JP2007067115A - Organic solar cell - Google Patents

Organic solar cell Download PDF

Info

Publication number
JP2007067115A
JP2007067115A JP2005250277A JP2005250277A JP2007067115A JP 2007067115 A JP2007067115 A JP 2007067115A JP 2005250277 A JP2005250277 A JP 2005250277A JP 2005250277 A JP2005250277 A JP 2005250277A JP 2007067115 A JP2007067115 A JP 2007067115A
Authority
JP
Japan
Prior art keywords
solar cell
organic solar
type
heterojunction layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005250277A
Other languages
Japanese (ja)
Inventor
Toru Shiga
亨 志賀
Kensuke Takechi
憲典 武市
Tomomi Motohiro
友美 元廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2005250277A priority Critical patent/JP2007067115A/en
Publication of JP2007067115A publication Critical patent/JP2007067115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic solar cell which can spread an absorption wavelength area of sunlight and can enhance a photoelectrically converting efficiency sufficiently. <P>SOLUTION: This organic solar cell has a hetero-junction layer containing a p-type conjugate polymer having electron-releasing properties, and an n-type fullerene derivative having electron-accepting properties; and two electrodes provided on both sides of the hetero-junction layer, respectively. The fullerene derivative is represented by a general formula (1). In the general formula (1), Fu denotes a bivalent or more group composed of fullerene, R denotes an alkyl group of carbon number 1 to 4, etc., X denotes a dimer to a hexamer such as thiophen or the like, and n denotes an integer of 1 to 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機太陽電池に関する。   The present invention relates to an organic solar cell.

排出炭酸ガスによる地球温暖化問題やクリーンエネルギー技術への要望が高まり、太陽光を電力に変換する太陽電池の研究、実用化の動きはめざましい。現在実用に供されている光電変換素子は通常、無機半導体であるシリコン、砒化ガリウム、硫化カドミウムを主とした材料などから製造されている。しかし、これらの物質は、コストが掛かる高温処理工程を必要とし、また材料自体のコストも高い。このような理由から、有機材料を用いた太陽電池について古くから研究されている。   The demand for global warming due to carbon dioxide emissions and clean energy technology has increased, and research and commercialization of solar cells that convert sunlight into electric power are remarkable. Photoelectric conversion devices currently in practical use are usually manufactured from materials such as silicon, gallium arsenide, and cadmium sulfide, which are inorganic semiconductors. However, these substances require high-temperature processing steps that are expensive, and the cost of the materials themselves is high. For these reasons, solar cells using organic materials have been studied for a long time.

有機太陽電池は様々な方式に分類されるが、無機太陽電池の方式を模した、銅フタロシアニンとペリレン顔料を基板上に順次積層したPN接合型有機太陽電池について報告されている(例えば非特許文献1参照)。また、p型半導体とn型半導体を混合してなる膜を用いたバルクへテロ接合型太陽電池が提案され(例えば特許文献1参照)、最近特に注目を浴びている。これは、この種の太陽電池が、一方の有機材料を他方の有機材料中に分散させているため、接合面積が広く、電荷分離する領域も広くなっており、高い光電変換効率が期待されるためである。このような有機太陽電池においては、具体的に、p型半導体として、ポリフェニレンビニレンの誘導体であるポリ[(2−メトキシ−5−(2’−エチルヘキシロキシ)1−4−フェニレンビニレン]やポリへキシルチオフェンなどのp型共役高分子が用いられ、n型半導体として、大きな電子親和性をもち、電子受容体として機能するn型のフラーレン誘導体(例えばC60、非特許文献2、3参照)やCdSe、CdTeなどのナノ粒子(例えば非特許文献4参照)を用いたものが利用されている。また、p型半導体としてのチオフェン重合体と、n型半導体としてのシアノ化フラーレンを結合してなる材料を用いた有機太陽電池が提案されている(特許文献2参照)。 Organic solar cells are classified into various types, and PN junction type organic solar cells in which copper phthalocyanine and perylene pigment are sequentially laminated on a substrate that mimics the inorganic solar cell method have been reported (for example, non-patent literature). 1). Further, a bulk heterojunction solar cell using a film formed by mixing a p-type semiconductor and an n-type semiconductor has been proposed (see, for example, Patent Document 1), and has recently attracted particular attention. This is because a solar cell of this type disperses one organic material in the other organic material, so that the junction area is wide and the charge separation region is wide, and high photoelectric conversion efficiency is expected. Because. In such an organic solar cell, specifically, poly [(2-methoxy-5- (2′-ethylhexyloxy) 1-4-phenylenevinylene], which is a derivative of polyphenylenevinylene, is used as a p-type semiconductor. A p-type conjugated polymer such as hexylthiophene is used, and an n-type fullerene derivative that has a large electron affinity as an n-type semiconductor and functions as an electron acceptor (see, for example, C 60 , Non-Patent Documents 2 and 3) , CdSe, CdTe, and other nanoparticles (for example, see Non-Patent Document 4) are used, and a thiophene polymer as a p-type semiconductor and a cyanated fullerene as an n-type semiconductor are combined. An organic solar cell using such a material has been proposed (see Patent Document 2).

しかしながら、上述した有機太陽電池のいずれにおいても、光電変換が行われる波長領域は、p型半導体とn型半導体の吸収しうる光の波長領域に限られることから、太陽光を十分に利用できず、光電変換効率が不十分であるという欠点があった。   However, in any of the above-described organic solar cells, the wavelength region where photoelectric conversion is performed is limited to the wavelength region of light that can be absorbed by the p-type semiconductor and the n-type semiconductor, so that sunlight cannot be sufficiently utilized. The photoelectric conversion efficiency is insufficient.

そこで、光の吸収波長範囲を広げる工夫として、p型半導体とn型半導体との間に電荷移動錯体を形成させる手法が報告されている(例えば非特許文献5参照)。
C.W.Tang,[Applied Physics Letters], Vol.48, p183 G.Yu,[Science],No.270, p 789(1995) N.S.Sariciftci,[Advanced Functional Materials], Vol.13, p85(2003) W.Huynh,[Science],No.295, p2425(2002) C.Giusca,[Carbon], Vol.40, p1565(2002) 米国特許第5331183号明細書 特開2004−277736号公報
Therefore, as a device for expanding the absorption wavelength range of light, a method of forming a charge transfer complex between a p-type semiconductor and an n-type semiconductor has been reported (for example, see Non-Patent Document 5).
CWTang, [Applied Physics Letters], Vol.48, p183 G.Yu, [Science], No.270, p 789 (1995) NSSariciftci, [Advanced Functional Materials], Vol.13, p85 (2003) W. Huynh, [Science], No. 295, p2425 (2002) C.Giusca, [Carbon], Vol.40, p1565 (2002) U.S. Pat.No. 5,311,183 JP 2004-277736 A

しかしながら、上記非特許文献5に記載の有機太陽電池であっても、光の吸収波長範囲が、p型半導体とn型半導体のそれぞれの光吸収波長範囲よりもわずかに広がっているにすぎず、十分な光電変換効率が得られなかった。   However, even in the organic solar cell described in Non-Patent Document 5, the light absorption wavelength range is only slightly wider than the light absorption wavelength ranges of the p-type semiconductor and the n-type semiconductor, Sufficient photoelectric conversion efficiency was not obtained.

そこで、本発明は、太陽光の吸収する波長領域を広げて光電変換効率を十分に向上できる有機太陽電池を提供することを目的とする。   Then, an object of this invention is to provide the organic solar cell which can fully improve the photoelectric conversion efficiency by extending the wavelength range which sunlight absorbs.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、有機太陽電池を構成するヘテロ接合層において、電子受容体であるn型のフラーレン誘導体の側鎖として、共役しうる特定の化学構造を導入することにより、光の吸収波長範囲をより広くでき、光電変換効率を十分向上できることを見出し、本発明の完成に至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have found that a heterojunction layer constituting an organic solar cell can be conjugated as a side chain of an n-type fullerene derivative that is an electron acceptor. By introducing a chemical structure, it has been found that the absorption wavelength range of light can be broadened and the photoelectric conversion efficiency can be sufficiently improved, and the present invention has been completed.

即ち、本発明は、電子供与性を有するp型共役高分子及び電子受容性を有するn型のフラーレン誘導体を含むヘテロ接合層と、前記へテロ接合層の一面側に設けられる第1電極と、前記へテロ接合層の他面側に設けられる第2電極とを有し、前記フラーレン誘導体が下記一般式(1):

Figure 2007067115

(上記式(1)中、Fuはフラーレンからなる2価以上の基を表し、Rは炭素数1〜4のアルキル基又は水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表し、Xが、チオフェン、ピロール、フラン、セレニウム又はこれらの水素原子の少なくとも一部がアルキル基で置換されたアルキルチオフェンの2〜6量体を表し、nは1〜6の整数を表す)
で表されることを特徴とする有機太陽電池である。 That is, the present invention includes a heterojunction layer including a p-type conjugated polymer having an electron donating property and an n-type fullerene derivative having an electron accepting property, and a first electrode provided on one side of the heterojunction layer; A second electrode provided on the other surface side of the heterojunction layer, and the fullerene derivative is represented by the following general formula (1):
Figure 2007067115

(In the above formula (1), Fu represents a divalent or higher valent group consisting of fullerene, and R represents an alkyl group having 1 to 4 carbon atoms or a halogenated alkyl group in which at least a part of hydrogen atoms are substituted with halogen atoms. X represents thiophene, pyrrole, furan, selenium or a 2-6 mer of alkylthiophene in which at least a part of these hydrogen atoms is substituted with an alkyl group, and n represents an integer of 1-6)
It is an organic solar cell characterized by the following.

この有機太陽電池によれば、p型共役高分子とn型フラーレン誘導体のそれぞれの光吸収波長から予想される光電変換波長よりもかなり長い波長、具体的には800nmを超える長波長域まで実際に光電変換でき、光電変換効率を十分に向上させることができる。このように長い波長域まで光電変換できる理由は明らかではないが、n型フラーレン誘導体とp型共役高分子とが特異な電荷移動錯体を形成し、p型共役高分子の共役構造と、n型フラーレン誘導体Xの共役構造とが大きな相互作用を起こしているためではないかと推察される。   According to this organic solar cell, a wavelength considerably longer than the photoelectric conversion wavelength expected from the respective light absorption wavelengths of the p-type conjugated polymer and the n-type fullerene derivative, specifically, a long wavelength region exceeding 800 nm is actually obtained. Photoelectric conversion can be performed, and the photoelectric conversion efficiency can be sufficiently improved. The reason why photoelectric conversion can be performed up to such a long wavelength region is not clear, but the n-type fullerene derivative and the p-type conjugated polymer form a unique charge transfer complex, and the conjugated structure of the p-type conjugated polymer and the n-type It is presumed that this is due to a large interaction with the conjugated structure of the fullerene derivative X.

上記有機太陽電池においては、p型共役高分子がポリフェニレンビニレンであり、n型フラーレン誘導体が、上記一般式(1)においてFuがC60、Rがメチル基又はエチル基、Xがチオフェンの2量体〜4量体となっているものであることが好ましい。この場合、光電変換効率がより十分に向上する傾向がある。 In the organic solar cell, the p-type conjugated polymer is polyphenylene vinylene, the n-type fullerene derivative is Fu of C 60 , R is a methyl group or an ethyl group, and X is thiophene in the above general formula (1). It is preferable that it is a body-tetramer. In this case, the photoelectric conversion efficiency tends to be more sufficiently improved.

また上記有機太陽電池においては、ヘテロ接合層の厚さが50〜300nmであることが好ましい。この場合、上記範囲を外れる場合と比較して、入射光の透過する割合が低くなり、入射光を多く利用できるという利点があると共に、光電変換により発生するキャリアの失活が小さくなり、光電変換能がより十分に向上する。   Moreover, in the said organic solar cell, it is preferable that the thickness of a heterojunction layer is 50-300 nm. In this case, compared with a case outside the above range, the ratio of transmitting incident light is reduced, and there is an advantage that a large amount of incident light can be used. In addition, deactivation of carriers generated by photoelectric conversion is reduced, and photoelectric conversion is performed. The performance is improved sufficiently.

本発明の有機太陽電池によれば、太陽光の吸収波長領域を広げて光電変換効率を十分に向上できる。   According to the organic solar cell of the present invention, the photoelectric absorption efficiency can be sufficiently improved by expanding the absorption wavelength region of sunlight.

以下、本発明の有機太陽電池の実施形態について詳細に説明する。   Hereinafter, embodiments of the organic solar cell of the present invention will be described in detail.

図1は、本発明の有機太陽電池の一実施形態を示す概略図である。図1に示すように、本実施形態の有機太陽電池10は、主として基板1、透明電極(第1電極)2、ヘテロ接合層3及び対向電極(第2電極)4がこの順に積層されて構成される。ここで、透明電極2は、ヘテロ接合層3の一面3a側に設けられており、対向電極4は、ヘテロ接合層3に対し、一面3aと反対側の面3b側に設けられている。   FIG. 1 is a schematic view showing one embodiment of the organic solar cell of the present invention. As shown in FIG. 1, the organic solar cell 10 according to the present embodiment is mainly configured by laminating a substrate 1, a transparent electrode (first electrode) 2, a heterojunction layer 3 and a counter electrode (second electrode) 4 in this order. Is done. Here, the transparent electrode 2 is provided on the one surface 3 a side of the heterojunction layer 3, and the counter electrode 4 is provided on the surface 3 b side opposite to the one surface 3 a with respect to the heterojunction layer 3.

ヘテロ接合層3は、電子供与性を有するp型共役高分子と、電子受容性を有するn型のフラーレン誘導体とを含む。ここで、n型のフラーレン誘導体は、下記一般式(1):

Figure 2007067115

で表される。 The heterojunction layer 3 includes a p-type conjugated polymer having an electron donating property and an n-type fullerene derivative having an electron accepting property. Here, the n-type fullerene derivative is represented by the following general formula (1):
Figure 2007067115

It is represented by

上記一般式(1)中、Fuはフラーレンからなる2価以上の基を表す。ここで、フラーレンとしては、C60、C70、C84等が挙げられ、フラーレンはこれらのうちのいずれでもかまわないが、C60が最も入手しやすく、またコスト面で有利であるという理由から特に好ましい。また、上記フラーレンは、電子受容性が高められたシアノ化フラーレンであるとより好ましい。この場合、光吸収波長領域がより広がり、光電変換効率がより十分に向上する。なお、Fuに結合している基は、Fuとともに、窒素原子を含む5員環を形成している。 In the general formula (1), Fu represents a divalent or higher group composed of fullerene. Here, as the fullerene, C 60 , C 70 , C 84 and the like can be mentioned, and the fullerene may be any of these, but C 60 is most easily available and is advantageous in terms of cost. Particularly preferred. The fullerene is more preferably a cyanated fullerene having enhanced electron acceptability. In this case, the light absorption wavelength region is further expanded, and the photoelectric conversion efficiency is more sufficiently improved. In addition, the group couple | bonded with Fu forms the 5-membered ring containing a nitrogen atom with Fu.

Rは炭素数1〜4のアルキル基又は、このアルキル基中の水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表す。ハロゲン原子としては、例えばフッ素原子、塩素原子などが挙げられ、ハロゲン化アルキル基中に導入されるハロゲン原子の数は、後述のスピンコート溶液調製時に溶解性を損わない程度の数とする。またRは、直鎖状または分岐状であってもよい。またアルキル基中の炭素数が4を超えると、炭素数が4以下の場合に比べて、n型フラーレン誘導体の合成が難しくなり、合成終了時の収量が極めて微量となり、コストが大幅に増加するというデメリットがある。   R represents an alkyl group having 1 to 4 carbon atoms or a halogenated alkyl group in which at least a part of hydrogen atoms in the alkyl group is substituted with a halogen atom. Examples of the halogen atom include a fluorine atom and a chlorine atom, and the number of halogen atoms introduced into the halogenated alkyl group is set to a number that does not impair the solubility during the preparation of the spin coat solution described later. R may be linear or branched. In addition, when the number of carbon atoms in the alkyl group exceeds 4, it becomes difficult to synthesize an n-type fullerene derivative, compared with the case where the number of carbon atoms is 4 or less, and the yield at the end of the synthesis becomes extremely small, resulting in a significant increase in cost. There is a demerit.

Xは、チオフェン、ピロール、フラン、セレニウム又はこれらの水素原子の少なくとも一部がアルキル基で置換されたアルキルチオフェンの2〜6量体を表す。Xがチオフェン等の単量体の場合、2〜6量体である場合に比べて、後述の光吸収波長が長くなりにくいというデメリットがあり、6量体を超えると、2〜6量体の場合と比較して、合成が難しくなり、コスト高となる傾向がある。またアルキル基は炭素数1〜8個が好ましい。炭素数が8を超えると、炭素数が8以下の場合に比べて、変換効率が下がることに加えて、後述のスピンコート溶液調製時に溶解しにくくなる傾向がある。なお、チオフェン、ピロール、フラン、セレニウムはいずれも共役構造をとりうる物質である。   X represents thiophene, pyrrole, furan, selenium, or a dimer to hexamer of alkylthiophene in which at least a part of these hydrogen atoms is substituted with an alkyl group. In the case where X is a monomer such as thiophene, there is a demerit that the light absorption wavelength described later is less likely to be longer than when it is a 2-6 mer. Compared to the case, synthesis tends to be difficult and cost tends to increase. The alkyl group preferably has 1 to 8 carbon atoms. When the number of carbon atoms exceeds 8, compared to the case where the number of carbon atoms is 8 or less, the conversion efficiency is lowered, and it tends to be difficult to dissolve during the preparation of a spin coat solution described later. Note that thiophene, pyrrole, furan, and selenium are all substances that can have a conjugated structure.

nは1〜6の整数を表す。ここで、nは、上記式(1)中の括弧で表される基がFuに直接結合される数を表し、例えばnが3である場合、括弧で表される3個の基がFuの異なる部位にそれぞれ結合されていることを意味する。nが6を超えると、nが6以下の場合と比較して、後述の量子効率の長波長端がより長波長側まで伸びなくなる傾向がある。nは1〜4であることがより好ましい。nが4を超えると、nが1〜4の場合に比べて、変換効率が低下する傾向があることに加えて、そのようなフラーレン誘導体が極微量にしか合成されず、コストが高くなる傾向がある。なお、ヘテロ接合層3は、n=1〜3のものをそれぞれ同時に含んでいてもよい。   n represents an integer of 1 to 6. Here, n represents the number of groups represented by parentheses in the above formula (1) that are directly bonded to Fu. For example, when n is 3, three groups represented by parentheses are Fu. It means that it is bonded to different sites. When n exceeds 6, compared with the case where n is 6 or less, the long wavelength end of the quantum efficiency described later tends not to extend to the longer wavelength side. n is more preferably 1 to 4. When n exceeds 4, in addition to the tendency that conversion efficiency decreases compared to the case where n is 1 to 4, such fullerene derivatives tend to be synthesized only in a very small amount, resulting in higher costs. There is. The heterojunction layer 3 may include n = 1 to 3 at the same time.

p型の共役高分子は、電子供与性を有するものであれば特に限定されず、p型共役高分子としては通常、分子構造中に共役二重結合を有するものが挙げられる。このようなp型共役高分子としては、例えば、チオフェン、フェニレンビニレン、チエニレンビニレン、カルバゾール、ビニルカルバゾール、ピロール、アセチレン、イソチアナフェン及びヘプタジエンなどの化合物、ならびに水酸基、アルキル基、アミノ基、メチル基、ニトロ基及びハロゲン基などを有するこれら誘導体、の重合体が挙げられる。なお、これらの共役高分子は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。より具体的には、ポリ[2−メトキシ−5−(2’−エチルヘキシロキシ)−1,4−フェニレンビニレン]、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)などが挙げられる。なかでも、ポリ[2−メトキシ−5−(2’−エチルヘキシロキシ)−1,4−フェニレンビニレン]、ポリ(3−ヘキシルチオフェン)が、変換効率を向上させる観点からは、特に好ましい。   The p-type conjugated polymer is not particularly limited as long as it has an electron donating property. Examples of the p-type conjugated polymer usually include those having a conjugated double bond in the molecular structure. Examples of such p-type conjugated polymers include compounds such as thiophene, phenylene vinylene, thienylene vinylene, carbazole, vinyl carbazole, pyrrole, acetylene, isothiaphene and heptadiene, and hydroxyl groups, alkyl groups, amino groups, methyl groups, and the like. And polymers of these derivatives having a group, a nitro group and a halogen group. In addition, these conjugated polymers may be used independently and may be used in combination of 2 or more type. More specifically, poly [2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylenevinylene], poly (3-hexylthiophene), poly (3-octylthiophene) and the like can be mentioned. . Of these, poly [2-methoxy-5- (2'-ethylhexyloxy) -1,4-phenylenevinylene] and poly (3-hexylthiophene) are particularly preferable from the viewpoint of improving the conversion efficiency.

p型共役高分子については、数平均分子量が標準ポリスチレン換算で1,000〜200,000であることが好ましい。数平均分子量が1,000未満では、1,000以上である場合に比べてp型共役高分子の粘度が低くなり、例えば丈夫なスピンコート膜を形成することができなくなり、有機太陽電池の作製が困難となる。逆に、数平均分子量が200,000を超えると、200,000以下である場合に比べて、p型共役高分子の粘度が高くなり、n型フラーレン誘導体が凝集しやすくなり、光電変換効率の低下を招く。数平均分子量はより好ましくは10,000〜100,000である。数平均分子量がこの範囲にあると、この範囲から外れた場合と比較して、例えばスピンコート膜の形成が容易になり、n型フラーレン誘導体が分散して電荷移動錯体が形成されやすくなり、光電変換効率がより向上するという利点が得られる。   The p-type conjugated polymer preferably has a number average molecular weight of 1,000 to 200,000 in terms of standard polystyrene. When the number average molecular weight is less than 1,000, the viscosity of the p-type conjugated polymer is lower than that when the number average molecular weight is 1,000 or more. For example, a strong spin coat film cannot be formed, and the organic solar cell is manufactured. It becomes difficult. On the other hand, when the number average molecular weight exceeds 200,000, the viscosity of the p-type conjugated polymer becomes higher than when the number average molecular weight is 200,000 or less, the n-type fullerene derivative tends to aggregate, and the photoelectric conversion efficiency is improved. Incurs a decline. The number average molecular weight is more preferably 10,000 to 100,000. When the number average molecular weight is in this range, for example, the formation of a spin coat film is facilitated, and the n-type fullerene derivative is dispersed and a charge transfer complex is easily formed as compared with the case where the number average molecular weight is outside this range. The advantage that the conversion efficiency is further improved is obtained.

なお、p型共役高分子については結晶性でも非晶性であってもよく、立体規則性の程度については問われない。   The p-type conjugated polymer may be crystalline or amorphous, and the degree of stereoregularity is not questioned.

ヘテロ接合層3を構成する材料としては、p型共役高分子がポリフェニレンビニレン又はポリ(3−ヘキシルチオフェン)であり、n型フラーレン誘導体が、上記構造式(1)において、FuがC60であり、Rはメチル基又はエチル基であり、Xはチオフェンの2量体〜4量体であり、nは主として1であるものが、光電変換効率をより向上させる点からは好ましい。 As a material constituting the heterojunction layer 3, the p-type conjugated polymer is polyphenylene vinylene or poly (3-hexylthiophene), and the n-type fullerene derivative is Fu in C 60 in the above structural formula (1). , R is a methyl group or an ethyl group, X is a dimer to tetramer of thiophene, and n is mainly 1, from the viewpoint of further improving the photoelectric conversion efficiency.

p型共役高分子とn型のフラーレン誘導体の混合割合については、共役高分子の繰り返し(モノマー)ユニットに対するフラーレン誘導体のモル比(=フラーレン誘導体の数/共役高分子の繰り返し(モノマー)ユニット数)が0.67〜1.5の範囲であることが、電荷移動錯体が十分に形成され、光電変換能がより高くなるという理由から好ましいが、上記モル比は、より好ましくは0.8〜1.2であり、最も好ましいモル比は1である。   Regarding the mixing ratio of the p-type conjugated polymer and the n-type fullerene derivative, the molar ratio of the fullerene derivative to the repeating (monomer) unit of the conjugated polymer (= number of fullerene derivatives / number of repeating (monomer) units of the conjugated polymer) Is preferably in the range of 0.67 to 1.5 because the charge transfer complex is sufficiently formed and the photoelectric conversion ability is higher, but the molar ratio is more preferably 0.8 to 1. 2 and the most preferred molar ratio is 1.

p型共役高分子とn型のフラーレン誘導体を分散してなるヘテロ接合層3の厚さは、好ましくは50〜300nmであり、より好ましくは80〜200nmである。厚さが50nm未満の場合、上記範囲にある場合と比較して、入射光の透過する割合が高くなり、入射光を十分に捕らえることができず、十分に光電変換を行うことができないので、変換効率が下がる傾向がある。厚さが300nmを超えると、上記範囲内にある場合と比較して、光電変換により発生するキャリアの失活が大きくなり、光電変換能の低下を招く傾向がある。   The thickness of the heterojunction layer 3 formed by dispersing the p-type conjugated polymer and the n-type fullerene derivative is preferably 50 to 300 nm, more preferably 80 to 200 nm. When the thickness is less than 50 nm, compared to the case where the thickness is within the above range, the ratio of the incident light to be transmitted is high, the incident light cannot be sufficiently captured, and the photoelectric conversion cannot be sufficiently performed. Conversion efficiency tends to decrease. When the thickness exceeds 300 nm, the deactivation of carriers generated by photoelectric conversion increases as compared with the case where the thickness is within the above range, and the photoelectric conversion ability tends to be lowered.

基板1は、透明電極2、ヘテロ接合層3および対向電極4を有する積層体を支持し、補強するものであればよく、基板1を構成する材料としては、例えばガラス;ポリイミド、PET、PEN、PES、テフロン(登録商標)等の耐熱性の高分子フィルム;ステンレス鋼(SUS)、アルミニウム板等の金属、シリコン等の半導体、セラミック等が挙げられ、なかでも、基板1は、高い透明性を有するもの、例えばガラスがより好ましい。但し、基板1を構成する材料として、ステンレス鋼(SUS)、アルミニウム板等の金属、シリコン等の半導体、セラミックを用いる場合には、膜厚を十分に薄くして透明にする必要がある。基板1は、これらの材料からなる層単独で構成されてもよいし、これらの材料からなる複数の層を積層して構成してもよい。なお、基板1は、表面がフラットなものでもよいし、表面に凹凸を有しているものでもよい。   The substrate 1 may be any material that supports and reinforces the laminated body having the transparent electrode 2, the heterojunction layer 3, and the counter electrode 4. Examples of the material constituting the substrate 1 include glass; polyimide, PET, PEN, Heat-resistant polymer films such as PES and Teflon (registered trademark); metals such as stainless steel (SUS) and aluminum plates, semiconductors such as silicon, ceramics, etc. Among them, the substrate 1 has high transparency. What has it, for example, glass, is more preferable. However, when using a metal such as stainless steel (SUS) or an aluminum plate, a semiconductor such as silicon, or ceramic as a material constituting the substrate 1, it is necessary to make the film thickness sufficiently thin and transparent. The substrate 1 may be constituted by a single layer made of these materials, or may be constituted by laminating a plurality of layers made of these materials. The substrate 1 may have a flat surface or may have irregularities on the surface.

透明電極2は、ヘテロ接合層3に対してオーミック接触の形成が可能であり、かつ照射光を透過させるものであればよく、例えば、ITO、SnO、ZnO、In等の透明導電材料又はフッ素ドープ酸化錫(SnO:F)、アンチモンドープ酸化錫(SnO:Sb)、In、錫ドープ酸化インジウム(In:Sn)、ZnO、Alドープ酸化亜鉛(ZnO:Al)、Gaドープ酸化亜鉛(ZnO:Ga)等の上記透明導電材料に不純物がドープされたもので構成される。透明電極2は、これら材料からなる層単独で構成してもよいし、複数の層を積層した積層体で構成してもよい。透明電極2の膜厚は、電極としての機能を果たすものであれば特に限定されるものではないが、通常は3nm〜10μmである。なお、透明電極2は、表面がフラットなものでもよいし、表面に凹凸を有しているものでもよい。 The transparent electrode 2 only needs to be capable of forming an ohmic contact with the heterojunction layer 3 and transmit the irradiation light. For example, the transparent electrode 2 is a transparent conductive material such as ITO, SnO 2 , ZnO, or In 2 O 3. Materials or fluorine-doped tin oxide (SnO 2 : F), antimony-doped tin oxide (SnO 2 : Sb), In 2 O 3 , tin-doped indium oxide (In 2 O 3 : Sn), ZnO, Al-doped zinc oxide (ZnO) : Al), Ga-doped zinc oxide (ZnO: Ga), or the like, and the transparent conductive material is doped with impurities. The transparent electrode 2 may be composed of a single layer made of these materials, or may be composed of a laminate in which a plurality of layers are laminated. Although the film thickness of the transparent electrode 2 will not be specifically limited if the function as an electrode is fulfilled, Usually, it is 3 nm-10 micrometers. The transparent electrode 2 may have a flat surface, or may have irregularities on the surface.

対向電極4を構成する材料は、ヘテロ接合層3の有機半導体とオーミック接触の形成が可能な仕事関数を有する導電材料であれば特に限定されない。このような導電材料は、具体的には金、白金、銀、銅、アルミニウム、ニッケル、ロジウム、インジウムなどの金属、それらの合金、上記の透明電極2を構成する透明導電材料などが挙げられる。また、対向電極4の膜厚は、発生した光電荷を十分に外部回路へ伝達できる程度のシート抵抗を得ることができる範囲であれば、特に限定されない。対向電極4の膜厚は通常は、1〜50nmであり、好ましくは20〜30nmである。   The material constituting the counter electrode 4 is not particularly limited as long as it is a conductive material having a work function capable of forming an ohmic contact with the organic semiconductor of the heterojunction layer 3. Specific examples of such a conductive material include metals such as gold, platinum, silver, copper, aluminum, nickel, rhodium, and indium, alloys thereof, and the transparent conductive material that constitutes the transparent electrode 2 described above. In addition, the thickness of the counter electrode 4 is not particularly limited as long as the sheet resistance that can sufficiently transmit the generated photocharge to the external circuit can be obtained. The thickness of the counter electrode 4 is usually 1 to 50 nm, preferably 20 to 30 nm.

また、対向電極4とヘテロ接合層3との間には、LiF、未修飾フラーレン、ジメチルジフェニルフェナントロリンからなる層を、ヘテロ接合層3と対向電極4との間のオーミック接触を損わない程度に設けてもよい。これらを対向電極4とヘテロ接合層3との間に設けると、対向電極4とヘテロ接合層3との間で完全なオーミック接合が得られ、電流が流れやすくなり、変換効率がより向上するという利点がある。かかる層の厚さは、例えば0.3nm〜150nmである。   Further, a layer made of LiF, unmodified fullerene, and dimethyldiphenylphenanthroline is provided between the counter electrode 4 and the heterojunction layer 3 so as not to impair ohmic contact between the heterojunction layer 3 and the counter electrode 4. It may be provided. If these are provided between the counter electrode 4 and the heterojunction layer 3, a complete ohmic junction is obtained between the counter electrode 4 and the heterojunction layer 3, current flows easily, and conversion efficiency is further improved. There are advantages. The thickness of such a layer is, for example, 0.3 nm to 150 nm.

なお、ヘテロ接合層3及び対向電極4を保護する保護層(図示せず)が、ヘテロ接合層3及び対向電極4を覆うように透明電極基板上に設けられてもよい。ここで、透明電極基板は、基板1と透明電極2とで構成される。この場合、有機太陽電池10を大気中に取り出したときに、保護層によりヘテロ接合層3及び対向電極4に対する防湿効果が得られ、光電変換能を長期間保持できるという利点がある。かかる保護層としては、例えばガラス、アルミコートのポリマーフィルムなどが挙げられる。保護層は、具体的には、熱溶着フィルム等からなるスペーサを介して透明電極基板に設けられる。   A protective layer (not shown) for protecting the heterojunction layer 3 and the counter electrode 4 may be provided on the transparent electrode substrate so as to cover the heterojunction layer 3 and the counter electrode 4. Here, the transparent electrode substrate includes a substrate 1 and a transparent electrode 2. In this case, when the organic solar cell 10 is taken out into the atmosphere, the protective layer provides a moisture-proof effect on the heterojunction layer 3 and the counter electrode 4, and has an advantage that the photoelectric conversion ability can be maintained for a long time. Examples of such a protective layer include glass and an aluminum-coated polymer film. Specifically, the protective layer is provided on the transparent electrode substrate via a spacer made of a heat welding film or the like.

次に、上述した有機太陽電池10の製造方法について説明する。   Next, the manufacturing method of the organic solar cell 10 mentioned above is demonstrated.

まず基板1を用意する。基板1の表面には、透明電極2を形成する。透明電極2は、電極材料を、スパッタ法、真空蒸着法、EB蒸着法、常圧CVD法、減圧CVD法、PVD法、ソルゲル法、電析法等によって基板1の表面上に成膜して形成することができる。なお、透明電極2の表面に凹凸を形成する場合は、電極材料の材質、気相法の成膜条件、具体的には、酸素や不活性ガスなどの成膜雰囲気、成膜温度などの条件を適宜設定して、基板1上に電極材料をランダムに結晶成長させることにより形成してもよいし、フラットな電極を形成した後、酢酸、塩酸などの酸性水溶液を用いたエッチングの処理条件、主にエッチング時間を適宜設定することにより形成してもよい。   First, the substrate 1 is prepared. A transparent electrode 2 is formed on the surface of the substrate 1. The transparent electrode 2 is formed by depositing an electrode material on the surface of the substrate 1 by sputtering, vacuum deposition, EB deposition, atmospheric pressure CVD, reduced pressure CVD, PVD, solgel, electrodeposition, or the like. Can be formed. In the case where irregularities are formed on the surface of the transparent electrode 2, the material of the electrode material, the film formation conditions of the vapor phase method, specifically, the film formation atmosphere such as oxygen or inert gas, the film formation temperature, etc. May be formed by randomly crystallizing the electrode material on the substrate 1, or after forming a flat electrode, etching treatment conditions using an acidic aqueous solution such as acetic acid and hydrochloric acid, You may form mainly by setting etching time suitably.

一方、p型共役高分子、上記一般式(1)で表されるn型フラーレン誘導体をそれぞれ用意し、これらを溶媒中に溶解させてスピンコート液を得る。溶媒としては、p型共役高分子及び上記一般式(1)で表されるn型フラーレン誘導体を溶解しうるもの、例えばトルエンなどが用いられる。   On the other hand, a p-type conjugated polymer and an n-type fullerene derivative represented by the above general formula (1) are prepared and dissolved in a solvent to obtain a spin coating solution. As the solvent, a solvent capable of dissolving the p-type conjugated polymer and the n-type fullerene derivative represented by the general formula (1), for example, toluene is used.

次に、上記のようにして得られるスピンコート液を透明電極2の表面上にコーティングし、乾燥して溶媒を除去することにより透明電極2の表面上にヘテロ接合層3を形成する。なお、スピンコーティングは、1回に限らず、複数回行ってもよい。この場合、1回ごとに乾燥を完了させた上でスピンコーティングを行えばよい。   Next, the spin coating solution obtained as described above is coated on the surface of the transparent electrode 2 and dried to remove the solvent, thereby forming the heterojunction layer 3 on the surface of the transparent electrode 2. Note that the spin coating is not limited to one time but may be performed a plurality of times. In this case, spin coating may be performed after drying is completed once.

次に、ヘテロ接合層3の表面上に対向電極4を形成する。対向電極4は、透明電極2と同様の方法で形成する。即ち、対向電極4も、電極材料を、スパッタ法、真空蒸着法、EB蒸着法、常圧CVD法、減圧CVD法、PVD法、ソルゲル法、電析法等によってヘテロ接合層3の表面上に成膜して形成することができる。   Next, the counter electrode 4 is formed on the surface of the heterojunction layer 3. The counter electrode 4 is formed by the same method as the transparent electrode 2. That is, the counter electrode 4 is also applied to the surface of the heterojunction layer 3 by sputtering, vacuum deposition, EB deposition, atmospheric pressure CVD, reduced pressure CVD, PVD, solgel, electrodeposition, or the like. It can be formed by film formation.

以上のようにして有機太陽電池10の製造が完了する。なお、対向電極4を形成する前に、LiF、未修飾フラーレンなどの層を予め形成しておくとよい。この場合には、対向電極4とヘテロ接合層3との完全なオーミック接合が得られるようになる。   As described above, the manufacture of the organic solar battery 10 is completed. In addition, before forming the counter electrode 4, it is good to form layers, such as LiF and an unmodified fullerene, previously. In this case, a complete ohmic junction between the counter electrode 4 and the heterojunction layer 3 can be obtained.

本発明の有機太陽電池は、上記実施形態に限定されない。例えば上記実施形態では、ヘテロ接合層3の少なくとも一方の側の電極は、複数に分割されていてもよい。即ち、電極は、互いに離間して配置された複数の電極部で構成されていてもよい。   The organic solar cell of the present invention is not limited to the above embodiment. For example, in the above embodiment, the electrode on at least one side of the heterojunction layer 3 may be divided into a plurality of parts. That is, the electrode may be composed of a plurality of electrode portions that are spaced apart from each other.

以下、本発明の有機太陽電池の具体的な実施例及び比較例について説明するが、本発明の有機太陽電池は以下の実施例に限定されるものではない。   Hereinafter, although the specific Example and comparative example of the organic solar cell of this invention are demonstrated, the organic solar cell of this invention is not limited to a following example.

(実施例1)
Rがメチル基、Xがビチオフェン(チオフェンの2量体)であるフラーレン誘導体を以下のようにして合成した。
Example 1
A fullerene derivative in which R is a methyl group and X is bithiophene (a dimer of thiophene) was synthesized as follows.

即ち、まずフラーレンC60(東京化成社製)100mgをトルエン100mLに溶解させた。このトルエン溶液を三ッ口フラスコに移し、N−メチルグリシン(アルドリッチ社製)24.8mgとビチオフェンアルデヒド140mgを溶解したジメチルスルオキシド10mLを加えて直ちに120℃まで昇温した。そして、120℃、アルゴン気流下にてトルエンを15時間還流させ、フラーレンC60、N−メチルグリシン及びビチオフェンアルデヒドを反応させた。冷却後、反応溶液をエバポレータにより濃縮し、続いてシリカゲルカラム(半井化学、球状シリカゲル60、展開溶媒:トルエン)に通して未反応のC60等を分別除去した。 That is, first, 100 mg of fullerene C 60 (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 100 mL of toluene. The toluene solution was transferred to a three-necked flask, and 10 mL of dimethyl sulfoxide in which 24.8 mg of N-methylglycine (manufactured by Aldrich) and 140 mg of bithiophenaldehyde were dissolved was added and immediately heated to 120 ° C. Then, toluene was refluxed for 15 hours under an argon stream at 120 ° C., and fullerene C 60 , N-methylglycine and bithiophenaldehyde were reacted. After cooling, the reaction solution was concentrated with an evaporator, and then passed through a silica gel column (Harai Chemical, spherical silica gel 60, developing solvent: toluene) to separate and remove unreacted C 60 and the like.

最終的に得られた溶液からエバポレータにより溶媒を除去した後、真空乾燥して粉末を得た。この粉末についてFTIRスペクトルを測定した。結果を図2に示す。図2の結果より、C60に由来するピーク及びチオフェン環に由来するピークが見られた。具体的には、728cm−1、770cm−1、2776cm−1において、C60に由来するピークが現れ、794cm−1、838cm−1、1046cm−1、1224cm−1、1445cm−1、1660cm−1、3066cm−1において、チオフェン環に由来するピークが見られた。更に、2920〜2940cm−1付近にメチル基CHに由来する特徴的な2本のピークが見られた。このことから、上記一般式(1)において、Rがメチル基、Xがビチオフェン(2量体)であるフラーレン誘導体が得られていることが確認された。 The solvent was removed from the finally obtained solution with an evaporator, and then vacuum-dried to obtain a powder. The FTIR spectrum was measured for this powder. The results are shown in FIG. From the results of FIG. 2, it was observed a peak derived from the peak and a thiophene ring from C 60. Specifically, 728cm -1, 770cm -1, at 2776cm -1, appear a peak derived from a C 60, 794cm -1, 838cm -1 , 1046cm -1, 1224cm -1, 1445cm -1, 1660cm -1 3066 cm −1 , a peak derived from a thiophene ring was observed. Furthermore, two characteristic peaks derived from the methyl group CH 3 were observed in the vicinity of 2920 to 2940 cm −1 . From this, it was confirmed that in the general formula (1), a fullerene derivative in which R is a methyl group and X is a bithiophene (dimer) is obtained.

(スピンコート液の調製)
上記のようにして得られたC60−BiTh76.4mgと、p型共役高分子としてのポリ(2−メトキシ−5−(2'−エチルヘキシロイル)−1,4−フェニレビニレン(アルドリッチ社製、数平均分子量51,000、略号MEH−PPV)13.4mgとをトルエン2mLに溶解してスピンコート液を得た。
(Preparation of spin coating solution)
C 60 -BiTh 76.4 mg obtained as described above and poly (2-methoxy-5- (2′-ethylhexyl) yl-1,4-phenylvinylene (Aldrich) as a p-type conjugated polymer 13.4 mg of a number average molecular weight 51,000, abbreviation MEH-PPV) manufactured by the company was dissolved in 2 mL of toluene to obtain a spin coating solution.

(バルクへテロジャンクション型セルの作製)
インジウム錫酸化物(旭化成社製)をコートした透明導電性ガラス(ITOガラス)に、3,4−ポリエチレンジオキシチオフェン(PEDOT)及びポリエチレンスルホネート(PSS)からなる混合物の1質量%水溶液(アルドリッチ社製)を3500rpm、30秒の回転条件でスピンコートを1回施し、厚さ80nmの第1スピンコート膜を得た。
(Production of bulk heterojunction cell)
A transparent conductive glass (ITO glass) coated with indium tin oxide (manufactured by Asahi Kasei Co., Ltd.) on a 1% by mass aqueous solution of a mixture of 3,4-polyethylenedioxythiophene (PEDOT) and polyethylene sulfonate (PSS) (Aldrich) Manufactured) was spin-coated once at 3500 rpm for 30 seconds to obtain a first spin-coated film having a thickness of 80 nm.

次に、100℃のホットプレート上に、第1スピンコート膜を形成したITOガラスを置き、60分間真空脱気した。続いて、同ITOガラスに、作製したスピンコート溶液を塗布して、5000rpmで15秒の条件でスピンコーティングを1回施し、厚さ150nmの第2スピンコート膜を得た。   Next, the ITO glass on which the first spin coat film was formed was placed on a hot plate at 100 ° C. and vacuum deaerated for 60 minutes. Subsequently, the prepared spin coat solution was applied to the ITO glass, and spin coating was performed once at 5000 rpm for 15 seconds to obtain a second spin coat film having a thickness of 150 nm.

ヘテロ接合層を形成したITOガラスを、真空機工製の蒸着装置にセットし、まず、LiFを蒸着し(厚さ1nm)、続いて蒸着速度0.2nm/secにて厚さ80.5nmのアルミニウム(高純度化学製、純度99.999%)を蒸着した。続いて、厚さ100μmのポリエチレンフィルムをスペーサとして、厚さ1.1mmのガラスを貼り合わせた。貼り合わせにはエポキシ系接着剤を用いた。こうして有機太陽電池としてのバルクヘテロジャンクション型セルを得た。   The ITO glass on which the heterojunction layer is formed is set in a vapor deposition device manufactured by Vacuum Kiko, first LiF is vapor deposited (thickness 1 nm), and then aluminum having a thickness of 80.5 nm at a vapor deposition rate of 0.2 nm / sec. (High purity chemical, purity 99.999%) was deposited. Subsequently, glass having a thickness of 1.1 mm was bonded using a polyethylene film having a thickness of 100 μm as a spacer. An epoxy adhesive was used for bonding. Thus, a bulk heterojunction type cell as an organic solar battery was obtained.

(紫外可視吸収スペクトルの測定)
上記のようにして得られたバルクヘテロジャンクション型セルを構成するヘテロ接合層について紫外可視光吸収スペクトルを測定した。結果を図3に示す。このとき、紫外可視光吸収スペクトルの測定は、島津製作所製の分光光度計を用いて行った。なお、紫外可視光吸収スペクトルの測定は、ITOガラス上にヘテロ接合層を形成したものに対して行った。また、比較のために、ヘテロ接合層に代えて、C60−BiThのトルエン溶液、MEH−PPVのスピンコート膜についても紫外可視光吸収スペクトルを測定した。結果を図3に併記する。
(Measurement of UV-visible absorption spectrum)
The ultraviolet-visible light absorption spectrum was measured about the heterojunction layer which comprises the bulk heterojunction type cell obtained as mentioned above. The results are shown in FIG. At this time, the ultraviolet-visible light absorption spectrum was measured using a spectrophotometer manufactured by Shimadzu Corporation. In addition, the measurement of an ultraviolet visible light absorption spectrum was performed with respect to what formed the heterojunction layer on ITO glass. For comparison, an ultraviolet-visible light absorption spectrum was measured for a toluene solution of C 60 -BiTh and a spin coat film of MEH-PPV instead of the heterojunction layer. The results are also shown in FIG.

なお、図3において、○印はC60−BiThのトルエン溶液、◇印はMEH−PPVのスピンコート膜、●印が、本実施例で作製したヘテロ接合層の紫外可視吸収スペクトルであり、縦軸は吸光度、横軸は吸収波長(nm)を表す。図3に示す結果より、本実施例に係るヘテロ接合層では、850nmの波長まで光を吸収しており、C60−BiThのトルエン溶液、MEH−PPVのスピンコート膜に比べて、光吸収波長範囲が大幅に広がっていることが分かった。 In FIG. 3, ◯ indicates the C 60 -BiTh toluene solution, ◇ indicates the MEH-PPV spin coat film, and ● indicates the UV-visible absorption spectrum of the heterojunction layer produced in this example. The axis represents absorbance, and the horizontal axis represents absorption wavelength (nm). From the results shown in FIG. 3, the heterojunction layer according to the present example absorbs light up to a wavelength of 850 nm, and the light absorption wavelength as compared with the toluene solution of C 60 -BiTh and the spin coat film of MEH-PPV. It turns out that the range has expanded significantly.

(光電変換性能の評価)
また上記のようにして得られたバルクヘテロジャンクション型セルについて、光電変換能を表すIPCEスペクトルを測定した。測定は、0.25mWの単色光(波長域300〜850nm)で10nm毎に実施した。結果を図4に示す。図4において、縦軸は量子効率(%)を、横軸は波長(nm)を表す。図4に示す結果より、本実施例のバルクヘテロジャンクション型セルでは、850nmまで光電変換が行われている(長波長端が850nmである)ことが分かった。
(Evaluation of photoelectric conversion performance)
Moreover, about the bulk heterojunction type cell obtained as mentioned above, the IPCE spectrum showing a photoelectric conversion ability was measured. The measurement was performed every 10 nm with 0.25 mW monochromatic light (wavelength range: 300 to 850 nm). The results are shown in FIG. In FIG. 4, the vertical axis represents quantum efficiency (%), and the horizontal axis represents wavelength (nm). From the results shown in FIG. 4, it was found that photoelectric conversion was performed up to 850 nm (the long wavelength end was 850 nm) in the bulk heterojunction type cell of this example.

また上記のようにして得られたバルクヘテロジャンクション型セルについて、光電変換特性も測定した。光電変換特性は、分光計器の分光感度測定装置(CEP−2000型)を用いて測定し、光源は150Wのキセノンショートアークランプを用いた。このとき、ランプには光学フィルターとしてAM1.5のUVフィルターをかけ、照射強度が最大で100mW/cmの擬似太陽光となるようにした。 Moreover, the photoelectric conversion characteristic was also measured about the bulk heterojunction type cell obtained as mentioned above. The photoelectric conversion characteristics were measured using a spectral sensitivity measuring device (CEP-2000 type) of a spectrometer, and a 150 W xenon short arc lamp was used as a light source. At this time, a UV filter of AM1.5 was applied to the lamp as an optical filter so that the irradiation intensity was a maximum of 100 mW / cm 2 in simulated sunlight.

なお、AMの定義は、太陽光が大気圏を通過する距離を表す。大気圏外における太陽光をAM0と定義し、赤道直下での真上からくる太陽光(直達光)の地表面でのAM値を1とした時の太陽光の長さを、1/sinθ(θは仰角)で表す。本実施例で用いたAM1.5は東京の年間を通じての太陽光の値にほぼ等しい。また、分光感度測定装置により、擬似太陽光(0.1Sun、AM1.5)の照射の下、50℃で電流―電圧曲線を計測し、得られる短絡電流、開放電圧、形状因子から、光電変換効率を求めた。結果を表1に示す。

Figure 2007067115
The definition of AM represents the distance that sunlight passes through the atmosphere. The sunlight outside the atmosphere is defined as AM0, and the length of sunlight when the AM value on the ground surface of the sunlight (direct light) coming from directly above the equator is 1 is defined as 1 / sinθ (θ Is expressed as an elevation angle). AM1.5 used in this example is almost equal to the value of sunlight throughout the year in Tokyo. In addition, a current-voltage curve is measured at 50 ° C. under irradiation of simulated sunlight (0.1 Sun, AM1.5) with a spectral sensitivity measurement device, and photoelectric conversion is performed from the obtained short-circuit current, open-circuit voltage, and form factor. We asked for efficiency. The results are shown in Table 1.
Figure 2007067115

(実施例2)
MEH−PPVの代わりにP3HT(アルドリッチ社製、立体規則性、数平均分子量87,000)を用い、LiFの代わりにC60(東京化成製)を用いたこと以外は実施例1と同様にして有機太陽電池を作製した。
(Example 2)
Example 3 was used except that P3HT (manufactured by Aldrich, stereoregularity, number average molecular weight 87,000) was used instead of MEH-PPV, and C 60 (manufactured by Tokyo Chemical Industry) was used instead of LiF. An organic solar cell was produced.

(実施例3)
N−メチルグリシンの代わりに、N−エチルグリシンを用い、Rをメチル基からエチル基に代えたこと以外は実施例1と同様にして有機太陽電池を作製した。
(Example 3)
An organic solar cell was produced in the same manner as in Example 1 except that N-ethylglycine was used instead of N-methylglycine and R was changed from a methyl group to an ethyl group.

(実施例4)
ビチオフェンアルデヒドの代わりに、ビ(3−ヘキシルチオエニルチオフェン)アルデヒドを用い、Xをチオフェンの4量体であるビ(3−ヘキシルチオエニルチオフェン)に代えたこと以外は実施例1と同様にして有機太陽電池を作製した。
Example 4
Instead of bithiophenaldehyde, bi (3-hexylthioenylthiophene) aldehyde was used, and X was replaced with bi (3-hexylthioenylthiophene) which is a tetramer of thiophene. Thus, an organic solar cell was produced.

(実施例5)
スピンコートの際の回転数を5000rpmから2500rpmにしてヘテロ接合層の膜厚を150nmから280nmに変更したこと以外は実施例1と同様にして有機太陽電池を作製した。
(Example 5)
An organic solar cell was produced in the same manner as in Example 1 except that the rotation speed during spin coating was changed from 5000 rpm to 2500 rpm and the thickness of the heterojunction layer was changed from 150 nm to 280 nm.

(実施例6)
C60−BiThの添加量を76.4mgから98.2mgに増加したこと以外は実施例1と同様にして有機太陽電池を作製した。
(Example 6)
An organic solar cell was produced in the same manner as in Example 1 except that the amount of C 60 -BiTh added was increased from 76.4 mg to 98.2 mg.

実施例2〜7のn型フラーレン誘導体のトルエン溶液の光吸収スペクトルと、有機太陽電池の量子効率のIPCEスペクトルを実施例1と同様にして測定し、光吸収の長波長端と、量子効率の長波長端を求めた。また光電変換効率についても、実施例1と同様にして算出した。結果を表1に示す。   The light absorption spectrum of the toluene solution of the n-type fullerene derivative of Examples 2 to 7 and the IPCE spectrum of the quantum efficiency of the organic solar cell were measured in the same manner as in Example 1, and the long wavelength end of light absorption and the quantum efficiency of The long wavelength end was determined. The photoelectric conversion efficiency was calculated in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
C60−BiThの代わりにCdSeナノ粒子を用いたこと以外は実施例1と同様にして有機太陽電池を作製した。なお、本比較例は、非特許文献4を追試したものである。
(Comparative Example 1)
An organic solar cell was produced in the same manner as in Example 1 except that CdSe nanoparticles were used instead of C 60 -BiTh. In addition, this comparative example is a non-patent document 4 that has been further tested.

ここで、CdSeナノ粒子は以下のように合成した。まず金属セレン(アルドリッチ社製)47mgをトリオクチルホスフィン(アルドリッチ社製、以下、「TOP」と略称する)2.034gに室温で溶解させ、Se/TOP溶液を得た。   Here, CdSe nanoparticles were synthesized as follows. First, 47 mg of metal selenium (manufactured by Aldrich) was dissolved in 2.034 g of trioctylphosphine (manufactured by Aldrich, hereinafter abbreviated as “TOP”) at room temperature to obtain a Se / TOP solution.

一方、25mLフラスコに、酸化カドミウムCdO57.8mg(高純度化学製)、テトラデシルホスホニックアシッド(アルファ製、以下、「TDPA」と略称する)0.2422g、およびトリオクチルホスフィンオキシド(アルドリッチ社製、以下、「TOPO」と略称する)3.741gを入れた。365℃設定の半田槽を用い、Ar気流下、フラスコ内のCdO、TDPAおよびTOPOを1時間ほどで溶解させた。次に半田槽の温度設定を260℃に変更し、そのまま2時間放置した(実際の温度253℃)。2時間後、上記Se/TOP溶液を滴下ロートより3回に分けて(間隔30秒)フラスコ内に滴下した。反応溶液ははじめ無色透明であったが時間とともに黄色、オレンジ色、赤色、濃赤色に変化した。滴下後4時間放置して十分に反応させ、CdSeナノ粒子を生長させた。   On the other hand, in a 25 mL flask, 57.8 mg of cadmium oxide CdO (manufactured by High Purity Chemical), 0.2422 g of tetradecylphosphonic acid (manufactured by Alpha, hereinafter abbreviated as “TDPA”), and trioctylphosphine oxide (manufactured by Aldrich, (Hereinafter abbreviated as “TOPO”) 3.741 g was added. Using a solder bath set at 365 ° C., CdO, TDPA and TOPO in the flask were dissolved in about 1 hour under an Ar stream. Next, the temperature setting of the solder bath was changed to 260 ° C. and left as it was for 2 hours (actual temperature 253 ° C.). After 2 hours, the Se / TOP solution was dropped into the flask in three portions (interval 30 seconds) from the dropping funnel. The reaction solution was initially colorless and transparent, but changed to yellow, orange, red, and deep red over time. After dropping, the mixture was allowed to react for 4 hours to grow CdSe nanoparticles.

反応を終了させるためにフラスコを半田槽より空気中に取り出し、Ar気流下のままゆっくりと冷却した。冷却すると反応液は固化した。その固形物にメタノールを加えてTOPなどを一度溶解させ、2000rpmで20分の遠心分離を行うことによりCdSeナノ粒子を沈降分離させた。このメタノールによる溶解と遠心分離を3回繰り返した。   In order to complete the reaction, the flask was taken out of the solder bath into the air, and slowly cooled under an Ar stream. Upon cooling, the reaction solution solidified. Methanol was added to the solid to dissolve TOP etc. once, and CdSe nanoparticles were precipitated and separated by centrifugation at 2000 rpm for 20 minutes. This dissolution with methanol and centrifugation were repeated three times.

次に、CdSeナノ粒子にトルエン0.5mLを加えて十分に攪拌して再溶解させ、これに大量のメタノールをさらに加えて、2500rpmで20分間遠心分離操作を行った。さらに沈降したCdSeナノ粒子にピリジン0.5mLを加えて10分間攪拌後、超音波分散させた。これにn−ヘキサンを加えてナノ粒子を析出させ、その後、4000rpmで30分間の遠心分離操作を3回行った。こうした一連の操作により不要なTOPなどをCdSeナノ粒子表面からできるだけ取り除き、表面にピリジン分子を吸着させた。   Next, 0.5 mL of toluene was added to the CdSe nanoparticles, and the mixture was sufficiently stirred and redissolved. A large amount of methanol was further added thereto, followed by centrifugation at 2500 rpm for 20 minutes. Further, 0.5 mL of pyridine was added to the precipitated CdSe nanoparticles, and the mixture was stirred for 10 minutes and then ultrasonically dispersed. N-Hexane was added thereto to precipitate nanoparticles, and then a centrifugal separation operation at 4000 rpm for 30 minutes was performed three times. Through such a series of operations, unnecessary TOP and the like were removed from the surface of the CdSe nanoparticles as much as possible, and pyridine molecules were adsorbed on the surface.

こうして得られたピリジン分子吸着のCdSeナノ粒子100mgを、ポリ(3−へキシルチオフェン)(アルドリッチ社製、数平均分子量51,000)10mgとともに、クロロホルム/ピリジン混合溶媒(体積比5:1)1mL、トルエン0.2mLに分散させてスピンコート溶液を調製した。   100 mg of the pyridine molecule-adsorbed CdSe nanoparticles thus obtained was mixed with 10 mg of poly (3-hexylthiophene) (manufactured by Aldrich, number average molecular weight 51,000) and 1 mL of a chloroform / pyridine mixed solvent (volume ratio 5: 1). A spin coat solution was prepared by dispersing in 0.2 mL of toluene.

上記のようにして得られた太陽電池に用いたCdSeナノ粒子のトルエン溶液、P3HTのスピンコート膜について、実施例1と同様にしては紫外可視光吸収スペクトルを測定した。結果を図5に示す。   The ultraviolet-visible light absorption spectrum of the toluene solution of CdSe nanoparticles and the P3HT spin coat film used in the solar cell obtained as described above was measured in the same manner as in Example 1. The results are shown in FIG.

図5において、○印はCdSeナノ粒子のトルエン溶液の紫外可視吸収スペクトル、△印はP3HTのスピンコート膜の紫外可視吸収スペクトルを示す。図5に示すように、紫外可視吸収スペクトルの長波長端は650nmであり、P3HTのスピンコート膜の紫外可視吸収スペクトルの長波長端である550nmに比べて、可視光領域における光吸収波長領域が若干広がっているものの、その広がりは小さいものであった。   In FIG. 5, ◯ indicates an ultraviolet-visible absorption spectrum of a toluene solution of CdSe nanoparticles, and Δ indicates an ultraviolet-visible absorption spectrum of a P3HT spin coat film. As shown in FIG. 5, the long wavelength end of the UV-visible absorption spectrum is 650 nm, and the light absorption wavelength region in the visible light region is larger than 550 nm, which is the long wavelength end of the UV-visible absorption spectrum of the P3HT spin coat film. Although spreading slightly, the spread was small.

また上記のようにして得られた太陽電池について、実施例1と同様にして紫外可視吸収スペクトル及び光電変換能を表すIPCEスペクトルを測定した。結果を図6に示す。   For the solar cell obtained as described above, an ultraviolet-visible absorption spectrum and an IPCE spectrum representing photoelectric conversion ability were measured in the same manner as in Example 1. The results are shown in FIG.

図6に示す結果より、本比較例に係る太陽電池では、650nmの波長まで光電変換(長波長端が650nm)していることが分かった。なお、測定に際しては、太陽電池の基板1の裏側(透明電極2と反対側)に、390nm以下カットするUVカットフィルム(三菱レーヨン社製)を装着した。   From the results shown in FIG. 6, it was found that the solar cell according to this comparative example was subjected to photoelectric conversion up to a wavelength of 650 nm (long wavelength end was 650 nm). In the measurement, a UV cut film (manufactured by Mitsubishi Rayon Co., Ltd.) that cuts 390 nm or less was attached to the back side of the solar cell substrate 1 (the side opposite to the transparent electrode 2).

また本比較例の太陽電池について、実施例1と同様にして光電変換効率を求めた。結果を表1に示す。   Moreover, the photoelectric conversion efficiency was calculated | required similarly to Example 1 about the solar cell of this comparative example. The results are shown in Table 1.

以上の実施例1〜7及び比較例1の結果より、本実施例に係る有機太陽電池によれば、光電変換可能な波長範囲が、ヘテロ接合層を構成する個々の材料と比べて十分に広がっており、十分な光電変換効率が得られるのに対し、比較例に係る有機太陽電池によれば、ヘテロ接合層を構成する個々の材料と比べて光電変換可能な波長範囲の広がりが小さく、十分な光電変換効率が得られないことが分かった。   From the results of Examples 1 to 7 and Comparative Example 1 described above, according to the organic solar cell according to this example, the wavelength range in which photoelectric conversion is possible is sufficiently widened as compared with the individual materials constituting the heterojunction layer. In contrast, the organic solar cell according to the comparative example provides a sufficient photoelectric conversion efficiency, but the wavelength range capable of photoelectric conversion is small compared with the individual materials constituting the heterojunction layer. It was found that a high photoelectric conversion efficiency could not be obtained.

よって、本発明の有機太陽電池によれば、光電変換効率を十分に向上させることができることが確認された。   Therefore, according to the organic solar cell of this invention, it was confirmed that a photoelectric conversion efficiency can fully be improved.

本発明に係る有機太陽電池の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the organic solar cell which concerns on this invention. 実施例1に係るC60−BiThのFTIRスペクトルを示すグラフである。3 is a graph showing an FTIR spectrum of C 60 -BiTh according to Example 1. 実施例1に係る紫外可視吸収スペクトルを示すグラフである。3 is a graph showing an ultraviolet-visible absorption spectrum according to Example 1. 実施例1に係る有機太陽電池の光電変換特性としてのIPCEスペクトルを示すグラフである。3 is a graph showing an IPCE spectrum as a photoelectric conversion characteristic of the organic solar battery according to Example 1. 比較例1に係る紫外可視吸収スペクトルを示すグラフである。6 is a graph showing an ultraviolet-visible absorption spectrum according to Comparative Example 1. 比較例1に係る有機太陽電池の光電変換特性としてのIPCEスペクトルを示すグラフである。5 is a graph showing an IPCE spectrum as a photoelectric conversion characteristic of an organic solar battery according to Comparative Example 1.

符号の説明Explanation of symbols

1…基板、2…透明電極、3…ヘテロ接合層、4…対向電極、10…有機太陽電池。
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Transparent electrode, 3 ... Heterojunction layer, 4 ... Counter electrode, 10 ... Organic solar cell.

Claims (3)

電子供与性を有するp型共役高分子及び電子受容性を有するn型のフラーレン誘導体を含むヘテロ接合層と、
前記へテロ接合層の一面側に設けられる第1電極と、
前記へテロ接合層の他面側に設けられる第2電極と、
を有し、前記フラーレン誘導体が下記一般式(1):
Figure 2007067115

(上記一般式(1)中、Fuはフラーレンからなる2価以上の基を表し、Rは炭素数1〜4のアルキル基又は水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表し、Xが、チオフェン、ピロール、フラン、セレニウム又はこれらの水素原子の少なくとも一部がアルキル基で置換されたアルキルチオフェンの2〜6量体を表し、nは1〜6の整数を表す)
で表されることを特徴とする有機太陽電池。
A heterojunction layer comprising a p-type conjugated polymer having an electron-donating property and an n-type fullerene derivative having an electron-accepting property;
A first electrode provided on one side of the heterojunction layer;
A second electrode provided on the other side of the heterojunction layer;
And the fullerene derivative is represented by the following general formula (1):
Figure 2007067115

(In the general formula (1), Fu represents a divalent or higher valent group consisting of fullerene, and R represents an alkyl group having 1 to 4 carbon atoms or a halogenated alkyl group in which at least a part of hydrogen atoms are substituted with a halogen atom. X represents thiophene, pyrrole, furan, selenium or a 2-6 mer of alkylthiophene in which at least a part of these hydrogen atoms is substituted with an alkyl group, and n represents an integer of 1-6)
An organic solar battery characterized by being represented by:
前記p型共役高分子がポリフェニレンビニレン又はポリ(3−ヘキシルチオフェン)であり、前記n型フラーレン誘導体が、上記一般式(1)において、FuがC60、Rがメチル基又はエチル基、Xがチオフェンの2量体〜4量体となっているものである、請求項1に記載の有機太陽電池。 The p-type conjugated polymer is polyphenylene vinylene or poly (3-hexylthiophene), and the n-type fullerene derivative is represented by the general formula (1), wherein Fu is C 60 , R is a methyl group or an ethyl group, and X is The organic solar cell according to claim 1, which is a dimer to tetramer of thiophene. 前記ヘテロ接合層の厚さが50〜300nmである、請求項1又は2に記載の有機太陽電池。   The organic solar cell according to claim 1 or 2, wherein the heterojunction layer has a thickness of 50 to 300 nm.
JP2005250277A 2005-08-30 2005-08-30 Organic solar cell Pending JP2007067115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250277A JP2007067115A (en) 2005-08-30 2005-08-30 Organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250277A JP2007067115A (en) 2005-08-30 2005-08-30 Organic solar cell

Publications (1)

Publication Number Publication Date
JP2007067115A true JP2007067115A (en) 2007-03-15

Family

ID=37928967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250277A Pending JP2007067115A (en) 2005-08-30 2005-08-30 Organic solar cell

Country Status (1)

Country Link
JP (1) JP2007067115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008323A1 (en) * 2007-07-09 2009-01-15 Japan Science And Technology Agency Photoelectric converter and solar cell using the same
JP2009542725A (en) * 2006-07-06 2009-12-03 ソレンネ ベーヴェー Mixtures of fullerene derivatives and their use in electronic devices
WO2011017111A2 (en) * 2009-07-27 2011-02-10 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
WO2013141328A1 (en) * 2012-03-22 2013-09-26 住友化学株式会社 Organic-inorganic hybrid photoelectric conversion element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542725A (en) * 2006-07-06 2009-12-03 ソレンネ ベーヴェー Mixtures of fullerene derivatives and their use in electronic devices
WO2009008323A1 (en) * 2007-07-09 2009-01-15 Japan Science And Technology Agency Photoelectric converter and solar cell using the same
US8952247B2 (en) 2007-07-09 2015-02-10 Mitsubishi Chemical Corporation Photoelectric converter and solar cell using the same
WO2011017111A2 (en) * 2009-07-27 2011-02-10 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
WO2011017111A3 (en) * 2009-07-27 2011-06-16 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
US8723026B2 (en) 2009-07-27 2014-05-13 University Of Utah Research Foundation Parallel coaxial molecular stack arrays
WO2013141328A1 (en) * 2012-03-22 2013-09-26 住友化学株式会社 Organic-inorganic hybrid photoelectric conversion element
CN104247038A (en) * 2012-03-22 2014-12-24 住友化学株式会社 Organic-inorganic hybrid photoelectric conversion element

Similar Documents

Publication Publication Date Title
JP6007273B2 (en) Tandem photovoltaic cell
EP3044817B9 (en) Inverted solar cell and process for producing the same
JP2007180190A (en) Organic solar cell
JP5566890B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5573066B2 (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
JP5310838B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
JP2015065266A (en) Material for organic thin film solar battery elements, and use thereof
JP5106361B2 (en) Organic photoelectric conversion device using benzophosphole compound
JP2007067115A (en) Organic solar cell
JP5712769B2 (en) Organic photoelectric conversion element and solar cell
WO2013187482A1 (en) Tandem-type organic photoelectric conversion element, and photovoltaic cell using same
JP2015065267A (en) Material for organic thin film solar battery elements, and use thereof
JP2014078702A (en) Material for organic thin film solar cell element and application thereof
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2014003255A (en) Organic thin film and photoelectric conversion element using the same
JP2011246594A (en) Polymer compound, and photoelectric conversion element using the same
JP5245123B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP2014241369A (en) Photoelectric conversion element and method for manufacturing the same
Im et al. Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications
TW202409053A (en) Near-infrared organic small molecule with vinyl groups and active layer material and organic optoelectronic device using the same
JP5369238B2 (en) Material for photoelectric conversion element, method for producing photoelectric conversion element, and photoelectric conversion element
WO2014136696A1 (en) Photoelectric conversion element and production method therefor
JP2014241370A (en) Photoelectric conversion element and method for manufacturing the same