JP2007068057A - Signal detection circuit - Google Patents

Signal detection circuit Download PDF

Info

Publication number
JP2007068057A
JP2007068057A JP2005254170A JP2005254170A JP2007068057A JP 2007068057 A JP2007068057 A JP 2007068057A JP 2005254170 A JP2005254170 A JP 2005254170A JP 2005254170 A JP2005254170 A JP 2005254170A JP 2007068057 A JP2007068057 A JP 2007068057A
Authority
JP
Japan
Prior art keywords
differential
signal
output signal
resistor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005254170A
Other languages
Japanese (ja)
Other versions
JP4688152B2 (en
Inventor
Kazuhiro Mori
数洋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005254170A priority Critical patent/JP4688152B2/en
Publication of JP2007068057A publication Critical patent/JP2007068057A/en
Application granted granted Critical
Publication of JP4688152B2 publication Critical patent/JP4688152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a signal detection circuit capable of corresponding to a high-speed signal, accurately detecting a differential signal, reducing a layout area of a circuit, and reducing power consumption. <P>SOLUTION: The signal detection circuit sets common-mode potentials (VR1, VR2) by connecting a third comparator (COMP22) connected to a direct-current reference voltage (Vref) with both of two signal detection circuit comparators (COMP10, COMP21), outputs a differential exclusive OR of differential signals (CMP9E<SB>out</SB>, CMP10E<SB>out</SB>) output from the signal detection comparators (COMP10, COMP21), and detects a differential input signal (Sin) not less than a set level. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、差動信号を2値化して検出する信号検出回路に関し、特に小振幅の差動信号を2値化して検出する信号検出回路に関する。   The present invention relates to a signal detection circuit that binarizes and detects a differential signal, and more particularly to a signal detection circuit that binarizes and detects a differential signal having a small amplitude.

近年、HDD等のデータ転送はより高速な転送を求められており、従来のパラレル転送方式ではデータ転送速度が限界に達しつつあるため、高速なデータ転送が可能である差動シリアル転送方式が普及し始めている。   In recent years, data transfer from HDDs and the like has been demanded to be performed at higher speeds, and since the data transfer speed has reached the limit in the conventional parallel transfer system, a differential serial transfer system capable of high-speed data transfer has become widespread. Have begun to do.

差動シリアル転送方式とは2本の伝送路を一組として、この2本の伝送路間の電位差によりデータを転送する方式である。従来のパラレル転送方式では数十本の信号線を用いて並列にデータ送受信するため高速化すると多数の信号線間でタイミング同期が困難になる欠点があったが、差動シリアル転送方式は2本の伝送路で転送するため高速化に適している。   The differential serial transfer system is a system in which two transmission paths are taken as a set, and data is transferred by a potential difference between the two transmission paths. In the conventional parallel transfer method, data transmission / reception is performed in parallel using several tens of signal lines, so there is a drawback that timing synchronization becomes difficult between a large number of signal lines if the speed is increased. It is suitable for speeding up because it is transferred through the transmission line.

しかし、転送速度の高速化に伴い信号の検出時間や振幅が小さくなるため、より高精度な信号検出回路を必要とされていた。   However, since the signal detection time and amplitude are reduced as the transfer rate is increased, a more accurate signal detection circuit is required.

このような信号検出回路の従来例が、特開平3−55968に開示されている。従来例の回路図を図1に示す(特許文献1)。   A conventional example of such a signal detection circuit is disclosed in JP-A-3-55968. A circuit diagram of a conventional example is shown in FIG. 1 (Patent Document 1).

図1を参照して、従来例の構成は、しきい値の異なる二つの比較回路である比較回路COMP1及び比較回路COMP2と、これらの比較回路からそれぞれ出力される出力信号CMP1outと出力信号CMP2outの排他的論理和を出力する排他的論理和回路EOR1、比較回路のしきい値となる基準電圧を設定する抵抗R1、R2、R3を備えている。この際、比較回路COMP2のしきい値は、比較回路COMP1のしきい値より低く設定される。   Referring to FIG. 1, the configuration of the conventional example includes two comparison circuits COMP1 and COMP2, which are two comparison circuits having different threshold values, and output signals CMP1out and CMP2out respectively output from these comparison circuits. An exclusive OR circuit EOR1 for outputting an exclusive OR, and resistors R1, R2, and R3 for setting a reference voltage serving as a threshold value for the comparison circuit are provided. At this time, the threshold value of the comparison circuit COMP2 is set lower than the threshold value of the comparison circuit COMP1.

入力信号Sinの振幅が比較回路COMP1及び比較回路COMP2の基準電圧に比べ充分に大きい場合は、出力信号CMP1outと出力信号CMP2outの排他的論理和は「0」となる。次に、入力信号Sinの振幅が小さくなり、比較回路COMP1のしきい値以下になると比較回路COMP1の出力はなくなるが、比較回路COMP2は比較回路COMP1よりしきい値が低いために入力信号を検出し、出力信号CMP1outと出力信号CMP2outの排他的論理和は「1」となる。   When the amplitude of the input signal Sin is sufficiently larger than the reference voltage of the comparison circuit COMP1 and the comparison circuit COMP2, the exclusive OR of the output signal CMP1out and the output signal CMP2out is “0”. Next, when the amplitude of the input signal Sin decreases and becomes less than the threshold value of the comparison circuit COMP1, the output of the comparison circuit COMP1 disappears, but the comparison circuit COMP2 detects the input signal because the threshold value is lower than that of the comparison circuit COMP1. The exclusive OR of the output signal CMP1out and the output signal CMP2out is “1”.

このように比較回路COMP1及び比較回路COMP2のしきい値の設定と排他的論理和EOR1の出力Slvによりにより信号の振幅を検知することができる。   In this way, the amplitude of the signal can be detected by setting the threshold values of the comparison circuits COMP1 and COMP2 and the output Slv of the exclusive OR EOR1.

このような従来例の入力信号を差動入力信号に置き換えた回路図を図2に示す。   FIG. 2 shows a circuit diagram in which such a conventional input signal is replaced with a differential input signal.

この回路は従来例における比較回路COMP1に換えて、正相入力信号SinPと逆相入力信号SinNからなる差動入力信号Sinが入力される差動比較回路COMP3と、差動比較回路COMP3の差動出力信号にオフセット電圧を与える差動比較回路COMP4とを備え、比較回路COMP2に換えて、差動入力信号Sinが入力される差動比較回路COMP5と、差動比較回路COMP5の差動出力信号にオフセット電圧を与える差動比較回路COMP6とを備える。又、排他的論理和EOR1に換えて、差動比較回路COMP3及び差動比較回路COMP5の出力に接続される差動排他的論理和EOR2を備え、定電流源Ib1、抵抗R1、R2、R3に換えて、オフセットの基準電圧を設定する定電流源Ib2と抵抗R4と直流電圧源V1とを備える。   In this circuit, instead of the comparison circuit COMP1 in the conventional example, a differential comparison circuit COMP3 to which a differential input signal Sin composed of a normal phase input signal SinP and a negative phase input signal SinN is input, and a differential comparison circuit COMP3 are provided. A differential comparison circuit COMP4 that applies an offset voltage to the output signal; instead of the comparison circuit COMP2, the differential comparison circuit COMP5 to which the differential input signal Sin is input; and the differential output signal of the differential comparison circuit COMP5 And a differential comparison circuit COMP6 for providing an offset voltage. Further, in place of the exclusive OR EOR1, a differential exclusive OR EOR2 connected to the outputs of the differential comparison circuit COMP3 and the differential comparison circuit COMP5 is provided, and the constant current source Ib1, resistors R1, R2, and R3 are provided. Instead, a constant current source Ib2 for setting an offset reference voltage, a resistor R4, and a DC voltage source V1 are provided.

差動比較回路COMP3は抵抗R5、R6及びNチャネル型MOSトランジスタMn1、Mn2と定電流源Ib3を備え、差動比較回路COMP5は抵抗R7、R8及びNチャネル型MOSトランジスタMn5、Mn6と定電流源Ib5を備えている。差動比較回路COMP4はNチャネル型MOSトランジスタMn3、Mn4と定電流源Ib4を備え、差動比較回路COMP6はNチャネル型MOSトランジスタMn7、Mn8と定電流源Ib6を備えている。   The differential comparison circuit COMP3 includes resistors R5 and R6, N-channel MOS transistors Mn1 and Mn2, and a constant current source Ib3. The differential comparison circuit COMP5 includes resistors R7 and R8 and N-channel MOS transistors Mn5 and Mn6 and a constant current source. Ib5 is provided. The differential comparison circuit COMP4 includes N-channel MOS transistors Mn3 and Mn4 and a constant current source Ib4, and the differential comparison circuit COMP6 includes N-channel MOS transistors Mn7 and Mn8 and a constant current source Ib6.

続いて、従来例の動作を図3に示す動作波形を用いて説明する。正相入力信号SinP、逆相入力信号SinNの振幅が小さい場合、差動比較回路COMP3の正相出力信号CMP3outPは、正相入力信号SinPに差動比較回路COMP4の入力電圧R4Lによりオフセットが与えられた信号となる(図3(b))。差動比較回路COMP3の逆相出力信号CMP3outNは、逆相入力信号SinNに差動比較回路COMP4の入力電圧R4Hによりオフセットが与えられた信号となる(図3(b))。この入力電圧R4H、R4Lは定電流源Ib2と抵抗R4で決定する電位差である。同様に差動比較回路COMP5の正相出力信号CMP5outPは、正相入力信号SinPに差動比較回路COMP6の入力電圧R4Hによりオフセットが与えられた信号となる(図3(c))。差動比較回路COMP5の逆相出力信号CMP5outNは、逆相入力信号SinNに差動比較回路COMP6の入力電圧R4Lによりオフセットが与えられた信号となる(図3(c))。図3(b)の入力信号が小さい時の論理値は「1」であり、図3(c)の入力信号が小さい時の論理値は「0」のため、これらを入力とする差動排他的論理和EOR2の出力は、論理値「1」となる。   Next, the operation of the conventional example will be described using the operation waveforms shown in FIG. When the amplitudes of the positive phase input signal SinP and the negative phase input signal SinN are small, the positive phase output signal CMP3outP of the differential comparison circuit COMP3 is offset by the input voltage R4L of the differential comparison circuit COMP4. Signal (FIG. 3B). The negative phase output signal CMP3outN of the differential comparison circuit COMP3 is a signal obtained by offsetting the negative phase input signal SinN by the input voltage R4H of the differential comparison circuit COMP4 (FIG. 3B). The input voltages R4H and R4L are potential differences determined by the constant current source Ib2 and the resistor R4. Similarly, the positive phase output signal CMP5outP of the differential comparison circuit COMP5 becomes a signal obtained by offsetting the positive phase input signal SinP by the input voltage R4H of the differential comparison circuit COMP6 (FIG. 3C). The negative phase output signal CMP5outN of the differential comparison circuit COMP5 is a signal obtained by offsetting the negative phase input signal SinN by the input voltage R4L of the differential comparison circuit COMP6 (FIG. 3C). When the input signal in FIG. 3B is small, the logical value is “1”, and when the input signal in FIG. 3C is small, the logical value is “0”. The output of the logical OR EOR2 is a logical value “1”.

正相入力信号SinP、逆相入力信号SinNの振幅が大きい場合、正相入力信号SinP、逆相入力信号SinNの振幅が大きくなると、図3(b)の信号が大きい時のようにCMP3outPとCMP3outNが交差して論理値が「1」から「0」に変化するタイミングが発生する。このときの正相出力信号CMP5outPと逆相出力信号CMP5outNは論理値「0」のため、差動排他的論理和EOR2の2値化信号SoutP、2値化信号SoutNは論理値「0」となる。   When the amplitudes of the positive phase input signal SinP and the negative phase input signal SinN are large, when the amplitudes of the positive phase input signal SinP and the negative phase input signal SinN are large, CMP3outP and CMP3outN are the same as when the signals in FIG. Crosses each other and the logical value changes from “1” to “0”. At this time, the normal phase output signal CMP5outP and the negative phase output signal CMP5outN have the logical value “0”, and thus the binary signal SoutP of the differential exclusive OR EOR2 and the binary signal SoutN have the logical value “0”. .

図3(c)の信号が大きい時も同様に正相出力信号CMP5outPと逆相出力信号CMP5outNが交差し、論理値が「0」から「1」に変化するタイミングが発生する。このときの正相出力信号CMP3outPと逆相出力信号CMP3outNは論理値「1」のため、差動排他的論理和EOR2の2値化信号SoutP、2値化信号SoutNは論理値「0」となる。   Similarly, when the signal of FIG. 3C is large, the positive phase output signal CMP5outP and the negative phase output signal CMP5outN cross each other, and the timing at which the logical value changes from “0” to “1” occurs. At this time, since the normal phase output signal CMP3outP and the negative phase output signal CMP3outN have the logical value “1”, the binary signal SoutP of the differential exclusive OR EOR2 and the binary signal SoutN have the logical value “0”. .

この2値化信号SoutP及び2値化信号SoutNの信号の変化により、差動入力信号Sinが入力された事を検出する。
特開平3−55968
It is detected that the differential input signal Sin has been input based on changes in the signals of the binarized signal SoutP and the binarized signal SoutN.
JP-A-3-55968

より精度の良い信号検出回路を設計するには、回路を構成する抵抗や容量、トランジスタの製造ばらつきを考慮する必要がある。従来回路では、定電流Ib1を抵抗R1、R2、R3に供給して比較回路COMP1、COMP2の比較基準電圧を与え、その比較基準電圧とは相関の無い直流電圧を含む入力信号Sinを認識している。したがって、入力信号Sinと比較回路COMP1、COMP2の比較基準電圧の製造ばらつきによって電圧差が存在しうる。又、比較回路のCOMP1、COMP2にも製造ばらつきによる入力換算オフセット電圧があり、それらによるオフセットの影響が大きいため、小振幅の入力信号Sinが入力されると検出誤動作を発生しやすくなっている。   In order to design a signal detection circuit with higher accuracy, it is necessary to take into account manufacturing variations of resistors and capacitors constituting the circuit and transistors. In the conventional circuit, the constant current Ib1 is supplied to the resistors R1, R2 and R3 to give the comparison reference voltage of the comparison circuits COMP1 and COMP2, and the input signal Sin including the DC voltage uncorrelated with the comparison reference voltage is recognized. Yes. Therefore, there may be a voltage difference due to manufacturing variations in the input signal Sin and the comparison reference voltages of the comparison circuits COMP1 and COMP2. Further, the comparison circuits COMP1 and COMP2 also have input conversion offset voltages due to manufacturing variations, and since the influence of the offsets is large, detection malfunctions are likely to occur when a small-amplitude input signal Sin is input.

図2に示される従来回路の場合、定電流Ib2と抵抗R4により、差動比較回路COMP3、COMP5の差動出力信号CMP3out、CMP5outにオフセットを与え、信号の検出をしている。この定電流Ib2と抵抗R4は、製造ばらつきの影響を受けるため、差動比較回路COMP4、COMP6によって与えられるオフセット電圧に誤差が生じる。この誤差の影響によって小振幅の入力信号Sinが入力されると検出誤動作を発生しやすくなっている。   In the case of the conventional circuit shown in FIG. 2, the constant current Ib2 and the resistor R4 provide an offset to the differential output signals CMP3out and CMP5out of the differential comparison circuits COMP3 and COMP5 to detect signals. Since the constant current Ib2 and the resistor R4 are affected by manufacturing variations, an error occurs in the offset voltage provided by the differential comparison circuits COMP4 and COMP6. When an input signal Sin having a small amplitude is input due to the influence of this error, a detection malfunction is likely to occur.

以下に、[発明を実施するための最良の形態]で使用される番号・符号を括弧付きで用いて、[課題を解決するための手段]を説明する。この番号・符号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。   [Means for Solving the Problems] will be described below using the numbers and symbols used in [Best Mode for Carrying Out the Invention] in parentheses. This number / symbol is added to clarify the correspondence between the description of [Claims] and the description of the best mode for carrying out the invention. It should not be used for interpreting the technical scope of the invention described in [Scope].

本発明による信号検出回路(102、103)は、入力される差動入力信号(Sin)を増幅し、第1の差動出力信号(CMP9out、CMP11out)を出力する第1のコンパレータ(COMP10、COMP10’)と、入力される差動入力信号(Sin)を増幅し、第2の差動出力信号(CMP10out、CMP12out)を出力する第2のコンパレータ(COMP21、COMP21’)と、第1の差動出力信号(CMP9out、CMP11out)の正相信号(CMP9outP、CMP11outP)と第2の差動出力信号(CMP10out、CMP12out)の逆相信号(CMP10outN、CMP12outN)からなる第1の差動信号(CMP9Eout、CMP11Eout)と、第2の差動出力信号(CMP10out、CMP12out)の正相信号(CMP10outP、CMP12outP)と第1の差動出力信号(CMP9out、CMP11out)の逆相信号(CMP9outN、CMP11outN)からなる第2の差動信号(CMP10Eout、CMP12Eout)との排他的論理和を出力する差動排他的論理和回路(EOR10)と、第1のコンパレータ(COMP10、COMP10’)と第2のコンパレータ(COMP21、COMP21’)に接続され、第1の差動出力信号(CMP9out、CMP11out)のコモンモード電圧と第2の差動出力信号のコモンモード電圧(CMP10out、CMP12out)を、それぞれ第1及び第2の電圧に制御するコモンモード電圧制御回路(COMP22、COMP22’)とを具備する。   The signal detection circuit (102, 103) according to the present invention amplifies an input differential input signal (Sin) and outputs a first differential output signal (CMP9out, CMP11out). '), A second comparator (COMP21, COMP21') for amplifying the input differential input signal (Sin) and outputting a second differential output signal (CMP10out, CMP12out), and a first differential First differential signals (CMP9Eout, CMP11Eout) composed of positive phase signals (CMP9outP, CMP11outP) of the output signals (CMP9out, CMP11out) and negative phase signals (CMP10outN, CMP12outN) of the second differential output signals (CMP10out, CMP12out). ) And the second differential output signal Between the positive phase signals (CMP10outP, CMP12outP) of CMP10out and CMP12out) and the second differential signals (CMP10Eout, CMP12Eout) consisting of the negative phase signals (CMP9outN, CMP11outN) of the first differential output signals (CMP9out, CMP11out). A differential exclusive OR circuit (EOR10) that outputs an exclusive OR is connected to a first comparator (COMP10, COMP10 ') and a second comparator (COMP21, COMP21'), and a first differential output A common mode voltage control circuit (COMP22, COMP22) that controls the common mode voltage of the signals (CMP9out, CMP11out) and the common mode voltage (CMP10out, CMP12out) of the second differential output signal to the first and second voltages, respectively. OMP22 '); and a.

本発明の信号検出回路によれば、高速信号に対応し、精度良く小振幅の差動信号の検出が可能となる。   According to the signal detection circuit of the present invention, it is possible to detect a differential signal having a small amplitude with high accuracy corresponding to a high-speed signal.

又、構成回路の製造ばらつきに対するスレショルド電位のばらつきを抑制できる。   In addition, it is possible to suppress variation in the threshold potential with respect to manufacturing variations in the constituent circuits.

更に、温度変動によるスレショルド電位のばらつきを抑制できる。 Furthermore, variation in threshold potential due to temperature fluctuation can be suppressed.

以下、添付図面を参照して、本発明による信号検出回路の実施の形態を説明する。   Embodiments of a signal detection circuit according to the present invention will be described below with reference to the accompanying drawings.

(第1の実施の形態)
図4及び図5を参照して第1の実施の形態における信号検出回路101を説明する。
(First embodiment)
The signal detection circuit 101 in the first embodiment will be described with reference to FIGS.

図4に、第1の実施の形態における信号検出回路101の構成を示す。第1の実施の形態における信号検出回路101は、正相入力信号SinPと逆相入力信号SinNとからなる差動入力信号Sinの振幅を検出して2値化する回路である。正相入力信号SinPと逆相入力信号SinNは同一の直流動作電圧を有し、互いに逆の位相で同一の振幅の信号である。   FIG. 4 shows the configuration of the signal detection circuit 101 in the first embodiment. The signal detection circuit 101 in the first embodiment is a circuit that detects and binarizes the amplitude of a differential input signal Sin composed of a normal phase input signal SinP and a negative phase input signal SinN. The normal phase input signal SinP and the negative phase input signal SinN are signals having the same DC operating voltage and having the same phase and opposite amplitude.

本発明による信号検出回路101は、差動比較回路COMP7及びCOMP8と、それぞれの出力端に接続される差動排他的論理和回路EOR3とを備える。   The signal detection circuit 101 according to the present invention includes differential comparison circuits COMP7 and COMP8, and a differential exclusive OR circuit EOR3 connected to each output terminal.

差動比較回路COMP7は、抵抗R9、R10と、差動対を構成するNチャネル型MOSトランジスタMn9及びMn10と、定電流源Ib7を備える。   The differential comparison circuit COMP7 includes resistors R9 and R10, N-channel MOS transistors Mn9 and Mn10 forming a differential pair, and a constant current source Ib7.

Nチャネル型MOSトランジスタMn9、Mn10のそれぞれのソースは、定電流源Ib7と共通接続され、定電流源Ib7は接地されている。Nチャネル型MOSトランジスタMn9のドレインはノードN9を介して抵抗R9の一端に接続され、Nチャネル型MOSトランジスタMn10のドレインはノードN10を介して抵抗R10の一端に接続されている。抵抗R9とR10の他端は電源に共通接続されている。   The sources of the N-channel MOS transistors Mn9 and Mn10 are commonly connected to the constant current source Ib7, and the constant current source Ib7 is grounded. The drain of the N-channel MOS transistor Mn9 is connected to one end of the resistor R9 through the node N9, and the drain of the N-channel MOS transistor Mn10 is connected to one end of the resistor R10 through the node N10. The other ends of the resistors R9 and R10 are commonly connected to a power source.

正相入力信号SinPは、Nチャネル型MOSトランジスタMn9のゲートに、逆相入力信号SinNは、Nチャネル型MOSトランジスタMn10のゲートに、それぞれ入力される。ノードN9から逆相出力信号CMP7outNが、ノードN10から正相出力信号CMP7outPが出力される。   The normal phase input signal SinP is input to the gate of the N channel type MOS transistor Mn9, and the negative phase input signal SinN is input to the gate of the N channel type MOS transistor Mn10. A negative phase output signal CMP7outN is output from the node N9, and a normal phase output signal CMP7outP is output from the node N10.

差動比較回路COMP8は、抵抗R11、R12と、差動対を構成するNチャネル型MOSトランジスタMn11及びMn12と、定電流源Ib8と、出力信号のコモンモード電圧を低下させる抵抗Rb1とを備える。   The differential comparison circuit COMP8 includes resistors R11 and R12, N-channel MOS transistors Mn11 and Mn12 constituting a differential pair, a constant current source Ib8, and a resistor Rb1 that lowers the common mode voltage of the output signal.

Nチャネル型MOSトランジスタMn11、Mn12のそれぞれのソースは、定電流源Ib8の一端と共通接続され、定電流源Ib8の他端は接地されている。Nチャネル型MOSトランジスタMn11のドレインはノードN11を介して抵抗R11の一端に接続され、Nチャネル型MOSトランジスタMn12のドレインはノードN12を介して抵抗R12の一端に接続されている。抵抗R11とR12の他端は、抵抗Rb1の一端に共通接続される。抵抗Rb1の他端は電源に接続されている。   The sources of the N-channel MOS transistors Mn11 and Mn12 are commonly connected to one end of the constant current source Ib8, and the other end of the constant current source Ib8 is grounded. The drain of the N-channel MOS transistor Mn11 is connected to one end of the resistor R11 through the node N11, and the drain of the N-channel MOS transistor Mn12 is connected to one end of the resistor R12 through the node N12. The other ends of the resistors R11 and R12 are commonly connected to one end of the resistor Rb1. The other end of the resistor Rb1 is connected to a power source.

正相入力信号SinPは、Nチャネル型MOSトランジスタMn11のゲートに、逆相入力信号SinNは、Nチャネル型MOSトランジスタMn12のゲートに、それぞれ入力される。ノードN11から逆相出力信号CMP8outNが、ノードN12から正相出力信号CMP8outPが出力される。この際、抵抗Rb1は、正相出力信号CMP8outP及び逆相出力信号CMP8outNのコモンモード電圧をVoff1低下させる。   The normal phase input signal SinP is input to the gate of the N channel type MOS transistor Mn11, and the negative phase input signal SinN is input to the gate of the N channel type MOS transistor Mn12. A negative phase output signal CMP8outN is output from the node N11, and a normal phase output signal CMP8outP is output from the node N12. At this time, the resistor Rb1 reduces the common mode voltage of the positive phase output signal CMP8outP and the negative phase output signal CMP8outN by Voff1.

差動排他的論理和回路EOR3は、ノードN9、N10、N11、N12に接続され、正相出力信号CMP7outPと逆相出力信号CMP8outNとからなる差動信号である差動交換出力信号CMP7Eoutと、正相出力信号CMP8outPと逆相出力信号CMP7outNとからなる差動信号である差動交換出力信号CMP8Eoutが入力される。   The differential exclusive OR circuit EOR3 is connected to the nodes N9, N10, N11, and N12, and a differential exchange output signal CMP7Eout, which is a differential signal composed of a positive phase output signal CMP7outP and a negative phase output signal CMP8outN, A differential exchange output signal CMP8Eout, which is a differential signal composed of a phase output signal CMP8outP and a reverse phase output signal CMP7outN, is input.

差動排他的論理和回路EOR3は、差動交換出力信号CMP7Eoutと差動交換出力信号CMP8Eoutの排他的論理和として、2値化信号Sout3Pと2値化信号Sout3Nからなる2値化信号Soutを出力する。この時、2値化信号Sout3Pが2値化信号Sout3Nより高い場合、2値化信号Soutの論理値は「1」を示し、低い場合、論理値は「0」を示す。   The differential exclusive OR circuit EOR3 outputs a binary signal Sout composed of a binary signal Sout3P and a binary signal Sout3N as an exclusive OR of the differential exchange output signal CMP7Eout and the differential exchange output signal CMP8Eout. To do. At this time, when the binarized signal Sout3P is higher than the binarized signal Sout3N, the logic value of the binarized signal Sout indicates “1”, and when it is low, the logic value indicates “0”.

図5を参照して、第1の実施の形態における信号検出回路101の動作を説明する。被検出信号である差動入力信号Sinは、正相入力信号SinPと逆相入力信号SinNとからなる差動信号である。図5(a)に示されるように、正相入力信号SinPと逆相入力信号SinNは同一の直流動作電圧を有し、互いに逆の位相で同一の振幅の信号である。正相入力信号SinPが逆相入力信号SinNより高い場合、差動入力信号Sinの論理値は「1」を示し、低い場合「0」を示す。   The operation of the signal detection circuit 101 in the first embodiment will be described with reference to FIG. The differential input signal Sin which is a detected signal is a differential signal composed of a normal phase input signal SinP and a negative phase input signal SinN. As shown in FIG. 5A, the normal-phase input signal SinP and the negative-phase input signal SinN are signals having the same DC operating voltage and having the same amplitude with opposite phases. When the normal phase input signal SinP is higher than the negative phase input signal SinN, the logical value of the differential input signal Sin indicates “1”, and when it is low, it indicates “0”.

差動比較回路COMP7は、入力される差動入力信号Sinの正相入力信号SinPと逆相入力信号SinNとの電位差を電圧利得に比例して増幅し、正相出力信号CMP7outPと逆相出力信号CMP7outNとからなる差動出力信号CMP7outを出力する。この際、逆相出力信号CMP7outNはノードN9から、正相出力信号CMP7outPはノードN10から取出される(図5(b))。同様に、差動比較回路COMP8は、入力される差動入力信号Sin正相入力信号SinPと逆相入力信号SinNと電位差を電圧利得に比例して増幅し、正相出力信号CMP8outPと逆相出力信号CMP8outNとからなる差動出力信号CMP8outを出力する。この際、逆相出力信号CMP8outNはノードN11から、正相出力信号CMP8outPはノードN12から取出され、抵抗Rb1と定電流源Ib8とで発生する電圧Voff1だけコモンモード電圧が低下している。すなわち、ノードN11及びノード12における直流動作電圧は、抵抗Rb1と電流Ib8とで発生する電圧Voff1だけノードN9及びノードN10における直流動作電圧より低くなる。各々の出力信号の振幅はIb7=Ib8、R9=R10=R11=R12の条件において同一となる(図5(c))。   The differential comparison circuit COMP7 amplifies the potential difference between the positive phase input signal SinP and the negative phase input signal SinN of the input differential input signal Sin in proportion to the voltage gain, and the positive phase output signal CMP7outP and the negative phase output signal A differential output signal CMP7out composed of CMP7outN is output. At this time, the negative phase output signal CMP7outN is extracted from the node N9, and the positive phase output signal CMP7outP is extracted from the node N10 (FIG. 5B). Similarly, the differential comparison circuit COMP8 amplifies the input differential input signal Sin positive phase input signal SinP and the negative phase input signal SinN in proportion to the voltage gain, and outputs the positive phase output signal CMP8outP and the negative phase output. A differential output signal CMP8out composed of the signal CMP8outN is output. At this time, the negative phase output signal CMP8outN is taken out from the node N11, and the positive phase output signal CMP8outP is taken out from the node N12, and the common mode voltage is lowered by the voltage Voff1 generated by the resistor Rb1 and the constant current source Ib8. That is, the DC operating voltage at node N11 and node 12 is lower than the DC operating voltage at node N9 and node N10 by voltage Voff1 generated by resistor Rb1 and current Ib8. The amplitudes of the output signals are the same under the conditions of Ib7 = Ib8 and R9 = R10 = R11 = R12 (FIG. 5C).

正相出力信号CMP7outPと、オフセット電圧Voff1を与えられた逆相出力信号CMP8outNとからなる差動信号を差動交換出力信号CMP7Eoutとし、オフセット電圧Voff1を与えられた正相出力信号CMP8outPと逆相出力信号CMP7outNとからなる差動信号を差動交換出力信号CMP8Eoutとする。差動交換出力信号CMP7Eoutと差動交換出力信号CMP8Eoutは、差動排他的論理和回路EOR3に入力される。   A differential signal composed of the positive phase output signal CMP7outP and the negative phase output signal CMP8outN given the offset voltage Voff1 is defined as a differential exchange output signal CMP7Eout, and the positive phase output signal CMP8outP given the offset voltage Voff1 and the negative phase output. A differential signal composed of the signal CMP7outN is referred to as a differential exchange output signal CMP8Eout. The differential exchange output signal CMP7Eout and the differential exchange output signal CMP8Eout are input to the differential exclusive OR circuit EOR3.

図5(d)に差動交換出力信号CMP7Eoutの波形を示す。正相出力信号CMP7outPが逆相出力信号CMP8outNより高い場合、差動交換出力信号CMP7Eoutの論理値は「1」を示し、低い場合「0」を示す。   FIG. 5D shows a waveform of the differential exchange output signal CMP7Eout. When the normal phase output signal CMP7outP is higher than the negative phase output signal CMP8outN, the logical value of the differential exchange output signal CMP7Eout indicates “1”, and when it is low, it indicates “0”.

同様に図5(e)に差動交換出力信号CMP8Eoutの波形を示す。正相出力信号CMP8outPが逆相出力信号CMP7outNより高い場合、差動交換出力信号CMP8Eoutの論理値は「1」を示し、低い場合「0」を示す。   Similarly, FIG. 5E shows a waveform of the differential exchange output signal CMP8Eout. When the normal phase output signal CMP8outP is higher than the negative phase output signal CMP7outN, the logical value of the differential exchange output signal CMP8Eout indicates “1”, and when it is low, it indicates “0”.

オフセット調整回路抵抗Rbの大きさは、検出したい信号の大きさによって決定する。正相入力信号SinP及び逆相入力信号SinNの振幅の大きさが、検出したい信号の大きさよりも小さい場合、正相出力信号CMP7outPより低い逆相出力信号CMP8outN(逆相出力信号CMP7outNより低い正相出力信号CMP8outP)を常に出力するようなオフセット電圧Voff1を与えるオフセット調整回路抵抗Rb1を決定する。併せて、正相入力信号SinP及び逆相入力信号SinNの振幅の大きさが、検出したい信号の大きさよりも大きい場合、且つ、正相入力信号SinPが逆相入力信号SinNより高い時、逆相出力信号CMP7outNより高い正相出力信号CMP8outPを出力し、正相入力信号SinPが逆相入力信号SinNより低い時、正相出力信号CMP7outPより高い逆相出力信号CMP8outNを出力するように、オフセット調整回路抵抗Rb1を決定する。   The magnitude of the offset adjustment circuit resistance Rb is determined by the magnitude of the signal to be detected. When the magnitudes of the amplitudes of the positive phase input signal SinP and the negative phase input signal SinN are smaller than the magnitude of the signal to be detected, the negative phase output signal CMP8outN lower than the positive phase output signal CMP7outP (the positive phase lower than the negative phase output signal CMP7outN). The offset adjustment circuit resistance Rb1 that gives the offset voltage Voff1 that always outputs the output signal CMP8outP) is determined. In addition, when the magnitude of the amplitude of the positive phase input signal SinP and the negative phase input signal SinN is larger than the magnitude of the signal to be detected, and when the positive phase input signal SinP is higher than the negative phase input signal SinN, The offset adjustment circuit outputs a positive phase output signal CMP8outP higher than the output signal CMP7outN, and outputs a negative phase output signal CMP8outN higher than the positive phase output signal CMP7outP when the positive phase input signal SinP is lower than the negative phase input signal SinN. The resistance Rb1 is determined.

差動入力信号Sinの大きさが、本発明による信号検出回路で検出したい信号の大きさより小さい場合(微弱信号の場合)について説明する。   A case where the magnitude of the differential input signal Sin is smaller than the magnitude of the signal to be detected by the signal detection circuit according to the present invention (in the case of a weak signal) will be described.

検出したい信号の大きさよりも小さい振幅の正相入力信号SinP及び逆相入力信号SinNが信号検出回路に入力すると、オフセットを与えていない正相出力信号CMP7outPはオフセットを与えた逆相出力信号CMP8outNより高くなり、差動交換出力信号CMP7Eoutの論理値は「1」を示す(図5(d))。又、オフセットを与えた正相出力信号CMP8outPはオフセットを与えた逆相出力信号CMP7outNより低くなり、差動交換出力信号CMP8Eoutの論理値は「0」を示す(図5(e))。   When a positive-phase input signal SinP and a negative-phase input signal SinN having an amplitude smaller than the magnitude of the signal to be detected are input to the signal detection circuit, the positive-phase output signal CMP7outP that has not been given an offset is more than the negative-phase output signal CMP8outN that has been given an offset. The logic value of the differential exchange output signal CMP7Eout is “1” (FIG. 5D). Further, the positive phase output signal CMP8outP to which the offset is applied becomes lower than the negative phase output signal CMP7outN to which the offset is applied, and the logical value of the differential exchange output signal CMP8Eout indicates “0” (FIG. 5E).

従って、差動排他的論理和回路EOR3は、入力される差動交換出力信号CMP7Eout(論理値「1」)と差動交換出力信号CMP8Eout(論理値「0」)の排他的論理和である論理値「1」の2値化信号Soutを出力する(図5(f))。   Accordingly, the differential exclusive OR circuit EOR3 is a logic that is an exclusive OR of the input differential exchange output signal CMP7Eout (logical value “1”) and the differential exchange output signal CMP8Eout (logical value “0”). A binarized signal Sout having a value “1” is output (FIG. 5F).

差動入力信号Sinの大きさが信号検出回路の検出したい信号の大きさより大きい場合(主信号の場合)について説明する。   A case where the magnitude of the differential input signal Sin is larger than the magnitude of the signal desired to be detected by the signal detection circuit (in the case of the main signal) will be described.

正相入力信号SinPが逆相入力信号SinNより高い場合、オフセットのない正相出力信号CMP7outPはオフセットを与えられた逆相出力信号CMP8outNより高くなる部分が生じ、その部分における差動交換出力信号CMP7Eoutの論理値は「1」を示す(図5(d))。オフセットを与えられた正相出力信号CMP8outPはオフセットのない逆相出力信号CMP7outNより高くなる部分が生じ、その部分における差動交換出力信号CMP8Eoutの論理値は「1」を示す(図5(e))。   When the normal phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP7outP without offset has a portion higher than the negative phase output signal CMP8outN to which the offset is given, and the differential exchange output signal CMP7Eout in that portion is generated. The logical value of “1” indicates “1” (FIG. 5D). A portion of the positive-phase output signal CMP8outP to which the offset is given becomes higher than the negative-phase output signal CMP7outN without the offset, and the logical value of the differential exchange output signal CMP8Eout in that portion is “1” (FIG. 5E). ).

正相入力信号SinPが逆相入力信号SinNより低い場合、正相出力信号CMP7outPは逆相出力信号CMP8outNより低くなり、差動交換出力信号CMP7Eoutの論理値は「0」を示す(図5(d))。正相出力信号CMP8outPは逆相出力信号CMP7outNより低くなり、差動交換出力信号CMP8Eoutの論理値は「0」を示す(図5(e))。   When the positive phase input signal SinP is lower than the negative phase input signal SinN, the positive phase output signal CMP7outP is lower than the negative phase output signal CMP8outN, and the logical value of the differential exchange output signal CMP7Eout shows “0” (FIG. 5 (d) )). The normal phase output signal CMP8outP is lower than the negative phase output signal CMP7outN, and the logical value of the differential exchange output signal CMP8Eout indicates “0” (FIG. 5E).

従って、差動排他的論理和回路EOR3は、正相入力信号SinPが逆相入力信号SinNより高い場合、差動交換出力信号CMP7Eout(論理値「1」)と差動交換出力信号CMP8Eout(論理値「1」)の排他的論理和である論理値「0」の2値化信号Soutを出力し、正相入力信号SinPが逆相入力信号SinNより低い場合、差動交換出力信号CMP7Eout(論理値「0」)と差動交換出力信号CMP8Eout(論理値「0」)の排他的論理和である論理値「0」の2値化信号Soutを出力する。   Therefore, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the differential exclusive OR circuit EOR3 outputs the differential exchange output signal CMP7Eout (logical value “1”) and the differential exchange output signal CMP8Eout (logical value). When a binary signal Sout having a logical value “0” that is an exclusive OR of “1”) is output and the positive phase input signal SinP is lower than the negative phase input signal SinN, the differential exchange output signal CMP7Eout (logical value) “0”) and the differential exchange output signal CMP8Eout (logical value “0”) are output as a binary signal Sout having a logical value “0” that is an exclusive OR.

以上のように、オフセット調整回路抵抗Rb1によって設定されるレベル以上の振幅をもつ差動入力信号Sinが入力されると、2値化信号Soutの論理和は「0」となり、差動入力信号Sin(主信号)を検出することができる。   As described above, when the differential input signal Sin having an amplitude greater than or equal to the level set by the offset adjustment circuit resistor Rb1 is input, the logical sum of the binarized signal Sout becomes “0”, and the differential input signal Sin (Main signal) can be detected.

以上のように本実施の形態における信号検出回路101は、2個の差動比較回路の両方にオフセット電圧を与えるのではなく、2個ある差動比較回路の片方にだけ抵抗を接続することで、相対的に片方にオフセット電圧Voffを与えた。又、差動信号化する事でオフセットの影響を少なくすると共に、従来回路にあった電流源と3個の抵抗が1個の抵抗で代用でき、従来のオフセットを与えるための差動比較回路の製造ばらつきによる誤差の要因を減らすことができる。   As described above, the signal detection circuit 101 according to the present embodiment does not apply an offset voltage to both of the two differential comparison circuits, but connects a resistor to only one of the two differential comparison circuits. The offset voltage Voff was given to one of them relatively. In addition, the effect of offset can be reduced by using a differential signal, and the current source and three resistors that existed in the conventional circuit can be replaced by a single resistor. The cause of errors due to manufacturing variations can be reduced.

ここで、図2に示される従来回路と本発明による信号検出回路101とを比較する。
従来回路でのスレショルド電位は次式で与えられる。
Vth = ( Vin ± Vos1 ) − ( Ib・match1・Rb・match2 ± Vos2 )・・・式1
ここで、Vthはスレショルド電位、Vinは差動入力信号Sinの信号レベル、Vos1は信号検出用差動アンプ(差動比較回路COMP3又はCOMP5)の相対精度、Vos2はスレショルド電位設定用差動アンプ(差動比較回路COMP4又はCOMP6)の相対精度、Ibは各定電流源Ib2の定電流値、Rbはバイアス電位を生成する抵抗R4の抵抗値、match1は定電流源Ib2の相対精度、match2は抵抗R4の相対精度である。
Here, the conventional circuit shown in FIG. 2 is compared with the signal detection circuit 101 according to the present invention.
The threshold potential in the conventional circuit is given by the following equation.
Vth = (Vin ± Vos1) − (Ib · match1 · Rb · match2 ± Vos2) Equation 1
Here, Vth is the threshold potential, Vin is the signal level of the differential input signal Sin, Vos1 is the relative accuracy of the signal detection differential amplifier (differential comparison circuit COMP3 or COMP5), Vos2 is the threshold potential setting differential amplifier ( Relative accuracy of the differential comparison circuit COMP4 or COMP6), Ib is a constant current value of each constant current source Ib2, Rb is a resistance value of a resistor R4 that generates a bias potential, match1 is a relative accuracy of the constant current source Ib2, and match2 is a resistor R4 relative accuracy.

一方、本発明による信号検出回路101のスレショルド電位は次式で表される。
Vth = ( Vin ± Vos1 ) − ( Ib1・match1・Rb1・match2) / Gv・・・式2
ここで、Vthはスレショルド電位、Vinは差動入力信号Sinの入力信号レベル、Vos1は信号検出用差動アンプ(差動比較回路COMP7又はCOMP8)の相対精度、Ib1は定電流源Ib8の定電流値、Rb1はバイアス電位を生成する抵抗Rb8の抵抗値、match1は定電流源Ib8の相対精度、match2は抵抗Rb8の相対精度、Gvは差動比較回路COMP8の電圧利得である。
On the other hand, the threshold potential of the signal detection circuit 101 according to the present invention is expressed by the following equation.
Vth = (Vin ± Vos1) − (Ib1 · match1 · Rb1 · match2) / Gv Equation 2
Here, Vth is the threshold potential, Vin is the input signal level of the differential input signal Sin, Vos1 is the relative accuracy of the signal detection differential amplifier (differential comparison circuit COMP7 or COMP8), and Ib1 is the constant current of the constant current source Ib8. Rb1 is the resistance value of the resistor Rb8 that generates the bias potential, match1 is the relative accuracy of the constant current source Ib8, match2 is the relative accuracy of the resistor Rb8, and Gv is the voltage gain of the differential comparison circuit COMP8.

式1及び式2を比較すると、第1の実施の形態における信号検出回路101は、図2に示される従来回路に比べ、スレショルド電位設定用の差動比較回路の相対精度(Vos2)が削減され、定電流と抵抗の相対精度(match1、match2)による影響が電圧利得(Gv)によって圧縮される。このため、製造ばらつきの影響が半分以下に軽減される。   Comparing Equation 1 and Equation 2, the signal detection circuit 101 in the first embodiment has a reduced relative accuracy (Vos2) of the differential comparison circuit for setting the threshold potential as compared with the conventional circuit shown in FIG. The influence of the relative accuracy (match1, match2) between the constant current and the resistance is compressed by the voltage gain (Gv). For this reason, the influence of manufacturing variation is reduced to less than half.

従って、第1に実施の形態における信号検出回路101は、従来回路に比べ、各種素子相対ばらつきに対するスレショルド電位のばらつきが低減される。又、レイアウト面積が低減されるため、コストを削減できる。更に、消費電流が低減でき、容量性負荷の軽減による周波数特性が改善される。   Therefore, the signal detection circuit 101 according to the first embodiment has a reduced variation in threshold potential with respect to various element relative variations as compared with the conventional circuit. Further, since the layout area is reduced, the cost can be reduced. Furthermore, the current consumption can be reduced, and the frequency characteristics can be improved by reducing the capacitive load.

(第2の実施の形態)
図6及び図7を参照して第2の実施の形態における信号検出回路102を説明する。
(Second Embodiment)
The signal detection circuit 102 according to the second embodiment will be described with reference to FIGS.

図6に、第2の実施の形態における信号検出回路102の構成を示す。第2の実施の形態における信号検出回路102は、正相入力信号SinPと逆相入力信号SinNとからなる差動入力信号Sinの振幅を検出して2値化する回路である。正相入力信号SinPと逆相入力信号SinNは同一の直流動作電圧を有し、互いに逆の位相で同一の振幅の信号である。   FIG. 6 shows the configuration of the signal detection circuit 102 according to the second embodiment. The signal detection circuit 102 in the second embodiment is a circuit that detects and binarizes the amplitude of the differential input signal Sin composed of the positive phase input signal SinP and the negative phase input signal SinN. The normal phase input signal SinP and the negative phase input signal SinN are signals having the same DC operating voltage and having the same phase and opposite amplitude.

本発明による信号検出回路102は、差動比較回路COMP10及び差動比較回路COMP20と、それぞれの出力端に接続される差動排他的論理和回路EOR10とを備える。   The signal detection circuit 102 according to the present invention includes a differential comparison circuit COMP10 and a differential comparison circuit COMP20, and a differential exclusive OR circuit EOR10 connected to each output terminal.

差動比較回路COMP10は、負荷抵抗R13、R14と、差動対を構成するNチャネル型MOSトランジスタMn13及びMn14と、定電流源Ib10と、抵抗Rb10とを備える。   The differential comparison circuit COMP10 includes load resistors R13 and R14, N-channel MOS transistors Mn13 and Mn14 forming a differential pair, a constant current source Ib10, and a resistor Rb10.

Nチャネル型MOSトランジスタMn13、Mn14のそれぞれのソースは、定電流源Ib10と共通接続され、定電流源Ib10は接地されている。Nチャネル型MOSトランジスタMn13のドレインはノードN13を介して抵抗R13の一端に接続され、Nチャネル型MOSトランジスタMn14のドレインはノードN14を介して抵抗R14の一端に接続されている。抵抗R13とR14の他端は抵抗Rb10に共通接続され、抵抗Rb10の他端は電源に接続されている。   The sources of the N-channel MOS transistors Mn13 and Mn14 are commonly connected to the constant current source Ib10, and the constant current source Ib10 is grounded. The drain of the N-channel MOS transistor Mn13 is connected to one end of the resistor R13 through the node N13, and the drain of the N-channel MOS transistor Mn14 is connected to one end of the resistor R14 through the node N14. The other ends of the resistors R13 and R14 are commonly connected to the resistor Rb10, and the other end of the resistor Rb10 is connected to a power source.

正相入力信号SinPは、Nチャネル型MOSトランジスタMn13のゲートに、逆相入力信号SinNは、Nチャネル型MOSトランジスタMn14のゲートに、それぞれ入力される。ノードN13から逆相出力信号CMP10outNが、ノードN14から正相出力信号CMP10outPが出力される。   The normal phase input signal SinP is input to the gate of the N channel type MOS transistor Mn13, and the negative phase input signal SinN is input to the gate of the N channel type MOS transistor Mn14. A negative phase output signal CMP10outN is output from the node N13, and a normal phase output signal CMP10outP is output from the node N14.

差動比較回路COMP21は、抵抗R15、R16と、差動対を構成するNチャネル型MOSトランジスタMn15及びMn16と、定電流源Ib21と、抵抗Rb21とを備える。   The differential comparison circuit COMP21 includes resistors R15 and R16, N-channel MOS transistors Mn15 and Mn16 constituting a differential pair, a constant current source Ib21, and a resistor Rb21.

差動比較回路COMP21のNチャネル型MOSトランジスタMn15、Mn16のそれぞれのソースは、定電流源Ib21の一端と共通接続され、定電流源Ib21の他端は接地されている。Nチャネル型MOSトランジスタMn15のドレインはノードN15を介して抵抗R15の一端に接続され、Nチャネル型MOSトランジスタMn16のドレインはノードN16を介して抵抗R16の一端に接続されている。抵抗R15とR16の他端は、抵抗Rb21の一端に共通接続される。抵抗Rb1の他端は電源に接続されている。   The sources of the N-channel MOS transistors Mn15 and Mn16 of the differential comparison circuit COMP21 are commonly connected to one end of the constant current source Ib21, and the other end of the constant current source Ib21 is grounded. The drain of the N-channel MOS transistor Mn15 is connected to one end of the resistor R15 through the node N15, and the drain of the N-channel MOS transistor Mn16 is connected to one end of the resistor R16 through the node N16. The other ends of the resistors R15 and R16 are commonly connected to one end of the resistor Rb21. The other end of the resistor Rb1 is connected to a power source.

正相入力信号SinPは、Nチャネル型MOSトランジスタMn15のゲートに、逆相入力信号SinNは、Nチャネル型MOSトランジスタMn16のゲートに、それぞれ入力される。ノードN15から逆相出力信号CMP9outNが、ノードN16から正相出力信号CMP9outPが出力される。   The normal phase input signal SinP is input to the gate of the N channel type MOS transistor Mn15, and the negative phase input signal SinN is input to the gate of the N channel type MOS transistor Mn16. A negative phase output signal CMP9outN is output from the node N15, and a normal phase output signal CMP9outP is output from the node N16.

差動比較回路COMP22は、差動対を構成するNチャネル型MOSトランジスタMn17及びMn18と、定電流源Ib22とを備え、Nチャネル型MOSトランジスタMn18のドレインはノードN17を介して差動比較回路COMP10に接続され、Nチャネル型MOSトランジスタMn17のドレインはノードN18を介して差動比較回路COMP21に接続される。差動比較回路COMP10の抵抗Rb10は、Nチャネル型MOSトランジスタMn18の負荷抵抗となり、差動比較回路COMP21の抵抗Rb21はNチャネル型MOSトランジスタMn17の負荷抵抗となっている。定電流源Ib20と、抵抗Rと、直流電圧源Vrefは、比較差動回路COMP22に接続され、スレショルド電位Vthの値を決める。Nチャネル型MOSトランジスタMn17のゲートには、直流電圧源Vrefが接続され、Nチャネル型MOSトランジスタMn18のゲートには、VrefよりもVRだけ高い電圧が接続される。ここで、VRは抵抗Rに定電流源Ib20の電流が流れて発生する電圧である。   The differential comparison circuit COMP22 includes N-channel MOS transistors Mn17 and Mn18 constituting a differential pair, and a constant current source Ib22. The drain of the N-channel MOS transistor Mn18 is connected to the differential comparison circuit COMP10 via a node N17. The drain of the N-channel MOS transistor Mn17 is connected to the differential comparison circuit COMP21 via the node N18. The resistor Rb10 of the differential comparison circuit COMP10 is a load resistance of the N-channel MOS transistor Mn18, and the resistor Rb21 of the differential comparison circuit COMP21 is a load resistance of the N-channel MOS transistor Mn17. The constant current source Ib20, the resistor R, and the DC voltage source Vref are connected to the comparison differential circuit COMP22 and determine the value of the threshold potential Vth. A DC voltage source Vref is connected to the gate of the N-channel MOS transistor Mn17, and a voltage higher by VR than Vref is connected to the gate of the N-channel MOS transistor Mn18. Here, VR is a voltage generated when the current of the constant current source Ib20 flows through the resistor R.

差動排他的論理和回路EOR10は、ノードN13、N14、N15、N16に接続され、正相出力信号CMP9outPと逆相出力信号CMP10outNとからなる差動信号である差動交換出力信号CMP9Eoutと、正相出力信号CMP10outPと逆相出力信号CMP9outNとからなる差動信号である差動交換出力信号CMP10Eoutが入力される。   The differential exclusive OR circuit EOR10 is connected to the nodes N13, N14, N15, and N16, and a differential exchange output signal CMP9Eout, which is a differential signal composed of a positive phase output signal CMP9outP and a negative phase output signal CMP10outN, A differential exchange output signal CMP10Eout which is a differential signal composed of a phase output signal CMP10outP and a reverse phase output signal CMP9outN is input.

差動排他的論理和回路EOR10は、差動交換出力信号CMP9Eoutと差動交換出力信号CMP10Eoutの排他的論理和として、2値化信号Sout4Pと2値化信号Sout4Nからなる2値化信号Soutを出力する。この時、2値化信号Sout4Pが2値化信号Sout4Nより高い場合、2値化信号Soutの論理値は「1」を示し、低い場合、論理値は「0」を示す。   The differential exclusive OR circuit EOR10 outputs a binary signal Sout composed of a binary signal Sout4P and a binary signal Sout4N as an exclusive OR of the differential exchange output signal CMP9Eout and the differential exchange output signal CMP10Eout. To do. At this time, when the binarized signal Sout4P is higher than the binarized signal Sout4N, the logic value of the binarized signal Sout indicates “1”, and when it is low, the logic value indicates “0”.

図12(a)は、差動排他的論理和回路EOR10の回路図であり、図12(b)はその動作波形である。差動排他的論理和回路EOR10は2段シリーズゲートのCML(カレントモードロジック)により構成されている。   FIG. 12A is a circuit diagram of the differential exclusive OR circuit EOR10, and FIG. 12B shows its operation waveform. The differential exclusive OR circuit EOR10 is composed of a CML (current mode logic) of a two-stage series gate.

図7を参照して、第2の実施の形態における信号検出回路102の動作を説明する。ここで、R13=R14=R15=R16、Rb10=Rb21、Ib10=Ib21とする。被検出信号である差動入力信号Sinは、正相入力信号SinPと逆相入力信号SinNとからなる差動信号である。図7(a)に示されるように、正相入力信号SinPと逆相入力信号SinNは同一の直流動作電圧を有し、互いに逆の位相で同一の振幅の信号である。正相入力信号SinPが逆相入力信号SinNより高い場合、差動入力信号Sinの論理値は「1」を示し、低い場合「0」を示す。   The operation of the signal detection circuit 102 in the second embodiment will be described with reference to FIG. Here, R13 = R14 = R15 = R16, Rb10 = Rb21, and Ib10 = Ib21. The differential input signal Sin which is a detected signal is a differential signal composed of a normal phase input signal SinP and a negative phase input signal SinN. As shown in FIG. 7A, the normal-phase input signal SinP and the negative-phase input signal SinN are signals having the same DC operating voltage and having the same amplitude with opposite phases. When the normal phase input signal SinP is higher than the negative phase input signal SinN, the logical value of the differential input signal Sin indicates “1”, and when it is low, it indicates “0”.

差動比較回路COMP10は、入力される差動入力信号Sinの正相入力信号SinPと逆相入力信号SinNと電位差を電圧利得に比例して増幅した正相出力信号CMP10outPと逆相出力信号CMP10outNとからなる差動出力信号CMP10outを出力する。この際、逆相出力信号CMP10outNはノードN13から、正相出力信号CMP10outPはノードN14から取出される(図7(c))。ここで、正相出力信号CMP10outPと逆相出力信号CMP10outNは、差動比較回路COMP22により制御されたコモンモード電圧VR2を中心に振幅する。   The differential comparison circuit COMP10 includes a positive phase output signal CMP10outP and a negative phase output signal CMP10outN obtained by amplifying a potential difference between the positive phase input signal SinP and the negative phase input signal SinN of the input differential input signal Sin in proportion to the voltage gain. The differential output signal CMP10out consisting of is output. At this time, the negative phase output signal CMP10outN is extracted from the node N13, and the normal phase output signal CMP10outP is extracted from the node N14 (FIG. 7C). Here, the positive-phase output signal CMP10outP and the negative-phase output signal CMP10outN swing around the common mode voltage VR2 controlled by the differential comparison circuit COMP22.

差動比較回路COMP21は、入力される差動入力信号Sinの正相入力信号SinPと逆相入力信号SinNと電位差を電圧利得に比例して増幅し、正相出力信号CMP9outPと逆相出力信号CMP9outNとからなる差動出力信号CMP9outを出力する。この際、逆相出力信号CMP9outNはノードN15から、正相出力信号CMP9outPはノードN16から取出される(図7(b))。ここで、正相出力信号CMP9outPと逆相出力信号CMP9outNは、差動比較回路COMP22により制御されたコモンモード電圧VR1を中心に振幅する。   The differential comparison circuit COMP21 amplifies the potential difference between the positive phase input signal SinP and the negative phase input signal SinN of the input differential input signal Sin in proportion to the voltage gain, and the positive phase output signal CMP9outP and the negative phase output signal CMP9outN. A differential output signal CMP9out consisting of At this time, the negative phase output signal CMP9outN is extracted from the node N15, and the normal phase output signal CMP9outP is extracted from the node N16 (FIG. 7B). Here, the positive-phase output signal CMP9outP and the negative-phase output signal CMP9outN swing around the common mode voltage VR1 controlled by the differential comparison circuit COMP22.

この際、差動比較回路COMP10及び差動比較回路COMP21の差動出力のコモンモード電圧は、抵抗Rと定電流源Ib20とで発生する電圧VRの差動比較回路COMP22の電圧利得Gv倍だけずれが発生する。図7を参照して、差動比較回路における直流動作電圧は、VR1−VR2=VR×Gv(ただし、VR1>VR2)の関係となり、従ってVR1−VR2が入力信号レベルのスレショルド電位となる。   At this time, the common mode voltage of the differential outputs of the differential comparison circuit COMP10 and the differential comparison circuit COMP21 is shifted by the voltage gain Gv times of the differential comparison circuit COMP22 of the voltage VR generated by the resistor R and the constant current source Ib20. Will occur. Referring to FIG. 7, the DC operating voltage in the differential comparison circuit has a relationship of VR1−VR2 = VR × Gv (where VR1> VR2), and therefore VR1−VR2 becomes the threshold potential of the input signal level.

正相出力信号CMP9outPと、逆相出力信号CMP10outNとからなる差動信号を差動交換出力信号CMP9Eoutとし、正相出力信号CMP10outPと逆相出力信号CMP9outNとからなる差動信号を差動交換出力信号CMP10Eoutとする。差動交換出力信号CMP9Eoutと差動交換出力信号CMP10Eoutは、差動排他的論理和回路EOR10に入力される。   A differential signal composed of the positive phase output signal CMP9outP and the negative phase output signal CMP10outN is defined as a differential exchange output signal CMP9Eout, and a differential signal composed of the positive phase output signal CMP10outP and the negative phase output signal CMP9outN is represented as a differential exchange output signal. CMP10Eout. The differential exchange output signal CMP9Eout and the differential exchange output signal CMP10Eout are input to the differential exclusive OR circuit EOR10.

図7(d)に差動交換出力信号CMP9Eoutの波形を示す。正相出力信号CMP9outPが逆相出力信号CMP10outNより高い場合、差動交換出力信号CMP9Eoutの論理値は「1」を示し、低い場合「0」を示す。   FIG. 7D shows a waveform of the differential exchange output signal CMP9Eout. When the normal phase output signal CMP9outP is higher than the negative phase output signal CMP10outN, the logical value of the differential exchange output signal CMP9Eout indicates “1”, and when it is low, it indicates “0”.

同様に図7(e)に差動交換出力信号CMP10Eoutの波形を示す。正相出力信号CMP10outPが逆相出力信号CMP7outNより高い場合、差動交換出力信号CMP9Eoutの論理値は「1」を示し、低い場合「0」を示す。   Similarly, FIG. 7E shows a waveform of the differential exchange output signal CMP10Eout. When the normal phase output signal CMP10outP is higher than the negative phase output signal CMP7outN, the logical value of the differential exchange output signal CMP9Eout indicates “1”, and when it is low, it indicates “0”.

差動入力信号Sinの大きさが、本発明による信号検出回路で検出したい信号の大きさより小さい場合(微弱信号の場合)について説明する。ここで微弱信号とは、差動比較回路COMP10及びCOMP21によって増幅された信号の振幅が信号検出スレッショルド電位Vth(VR1−VR2)以下となる差動入力信号Sinである。   A case where the magnitude of the differential input signal Sin is smaller than the magnitude of the signal to be detected by the signal detection circuit according to the present invention (in the case of a weak signal) will be described. Here, the weak signal is a differential input signal Sin in which the amplitude of the signal amplified by the differential comparison circuits COMP10 and COMP21 is equal to or lower than the signal detection threshold potential Vth (VR1-VR2).

正相出力信号CMP9outPは、逆相出力信号CMP10outNに対しVR1−VR2だけ高い電圧を中心に振幅している(図7(d))。同様に、正相出力信号CMP10outPは、逆相出力信号CMP9outNに対しVR1−VR2だけ低い電圧を中心に振幅している(図7(e))。このため、微小信号が信号検出回路102に入力されると、正相出力信号CMP9outPは逆相出力信号CMP10outNより高くなり、差動交換出力信号CMP9Eoutの論理値は「1」を示す。又、正相出力信号CMP10outPは逆相出力信号CMP9outNより低くなり、差動交換出力信号CMP10Eoutの論理値は「0」を示す。   The normal phase output signal CMP9outP has an amplitude centered on a voltage higher than the negative phase output signal CMP10outN by VR1-VR2 (FIG. 7D). Similarly, the positive phase output signal CMP10outP has an amplitude centering on a voltage lower than the negative phase output signal CMP9outN by VR1-VR2 (FIG. 7 (e)). Therefore, when a minute signal is input to the signal detection circuit 102, the normal phase output signal CMP9outP becomes higher than the negative phase output signal CMP10outN, and the logical value of the differential exchange output signal CMP9Eout indicates “1”. Further, the positive phase output signal CMP10outP is lower than the negative phase output signal CMP9outN, and the logical value of the differential exchange output signal CMP10Eout indicates “0”.

従って、差動排他的論理和回路EOR4は、入力される差動交換出力信号CMP9Eout(論理値「1」)と差動交換出力信号CMP10Eout(論理値「0」)の排他的論理和である論理値「1」の2値化信号Soutを出力する(図7(f))。   Therefore, the differential exclusive OR circuit EOR4 is a logic that is an exclusive OR of the input differential exchange output signal CMP9Eout (logical value “1”) and the differential exchange output signal CMP10Eout (logical value “0”). A binarized signal Sout having a value “1” is output (FIG. 7F).

差動入力信号Sinの大きさが信号検出回路の検出したい信号の大きさより大きい場合(主信号の場合)について説明する。ここで主信号とは、差動比較回路COMP10及びCOMP21によって増幅された信号の振幅が信号検出スレッショルド電位Vth(VR1−VR2)以上となる差動入力信号Sinである。   A case where the magnitude of the differential input signal Sin is larger than the magnitude of the signal desired to be detected by the signal detection circuit (in the case of the main signal) will be described. Here, the main signal is a differential input signal Sin in which the amplitude of the signal amplified by the differential comparison circuits COMP10 and COMP21 is equal to or higher than the signal detection threshold potential Vth (VR1-VR2).

スレッショルド電位以上の振幅を持つ差動出力信号CMP9out及び差動出力信号CMP10outが入力されると、差動交換出力信号CMP9Eout及び差動交換出力信号CMP10outは相互に交差する部分が現れる。すなわち、正相入力信号SinPが逆相入力信号SinNより低い部分では、正相出力信号CMP9outPは逆相出力信号CMP10outNより低くなり、差動交換出力信号CMP9Eoutの論理値は「0」を示す。又、正相入力信号SinPが逆相入力信号SinNより高い部分では、正相出力信号CMP9outPは逆相出力信号CMP10outNより高くなり、差動交換出力信号CMP9Eoutの論理値は「1」を示す(図7(d))。同様に、正相入力信号SinPが逆相入力信号SinNより低い部分では、正相出力信号CMP10outPは逆相出力信号CMP9outNより低くなり、差動交換出力信号CMP10Eoutの論理値は「0」を示す。又、正相入力信号SinPが逆相入力信号SinNより高い部分では、正相出力信号CMP9outPは逆相出力信号CMP9outNより高くなり、差動交換出力信号CMP9Eoutの論理値は「1」を示す(図7(e))。   When the differential output signal CMP9out and the differential output signal CMP10out having an amplitude greater than or equal to the threshold potential are input, portions where the differential exchange output signal CMP9Eout and the differential exchange output signal CMP10out intersect each other appear. That is, when the normal phase input signal SinP is lower than the negative phase input signal SinN, the normal phase output signal CMP9outP is lower than the negative phase output signal CMP10outN, and the logical value of the differential exchange output signal CMP9Eout indicates “0”. Further, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP9outP is higher than the negative phase output signal CMP10outN, and the logical value of the differential exchange output signal CMP9Eout indicates “1” (FIG. 7 (d)). Similarly, when the positive phase input signal SinP is lower than the negative phase input signal SinN, the positive phase output signal CMP10outP is lower than the negative phase output signal CMP9outN, and the logical value of the differential exchange output signal CMP10Eout indicates “0”. Further, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP9outP is higher than the negative phase output signal CMP9outN, and the logical value of the differential exchange output signal CMP9Eout indicates “1” (FIG. 7 (e)).

従って、差動排他的論理和回路EOR4は、正相入力信号SinPが逆相入力信号SinNより高い場合、差動交換出力信号CMP9Eout(論理値「1」)と差動交換出力信号CMP10Eout(論理値「1」)の排他的論理和である論理値「0」の2値化信号Soutを出力し、正相入力信号SinPが逆相入力信号SinNより低い場合、差動交換出力信号CMP9Eout(論理値「0」)と差動交換出力信号CMP10Eout(論理値「0」)の排他的論理和である論理値「0」の2値化信号Soutを出力する。   Therefore, the differential exclusive OR circuit EOR4, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the differential exchange output signal CMP9Eout (logical value “1”) and the differential exchange output signal CMP10Eout (logical value). When a binary signal Sout having a logical value “0” that is an exclusive OR of “1”) is output and the positive phase input signal SinP is lower than the negative phase input signal SinN, the differential exchange output signal CMP9Eout (logical value) “0”) and the differential exchange output signal CMP10Eout (logical value “0”) are output as a binary signal Sout having a logical value “0” that is an exclusive OR.

以上のように、差動比較回路COMP22によって設定される信号検出スレッショルド電位Vth(VR1−VR2)以上の振幅をもつ差動入力信号が入力されると、2値化信号Soutの論理和は「0」となり、差動入力信号Sin(主信号)を検出することができる。   As described above, when a differential input signal having an amplitude equal to or higher than the signal detection threshold potential Vth (VR1−VR2) set by the differential comparison circuit COMP22 is input, the logical sum of the binarized signal Sout is “0”. The differential input signal Sin (main signal) can be detected.

第2の実施の形態における信号検出回路102は、入力信号Sinに差動信号を採用した上で、コンパレータ(差動比較回路COMP10及びCOMP21)の双方の負荷抵抗の共通接続点と電源間に抵抗を接続し、それらの抵抗と負荷抵抗の接続ノードに直流基準電圧が入力される第3のコンパレータ(差動比較回路COMP22)を接続する事でスレショルド電位Vthを発生させる回路構成である。従って、従来回路に対しては、差動比較回路を1つ減らす事で製造ばらつきに対するスレショルド電位のばらつきを抑え、かつ構成回路数も差動回路1つ分少ない構成となっている。   The signal detection circuit 102 according to the second embodiment employs a differential signal as the input signal Sin, and then connects a resistance between the common connection point of both load resistors of the comparators (differential comparison circuits COMP10 and COMP21) and the power source. , And a third comparator (differential comparison circuit COMP22) to which a DC reference voltage is input is connected to a connection node between these resistors and a load resistor, thereby generating a threshold potential Vth. Therefore, the conventional circuit has a configuration in which the number of differential circuits is reduced by one to suppress variation in threshold potential with respect to manufacturing variations, and the number of constituent circuits is reduced by one.

次に、第2の実施の形態における信号検出回路102のスレショルド電位について説明する。
図2に示される従来回路でのスレショルドばらつき電圧は前述した式1で与えられる。従来回路は信号検出、スレショルド電位設定用に2組の差動比較回路COMPを有する為、オフセットもVos1、Vos2の2つの値が存在する。
Next, the threshold potential of the signal detection circuit 102 in the second embodiment will be described.
The threshold variation voltage in the conventional circuit shown in FIG. Since the conventional circuit has two sets of differential comparison circuits COMP for signal detection and threshold potential setting, there are two offset values, Vos1 and Vos2.

一方、第2の実施の形態における信号検出回路102は、信号検出用コンパレータは2つ存在するが、スレショルド電位を与える差動比較回路は1つである為、Vos2は理論上発生せず、従って、第2の実施の形態におけるスレショルド電位Vthの式は第1の実施の形態における信号検出回路101と同じ構成式となる。
Vth = ( Vin ± Vos1 ) − ( Ib2・match1・Rb2・match2) / Gv ・・・式3
ここで、Vthはスレショルド電位、Vinは差動入力信号Sinの信号レベル、Vos1は信号検出用差動アンプ(差動比較回路COMP10又はCOMP21)の相対精度、Vos2はスレショルド電位設定用差動アンプ(差動比較回路COMP22)の相対精度、Ib2は定電流源Ib20の定電流値、Rb2はバイアス電位を決定する抵抗Rの抵抗値、match1は定電流源Ib20の相対精度、match2は抵抗Rの相対精度、Gvは差動比較回路COMP22の電圧利得である。
On the other hand, the signal detection circuit 102 according to the second embodiment has two signal detection comparators, but since there is only one differential comparison circuit that provides a threshold potential, Vos2 does not occur theoretically. The equation of the threshold potential Vth in the second embodiment is the same as that of the signal detection circuit 101 in the first embodiment.
Vth = (Vin ± Vos1) − (Ib2 · match1 · Rb2 · match2) / Gv Equation 3
Here, Vth is the threshold potential, Vin is the signal level of the differential input signal Sin, Vos1 is the relative accuracy of the signal detection differential amplifier (differential comparison circuit COMP10 or COMP21), and Vos2 is the threshold potential setting differential amplifier ( The relative accuracy of the differential comparison circuit COMP22), Ib2 is the constant current value of the constant current source Ib20, Rb2 is the resistance value of the resistor R that determines the bias potential, match1 is the relative accuracy of the constant current source Ib20, and match2 is the relative value of the resistor R. The accuracy, Gv, is the voltage gain of the differential comparison circuit COMP22.

式1及び式3を比較すると、本発明による信号検出回路102は、図2に示される従来回路に比べ、スレショルド電位設定用の差動比較回路の相対精度(Vos2)が削減され、定電流と抵抗の相対精度(match1、match2)による影響が電圧利得(Gv)によって圧縮される。このため、製造ばらつきの影響が半分以下に軽減される。   Comparing Equation 1 and Equation 3, the signal detection circuit 102 according to the present invention has a reduced relative accuracy (Vos2) of the differential comparison circuit for setting the threshold potential, compared to the conventional circuit shown in FIG. The influence of the relative accuracy (match1, match2) of the resistor is compressed by the voltage gain (Gv). For this reason, the influence of manufacturing variation is reduced to less than half.

従って、第2に実施の形態における信号検出回路102は、従来回路に比べ、各種素子相対ばらつきに対するスレショルド電位のばらつきが低減される。又、差動回路が1組削減されるためレイアウト面積が低減され、コストを削減できる。更に、消費電流が低減でき、容量性負荷の軽減による周波数特性が改善される。   Therefore, secondly, in the signal detection circuit 102 in the embodiment, the variation of the threshold potential with respect to the relative variation of various elements is reduced as compared with the conventional circuit. In addition, since one set of differential circuits is reduced, the layout area is reduced and the cost can be reduced. Furthermore, the current consumption can be reduced, and the frequency characteristics can be improved by reducing the capacitive load.

次に、従来回路、本発明による信号検出回路101及び信号検出回路102おいて、スレショルド電位Vth=120mVに設定した状態で製造ばらつきとしてVos1=+20mVを与えた場合のVth変動のシミュレーション結果が示される。   Next, in the conventional circuit, the signal detection circuit 101 according to the present invention, and the signal detection circuit 102, the simulation result of the Vth variation when Vos1 = + 20 mV is given as the manufacturing variation in the state where the threshold potential Vth is set to 120 mV is shown. .

従来回路において、信号検出用差動アンプ(差動比較回路COMP3及びCOMP5)の相対オフセットVos1=+20mVとした時のスレショルド電位Vthは147.5mVであり、信号検出用差動アンプ(差動比較回路COMP3及びCOMP5)の相対オフセットVos1を0mVとすると、スレショルド電位Vthは+23.9mV変動した。   In the conventional circuit, the threshold potential Vth when the relative offset Vos1 = + 20 mV of the differential amplifier for signal detection (differential comparison circuits COMP3 and COMP5) is 147.5 mV, and the differential amplifier for signal detection (differential comparison circuit) When the relative offset Vos1 of COMP3 and COMP5) was 0 mV, the threshold potential Vth fluctuated by +23.9 mV.

第1の実施の形態における信号検出回路101において、信号検出用差動アンプ(差動比較回路COMP7及びCOMP8)の相対オフセットVos1=+20mVとした時のスレショルド電位Vthは121.9mVであり、信号検出用差動アンプの相対オフセットVos1を0mVとすると、スレショルド電位Vthは+2.4mV変動した。   In the signal detection circuit 101 in the first embodiment, the threshold potential Vth when the relative offset Vos1 = + 20 mV of the differential amplifier for signal detection (differential comparison circuits COMP7 and COMP8) is 121.9 mV, and signal detection is performed. When the relative offset Vos1 of the differential amplifier for use was set to 0 mV, the threshold potential Vth fluctuated by +2.4 mV.

第2の実施の形態における信号検出回路102において、信号検出用差動アンプ(差動比較回路COMP10及びCOMP21)の相対オフセットVos1=+20mVとした時のスレショルド電位Vthは121.9mVであり、信号検出用差動アンプ(差動比較回路COMP10及びCOMP21)の相対オフセットVos1を0mVとすると、スレショルド電位Vthは+2.2mV変動した。   In the signal detection circuit 102 according to the second embodiment, the threshold potential Vth when the relative offset Vos1 of the signal detection differential amplifier (differential comparison circuits COMP10 and COMP21) is set to +20 mV is 121.9 mV, and signal detection is performed. When the relative offset Vos1 of the differential amplifier for differential (differential comparison circuits COMP10 and COMP21) is 0 mV, the threshold potential Vth fluctuates by +2.2 mV.

以上のように、信号検出用差動アンプの相対オフセットVos1に対し、従来回路のスレショルド電位Vthが+23.9mV増加するのに対し、本発明による信号検出回路101及び102のスレショルドVthの増加分は、わずか+2.2mVしかなく、信号検出用差動アンプの相対オフセットVos1に対し、スレショルド電位Vthのばらつきが少ないことが分かる。   As described above, the threshold potential Vth of the conventional circuit increases by +23.9 mV with respect to the relative offset Vos1 of the signal detection differential amplifier, whereas the increase in the threshold Vth of the signal detection circuits 101 and 102 according to the present invention is as follows. It can be seen that there is only +2.2 mV, and there is little variation in the threshold potential Vth with respect to the relative offset Vos1 of the signal detection differential amplifier.

次に、図11を参照して、本発明による信号検出回路におけるスレショルド電位Vthの温度変動について説明する。   Next, with reference to FIG. 11, the temperature variation of the threshold potential Vth in the signal detection circuit according to the present invention will be described.

図2に示される従来回路と第1の実施の形態における信号検出回路101のスレショルド電位の温度変動の差について説明する。
第1の実施の形態における信号検出回路101のスレショルド電位Vthは以下の式で表される。
Vth=Vin×Gv−VRb(V)・・・式4
ただし、Gv=gm×RL、gm=(2×Id×β×(W/L))^(1/2)、β=μ×cox、VRb=Rb×Id
ここで、RLは差動比較回路COMP7又はCOMP8の負荷抵抗、Idは差動比較回路COMP8の定電流、Wは差動トランジスタのW、Lは差動トランジスタのL、μは移動度、coxはゲート酸化膜厚、VRbは差動比較回路COMP8の電流源Ib8と抵抗Rb1で決まるスレショルド電位である。又、図10は125℃(B)から−10℃(A)までの電圧利得Gvの温度変動を示している。移動度μは負の温度係数を持つ為、Idが一定の場合、gmも負の温度係数を持つ。このため、結果としてRLの温度係数をゼロとした場合、Gvは負の温度係数を持つ。一方、スレショルド電位Vthを決定しているVRbは、Id、Rbの温度係数をゼロとした場合、一定値となる。従って、式4よりスレショルド電位Vthは正の温度係数を持つ事になる。
A difference in temperature variation of the threshold potential between the conventional circuit shown in FIG. 2 and the signal detection circuit 101 in the first embodiment will be described.
The threshold potential Vth of the signal detection circuit 101 in the first embodiment is expressed by the following equation.
Vth = Vin × Gv−VRb (V) Equation 4
However, Gv = gm × RL, gm = (2 × Id × β × (W / L)) ^ (1/2), β = μ × cox, VRb = Rb × Id
Here, RL is a load resistance of the differential comparison circuit COMP7 or COMP8, Id is a constant current of the differential comparison circuit COMP8, W is W of the differential transistor, L is L of the differential transistor, μ is mobility, and cox is The gate oxide film thickness VRb is a threshold potential determined by the current source Ib8 and the resistor Rb1 of the differential comparison circuit COMP8. FIG. 10 shows the temperature variation of the voltage gain Gv from 125 ° C. (B) to −10 ° C. (A). Since mobility μ has a negative temperature coefficient, when Id is constant, gm also has a negative temperature coefficient. For this reason, when the temperature coefficient of RL is set to zero as a result, Gv has a negative temperature coefficient. On the other hand, VRb that determines the threshold potential Vth becomes a constant value when the temperature coefficients of Id and Rb are zero. Therefore, from Equation 4, the threshold potential Vth has a positive temperature coefficient.

図2に示される従来回路は、VRbも差動比較回路COMP3及びCOMP5と同じアンプを使って発生させている。このため、従来回路のスレショルド電位Vthは、次式で表される。
Vth=Vin×Gv−VRb’・・・式5
ただし、VRb’=V22−V21=VR×Gv
ここで、VRb’は、差動比較回路COMP4及びCOMP6で決定するスレショルド電位、V21は差動比較回路COMP4の出力電圧、V22は、差動比較回路COMP6の出力電圧、VRは電流源Ib2と抵抗R4と直流電圧源V1で決定される基準電圧である。
In the conventional circuit shown in FIG. 2, VRb is also generated using the same amplifier as the differential comparison circuits COMP3 and COMP5. For this reason, the threshold potential Vth of the conventional circuit is expressed by the following equation.
Vth = Vin × Gv−VRb ′ Equation 5
However, VRb ′ = V22−V21 = VR × Gv
Here, VRb ′ is a threshold potential determined by the differential comparison circuits COMP4 and COMP6, V21 is an output voltage of the differential comparison circuit COMP4, V22 is an output voltage of the differential comparison circuit COMP6, and VR is a current source Ib2 and a resistance. This is a reference voltage determined by R4 and the DC voltage source V1.

式5より、右辺の第1項の入力信号部と第2項のVR部双方に負の温度係数を持つGvが入る為、従来回路のスレショルド電位Vthの温度係数は理論的にはキャンセルされゼロとなる。   From Equation 5, since Gv having a negative temperature coefficient enters both the first term input signal portion and the second term VR portion on the right side, the temperature coefficient of the threshold potential Vth of the conventional circuit is theoretically canceled and zero. It becomes.

従来回路は製造ばらつきによるスレショルド電位変動が大きい一方でスレショルド電位の温度変動が小さい、又、回路を構成する際の素子が多いという問題がある。一方、第1の実施の形態における信号検出回路101は、回路を構成する際の素子が従来回路より約半分で済み、かつ製造ばらつきによるスレショルド電位変動が小さくなる。しかし、スレショルド電位Vthの温度変動が大きくなってしまうという問題がある。このため、スレショルド電位Vthの許容範囲が小さいアプリケーションにおいては、全仕様温度でスレショルドVthの仕様を満足出来ない可能性がある。   The conventional circuit has a problem that the threshold potential variation due to manufacturing variations is large, but the temperature variation of the threshold potential is small, and there are many elements in configuring the circuit. On the other hand, in the signal detection circuit 101 in the first embodiment, the elements for configuring the circuit are about half that of the conventional circuit, and the threshold potential fluctuation due to manufacturing variations is reduced. However, there is a problem that the temperature variation of the threshold potential Vth becomes large. For this reason, in an application where the allowable range of the threshold potential Vth is small, there is a possibility that the specification of the threshold Vth cannot be satisfied at all specification temperatures.

第2の実施の形態における信号検出回路102は、第1の実施の形態における信号検出回路101と異なり、従来回路と同様に、スレショルド電位Vthを与える差動比較回路COMP22として、信号検出用の差動比較回路COMP10及びCOMP21と同様の差動アンプを使用している。従って、スレショルド電位Vthは以下の式で表される。
Vth=Vin×Gv−VRb ・・・式6
ただし、VRb=VR1−VR2=(VA−VB)×Gv
ここで、Vinは、入力信号の電圧、VR1は差動比較回路COMP10の電流源Ib10と差動比較回路COMP22の電流源Ib22で決まる直流動作電圧、VR2は差動比較回路COMP21の電流源Ib21と差動比較回路COMP22の電流源Ib22で決まる直流動作電圧、VAは直流電圧源Vref+定電流源Ib20×抵抗Rで決まるバイアス電圧、VBは、直流電圧源Vrefで決まるバイアス電圧である。
Unlike the signal detection circuit 101 in the first embodiment, the signal detection circuit 102 in the second embodiment is a differential comparison circuit COMP22 that provides a threshold potential Vth, as in the conventional circuit. A differential amplifier similar to the dynamic comparison circuits COMP10 and COMP21 is used. Therefore, the threshold potential Vth is expressed by the following equation.
Vth = Vin × Gv−VRb Equation 6
However, VRb = VR1-VR2 = (VA-VB) × Gv
Here, Vin is a voltage of the input signal, VR1 is a DC operating voltage determined by the current source Ib10 of the differential comparison circuit COMP10 and the current source Ib22 of the differential comparison circuit COMP22, and VR2 is a current source Ib21 of the differential comparison circuit COMP21. The DC operating voltage determined by the current source Ib22 of the differential comparison circuit COMP22, VA is a bias voltage determined by the DC voltage source Vref + constant current source Ib20 × resistor R, and VB is a bias voltage determined by the DC voltage source Vref.

式4より、右辺の第1項の入力信号部と第2項のVR部双方に負の温度係数を持つGvが入る為、スレショルド電位Vthの温度係数は理論的にはキャンセルされ、第2の実施の形態における信号検出回路102のスレショルド電位Vthは温度変化に対し、理論的には変化しない。   From Equation 4, since Gv having a negative temperature coefficient enters both the first term input signal portion and the second term VR portion on the right side, the temperature coefficient of the threshold potential Vth is theoretically canceled, and the second The threshold potential Vth of the signal detection circuit 102 in the embodiment does not change theoretically with respect to a temperature change.

このように、第2の実施の形態における信号検出回路102は、差動比較回路COMP22によってスレショルド電位Vthを発生させ、スレショルド電位Vthの温度変動を従来回路と同じレベルに抑えている。以上のように、スレショルド電位Vthの製造ばらつきと温度変動の双方を抑制することができる。   As described above, the signal detection circuit 102 in the second embodiment generates the threshold potential Vth by the differential comparison circuit COMP22, and suppresses the temperature fluctuation of the threshold potential Vth to the same level as the conventional circuit. As described above, both manufacturing variations and temperature fluctuations of the threshold potential Vth can be suppressed.

(第3の実施の形態)
図8及び図9を参照して第3の実施の形態における信号検出回路103を説明する。
図8に、第3の実施の形態における信号検出回路103の構成を示す。第3の実施の形態における信号検出回路103は、第2の実施の形態における信号検出回路102の差動比較回路COMP10及び差動比較回路COMP21に換えて、Pチャネル型MOSを備えた差動比較回路COMP10’及び差動比較回路COMP21’とを備え、それぞれの出力端に接続される差動排他的論理和回路EOR10とを備える。第2の実施の形態における符号と同一の構成の動作は、第2の実施の形態と同様であるので説明は省略される。
(Third embodiment)
The signal detection circuit 103 according to the third embodiment will be described with reference to FIGS.
FIG. 8 shows the configuration of the signal detection circuit 103 according to the third embodiment. The signal detection circuit 103 in the third embodiment is different from the differential comparison circuit COMP10 and the differential comparison circuit COMP21 of the signal detection circuit 102 in the second embodiment in that the differential comparison includes a P-channel type MOS. A circuit COMP10 ′ and a differential comparison circuit COMP21 ′ are provided, and a differential exclusive OR circuit EOR10 connected to each output terminal is provided. Since the operation of the same configuration as the reference numerals in the second embodiment is the same as that of the second embodiment, description thereof is omitted.

差動比較回路COMP10’は、負荷抵抗R13、R14と、差動対を構成するPチャネル型MOSトランジスタMp1及びMp2と、定電流源Ib10’と、抵抗Rb10’とを備える。   The differential comparison circuit COMP10 'includes load resistors R13 and R14, P-channel MOS transistors Mp1 and Mp2 constituting a differential pair, a constant current source Ib10', and a resistor Rb10 '.

Pチャネル型MOSトランジスタMp1、Mp2のそれぞれのソースは、定電流源Ib10’の一端と共通接続され、定電流源Ib10’の他端は電源に接続されている。Pチャネル型MOSトランジスタMp1のドレインはノードN1を介して負荷抵抗R13の一端に接続され、Pチャネル型MOSトランジスタMp2のドレインはノードN2を介して負荷抵抗R14の一端に接続されている。負荷抵抗R13とR14の他端は抵抗Rb10’に共通接続され、抵抗Rb10’の他端は電源に接続されている。   The sources of the P-channel MOS transistors Mp1 and Mp2 are commonly connected to one end of the constant current source Ib10 ', and the other end of the constant current source Ib10' is connected to the power source. The drain of the P-channel MOS transistor Mp1 is connected to one end of the load resistor R13 via the node N1, and the drain of the P-channel MOS transistor Mp2 is connected to one end of the load resistor R14 via the node N2. The other ends of the load resistors R13 and R14 are commonly connected to a resistor Rb10 ', and the other end of the resistor Rb10' is connected to a power source.

正相入力信号SinPは、Pチャネル型MOSトランジスタMp1のゲートに、逆相入力信号SinNは、Pチャネル型MOSトランジスタMp2のゲートに、それぞれ入力される。ノードN1から逆相出力信号CMP12outNが、ノードN2から正相出力信号CMP12outPが出力される。   The normal phase input signal SinP is input to the gate of the P channel type MOS transistor Mp1, and the negative phase input signal SinN is input to the gate of the P channel type MOS transistor Mp2. The negative phase output signal CMP12outN is output from the node N1, and the positive phase output signal CMP12outP is output from the node N2.

差動比較回路COMP21’は、負荷抵抗R15、R16と、差動対を構成するPチャネル型MOSトランジスタMp3及びMp4と、定電流源Ib21’と、抵抗Rb21’とを備える。   The differential comparison circuit COMP21 'includes load resistors R15 and R16, P-channel MOS transistors Mp3 and Mp4 forming a differential pair, a constant current source Ib21', and a resistor Rb21 '.

差動比較回路COMP21’のPチャネル型MOSトランジスタMp3、Mn4のそれぞれのソースは、定電流源Ib21’の一端と共通接続され、定電流源Ib21’の他端は接地されている。Pチャネル型MOSトランジスタMp3のドレインはノードN3を介して負荷抵抗R15の一端に接続され、Pチャネル型MOSトランジスタMp4のドレインはノードN4を介して負荷抵抗R16の一端に接続されている。負荷抵抗R15とR16の他端は、抵抗Rb21’の一端に共通接続される。抵抗Rb21’の他端は電源に接続されている。   The sources of the P-channel MOS transistors Mp3 and Mn4 of the differential comparison circuit COMP21 'are commonly connected to one end of the constant current source Ib21', and the other end of the constant current source Ib21 'is grounded. The drain of the P-channel MOS transistor Mp3 is connected to one end of the load resistor R15 via the node N3, and the drain of the P-channel MOS transistor Mp4 is connected to one end of the load resistor R16 via the node N4. The other ends of the load resistors R15 and R16 are commonly connected to one end of the resistor Rb21 '. The other end of the resistor Rb21 'is connected to a power source.

差動比較回路COMP22’は、差動対を構成するPチャネル型MOSトランジスタMp5及びMp6と、定電流源Ib22’とを備え、Pチャネル型MOSトランジスタMp6のドレインはノードN5を介して差動比較回路COMP10’に接続され、Pチャネル型MOSトランジスタMp5のドレインはノードN6を介して差動比較回路COMP21’に接続される。差動比較回路COMP10の抵抗Rb10’は、Pチャネル型MOSトランジスタMp6の負荷抵抗となり、差動比較回路COMP21’の抵抗Rb21’はPチャネル型MOSトランジスタMp5の負荷抵抗となっている。定電流源Ib20と、抵抗Rと、直流電圧源Vrefは、比較差動回路COMP22に接続され、スレショルド電位Vthの値を決める。Pチャネル型MOSトランジスタMp5のゲートには、直流電圧源Vrefが接続され、Pチャネル型MOSトランジスタMp6のゲートには、VrefよりもVRだけ高い電圧が接続される。ここで、VRは抵抗Rに定電流源Ib20の電流が流れて発生する電圧である。   The differential comparison circuit COMP22 ′ includes P-channel MOS transistors Mp5 and Mp6 constituting a differential pair, and a constant current source Ib22 ′, and the drain of the P-channel MOS transistor Mp6 is differentially compared via the node N5. The drain of the P-channel MOS transistor Mp5 is connected to the circuit COMP10 ′ and the differential comparison circuit COMP21 ′ via the node N6. The resistance Rb10 'of the differential comparison circuit COMP10 is a load resistance of the P-channel MOS transistor Mp6, and the resistance Rb21' of the differential comparison circuit COMP21 'is a load resistance of the P-channel MOS transistor Mp5. The constant current source Ib20, the resistor R, and the DC voltage source Vref are connected to the comparison differential circuit COMP22 and determine the value of the threshold potential Vth. A DC voltage source Vref is connected to the gate of the P-channel MOS transistor Mp5, and a voltage higher by VR than Vref is connected to the gate of the P-channel MOS transistor Mp6. Here, VR is a voltage generated when the current of the constant current source Ib20 flows through the resistor R.

正相入力信号SinPは、Pチャネル型MOSトランジスタMp3のゲートに、逆相入力信号SinNは、Pチャネル型MOSトランジスタMp4のゲートに、それぞれ入力される。ノードN3から逆相出力信号CMP11outNが、ノードN4から正相出力信号CMP11outPが出力される。   The normal phase input signal SinP is input to the gate of the P channel type MOS transistor Mp3, and the negative phase input signal SinN is input to the gate of the P channel type MOS transistor Mp4. A negative phase output signal CMP11outN is output from the node N3, and a normal phase output signal CMP11outP is output from the node N4.

差動排他的論理和回路EOR10は、ノードN1、N2、N3、N4に接続され、正相出力信号CMP11outPと逆相出力信号CMP12outNとからなる差動信号である差動交換出力信号CMP11Eoutと、正相出力信号CMP12outPと逆相出力信号CMP12outNとからなる差動信号である差動交換出力信号CMP12Eoutが入力される。   The differential exclusive OR circuit EOR10 is connected to the nodes N1, N2, N3, and N4, and a differential exchange output signal CMP11Eout, which is a differential signal composed of a positive phase output signal CMP11outP and a negative phase output signal CMP12outN, A differential exchange output signal CMP12Eout which is a differential signal composed of a phase output signal CMP12outP and a reverse phase output signal CMP12outN is input.

差動排他的論理和回路EOR10は、差動交換出力信号CMP11Eoutと差動交換出力信号CMP12Eoutの排他的論理和として、2値化信号Sout5Pと2値化信号Sout5Nからなる2値化信号Soutを出力する。この時、2値化信号Sout5Pが2値化信号Sout5Nより高い場合、2値化信号Soutの論理値は「1」を示し、低い場合、論理値は「0」を示す。   The differential exclusive OR circuit EOR10 outputs a binary signal Sout composed of a binary signal Sout5P and a binary signal Sout5N as an exclusive OR of the differential exchange output signal CMP11Eout and the differential exchange output signal CMP12Eout. To do. At this time, when the binarized signal Sout5P is higher than the binarized signal Sout5N, the logic value of the binarized signal Sout indicates “1”, and when it is low, the logic value indicates “0”.

図9を参照して、第3の実施の形態における信号検出回路103の動作を説明する。ここで、R13=R14=R15=R16、Rb10’=Rb21’、Ib10’=Ib21’とする。被検出信号である差動入力信号Sinは、正相入力信号SinPと逆相入力信号SinNとからなる差動信号である。図9(a)に示されるように、正相入力信号SinPと逆相入力信号SinNは同一の直流動作電圧を有し、互いに逆の位相で同一の振幅の信号である。正相入力信号SinPが逆相入力信号SinNより高い場合、差動入力信号Sinの論理値は「1」を示し、低い場合「0」を示す。   The operation of the signal detection circuit 103 in the third embodiment will be described with reference to FIG. Here, R13 = R14 = R15 = R16, Rb10 ′ = Rb21 ′, and Ib10 ′ = Ib21 ′. The differential input signal Sin which is a detected signal is a differential signal composed of a normal phase input signal SinP and a negative phase input signal SinN. As shown in FIG. 9A, the normal phase input signal SinP and the negative phase input signal SinN are signals having the same DC operating voltage and having the same amplitude with opposite phases. When the normal phase input signal SinP is higher than the negative phase input signal SinN, the logical value of the differential input signal Sin indicates “1”, and when it is low, it indicates “0”.

差動比較回路COMP10’は、入力される差動入力信号Sinの正相入力信号SinPと逆相入力信号SinNの電位差を電圧利得に比例して増幅した正相出力信号CMP12outPと逆相出力信号CMP12outNとからなる差動出力信号CMP12outを出力する。この際、逆相出力信号CMP12outNはノードN1から、正相出力信号CMP12outPはノードN2から取出される(図9(c))。ここで、正相出力信号CMP12outPと逆相出力信号CMP12outNは、差動比較回路COMP22’により制御されたコモンモード電圧VR2を中心に振幅する。   The differential comparison circuit COMP10 ′ includes a positive phase output signal CMP12outP and a negative phase output signal CMP12outN obtained by amplifying the potential difference between the positive phase input signal SinP and the negative phase input signal SinN of the input differential input signal Sin in proportion to the voltage gain. The differential output signal CMP12out consisting of At this time, the negative phase output signal CMP12outN is extracted from the node N1, and the normal phase output signal CMP12outP is extracted from the node N2 (FIG. 9C). Here, the positive-phase output signal CMP12outP and the negative-phase output signal CMP12outN swing around the common mode voltage VR2 controlled by the differential comparison circuit COMP22 '.

差動比較回路COMP21’は、入力される差動入力信号Sinの正相入力信号SinPと逆相入力信号SinNと電位差を電圧利得に比例して増幅し、正相出力信号CMP11outPと逆相出力信号CMP11outNとからなる差動出力信号CMP11outを出力する。この際、逆相出力信号CMP11outNはノードN3から、正相出力信号CMP11outPはノードN4から取出される(図9(b))。ここで、正相出力信号CMP11outPと逆相出力信号CMP11outNは、差動比較回路COMP22’により制御されたコモンモード電圧VR1を中心に振幅する。   The differential comparison circuit COMP21 ′ amplifies the potential difference between the positive phase input signal SinP and the negative phase input signal SinN of the input differential input signal Sin in proportion to the voltage gain, and outputs the positive phase output signal CMP11outP and the negative phase output signal. A differential output signal CMP11out composed of CMP11outN is output. At this time, the negative phase output signal CMP11outN is extracted from the node N3, and the normal phase output signal CMP11outP is extracted from the node N4 (FIG. 9B). Here, the positive-phase output signal CMP11outP and the negative-phase output signal CMP11outN swing around the common mode voltage VR1 controlled by the differential comparison circuit COMP22 '.

この際、差動比較回路COMP10’及び差動比較回路COMP21’の差動出力のコモンモード電圧は、抵抗Rと定電流源Ib20とで発生する電圧VRの差動比較回路COMP22’の電圧利得Gv倍だけずれが発生する。図9を参照して、差動比較回路におけるコモンモード電圧は、VR1−VR2=VR×Gv(ただし、VR1>VR2)の関係となり、従ってVR1−VR2が排他的論理和EOR10に対する入力信号レベルのスレショルド電位となる。   At this time, the common mode voltage of the differential outputs of the differential comparison circuit COMP10 ′ and the differential comparison circuit COMP21 ′ is the voltage gain Gv of the differential comparison circuit COMP22 ′ of the voltage VR generated by the resistor R and the constant current source Ib20. Deviation occurs by a factor of two. Referring to FIG. 9, the common mode voltage in the differential comparison circuit has a relationship of VR1−VR2 = VR × Gv (where VR1> VR2), and therefore VR1−VR2 is the input signal level of exclusive OR EOR10. It becomes the threshold potential.

正相出力信号CMP11outPと、逆相出力信号CMP12outNとからなる差動信号を差動交換出力信号CMP11Eoutとし、正相出力信号CMP12outPと逆相出力信号CMP11outNとからなる差動信号を差動交換出力信号CMP12Eoutとする。差動交換出力信号CMP11Eoutと差動交換出力信号CMP12Eoutは、差動排他的論理和回路EOR4に入力される。   A differential signal composed of the positive phase output signal CMP11outP and the negative phase output signal CMP12outN is defined as a differential exchange output signal CMP11Eout, and a differential signal composed of the positive phase output signal CMP12outP and the negative phase output signal CMP11outN is represented as a differential exchange output signal. It is set as CMP12Eout. The differential exchange output signal CMP11Eout and the differential exchange output signal CMP12Eout are input to the differential exclusive OR circuit EOR4.

図9(d)に差動交換出力信号CMP11Eoutの波形を示す。正相出力信号CMP11outPが逆相出力信号CMP12outNより高い場合、差動交換出力信号CMP11Eoutの論理値は「1」を示し、低い場合「0」を示す。   FIG. 9D shows a waveform of the differential exchange output signal CMP11Eout. When the normal phase output signal CMP11outP is higher than the negative phase output signal CMP12outN, the logical value of the differential exchange output signal CMP11Eout indicates “1”, and when it is low, it indicates “0”.

同様に図9(e)に差動交換出力信号CMP12Eoutの波形を示す。正相出力信号CMP12outPが逆相出力信号CMP7outNより高い場合、差動交換出力信号CMP11Eoutの論理値は「1」を示し、低い場合「0」を示す。   Similarly, FIG. 9E shows a waveform of the differential exchange output signal CMP12Eout. When the normal phase output signal CMP12outP is higher than the negative phase output signal CMP7outN, the logical value of the differential exchange output signal CMP11Eout indicates “1”, and when it is low, it indicates “0”.

差動入力信号Sinの大きさが、本発明による信号検出回路で検出したい信号の大きさより小さい場合(微弱信号の場合)について説明する。ここで微弱信号とは、差動比較回路COMP10’及びCOMP21’によって増幅された信号の振幅がスレッショルド電位Vth(VR1−VR2)以下となる差動入力信号Sinである。   A case where the magnitude of the differential input signal Sin is smaller than the magnitude of the signal to be detected by the signal detection circuit according to the present invention (in the case of a weak signal) will be described. Here, the weak signal is a differential input signal Sin in which the amplitude of the signal amplified by the differential comparison circuits COMP10 'and COMP21' is equal to or lower than the threshold potential Vth (VR1-VR2).

正相出力信号CMP11outPは、逆相出力信号CMP12outNに対しVR1−VR2だけ高い電圧を中心に振幅している(図9(d))。同様に、正相出力信号CMP12outPは、逆相出力信号CMP11outNに対しVR1−VR2だけ低い電圧を中心に振幅している(図9(e))。このため、微小信号が信号検出回路103に入力されると、正相出力信号CMP11outPは逆相出力信号CMP12outNより高くなり、差動交換出力信号CMP11Eoutの論理値は「1」を示す。又、正相出力信号CMP12outPは逆相出力信号CMP11outNより低くなり、差動交換出力信号CMP12Eoutの論理値は「0」を示す。   The normal phase output signal CMP11outP has an amplitude centered on a voltage higher than the negative phase output signal CMP12outN by VR1-VR2 (FIG. 9D). Similarly, the positive phase output signal CMP12outP has an amplitude centered on a voltage lower than the negative phase output signal CMP11outN by VR1-VR2 (FIG. 9 (e)). For this reason, when a minute signal is input to the signal detection circuit 103, the normal phase output signal CMP11outP becomes higher than the negative phase output signal CMP12outN, and the logical value of the differential exchange output signal CMP11Eout indicates “1”. Further, the positive phase output signal CMP12outP is lower than the negative phase output signal CMP11outN, and the logical value of the differential exchange output signal CMP12Eout indicates “0”.

従って、差動排他的論理和回路EOR4は、入力される差動交換出力信号CMP11Eout(論理値「1」)と差動交換出力信号CMP12Eout(論理値「0」)の排他的論理和である論理値「1」の2値化信号Soutを出力する(図9(f))。   Therefore, the differential exclusive OR circuit EOR4 is a logic that is an exclusive OR of the input differential exchange output signal CMP11Eout (logical value “1”) and the differential exchange output signal CMP12Eout (logical value “0”). A binarized signal Sout having a value “1” is output (FIG. 9F).

差動入力信号Sinの大きさが信号検出回路の検出したい信号の大きさより大きい場合(主信号の場合)について説明する。ここで主信号とは、差動比較回路COMP10’及びCOMP21’によって増幅された信号の振幅がスレッショルド電圧Vth(VR1−VR2)以上となる差動入力信号Sinである。   A case where the magnitude of the differential input signal Sin is larger than the magnitude of the signal desired to be detected by the signal detection circuit (in the case of the main signal) will be described. Here, the main signal is a differential input signal Sin in which the amplitude of the signal amplified by the differential comparison circuits COMP10 'and COMP21' is equal to or higher than the threshold voltage Vth (VR1-VR2).

正相入力信号SinPが逆相入力信号SinNより高い場合、正相出力信号CMP11outPは逆相出力信号CMP12outNより高くなる部分が生じ、その部分における差動交換出力信号CMP11Eoutの論理値は「1」を示す(図9(d))。正相出力信号CMP12outPはオフセットのない逆相出力信号CMP11outNより高くなる部分が生じ、その部分における差動交換出力信号CMP12Eoutの論理値は「1」を示す(図9(e))。   When the normal phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP11outP has a portion higher than the negative phase output signal CMP12outN, and the logical value of the differential exchange output signal CMP11Eout in that portion is “1”. This is shown (FIG. 9 (d)). The positive phase output signal CMP12outP has a portion higher than the non-offset negative phase output signal CMP11outN, and the logical value of the differential exchange output signal CMP12Eout in that portion is “1” (FIG. 9E).

スレッショルド電圧以上の振幅を持つ差動出力信号CMP11out及び差動出力信号CMP12outが入力されると、差動交換出力信号CMP11Eout及び差動交換出力信号CMP12outは相互に交差する部分が現れる。すなわち、正相入力信号SinPが逆相入力信号SinNより低い部分では、正相出力信号CMP11outPは逆相出力信号CMP12outNより低くなり、差動交換出力信号CMP11Eoutの論理値は「0」を示す。又、正相入力信号SinPが逆相入力信号SinNより高い部分では、正相出力信号CMP11outPは逆相出力信号CMP12outNより高くなり、差動交換出力信号CMP11Eoutの論理値は「1」を示す(図9(d))。同様に、正相入力信号SinPが逆相入力信号SinNより低い部分では、正相出力信号CMP12outPは逆相出力信号CMP11outNより低くなり、差動交換出力信号CMP12Eoutの論理値は「0」を示す。又、正相入力信号SinPが逆相入力信号SinNより高い部分では、正相出力信号CMP11outPは逆相出力信号CMP11outNより高くなり、差動交換出力信号CMP12Eoutの論理値は「1」を示す(図9(e))。   When the differential output signal CMP11out and the differential output signal CMP12out having an amplitude equal to or greater than the threshold voltage are input, a portion where the differential exchange output signal CMP11Eout and the differential exchange output signal CMP12out intersect each other appears. That is, when the normal phase input signal SinP is lower than the negative phase input signal SinN, the positive phase output signal CMP11outP is lower than the negative phase output signal CMP12outN, and the logical value of the differential exchange output signal CMP11Eout indicates “0”. Further, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP11outP is higher than the negative phase output signal CMP12outN, and the logic value of the differential exchange output signal CMP11Eout indicates “1” (FIG. 9 (d)). Similarly, when the positive phase input signal SinP is lower than the negative phase input signal SinN, the positive phase output signal CMP12outP is lower than the negative phase output signal CMP11outN, and the logical value of the differential exchange output signal CMP12Eout indicates “0”. Further, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the positive phase output signal CMP11outP is higher than the negative phase output signal CMP11outN, and the logical value of the differential exchange output signal CMP12Eout indicates “1” (FIG. 9 (e)).

従って、差動排他的論理和回路EOR4は、正相入力信号SinPが逆相入力信号SinNより高い場合、差動交換出力信号CMP11Eout(論理値「1」)と差動交換出力信号CMP12Eout(論理値「1」)の排他的論理和である論理値「0」の2値化信号Soutを出力し、正相入力信号SinPが逆相入力信号SinNより低い場合、差動交換出力信号CMP11Eout(論理値「0」)と差動交換出力信号CMP12Eout(論理値「0」)の排他的論理和である論理値「0」の2値化信号Soutを出力する。   Therefore, the differential exclusive OR circuit EOR4, when the positive phase input signal SinP is higher than the negative phase input signal SinN, the differential exchange output signal CMP11Eout (logical value “1”) and the differential exchange output signal CMP12Eout (logical value). When a binary signal Sout having a logical value “0” that is an exclusive logical sum of “1”) is output and the positive phase input signal SinP is lower than the negative phase input signal SinN, the differential exchange output signal CMP11Eout (logical value) “0”) and the differential exchange output signal CMP12Eout (logical value “0”) are output as a binary signal Sout having a logical value “0” that is an exclusive OR.

以上のように、差動比較回路COMP22’によって設定されるスレッショルド電圧Vth(VR1−VR2)以上の振幅をもつ差動入力信号が入力されると、2値化信号Soutの排他的論理和は「0」となり、差動入力信号Sin(主信号)を検出することができる。   As described above, when a differential input signal having an amplitude greater than or equal to the threshold voltage Vth (VR1−VR2) set by the differential comparison circuit COMP22 ′ is input, the exclusive OR of the binarized signal Sout is “ 0 "and the differential input signal Sin (main signal) can be detected.

第3の実施の形態における信号検出回路103では、入力信号Sinに差動信号を採用した上で、差動比較回路(COMP12及びCOMP21)の双方の負荷抵抗の共通接続ノードと接地間に抵抗が接続され、それらの抵抗と負荷抵抗との接続ノードに直流基準電圧が入力されるコモンモード電圧設定用の差動比較回路COMP22’が接続される。従って、従来回路と比較して、差動比較回路を1つ減らす事で製造ばらつきに対するスレショルド電位のばらつきを抑え、かつ構成回路数も差動回路1つ分少ない構成となっている。   In the signal detection circuit 103 according to the third embodiment, a differential signal is employed as the input signal Sin, and a resistor is connected between the common connection node of both load resistors of the differential comparison circuit (COMP12 and COMP21) and the ground. A common mode voltage setting differential comparison circuit COMP22 ′ to which a DC reference voltage is input is connected to a connection node between the resistors and the load resistors. Therefore, compared to the conventional circuit, by reducing the number of differential comparison circuits by one, variation in threshold potential with respect to manufacturing variation is suppressed, and the number of constituent circuits is reduced by one differential circuit.

又、第2及び第3の実施の形態における信号検出回路102、103は、スレショルド電位Vthの温度変動を従来回路と同じレベルに抑えており、スレショルド電位Vthの製造ばらつきと温度変動の双方を抑制することができる。   In addition, the signal detection circuits 102 and 103 in the second and third embodiments suppress the temperature fluctuation of the threshold potential Vth to the same level as the conventional circuit, and suppress both the manufacturing variation and the temperature fluctuation of the threshold potential Vth. can do.

以上、本発明の実施の形態を詳述してきたが、具体的な構成は上記実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。   The embodiment of the present invention has been described in detail above, but the specific configuration is not limited to the above-described embodiment, and changes within a scope not departing from the gist of the present invention are included in the present invention. .

図1は、従来技術によるの信号検出回路の構成図である。FIG. 1 is a block diagram of a signal detection circuit according to the prior art. 図2は、従来技術による信号検出回路を差動構成とした回路の構成図である。FIG. 2 is a configuration diagram of a circuit in which a signal detection circuit according to the prior art has a differential configuration. 図3は、従来技術による信号検出回路に差動信号を入力した場合の動作を表す波形図である。FIG. 3 is a waveform diagram showing an operation when a differential signal is input to a signal detection circuit according to the prior art. 図4は、本発明による信号検出回路の第1の実施の形態における構成図である。FIG. 4 is a configuration diagram of the signal detection circuit according to the first embodiment of the present invention. 図5は、本発明による信号検出回路の第1の実施の形態における動作を示す波形図である。FIG. 5 is a waveform diagram showing the operation of the signal detection circuit according to the first embodiment of the present invention. 図6は、本発明による信号検出回路の第2の実施の形態における構成図である。FIG. 6 is a configuration diagram of a signal detection circuit according to a second embodiment of the present invention. 図7は、本発明による信号検出回路の第2の実施の形態における動作を示す波形図である。FIG. 7 is a waveform diagram showing the operation of the signal detection circuit according to the second embodiment of the present invention. 図8は、本発明による信号検出回路の第3の実施の形態における構成図である。FIG. 8 is a configuration diagram of a signal detection circuit according to a third embodiment of the present invention. 図9は、本発明による信号検出回路の第3の実施の形態における動作を示す波形図である。FIG. 9 is a waveform diagram showing the operation of the signal detection circuit according to the third embodiment of the present invention. 図10は、本発明に係る差動比較回路の利得Gvの温度変動シミュレーション結果を示す図である。FIG. 10 is a diagram illustrating a temperature variation simulation result of the gain Gv of the differential comparison circuit according to the present invention. 図11は、従来技術による信号検出回路、本発明による信号検出回路(第1及び第2の実施の形態)の温度変動に対するスレショルド電位Vth変動のシミュレーション結果を示す図である。FIG. 11 is a diagram showing a simulation result of the threshold potential Vth variation with respect to the temperature variation of the signal detection circuit according to the prior art and the signal detection circuit according to the present invention (first and second embodiments). 図12は、本発明による信号検出回路の差動排他的論理和回路の回路図と動作を示す波形図である。FIG. 12 is a circuit diagram and a waveform diagram showing the operation of the differential exclusive OR circuit of the signal detection circuit according to the present invention.

符号の説明Explanation of symbols

Sin:差動入力信号
SinP:正相入力信号
SinN:逆相入力信号
CMP7outP、CMP8outP、CMP9outP、CMP10outP、CMP11outP、CMP12outP:正相出力信号
CMP7outN、CMP8outN、CMP9outN、CMP10outN、CMP11outN、CMP12outN:逆相出力信号
CMP7out、CMP8out、CMP9out、CMP10out、CMP11out、CMP12out:差動出力信号
CMP7Eout、CMP8Eout、CMP9Eout、CMP10Eout:差動交換出力信号
Sout3P、Sout3N、Sout4P、Sout4N、Sout5P、Sout5N:2値化信号
COMP7、COMP8、COMP10、COMP20、COMP21、COMP22、COMP10’、COMP20’、COMP21’、COMP22’:差動比較回路
EOR3、EOR10:差動排他的論理和回路
Rb1、Rb10、Rb21:オフセット調整回路抵抗
R、R9、R10、R11、R12、R13、R14、R15、R16:抵抗
N1、N2、N3、N4、N9、N10、N11、N12、N13、N14、N15、N16、N17、N18:ノード
Mn9、Mn10、Mn11、Mn12、Mn13、Mn15、Mn16、Mn17、Mn18:Nチャネル型MOSトランジスタ
Mp1、Mp2、Mp3、Mp4、Mp5、Mn6:Pチャネル型MOSトランジスタ
Ib7、Ib8、Ib10、Ib20、Ib21、Ib22:電流源
Vref:バイアス電源
Vth:スレショルド電位
VR1、VR2:直流動作電圧
Sin: differential input signal SinP: positive phase input signal SinN: negative phase input signal CMP7outP, CMP8outP, CMP9outP, CMP10outP, CMP11outP, CMP12outP: positive phase output signal CMP7outN, CMP8outN, CMP9outN, CMP10outN, CMP11outN, CMP12outN: negative phase output signal CMP7out, CMP8out, CMP9out, CMP10out, CMP11out, CMP12out: differential output signals CMP7Eout, CMP8Eout, CMP9Eout, CMP10Eout: differential exchange output signals Sout3P, Sout3N, Sout4P, Sout4N, Sout5P, Sout5N: binarized signals COMP7, COMP8, COMP10 , COMP20, OMP21, COMP22, COMP10 ′, COMP20 ′, COMP21 ′, COMP22 ′: differential comparison circuit EOR3, EOR10: differential exclusive OR circuits Rb1, Rb10, Rb21: offset adjustment circuit resistors R, R9, R10, R11, R12 , R13, R14, R15, R16: resistors N1, N2, N3, N4, N9, N10, N11, N12, N13, N14, N15, N16, N17, N18: nodes Mn9, Mn10, Mn11, Mn12, Mn13, Mn15 Mn16, Mn17, Mn18: N-channel MOS transistors Mp1, Mp2, Mp3, Mp4, Mp5, Mn6: P-channel MOS transistors Ib7, Ib8, Ib10, Ib20, Ib21, Ib22: Current source Vref: Bias power supply Vth: Threshold Potential VR1, VR2: DC operating voltage

Claims (6)

入力される差動入力信号を増幅し、第1の差動出力信号を出力する第1のコンパレータと、
入力される前記差動入力信号を増幅し、第2の差動出力信号を出力する第2のコンパレータと、
前記第1の差動出力信号の正相信号と前記第2の差動出力信号の逆相信号からなる第1の差動信号と、前記第2の差動出力信号の正相信号と前記第1の差動出力信号の逆相信号からなる第2の差動信号との排他的論理和を出力する差動排他的論理和回路と、
前記第1のコンパレータと前記第2のコンパレータに接続され、前記第1の差動出力信号のコモンモード電圧と前記第2の差動出力信号のコモンモード電圧を、それぞれ第1及び第2の電圧に制御するコモンモード電圧制御回路と、を具備する
信号検出回路。
A first comparator for amplifying an input differential input signal and outputting a first differential output signal;
A second comparator for amplifying the input differential input signal and outputting a second differential output signal;
A first differential signal composed of a positive phase signal of the first differential output signal and a negative phase signal of the second differential output signal; a positive phase signal of the second differential output signal; A differential exclusive OR circuit that outputs an exclusive OR with a second differential signal composed of a negative-phase signal of the differential output signal of 1;
A common mode voltage of the first differential output signal and a common mode voltage of the second differential output signal are connected to the first comparator and the second comparator, respectively, and a first voltage and a second voltage, respectively. And a common mode voltage control circuit that controls the signal detection circuit.
請求項1に記載の信号検出回路において、
直流基準電源と、
第1の定電流源と、
前記第1の定電流源と前記直流基準電源との間に設けられた第1の抵抗とを更に備え、
前記コモンモード電圧制御回路は、印加される第1のバイアス電圧と第2のバイアス電圧に応じて前記第1及び第2の電圧を決定し、
前記第1のバイアス電圧は、前記第1の定電流源と前記直流電源と前記第1の抵抗とで設定され、
前記第2のバイアス電圧は、前記直流電源によって設定される
信号検出回路。
The signal detection circuit according to claim 1,
DC reference power supply,
A first constant current source;
A first resistor provided between the first constant current source and the DC reference power supply;
The common mode voltage control circuit determines the first and second voltages according to a first bias voltage and a second bias voltage applied;
The first bias voltage is set by the first constant current source, the DC power source, and the first resistor,
The second bias voltage is set by the DC power supply signal detection circuit.
請求項1又は2に記載の信号検出回路において、
信号を検出するスレショルド電位は、前記第1の電圧と前記第2の電圧との差に基づき設定される
信号検出回路。
In the signal detection circuit according to claim 1 or 2,
A threshold voltage for detecting a signal is set based on a difference between the first voltage and the second voltage.
請求項2又は3に記載の信号検出回路において、
前記コモンモード電圧制御回路は、第1のトランジスタと第2のトランジスタで形成される1対の差動対と、第2の定電流源を備え、
前記第1のトランジスタと前記第2のトランジスタのそれぞれは、前記第2の定電流源と共通接続され、
前記第1のトランジスタは前記第1のコンパレータに接続され、前記第1の差動出力信号のコモンモード電圧を前記第1の電圧に制御し、
前記第2のトランジスタは前記第2のコンパレータに接続され、前記第2の差動出力信号のコモンモード電圧を前記第2の電圧に制御し、
前記第1のバイアス電圧は、前記第2のトランジスタのゲートに印加され、
前記第2のバイアス電圧は、前記第1のトランジスタのゲートに印加される
信号検出回路。
In the signal detection circuit according to claim 2 or 3,
The common mode voltage control circuit includes a pair of differential pairs formed by a first transistor and a second transistor, and a second constant current source,
Each of the first transistor and the second transistor is commonly connected to the second constant current source,
The first transistor is connected to the first comparator and controls a common mode voltage of the first differential output signal to the first voltage;
The second transistor is connected to the second comparator, and controls a common mode voltage of the second differential output signal to the second voltage.
The first bias voltage is applied to a gate of the second transistor;
The second bias voltage is applied to the gate of the first transistor.
請求項4に記載の信号検出回路において、
前記第1のコンパレータは、第3のトランジスタと第4のトランジスタで形成される1対の差動対と、第2の抵抗と、第3の抵抗と、第4の抵抗と、第3の定電流源を備え、
前記第3のトランジスタと前記第4のトランジスタのそれぞれは、前記第3の定電流源と共通接続され、
前記第3のトランジスタは第1のノードを介して前記第2の抵抗の一端に接続され、
前記第4のトランジスタは第2のノードを介して前記第3の抵抗の一端に接続され、
前記第2の抵抗と前記第3の抵抗の他端は、第3のノードを介して前記第4の抵抗の一端に共通接続され、
前記第4の抵抗の他端は電源に接続され、
前記差動入力信号は、前記第1のトランジスタ及び前記第2のトランジスタのゲートに、それぞれ入力され、前記第1及び前記第2のノードから前記第1の差動出力信号を出力し、
前記第2のコンパレータは、第5のトランジスタと第6のトランジスタで形成される1対の差動対と、第5の抵抗と、第6の抵抗と、第7の抵抗と、第4の定電流源を備え、
前記第5のトランジスタと前記第6のトランジスタのそれぞれは、前記第4の定電流源と共通接続され、
前記第5のトランジスタは第4のノードを介して前記第5の抵抗の一端に接続され、
前記第6のトランジスタは第5のノードを介して前記第6の抵抗の一端に接続され、
前記第5の抵抗と前記第6の抵抗の他端は第6のノードを介して前記第7の抵抗の一端に共通接続され、
前記第7の抵抗の他端は電源に接続され、
前記差動入力信号は、前記第5のトランジスタ及び前記第6のトランジスタのゲートに、それぞれ入力され、前記第5及び前記第6のノードから前記第2の差動出力信号を出力する
信号検出回路。
The signal detection circuit according to claim 4,
The first comparator includes a pair of differential pairs formed by a third transistor and a fourth transistor, a second resistor, a third resistor, a fourth resistor, and a third constant. With a current source,
Each of the third transistor and the fourth transistor is commonly connected to the third constant current source,
The third transistor is connected to one end of the second resistor via a first node;
The fourth transistor is connected to one end of the third resistor via a second node;
The other ends of the second resistor and the third resistor are commonly connected to one end of the fourth resistor via a third node,
The other end of the fourth resistor is connected to a power source;
The differential input signal is input to the gates of the first transistor and the second transistor, respectively, and outputs the first differential output signal from the first and second nodes,
The second comparator includes a pair of differential pairs formed by a fifth transistor and a sixth transistor, a fifth resistor, a sixth resistor, a seventh resistor, and a fourth constant. With a current source,
Each of the fifth transistor and the sixth transistor is commonly connected to the fourth constant current source,
The fifth transistor is connected to one end of the fifth resistor via a fourth node;
The sixth transistor is connected to one end of the sixth resistor via a fifth node;
The other ends of the fifth resistor and the sixth resistor are commonly connected to one end of the seventh resistor via a sixth node,
The other end of the seventh resistor is connected to a power source;
The differential input signal is input to the gates of the fifth transistor and the sixth transistor, respectively, and outputs the second differential output signal from the fifth and sixth nodes. .
請求項1から5いずれか1項に記載の信号検出回路であって、
シリアル通信を行なうシリアル通信デバイスに搭載される
信号検出回路。
The signal detection circuit according to any one of claims 1 to 5,
A signal detection circuit mounted on a serial communication device that performs serial communication.
JP2005254170A 2005-09-01 2005-09-01 Signal detection circuit Expired - Fee Related JP4688152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254170A JP4688152B2 (en) 2005-09-01 2005-09-01 Signal detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254170A JP4688152B2 (en) 2005-09-01 2005-09-01 Signal detection circuit

Publications (2)

Publication Number Publication Date
JP2007068057A true JP2007068057A (en) 2007-03-15
JP4688152B2 JP4688152B2 (en) 2011-05-25

Family

ID=37929670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254170A Expired - Fee Related JP4688152B2 (en) 2005-09-01 2005-09-01 Signal detection circuit

Country Status (1)

Country Link
JP (1) JP4688152B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027657A (en) * 2012-07-24 2014-02-06 Analog Devices Inc Architecture for high speed serial transmitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054742A (en) * 2004-08-13 2006-02-23 Nec Micro Systems Ltd Signal detection circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054742A (en) * 2004-08-13 2006-02-23 Nec Micro Systems Ltd Signal detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027657A (en) * 2012-07-24 2014-02-06 Analog Devices Inc Architecture for high speed serial transmitter

Also Published As

Publication number Publication date
JP4688152B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
EP2498398B1 (en) Amplifier circuit and method
JP2008219761A (en) Input signal detection circuit
TWI269531B (en) Signal detecting circuit
WO2013161571A1 (en) Sensor device
US9407221B2 (en) Differential amplifier circuit
CN108694962B (en) Amplifier and semiconductor device using the same
CN110780190A (en) Loss of signal detector with PVT compensation
JP5415623B2 (en) Amplifier bias technology
JP2010136039A (en) Signal amplifier and magnetic sensor device
JP4928290B2 (en) Differential signal comparator
WO2010076086A1 (en) High speed clock signal duty cycle adjustment
JP4688152B2 (en) Signal detection circuit
JP3535836B2 (en) Power amplifier circuit
JP6063643B2 (en) Semiconductor device and communication device
CN112825476B (en) Operational amplifier
US8614602B2 (en) Differential amplifier
JP5320503B2 (en) Amplifier circuit
KR100873287B1 (en) Comparator with Hysteresis Characteristics
JP2003179653A (en) Data receiver and data reception method
CN112688668A (en) Clock comparator and method thereof
WO2024108548A1 (en) Six-input dynamic comparator
US20150171808A1 (en) Small signal amplifier circuit
JP2014176040A (en) Differential output circuit, semiconductor ic for high speed serial communication, and high speed serial communication system
JP2007336025A (en) Ota circuit
CN116566377A (en) Receiving circuit suitable for multiple high-speed interface standards

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080812

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Written amendment

Effective date: 20110126

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20110210

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees