコのように高価である上、ネオビジュ−ムのように腐食し易いため、ステンレスカバ−にしろ、防錆コ−ティングにしろ費用が嵩み、それでも耐久性に難があり、価格面ばかりでなく実用的にも無理があった。結果的に安価なフェライト磁石が多用されることとなったが、販売競争の激化から装置の大部分を構成する磁石数を減らすようになり、磁石数が減れば当然交番磁界の数も減り、必然的に磁気処理効果がほとんどない装置が出回り、需要が激減している現状である。水の磁気処理には最低でも2000ガウス以上を必要とし、磁石の数は多ければ多いほど効果が高く、交番磁界数が多いほど効果的な時間が長いので安価で強い磁力の強いものが望まれていた。このため家庭用給水及び工業用の小型磁気処理装置では交番磁界の数が少ないか或いはほとんど行われていない場合が多いので実用的な使用に耐える磁気処理装置は現在ほとんど無いといっても過言ではない。
それに対して本発明の流入口分流部を有する磁気処理装置は、小型の永久磁石を使用しても強い磁力と多数の交番磁界を生じさせるので磁気処理を安価に提供できる。
本発明の装置で磁気処理された水は、それが通過する給水管や、空調設備の冷温水管を構成する鋼管の内壁表面を防錆効果の高い磁鉄鋼に変化させることが可能であり、また、同じ原理でスケ−ル発生による配管障害をを防止することができる。磁気処理された水の構造は細かく、細胞への浸透力が高く細胞に入り易い性質があり、生物が必要とする水の生成装置としても有用である。
永久磁石の異極面同士で細管を挟む場合(請求項2)は、装置の組立が簡単で安価に製作できる上、軽量なので取り付け工事なしに蛇口に一般ホ−スで取り付けが可能な携帯用磁気処理装置として農業、養魚、医療等多方面での利用が可能であり、家庭用としても交番磁界の多い磁気処理装置を安価に提供することができる。
If this device is installed in a suitable place such as a single super-water pipe for water supply, hot water supply, etc., or a circulatory system pipe such as a cold / hot water pipe for an air conditioning facility, the water passing through it will be a powerful and large amount of radiation emitted by a permanent magnet. It is magnetically processed by magnetic field lines. A large amount of water can be dealt with by increasing the number of magnets. As a result, since the distance between the magnets of different poles is short, it is possible to pass water without waste with little resistance only between the magnets having a strong magnetic force.
In order to perform an effective magnetic treatment, a strong magnetic force is required. Permanent magnets with strong magnetic force are expensive like neo-bijoum and alnico, and are easily corroded like neo-bijoum. There was difficulty in the nature, and it was impossible not only in terms of price but also practically. As a result, inexpensive ferrite magnets were frequently used, but the number of magnets constituting the majority of the device was reduced due to intensifying sales competition, and naturally the number of alternating magnetic fields decreased as the number of magnets decreased, There are inevitably devices that have almost no magnetic treatment effect, and the demand is drastically decreasing. The magnetic treatment of water requires at least 2000 gauss, and the more magnets, the higher the effect, and the more alternating magnetic fields, the longer the effective time, so cheap and strong magnetic force is desired. It was. For this reason, it is an exaggeration to say that there are few magnetic treatment devices that can withstand practical use at present because there are many cases where the number of alternating magnetic fields is small or rarely used in household water supply and industrial small magnetic treatment devices. Absent.
On the other hand, the magnetic processing apparatus having an inlet branching portion according to the present invention can provide magnetic processing at low cost because a strong magnetic force and a large number of alternating magnetic fields are generated even if a small permanent magnet is used.
The water magnetically processed by the apparatus of the present invention can change the inner wall surface of the steel pipe constituting the water supply pipe through which it passes and the cold / hot water pipe of the air conditioning equipment to a magnetic steel with a high antirust effect, and By the same principle, it is possible to prevent a piping failure due to scale generation. The structure of the magnetically treated water is fine, has a property of being easily penetrated into cells with high permeability to cells, and is also useful as a device for producing water required by living organisms.
When sandwiching thin tubes between different polar surfaces of permanent magnets (Claim 2), the assembly of the device is simple and can be manufactured at low cost, and since it is lightweight, it is portable and can be attached to the faucet without installation work. The magnetic processing apparatus can be used in various fields such as agriculture, fish farming, and medical care, and a magnetic processing apparatus having a large alternating magnetic field can be provided at low cost for home use.

この実施例は磁力線を飛ばす磁石積層柱を構成する各々の永久磁石の間に金属板を挟みながら積み上げた2本の磁石積層柱を向かい合わせて細管を挟み、金属板の切り口から放射される磁力線で水を磁気処理する方法を装置化したものである。これは処理する水質の硬度が高くて磁気処理する配管距離が長い場合に有効である。ここで本発明を図面により説明する。
図1は請求項1に記載の磁気処理装置の斜視図である。流入口1より流入した水は、流入口分流部2が有する4個の分流流入口3に接続した細管5に分流され、それら細管5を2本の磁石積層柱で挟み、その両端を固定バンド9で固定する。2本の磁石積層柱間には磁極片8からN極、S極の磁力線が交互に飛びかう交番磁極が形成される。これを筒状のハウジング7に納める。この筒状ハウジング7の一端に流入口1を接続させ、他端には流出口6を設ける。流入口1から流入した水は、磁石4の対向するN極、S極が接近しているために磁力の強い永久磁石4間に位置する細管5を通って磁気処理され、流出口6から流出する。
図1−1は、流入した水を、流入口1の面積に見合う、その流入口の面積より小さな面積を有する4個の分流流入口3に分流する流入口分流部2を示す。
図1−2は細管を挟む磁石積層柱の組み立て分解図である。磁性体の金属板8を磁極片とし、それを間に挟んだ永久磁石4のN極面同士を向かい合わせ、そのN極面の裏のS極面に同様に磁性体の金属板8を磁極片として間に挟んで永久磁石のS極面同士を向かい合わせ、同様に金属板8を挟みながら磁極を交互に変えて4個の永久磁石を縦方向に積層させ、永久磁石のボルト孔11にボルトナット10を差し込んで固定し、一本の磁石積層柱とする。
図1−3は永久磁石4のN極同士で金属板8を挟むとき切り口からN極の磁力線が飛び、S極同士で挟むとき切り口からS極の磁力線が飛ぶ状態を示すもので、矢印は磁力線の方向を示す。磁力線は最短距離に位置する異極へ飛ぶので、細管5の中を流れる水は磁力線を直角に横切ることとなり、同時に異なる方向の磁力線を交互に横切る交番磁界を通過することとなる。
この実施例では一本の磁石積層柱を構成する永久磁石は8個積層しているがその数はこれに制限されるものではなく、数は多いほど処理効果を高めることができる。相対する磁石積層柱の金属板8の切り口からは強力な磁力線が放射され、それを横切る水は水分子の水素結合が物理的にも電気的にも遮断されて効果的な磁気処理が行われるので、特に強い磁石を使用しなくても磁気処理効果を高めることができる。ここでは磁石の積層方法を四角形の磁石で図示しているが、磁石の形は丸形でも楕円形でも効果に大きな差はない。
In this embodiment, magnetic thin lines that are radiated from the cut end of a metal plate are sandwiched between two permanent magnets that are stacked while sandwiching a metal plate between the permanent magnets that make up the magnetic layer of the magnet laminated column. This is an apparatus for magnetically treating water. This is effective when the hardness of the water to be treated is high and the piping distance for magnetic treatment is long. The present invention will now be described with reference to the drawings.
FIG. 1 is a perspective view of a magnetic processing apparatus according to claim 1. The water flowing in from the inflow port 1 is diverted to the narrow tubes 5 connected to the four diversion flow ports 3 of the inflow port diverting part 2, and these thin tubes 5 are sandwiched between two magnet laminated columns, and both ends thereof are fixed bands. Fix with 9. An alternating magnetic pole in which N-pole and S-pole magnetic field lines alternate from the magnetic pole piece 8 is formed between the two magnet laminated columns. This is stored in a cylindrical housing 7. An inflow port 1 is connected to one end of the cylindrical housing 7 and an outflow port 6 is provided at the other end. The water flowing in from the inlet 1 is magnetically processed through the narrow tube 5 positioned between the permanent magnets 4 having a strong magnetic force because the N and S poles facing each other of the magnet 4 are close to each other, and flows out from the outlet 6. To do.
FIG. 1A shows an inlet branching section 2 for branching inflowed water into four branching inlets 3 having an area smaller than the area of the inlet corresponding to the area of the inlet 1.
FIG. 1-2 is an exploded view of a magnet laminated column sandwiching a thin tube. The magnetic metal plate 8 is used as a magnetic pole piece, and the N pole surfaces of the permanent magnet 4 sandwiching the magnetic pole plate are opposed to each other, and the magnetic metal plate 8 is similarly poled on the S pole surface behind the N pole surface. The S pole faces of the permanent magnets face each other as a piece, and the four magnetic poles are stacked in the vertical direction by alternately changing the magnetic poles while sandwiching the metal plate 8 in the bolt holes 11 of the permanent magnets. A bolt and nut 10 is inserted and fixed to form a magnet laminated column.
1-3 shows a state in which N-pole magnetic field lines fly from the cut when sandwiching the metal plate 8 between the N poles of the permanent magnet 4, and an S-pole magnetic field line flies from the cut when sandwiched between the S poles. Indicates the direction of the magnetic field lines. Since the magnetic field lines fly to the different pole located at the shortest distance, the water flowing in the narrow tube 5 crosses the magnetic field lines at right angles, and at the same time, passes through the alternating magnetic field that alternately crosses the magnetic field lines in different directions.
In this embodiment, eight permanent magnets constituting one magnet laminated column are laminated, but the number is not limited to this, and the processing effect can be enhanced as the number is larger. Strong magnetic lines of force are radiated from the cut end of the metal plate 8 of the opposing magnet laminated column, and the water crossing it is effectively blocked by hydrogen bonds of water molecules both physically and electrically. Therefore, the magnetic treatment effect can be enhanced without using a particularly strong magnet. Here, the magnet lamination method is illustrated as a square magnet, but there is no significant difference in the effect regardless of whether the magnet is round or oval.

実施例1で説明した磁気処理は磁石積層柱を構成する各々の永久磁石の間に金属板を挟みながら積み上げた複数の磁石積層柱を向かい合わせてそれらの間に細管を挟み、金属板の切り口から放射される磁力線で水を磁気処理する方法であるが、実施例2は異極同士が吸引しあうように複数の永久磁石の磁極面を向かい合わせてそれらの間に細管を挟み、磁極面から放出される磁力線で水を磁気処理する方法を装置化したものである。
実施例1の磁気処理装置は磁力の量は少ないが、強力なので磁気処理する水質の硬度が高い場合や磁気処理する配管距離が長い場合に有効であるが、実施例2の磁気処理装置は磁力の量は多いが、磁力は実施例1より弱い。しかし、実施例2の装置は組立が簡単で安価に製作できる利点があり、軽量なので取り付け工事なしに蛇口に一般ホ−スで取り付けが可能な携帯用磁気処理装置として農業、養魚、医療用をはじめ家庭用でも使用できる利点がある。
本発明を図面により説明する。図2は請求項2に述べた磁気処理装置の要部を示す斜視図である。図2の流入口1’より流入した水は、流入口分流部2’にある複数の分流流入口3’を経て永久磁石4’のN極面とS極面に挟まれた細管5’の中を流れる。細管5’を挟む永久磁石4’の並べ方は、磁極面のN極、S極入れ替えながら永久磁石4’を直列方向に接続させ、同一構造に直列接続された永久磁石4’を細管5’を挟んで向かい合わせ、向かい合う磁石の面同士が異極となって引き合うように配置する。そのとき磁力線は永久磁石4’のN極面から向かい合う永久磁石4’のS極面へ放射され、細管5’の中を流れる水は流入口1’から流出口6’へ流れるとき、各永久磁石4’の磁極面NからSへ放射される大量の磁力線を直角に横切ることとなり、同時に方向の異なる磁力線を交互に横切る交番磁界を通過することとなり磁気処理が効果的に行われる。
この磁石と細管を組み立てたものを筒状のハウジング7’に納め、ハウジング7’の一端には水の流入口1’を接続し、他端には流出口6’を設ける。この磁気処理装置では、流入した水が細管5’に分流され、永久磁石4’間を通過するとき、交互に方向の変わる多量の磁力線を水が直角に横切ることにより磁気処理が効果的に行われる。
図2−1は流入した水を流入口1’の面積に見合う、流入口1’の面積より小さな面積を有する4個の分流流入口3’に分流する流入口分流部2’を示す。流入口1’より流入した水は流入口分流部2’が有する4個の分流流入口3’に接続した細管5’に分流され、磁石4’のN極、S極が接近しているため磁力の強い磁石間の隙間へ送り込まれる。
図2−2は細管5’を挟む永久磁石4’の組み立て分解図である。永久磁石4’のN極面と永久磁石4’のS極面を向かい合わせ、この永久磁石4’と隣り合わせて直列方向にN極面とS極面の位置を変えた永久磁石4’を位置させ、細管5’を挟んでボルトナット10’で締め上げ固定することとなる。
図2−3は磁力線と直角に交わる細管5’の位置関係と、永久磁石4’の磁極面から飛ぶ磁力線の方向が異なる交番磁界とを示し、矢印はN極からS極へ飛ぶ磁力線を表す。
この磁気処理装置は給水、給湯等飲料水用一過水系配管、空調冷温水管、装置、機器の得冷却水用の循環系配管に使用する。このように本発明は、永久磁石の磁力線を最も多く放射する面を異極同士向かい合わせた構造のため多量の磁力線が存在する磁界が形成されることとなり、この多い磁力線で複数の交番磁界を構成することに特徴がある。また、永久磁石の磁力線量の多い面を左右に隣接させているため磁石の量が少なく小型ながら磁気処理効果が高く、飲料水用水処理装置としては長時間の磁気処理効果の持続が可能となる。実施例2では永久磁石を各4個向かい合わせているが、その数はこれに制限されるものではなく、数は多いほど磁気処理効果は高い。相対する磁石表面から強力な磁力線が放射され、それを横切る水は水分子の水素結合が物理的にも電気的にも遮断されて効果的な磁気処理が行われるので、特に強い磁石を使用しなくても磁気処理効果を高めることができる。磁石の形はここでは四角形の磁石で示しているが、丸形でも楕円形でも効果に大きな差はない。
In the magnetic treatment described in the first embodiment, a plurality of magnet stacked columns stacked while sandwiching a metal plate between the permanent magnets constituting the magnet stacked column are faced to each other, and a thin tube is sandwiched between them. In the second embodiment, the magnetic poles of a plurality of permanent magnets face each other so that different poles attract each other, and a thin tube is sandwiched between them. A method for magnetically treating water with magnetic lines of force released from the device.
Although the magnetic processing apparatus of Example 1 has a small amount of magnetic force, it is effective because it is strong and the hardness of water quality to be magnetically processed is high or the piping distance for magnetic processing is long. However, the magnetic force is weaker than that of Example 1. However, the apparatus of Example 2 has the advantage that it is easy to assemble and can be manufactured at low cost, and since it is lightweight, it can be used for agriculture, fish farming, and medical use as a portable magnetic processing apparatus that can be attached to a faucet with a general hose without installation work. There is an advantage that it can be used at home.
The present invention will be described with reference to the drawings. FIG. 2 is a perspective view showing a main part of the magnetic processing apparatus according to the second aspect. The water flowing in from the inlet 1 ′ in FIG. 2 passes through a plurality of branch inlets 3 ′ in the inlet branch 2 ′ and enters the narrow tube 5 ′ sandwiched between the N pole surface and the S pole surface of the permanent magnet 4 ′. Flowing through. The arrangement of the permanent magnets 4 'sandwiching the thin tubes 5' is made by connecting the permanent magnets 4 'in series while switching the N poles and S poles of the magnetic pole surfaces, and connecting the permanent magnets 4' connected in series with the same structure into the thin tubes 5 '. They are placed so that they face each other, and the faces of the facing magnets attract each other with different polarities. At that time, the lines of magnetic force are radiated from the N pole face of the permanent magnet 4 'to the S pole face of the permanent magnet 4' facing each other, and when the water flowing in the narrow tube 5 'flows from the inlet 1' to the outlet 6 ', each permanent A large amount of magnetic field lines radiated from the magnetic pole surface N of the magnet 4 ′ to S are traversed at right angles, and at the same time, an alternating magnetic field that alternately traverses magnetic field lines of different directions is passed, so that magnetic processing is effectively performed.
An assembly of the magnet and the thin tube is placed in a cylindrical housing 7 ′, and an inlet 1 ′ for water is connected to one end of the housing 7 ′, and an outlet 6 ′ is provided to the other end. In this magnetic processing apparatus, when the inflowing water is diverted to the narrow tube 5 'and passes between the permanent magnets 4', the magnetic processing is effectively performed by crossing a large number of magnetic field lines whose directions alternately change at right angles. Is called.
FIG. 2-1 shows an inlet branching section 2 ′ that splits the inflowed water into four branching inlets 3 ′ having an area smaller than the area of the inlet 1 ′ in accordance with the area of the inlet 1 ′. The water flowing in from the inflow port 1 ′ is diverted to the narrow pipes 5 ′ connected to the four diversion flow inlets 3 ′ of the inflow port diversion part 2 ′, and the N pole and S pole of the magnet 4 ′ are close to each other. It is sent into the gap between magnets with strong magnetic force.
FIG. 2-2 is an exploded view of the permanent magnet 4 ′ sandwiching the thin tube 5 ′. The permanent magnet 4 'is positioned in such a manner that the N pole face of the permanent magnet 4' and the S pole face of the permanent magnet 4 'face each other, and the positions of the N pole face and the S pole face are changed in series in the adjacent direction. Then, the thin tube 5 'is sandwiched between the bolts and nuts 10' and fixed.
FIG. 2-3 shows the positional relationship of the narrow tube 5 ′ that intersects the magnetic field lines at right angles and the alternating magnetic field in which the direction of the magnetic field lines flying from the magnetic pole surface of the permanent magnet 4 ′ is different, and the arrows represent the magnetic field lines flying from the N pole to the S pole. .
This magnetic treatment device is used for a circulation system pipe for a cooling water for obtaining water for a drinking water such as water supply and hot water supply, an air conditioning cold / hot water pipe, an apparatus and equipment. As described above, the present invention has a structure in which the surfaces of the permanent magnets that radiate the most magnetic lines face each other with different polarities, so that a magnetic field having a large amount of magnetic field lines is formed. There is a feature in composition. In addition, since the surface of the permanent magnet with a large magnetic force dose is adjacent to the left and right, the amount of magnet is small and the magnetic treatment effect is high despite its small size, and the water treatment device for drinking water can maintain the magnetic treatment effect for a long time. . In the second embodiment, four permanent magnets face each other, but the number thereof is not limited to this, and the larger the number, the higher the magnetic treatment effect. Strong magnetic lines of force are radiated from the opposing magnet surfaces, and the water that crosses them is effectively magnetically treated by blocking the hydrogen bonds of water molecules both physically and electrically, so use a particularly strong magnet. Even without it, the magnetic treatment effect can be enhanced. The shape of the magnet is shown here as a quadrangular magnet, but there is no significant difference in effect between round and elliptical shapes.

磁石積層柱を構成する各々の永久磁石の間に金属板を挟みながら積み上げた2本の磁石積層柱を向かい合わせてその間に細管を挟み、金属板の切り口から放射される磁力線で水を磁気処理する本発明の磁気処理装置の要部を示す斜視図である。  Two magnet laminated pillars stacked while sandwiching a metal plate between each permanent magnet constituting the magnet laminated pillar face each other, sandwich a thin tube between them, and magnetically process water with magnetic lines radiated from the cut end of the metal plate It is a perspective view which shows the principal part of the magnetic processing apparatus of this invention. 流入した水を流入口1の面積に見合う、流入口1の面積より小さな面積を有する4個の分流流入口3に分流する流入口分流部2の内部構造の透視斜視図である。  FIG. 3 is a perspective view of the internal structure of an inlet branching section 2 that splits inflowed water into four branching inlets 3 having an area smaller than the area of the inlet 1, corresponding to the area of the inlet 1. 磁石積層柱の組み立て分解図である。  It is an assembly exploded view of a magnet lamination pillar. 磁力線と直角に交わる細管の位置関係と金属板の切り口から飛ぶ磁力線の方向が異なる交番磁界とを示す概念図である。  It is a conceptual diagram which shows the positional relationship of the thin tube which cross | intersects a magnetic force line at right angle, and the alternating magnetic field from which the direction of the magnetic force line which flies from the cut end of a metal plate differs. 永久磁石の異極面を向かい合わせて細管を挟み、異極面から放射される磁力線で水を磁気処理する本発明の他の磁気処理装置の要部を示す斜視図である。  It is a perspective view which shows the principal part of the other magnetic processing apparatus of this invention which magnetically processes water with the magnetic force line | wire which radiates | emits from the different pole surface by pinching | interposing a thin tube facing the different pole surface of a permanent magnet. 流入した水を流入口1’の面積に見合う、流入口1’の面積より小さな面積を有する4個の分流流入口3’に分流する流入口分流部2’の内部構造の透視斜視図である。  FIG. 5 is a perspective view of the internal structure of an inlet branching section 2 ′ that splits inflowed water into four branching inlets 3 ′ having an area smaller than the area of the inlet 1 ′ that matches the area of the inlet 1 ′. . 細管5’を挟む永久磁石の組み立て分解図である。  It is an assembly exploded view of the permanent magnet which pinches | interposes the thin tube 5 '. 磁力線とそれに直角に交わる細管との位置関係と、永久磁石の磁極面から飛ぶ磁力線の方向が異なる交番磁界とを示す概念図である。  It is a conceptual diagram which shows the positional relationship of a magnetic force line and the thin tube which cross | intersects to it at right angles, and the alternating magnetic field from which the direction of the magnetic force line which flies from the magnetic pole surface of a permanent magnet differs. 図1に示す本発明の磁気処理装置の正面図である。  It is a front view of the magnetic processing apparatus of this invention shown in FIG. 図1の磁気処理装置の平面図である。  It is a top view of the magnetic processing apparatus of FIG. 図1の磁気処理装置の流入側から見た端面図である。  It is the end elevation seen from the inflow side of the magnetic processing apparatus of FIG. 図2に示す本発明の他の磁気処理装置の正面図である。  It is a front view of the other magnetic processing apparatus of this invention shown in FIG. 図2の磁気処理装置の平面図である。  It is a top view of the magnetic processing apparatus of FIG. 図2の磁気処理装置の流入側から見た端面図である。  It is the end elevation seen from the inflow side of the magnetic processing apparatus of FIG.

符号の説明Explanation of symbols

1、1’ 流入口 2、2’ 流入口分流部
3、3’ 分流流入口 4、4’ 永久磁石
5、5’ 細管 6、6’ 流出口
7、7’ ハウジング 8 金属板
9 固定バンド 10、10’ボルトナット
11、11’ボルト孔
DESCRIPTION OF SYMBOLS 1, 1 'inflow port 2, 2' Inflow port branching part 3, 3 'Split flow inflow port 4, 4' Permanent magnet 5, 5 'Narrow tube 6, 6' Outlet 7, 7 'Housing 8 Metal plate 9 Fixed band 10 10 'bolt nut 11, 11' bolt hole

Claims (2)

永久磁石(4)のN極面同士を向かい合わせ、それらの間に磁性体の金属板(8)を磁極片として挟み、N極面の裏のS極面にもう1個の永久磁石(4)のS極面を向かい合わせて、それらの間に磁性体の金属板(8)を磁極片として挟み、同じく磁性体の金属板(8)を挟みつつ磁極を交互に変えながら複数個の永久磁石(4)を積層させて一本の磁石積層柱を構成し、磁気処理装置へ供給する水の流入口(1)に流入口分流部(2)を接続させ、その流入口分流部(2)には流入口(1)の面積に見合う、流入口(1)の面積より小さな面積を有する複数の分流流入口(3)を設け、それぞれの兮分流流入口(3)に非磁性体の細管(5)を接続し、複数の細管(5)を2本の磁石積層柱で挟み、向かい合った磁石積層柱の各金属板(8)の切り口が異極となって互いに吸引し合うように位置させ、これを筒状のハウジング(7)に納め、ハウジング(7)には水の流出口(6)を設け、流入口(1)から流入した水が流入口分流部(2)で複数の細管(5)に分流されて磁石積層柱間を通過する時、磁石が接近しているため磁力の強い磁界を水が速度をもって流れると同時に、方向の異なる多量で強力な磁力線を交互に直角に横切ることにより磁気処理が効果的に行われる水の磁気処理装置。  The N pole faces of the permanent magnet (4) face each other, a magnetic metal plate (8) is sandwiched between them as a pole piece, and another permanent magnet (4) is placed on the S pole face behind the N pole face. ) Face the S pole face, sandwich the magnetic metal plate (8) between them as a pole piece, and change the magnetic poles alternately while sandwiching the magnetic metal plate (8) to make a plurality of permanent The magnets (4) are stacked to form one magnet stacked column, and the inlet branch part (2) is connected to the inlet (1) of the water supplied to the magnetic processing apparatus, and the inlet branch part (2 ) Is provided with a plurality of branch flow inlets (3) corresponding to the area of the flow inlet (1) and having an area smaller than the area of the flow inlet (1), and each of the divided flow inlets (3) is made of a non-magnetic material. A thin tube (5) is connected, a plurality of thin tubes (5) are sandwiched between two magnet laminated columns, and each metal plate (8 Are positioned so that they have different polarities and attract each other and are accommodated in a cylindrical housing (7). The housing (7) is provided with a water outlet (6), and the inlet (1) When the water flowing in from the inlet is divided into a plurality of thin tubes (5) at the inlet branch part (2) and passes between the magnet stacked columns, the magnets are close to each other, so that the water flows at a high speed due to the strong magnetic force. At the same time, a magnetic treatment apparatus for water in which magnetic treatment is effectively performed by alternately crossing a large number of strong magnetic field lines in different directions at right angles. 磁気処理装置へ供給する水の流入口(1’)に流入口分流部(2’)を接続させ、その流入口分流部(2’)には流入口(1’)の面積に見合う、流入口(1’)の面積より小さな面積を有する複数の分流流入口(3’)を設け、それぞれの分流流入口(3’)に非磁性体の細管(5’)を接続し、複数の細管(5’)を間に挟んで向かい合う永久磁石(4’)のN極面と永久磁石(4’)のS極面が互いに吸引するように位置させ、これら永久磁石(4’)と隣り合わせて細管(5’)の軸線に沿ってN極面とS極面の位置を交互に変えた永久磁石(4’)を連続して複数個位置させ、これを筒状のハウジング(7’)に納め、そのハウジング(7’)には水の流出口(6’)を設け、流入口(1’)から流入した水が流入口分流部(2’)で複数の細管(5’)に分流されて永久磁石(4’)間を通過する時、磁石が接近しているため磁力の強い磁界を水が速度をもって流れると同時に、方向の異なる多量で強力な磁力線を交互に直角に横切ることにより磁気処理が効果的に行われる水の磁気処理装置。  An inlet diversion part (2 ′) is connected to an inlet (1 ′) of water to be supplied to the magnetic processing device, and the inlet diversion part (2 ′) corresponds to the area of the inlet (1 ′). A plurality of branch flow inlets (3 ') having an area smaller than the area of the inlet (1') is provided, and a nonmagnetic thin tube (5 ') is connected to each of the branch flow inlets (3'). (5 ') is positioned so that the N pole face of the permanent magnet (4') and the S pole face of the permanent magnet (4 ') facing each other with the (5') in between are adjacent to each other and adjacent to these permanent magnets (4 '). A plurality of permanent magnets (4 ′), in which the positions of the N pole surface and the S pole surface are alternately changed, are continuously positioned along the axis of the thin tube (5 ′), and this is placed in a cylindrical housing (7 ′). The housing (7 ′) is provided with a water outlet (6 ′), and the water flowing in from the inlet (1 ′) is allowed to flow into the inlet branch (2 ′). When passing through between the permanent magnets (4 ') by being divided into a plurality of narrow tubes (5'), water flows at a high speed through a magnetic field with strong magnetic force due to the proximity of the magnets. A magnetic treatment apparatus for water that effectively performs magnetic treatment by crossing perpendicular magnetic field lines alternately at right angles.
JP2005291648A 2005-09-02 2005-09-02 Apparatus for magnetically treating water Pending JP2007069192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291648A JP2007069192A (en) 2005-09-02 2005-09-02 Apparatus for magnetically treating water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291648A JP2007069192A (en) 2005-09-02 2005-09-02 Apparatus for magnetically treating water

Publications (1)

Publication Number Publication Date
JP2007069192A true JP2007069192A (en) 2007-03-22

Family

ID=37931108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291648A Pending JP2007069192A (en) 2005-09-02 2005-09-02 Apparatus for magnetically treating water

Country Status (1)

Country Link
JP (1) JP2007069192A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240739A (en) * 2013-06-12 2014-12-25 株式会社アルファ技研 Cooling tower system
JP2015502850A (en) * 2012-10-19 2015-01-29 ホウ ホンジHOU, Hongji Water treatment apparatus and method
WO2015029791A1 (en) * 2013-08-27 2015-03-05 株式会社クリスタル研究所 Electronic water apparatus
WO2016010412A1 (en) * 2014-07-17 2016-01-21 Ser See Seng An apparatus for treating water using magnetic field
CN111019695A (en) * 2019-12-02 2020-04-17 广东石油化工学院 On-way magnetic treatment reaction device
CN111019694A (en) * 2019-12-02 2020-04-17 广东石油化工学院 Inferior oil on-way magnetic treatment system
JP2023101446A (en) * 2022-01-10 2023-07-21 エミオ-ユ インテレクチュアル プロパティ コンサルティング カンパニー リミテッド Fluid passage magnetization unit and fluid passage magnetization device including fluid passage magnetization unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502850A (en) * 2012-10-19 2015-01-29 ホウ ホンジHOU, Hongji Water treatment apparatus and method
JP2014240739A (en) * 2013-06-12 2014-12-25 株式会社アルファ技研 Cooling tower system
WO2015029791A1 (en) * 2013-08-27 2015-03-05 株式会社クリスタル研究所 Electronic water apparatus
JP2015044136A (en) * 2013-08-27 2015-03-12 株式会社クリスタル研究所 Electronic water generator
WO2016010412A1 (en) * 2014-07-17 2016-01-21 Ser See Seng An apparatus for treating water using magnetic field
CN111019695A (en) * 2019-12-02 2020-04-17 广东石油化工学院 On-way magnetic treatment reaction device
CN111019694A (en) * 2019-12-02 2020-04-17 广东石油化工学院 Inferior oil on-way magnetic treatment system
CN111019695B (en) * 2019-12-02 2022-03-15 广东石油化工学院 On-way magnetic treatment reaction device
CN111019694B (en) * 2019-12-02 2022-03-15 广东石油化工学院 Inferior oil on-way magnetic treatment system
JP2023101446A (en) * 2022-01-10 2023-07-21 エミオ-ユ インテレクチュアル プロパティ コンサルティング カンパニー リミテッド Fluid passage magnetization unit and fluid passage magnetization device including fluid passage magnetization unit

Similar Documents

Publication Publication Date Title
JP2007069192A (en) Apparatus for magnetically treating water
US20090065438A1 (en) Fluid magnetic treatment unit having moving or stationary magnets
US4946590A (en) Clamp-on magnetic water treatment device
WO1981002529A1 (en) Magnetic water conditioner apparatus
ATE80132T1 (en) DEVICE FOR MAGNETIC WATER TREATMENT.
US20020056679A1 (en) Liquid magnetic processing unit
JP2011072869A (en) Magnetic treatment device
JP4399293B2 (en) Magnetic water treatment device
JP3802905B2 (en) Magnetic fluid processing method and magnetic fluid processing apparatus
JP2963356B2 (en) Water treatment water activation equipment
JP2005296713A (en) Sterilizing device
JP2909891B2 (en) Magnetic water treatment equipment that can enhance the magnetic treatment of water
JP3592624B2 (en) Magnetic water treatment equipment
JPH07155768A (en) Method for activating water molecule and device therefor
JP2000070951A (en) Water treating device using multipole type magnetic field
JP3933516B2 (en) Liquid magnetizer for use in flow path
RU93792U1 (en) DEVICE FOR WATER TREATMENT IN A MAGNETIC FIELD FLOW
JP3590258B2 (en) Fluid magnetizing tool
JP3604338B2 (en) Magnetic water treatment apparatus and equipment using the same
JPH1190454A (en) Fluid ionizing apparatus using magnet
JP3098279U (en) Processing equipment
JPH1147751A (en) Apparatus for activating water molecule
JP2011005434A (en) Magnetic water treatment apparatus
RU93080U1 (en) DEVICE FOR MAGNETIC WATER TREATMENT IN FLOW
JPH1133555A (en) Magnetic water treatment apparatus