JP2007067046A - Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell - Google Patents

Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell Download PDF

Info

Publication number
JP2007067046A
JP2007067046A JP2005249013A JP2005249013A JP2007067046A JP 2007067046 A JP2007067046 A JP 2007067046A JP 2005249013 A JP2005249013 A JP 2005249013A JP 2005249013 A JP2005249013 A JP 2005249013A JP 2007067046 A JP2007067046 A JP 2007067046A
Authority
JP
Japan
Prior art keywords
semiconductor film
electrode
photovoltaic cell
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249013A
Other languages
Japanese (ja)
Inventor
Hiromi Totsuka
博己 戸塚
Takayuki Sano
隆之 佐野
Akinori Konno
昭則 昆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Tomoegawa Co Ltd
Original Assignee
Shizuoka University NUC
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Tomoegawa Paper Co Ltd filed Critical Shizuoka University NUC
Priority to JP2005249013A priority Critical patent/JP2007067046A/en
Publication of JP2007067046A publication Critical patent/JP2007067046A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Paints Or Removers (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor film forming paint with which a semiconductor film can be deposited at a low temperature, a plastic film can be used as a substrate, and the semiconductor film can continuously be produced; and to provide a photoelectric cell electrode, a manufacturing method of the electrode, and the photoelectric cell using the method. <P>SOLUTION: Semiconductor film forming paint comprises zinc oxide particles, coumarin system colorant, binding agent, and solvent. The photoelectric cell electrode 10 has a transparent substrate 11, a transparent conductive film 12 formed on the transparent substrate 11, and a semiconductor film 13 where semiconductor film forming paint is applied onto the transparent conductive film 12. The photoelectric cell is provided with the photoelectric cell electrode 10, and a counterelectrode 20 arranged in a position confronted with the semiconductor film 13 of the photoelectric cell electrode 10. A part between the photoelectric cell electrode 10 and the counterelectrode 20 is filled with an electrolyte material 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電池用電極に備えられる半導体膜を形成するための半導体膜形成用塗料に関する。さらには、色素増感光電池用の電極とその製造方法、およびそれを使用した光電池に関する。   The present invention relates to a coating material for forming a semiconductor film for forming a semiconductor film provided in a photovoltaic cell electrode. Furthermore, the present invention relates to an electrode for a dye-sensitized photocell, a method for producing the same, and a photocell using the same.

グレッツェルが、非特許文献1に、変換効率7.9%の新しい型の光電池(色素増感光電池)を発表して以来、色素増感光電池の研究開発は世界的に行われてきた。グレッツェルの発表した色素増感光電池は、TiO(酸化チタン)電極と対向電極とを対峙させ、それらの間に電解質溶液を配置した構造を有するのものである。TiO電極としては、フッ素ドープ酸化スズからなる透明導電膜付きのガラス板と、透明導電膜上に設けられ、表面に通常N3と呼ばれるルテニウム増感色素が吸着している多孔質TiO膜とからなるものが使用されている。また、対向電極としては、導電性ガラス基板に白金膜を形成したたものが、電解質溶液としてはアセトニトリルなどの溶媒にI/I を含む酸化還元溶液が使用されている。 Since Gretzell announced a new type of photovoltaic cell (dye-sensitized photovoltaic cell) with a conversion efficiency of 7.9% in Non-Patent Document 1, research and development of dye-sensitized photovoltaic cells has been conducted worldwide. The dye-sensitized photovoltaic cell announced by Gretzer has a structure in which a TiO 2 (titanium oxide) electrode and a counter electrode are opposed to each other and an electrolyte solution is disposed between them. As the TiO 2 electrode, a glass plate with a transparent conductive film made of fluorine-doped tin oxide, a porous TiO 2 film provided on the transparent conductive film, and having a ruthenium sensitizing dye usually called N3 adsorbed on the surface, Is used. As the counter electrode, a conductive glass substrate formed with a platinum film is used, and as the electrolyte solution, a redox solution containing I / I 3 in a solvent such as acetonitrile is used.

従来、色素増感光電池のTiO電極を製造するためには、例えば、まず、数十nmサイズのTiO粉末をポリエチレングリコールやセルロース系結着剤に分散させてペーストを調製し、そのペーストをガラス基材上の透明導電膜上に塗布して塗膜を形成する。その後、500℃程度の高温で焼成して結着剤を分解し、TiO粉末粒子同士を結合させ、次いで、TiO表面に染料(色素)を吸着させる。 Conventionally, in order to manufacture a TiO 2 electrode of a dye-sensitized photovoltaic cell, for example, first, a tens of nm-sized TiO 2 powder is dispersed in polyethylene glycol or a cellulose-based binder to prepare a paste. A coating film is formed by coating on a transparent conductive film on a glass substrate. Thereafter, the binder is decomposed by baking at a high temperature of about 500 ° C., the TiO 2 powder particles are bonded to each other, and then a dye (pigment) is adsorbed on the TiO 2 surface.

ところで、近年では、用途拡大のために、電極における基材をプラスチック化して、薄型かつ軽量で、屈曲性を有する光電池を開発することが求められている。また、電極における基材をプラスチック化して可撓性を持たせ、光電池を連続生産することにより、コストダウンを図ることも考えられている。しかしながら、上記のような、TiO粉末を使用した電極の製造方法では、高温で焼結する必要があるため、プラスチックフィルムを基材とした電極を製造することは困難であった。 By the way, in recent years, in order to expand applications, it has been required to develop a photovoltaic cell that is thin, lightweight, and flexible by plasticizing a base material in an electrode. It is also considered to reduce the cost by plasticizing the base material of the electrode to provide flexibility and continuously producing photovoltaic cells. However, in the method for producing an electrode using TiO 2 powder as described above, it is necessary to sinter at a high temperature, and thus it is difficult to produce an electrode based on a plastic film.

そこで、プラスチックフィルムを基材とした電極を低温で製造する方法として、次の(1)〜(3)の方法が提案されている。
(1)TiO微粒子をプラスチックフィルムに加圧プレスにより接合する方法(非特許文献2参照)
(2)TiO微粒子を静電的電着法により成膜する方法(非特許文献3参照)
(3)TiO微粒子を水熱合成法により成膜する方法(非特許文献4参照)
グレッツェル,「ネイチャー(Nature)」,第353巻,1991年、p.737 エイチ・リンドストローム(H.Lindstroem)ら、「ジャーナル オブフォトケミストリ アンド フォトバイオロジ エイ(Journal of Photochemistry and Photobiology A)」、第145巻、2001年、p.107 ディ・マッシューズ(D.Matthews)ら、「オーストラリアン ジャーナル オブ ケミストリ(Australian Journal of chemistry)」、第47巻、1994年、p.1869 ディ・チャン(D.Zhang)ら、「ケミストリ レターズ(Chemistry Letters)、2002年、p.874
Therefore, the following methods (1) to (3) have been proposed as a method for producing an electrode using a plastic film as a base material at a low temperature.
(1) A method of joining TiO 2 fine particles to a plastic film by a pressure press (see Non-Patent Document 2)
(2) A method of forming TiO 2 fine particles by electrostatic electrodeposition (see Non-Patent Document 3)
(3) A method of forming a film of TiO 2 fine particles by a hydrothermal synthesis method (see Non-Patent Document 4)
Gretzell, “Nature”, Vol. 353, 1991, p. 737 H. Lindstroem et al., “Journal of Photochemistry and Photobiology A”, Volume 145, 2001, p. 107 D. Matthews et al., “Australian Journal of Chemistry”, 47, 1994, p. 1869 D. Zhang et al., “Chemistry Letters, 2002, p. 874.

しかしながら、上記(1)の方法では、原理的には加圧ロールを使うことで連続生産が可能であるが、幅方向にて均一にTiO微粒子をプラスチックフィルムに加圧接合することは極めて難しい。また、(2)及び(3)の方法では、特殊なバッチ処理を必要とするため、連続生産を行うことは困難である。
また、上記TiO2を用いた光電池の課題を解決する手法として、TiOの代わりにZnOを用いることが考えられる(特開2005−135798号公報参照)。具体的には、酸化亜鉛と増感色素とバインダポリマーと溶媒とを含む塗料を、透明電極付きプラスチック基板に塗布、乾燥することにより、色素増感光電池用電極を製造できる。しかしながら、この場合には、光電池特性が不充分であった。
以上のように、従来の方法では、光電池特性に優れた色素増感光電池用電極のプラスチック化及びその連続生産は困難であるのが実情であった。
However, in the method (1), continuous production is possible in principle by using a pressure roll, but it is extremely difficult to pressure-bond TiO 2 fine particles to a plastic film uniformly in the width direction. . Further, in the methods (2) and (3), since special batch processing is required, it is difficult to perform continuous production.
Further, as a method for solving the problems of the photovoltaic cell using TiO 2 , it is conceivable to use ZnO instead of TiO 2 (see Japanese Patent Application Laid-Open No. 2005-135798). Specifically, a dye-sensitized battery electrode can be produced by applying and drying a paint containing zinc oxide, a sensitizing dye, a binder polymer and a solvent on a plastic substrate with a transparent electrode. However, in this case, the photovoltaic cell characteristics were insufficient.
As described above, in the conventional method, it has been difficult to make the electrode of the dye-sensitized photocell excellent in photocell characteristics and to continuously produce it.

本発明の目的は、低温で光電池特性に優れた半導体膜を成膜でき、基材としてプラスチックフィルムを使用でき、しかも半導体膜を連続生産できる半導体膜形成用塗料を提供することにある。さらには、基材がプラスチック化された光電池用電極ならびにその製造方法を提供することにある。また、それを使用した光電池を提供することにある。   An object of the present invention is to provide a coating material for forming a semiconductor film, which can form a semiconductor film having excellent photovoltaic characteristics at a low temperature, can use a plastic film as a substrate, and can continuously produce a semiconductor film. Furthermore, it is providing the electrode for photovoltaic cells in which the base material was plasticized, and its manufacturing method. Another object is to provide a photovoltaic cell using the same.

本発明者らは、TiOの代わりに酸化亜鉛を用いることにより、前記課題を解決できることを見出し、さらに検討した結果、以下の半導体膜形成用塗料、光電池用電極ならびその製造方法、および光電池を発明した。
すなわち、本発明の半導体膜形成用塗料は、酸化亜鉛粒子とクマリン系色素と結着剤と溶媒とを含有することを特徴とする。
本発明の半導体膜形成用塗料においては、前記クマリン系色素が下記一般式(1)で表される置換基を有することが好ましい。
−COOR (1)
(式中、Rは水素原子またはアルキル基を示す)
また、前記クマリン系色素が下記一般式(2)で表される置換基を有することが好ましい。
The present inventors have found that the above problem can be solved by using zinc oxide instead of TiO 2 , and as a result of further investigation, the following coating film for forming a semiconductor film, electrode for a photovoltaic cell, a method for producing the same, and a photovoltaic cell are obtained. Invented.
That is, the coating material for forming a semiconductor film of the present invention is characterized by containing zinc oxide particles, a coumarin dye, a binder, and a solvent.
In the coating material for forming a semiconductor film of the present invention, the coumarin dye preferably has a substituent represented by the following general formula (1).
-COOR 1 (1)
(Wherein R 1 represents a hydrogen atom or an alkyl group)
Moreover, it is preferable that the said coumarin-type pigment | dye has a substituent represented by following General formula (2).

Figure 2007067046
Figure 2007067046

(式中、Rは水素原子またはアルキル基を示す)
さらに、前記クマリン系色素が下記一般式(3)または一般式(4)で表される分子構造を有することが好ましい。
(Wherein R 1 represents a hydrogen atom or an alkyl group)
Furthermore, it is preferable that the coumarin dye has a molecular structure represented by the following general formula (3) or general formula (4).

Figure 2007067046
Figure 2007067046

(式中、R はそれぞれ独立に水素原子またはアルキル基を示す)
また、本発明の半導体膜形成用塗料においては、前記酸化亜鉛粒子に前記クマリン系色素が吸着されていることが好ましい。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 each independently represents a hydrogen atom or an alkyl group)
In the coating composition for forming a semiconductor film of the present invention, the coumarin dye is preferably adsorbed on the zinc oxide particles.

本発明の光電池用電極は、透明基材と、該透明基材上に形成された透明導電膜と、該透明導電膜上に上述した半導体膜形成用塗料が塗布されて形成された半導体膜とを有することを特徴とする。
本発明の光電池用電極において、透明基材がプラスチックフィルムであってもよい。
本発明の光電池用電極の製造方法は、上述した半導体膜形成用塗料を、透明基材上にあらかじめ形成した透明導電膜上に塗布し、乾燥することを特徴とする。
あるいは、本発明の光電池用電極の製造方法は、剥離性支持体上に、上述した半導体膜形成用塗料を塗布し、乾燥して半導体膜を形成して半導体膜積層体を作製する工程と、透明基材上にあらかじめ形成した透明導電膜の表面に、半導体膜が隣接するように前記半導体膜積層体を積層する工程と、半導体膜から剥離性支持体を剥離する工程とを有することを特徴とする。
本発明の光電池は、上述した光電池用電極と、該光電池用電極の半導体膜に対向する位置に設けられた対向電極とを具備し、光電池用電極と対向電極との間に電解質材料が充填されていることを特徴とする。
The electrode for a photovoltaic cell of the present invention includes a transparent substrate, a transparent conductive film formed on the transparent substrate, a semiconductor film formed by applying the above-described coating material for forming a semiconductor film on the transparent conductive film, It is characterized by having.
In the photovoltaic cell electrode of the present invention, the transparent substrate may be a plastic film.
The method for producing an electrode for a photovoltaic cell of the present invention is characterized in that the above-described coating material for forming a semiconductor film is applied on a transparent conductive film previously formed on a transparent substrate and dried.
Alternatively, the method for producing an electrode for a photovoltaic cell of the present invention comprises a step of applying the above-described coating material for forming a semiconductor film on a peelable support, and forming a semiconductor film by drying to form a semiconductor film laminate, It has a step of laminating the semiconductor film laminate so that the semiconductor film is adjacent to the surface of the transparent conductive film previously formed on the transparent substrate, and a step of peeling the peelable support from the semiconductor film. And
The photovoltaic cell of the present invention comprises the above-described photovoltaic cell electrode and a counter electrode provided at a position facing the semiconductor film of the photovoltaic cell electrode, and an electrolyte material is filled between the photovoltaic cell electrode and the opposing electrode. It is characterized by.

本発明の半導体膜形成用塗料によれば、低温で光電池特性に優れた半導体膜を成膜でき、基材としてプラスチックフィルムを使用でき、しかも半導体膜を連続生産できる。
本発明の半導体膜形成用塗料では、クマリン系色素として、式(1)の置換基を有するクマリン系色素、とりわけ、式(2)または式(3)の構造式を有するクマリン系色素を用いる場合には、光電池の光電変換効率(η)を高くできる。
本発明の光電池用電極は、基材をプラスチック化できるので、屈曲性を持たせることができ、薄肉・軽量化できる。
本発明の光電池用電極の製造方法によれば、基材がプラスチック化され、屈曲性を有し、薄肉・計量で光電池特性に優れた光電池用電極を製造できる。
本発明の光電池は、基材をプラスチック化することにより、屈曲性を持たせることができ、薄肉・軽量化できる。また、本発明の光電池は、充分な実用特性を有する。
According to the coating composition for forming a semiconductor film of the present invention, a semiconductor film having excellent photovoltaic cell characteristics can be formed at a low temperature, a plastic film can be used as a substrate, and a semiconductor film can be continuously produced.
In the coating film for forming a semiconductor film of the present invention, a coumarin dye having a substituent of formula (1), particularly a coumarin dye having a structural formula of formula (2) or formula (3) is used as the coumarin dye. In this case, the photoelectric conversion efficiency (η) of the photovoltaic cell can be increased.
Since the substrate for a photovoltaic cell of the present invention can be made of a plastic substrate, it can have flexibility, and can be thin and lightweight.
According to the method for producing a photovoltaic cell electrode of the present invention, it is possible to produce a photovoltaic cell electrode in which the base material is made plastic, has flexibility, is thin and has excellent photovoltaic cell characteristics.
The photovoltaic cell of the present invention can be made flexible by making the substrate plastic, and can be made thinner and lighter. The photovoltaic cell of the present invention has sufficient practical characteristics.

(半導体膜形成用塗料)
本発明の半導体膜形成用塗料は、酸化亜鉛粒子とクマリン系色素と結着剤と溶媒とを含有するものである。
ここで、酸化亜鉛(ZnO)粒子としては、焼成法(フランス法)と湿式法のいずれの方法で製造されたものを使用できる。酸化亜鉛粒子の平均粒子径は数nmから数μmの範囲のものが使用できるが、10〜200nmの範囲の粒子径のものが好ましい。平均粒子径が10nm未満であると、分散安定性やハンドリング性が低くなり、一方、200nmを超えると表面積が小さくなって染料の吸着量が低下してしまうことがある。ただし、光散乱効果を期待して200nmを超える粒径のものを一部使用することは可能である。
(Semiconductor film forming paint)
The coating material for forming a semiconductor film of the present invention contains zinc oxide particles, a coumarin dye, a binder, and a solvent.
Here, as a zinc oxide (ZnO) particle, what was manufactured by any method of a baking method (French method) and a wet method can be used. The average particle diameter of the zinc oxide particles can be in the range of several nm to several μm, but those having a particle diameter in the range of 10 to 200 nm are preferable. When the average particle size is less than 10 nm, the dispersion stability and handling properties are lowered. On the other hand, when the average particle size is more than 200 nm, the surface area becomes small and the amount of dye adsorbed may be reduced. However, it is possible to use a part of particles having a particle diameter exceeding 200 nm in anticipation of the light scattering effect.

クマリン系色素は、クマリンを化学構造中に含み、色素増感剤として機能する化合物である。クマリン系色素としては特に制限されないが、光電池の光電変換効率が向上することから、クマリン系色素の中でも、上記式(1)に示される置換基を有するものが好ましく、式(2)に示される置換基を有することがより好ましい。さらには、式(3)あるいは式(4)の構造式で示されるクマリン系色素が特に好ましい。
式(1)〜(4)のRは水素原子またはアルキル基を示す。アルキル基としては、例えば、直鎖状あるいは分岐を有する炭化水素基、該炭化水素基の水素原子がハロゲンや水酸基により置換されたものなどが挙げられる。
式(3)のR,R,R,Rは、それぞれ独立に水素原子またはアルキル基を示す。アルキル基としては、例えば、直鎖状あるいは分岐を有する炭化水素基、該炭化水素基の水素原子がハロゲンや水酸基により置換されたものなどが挙げられる。
式(4)のR,R,R,Rは、それぞれ独立に水素原子またはアルキル基を示す。アルキル基としては、例えば、直鎖状あるいは分岐を有する炭化水素基、該炭化水素基の水素原子がハロゲンや水酸基により置換されたものなどが挙げられる。
The coumarin dye is a compound that contains coumarin in its chemical structure and functions as a dye sensitizer. Although it does not restrict | limit especially as a coumarin type | system | group pigment | dye, Since the photoelectric conversion efficiency of a photovoltaic cell improves, what has a substituent shown by said Formula (1) among the coumarin type | system | group pigments is preferable, and is shown by Formula (2). It is more preferable to have a substituent. Further, a coumarin dye represented by the structural formula of formula (3) or formula (4) is particularly preferable.
R 1 in formulas (1) to (4) represents a hydrogen atom or an alkyl group. Examples of the alkyl group include linear or branched hydrocarbon groups, and those in which hydrogen atoms of the hydrocarbon groups are substituted with halogens or hydroxyl groups.
R 2 , R 3 , R 4 and R 5 in the formula (3) each independently represent a hydrogen atom or an alkyl group. Examples of the alkyl group include linear or branched hydrocarbon groups, and those in which hydrogen atoms of the hydrocarbon groups are substituted with halogens or hydroxyl groups.
R 6 , R 7 , R 8 and R 9 in the formula (4) each independently represent a hydrogen atom or an alkyl group. Examples of the alkyl group include linear or branched hydrocarbon groups, and those in which hydrogen atoms of the hydrocarbon groups are substituted with halogens or hydroxyl groups.

結着剤は、酸化亜鉛粒子を結着し、かつ、成膜可能なものである。具体的には、セルロース誘導体、澱粉及びその誘導体、カゼイン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリビニルメチルエーテル、ポリエチレングリコール、スチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸共重合体等が挙げられる。これらの中でも、電解質材料の溶媒として用いられるアセトニトリル等の有機溶媒に対して溶解しにくいものが好ましく、具体的には、セルロース誘導体、特にカルボキシメチルセルロースが好ましい。カルボキシメチルセルロースは、電解質材料に侵されにくいだけでなく、酸化亜鉛粒子の分散性にも優れる。
なお、光電池の液漏れ防止を優先する場合には、電解液に対して親和性が高く、若干膨潤する結着剤を選ぶことが好ましい。
The binder is capable of binding zinc oxide particles and forming a film. Specifically, cellulose derivatives, starch and derivatives thereof, casein, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, polyvinyl methyl ether, polyethylene glycol, styrene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer Examples include coalescence. Among these, those that are difficult to dissolve in an organic solvent such as acetonitrile used as a solvent for the electrolyte material are preferable, and specifically, a cellulose derivative, particularly carboxymethylcellulose is preferable. Carboxymethylcellulose is not only hardly affected by the electrolyte material but also excellent in dispersibility of the zinc oxide particles.
In the case where priority is given to the prevention of liquid leakage of the photovoltaic cell, it is preferable to select a binder that has a high affinity for the electrolyte and swells slightly.

半導体膜形成用塗料において、酸化亜鉛粒子と結着剤との質量比は100/1〜100/20の範囲であることが好ましい。酸化亜鉛粒子と結着剤との質量比100/1よりも結着剤比率が少ないと結着力が不足する傾向にあり、100/20よりも結着剤比率が多いと、半導体膜中の酸化亜鉛粒子間の接合が不充分となり、光電池の変換効率が低下する傾向にある。
また、その他の成分の配合比率は、該塗料を塗布する方法に適した粘度に合わせて適宜選択すればよい。
In the coating for forming a semiconductor film, the mass ratio between the zinc oxide particles and the binder is preferably in the range of 100/1 to 100/20. When the binder ratio is less than the mass ratio of zinc oxide particles and binder of 100/1, the binding force tends to be insufficient. When the binder ratio is greater than 100/20, the oxidation in the semiconductor film is likely to occur. Joining between the zinc particles becomes insufficient, and the conversion efficiency of the photovoltaic cell tends to decrease.
The mixing ratio of other components may be appropriately selected according to the viscosity suitable for the method of applying the paint.

溶媒としては、例えば、水、または、アルコール系、ケトン系、エステル系、アミド系、ニトリル系、カーボネート系、芳香族炭化水素、脂肪族炭化水素等が挙げられる。これらの溶媒は、単独で使用してもよいし、混合して使用してもよい。上記溶媒の中でも、水、メタノール、エタノール、プロパノール、ブタノールなどのアルコールが好ましい。   Examples of the solvent include water, alcohols, ketones, esters, amides, nitriles, carbonates, aromatic hydrocarbons, aliphatic hydrocarbons, and the like. These solvents may be used alone or in combination. Among the solvents, alcohols such as water, methanol, ethanol, propanol and butanol are preferable.

半導体膜形成用塗料は、各成分を別々に配合して調製してもよいが、例えば酸化亜鉛粒子をクマリン系色素の溶液に浸漬させて、酸化亜鉛粒子にクマリン系色素をあらかじめ吸着させておくことが好ましい。酸化亜鉛粒子にクマリン系色素をあらかじめ吸着させれば、酸化亜鉛粒子表面へのクマリン系色素の吸着状態を容易に制御できる。
また、半導体膜形成用塗料を調製する際には、酸化亜鉛粒子を充分に分散させるために、サンドミルや、ホモジナイザー等の分散装置を使用することが好ましい。
The coating material for forming a semiconductor film may be prepared by blending each component separately. For example, zinc oxide particles are immersed in a solution of a coumarin dye, and the coumarin dye is adsorbed in advance on the zinc oxide particles. It is preferable. If the coumarin dye is adsorbed in advance on the zinc oxide particles, the adsorption state of the coumarin dye on the surface of the zinc oxide particles can be easily controlled.
Moreover, when preparing the coating material for forming a semiconductor film, it is preferable to use a dispersing device such as a sand mill or a homogenizer in order to sufficiently disperse the zinc oxide particles.

以上説明した半導体膜形成用塗料によれば、塗布後、低温で乾燥することにより、半導体膜を形成できる。したがって、高温での焼成工程は不要であるため、プラスチック製の基材を使用することができる。また、塗料の塗布、乾燥という簡便な方法により半導体膜を形成するから、半導体膜を連続生産できる。したがって、光電池用電極のロール・ツー・ロールでの連続生産も実現可能である。
さらに、従来の半導体膜の形成方法では、半導体膜形成後に色素溶液で染色する必要があったが、本発明の半導体膜形成用塗料は色素を含有するため、半導体膜形成後の染色を省略できる。この点も、連続生産を可能にする要因である。
According to the semiconductor film forming coating material described above, the semiconductor film can be formed by drying at a low temperature after application. Accordingly, since a baking process at a high temperature is unnecessary, a plastic substrate can be used. In addition, since the semiconductor film is formed by a simple method of applying and drying a paint, the semiconductor film can be continuously produced. Therefore, continuous production of the electrode for photovoltaic cells by roll-to-roll is also realizable.
Furthermore, in the conventional method for forming a semiconductor film, it is necessary to dye with a dye solution after forming the semiconductor film. However, since the coating material for forming a semiconductor film of the present invention contains a dye, the dyeing after forming the semiconductor film can be omitted. . This is also a factor that enables continuous production.

(光電池用電極)
本発明の光電池用電極について説明する。
図1に、光電池用電極の一例を示す。この光電池用電極10は、透明基材11と、透明基材11上に形成された透明導電膜12と、透明導電膜12上に形成された半導体膜13とを有するものである。
(Electrode for photovoltaic cells)
The photovoltaic cell electrode of the present invention will be described.
FIG. 1 shows an example of a photovoltaic cell electrode. The photovoltaic cell electrode 10 includes a transparent substrate 11, a transparent conductive film 12 formed on the transparent substrate 11, and a semiconductor film 13 formed on the transparent conductive film 12.

透明基材11としては、ガラス基板やプラスチックフィルムなどが挙げられるが、プラスチックフィルムが好ましい。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、トリアセチルセルロース、ポリカーボネート、ポリアリレート、ポリイミド、芳香族ポリアミド、ポリスルホン、ポリエーテルスルホン、セロファン、ポリエチレン、ポリプロピレン、ポリビニルアルコール、シクロオレフィン樹脂等が挙げられ、これらの単独または混合、更には積層したものを用いることができる。
透明基材11として上記のようなプラスチックフィルムを用いることにより、薄肉・軽量化や屈曲性の向上を図ることができるが、そのような効果が不要な場合にはガラス板を使用しても構わない。
透明基材11の厚さとしては5〜300μmであることが好ましい。
Examples of the transparent substrate 11 include a glass substrate and a plastic film, and a plastic film is preferable. Specific examples of plastic films include polyethylene terephthalate (PET), polyethylene naphthalate, triacetylcellulose, polycarbonate, polyarylate, polyimide, aromatic polyamide, polysulfone, polyethersulfone, cellophane, polyethylene, polypropylene, polyvinyl alcohol, cycloolefin. Examples thereof include resins and the like, and these can be used alone or in combination or further laminated.
By using the plastic film as described above as the transparent substrate 11, it is possible to reduce the thickness and weight and improve the flexibility. However, if such an effect is unnecessary, a glass plate may be used. Absent.
The thickness of the transparent substrate 11 is preferably 5 to 300 μm.

透明導電膜12は、主にITOや酸化亜鉛等の導電性の金属酸化物を含む膜である。この透明導電膜12は、透明性と導電性が共に高いことが好ましく、透明基材11の種類にも異なるが、具体的には、透明性としては全光線透過率が80%以上であることが好ましく、導電性としては表面抵抗率500Ω/□以下であることが好ましい。
透明導電膜12は、例えば、スパッタリング等の方法で成膜することができる。
The transparent conductive film 12 is a film mainly containing a conductive metal oxide such as ITO or zinc oxide. The transparent conductive film 12 preferably has both high transparency and conductivity, and also differs depending on the type of the transparent substrate 11. Specifically, the transparency is such that the total light transmittance is 80% or more. In terms of conductivity, the surface resistivity is preferably 500 Ω / □ or less.
The transparent conductive film 12 can be formed by a method such as sputtering.

半導体膜13は、上記半導体膜形成用塗料が塗布されて形成されたものであり、酸化亜鉛粒子とクマリン系色素と結着剤を含有する膜である。好ましくは、クマリン系色素が吸着した酸化亜鉛粒子が結着剤により結着されている膜である。
半導体膜13中の酸化亜鉛粒子と結着剤との配合比率は半導体膜形成用塗料中の範囲と同じである。
半導体膜の厚さとしては0.01〜300μmであることが好ましい。
The semiconductor film 13 is formed by applying the semiconductor film-forming coating material, and is a film containing zinc oxide particles, a coumarin dye, and a binder. A film in which zinc oxide particles adsorbed with a coumarin dye are bound by a binder is preferable.
The compounding ratio of the zinc oxide particles and the binder in the semiconductor film 13 is the same as the range in the semiconductor film forming coating.
The thickness of the semiconductor film is preferably 0.01 to 300 μm.

上述した光電池用電極は、上述した半導体膜形成用塗料から形成された半導体膜を有するため、透明基材をプラスチック化できる。その結果、光電池用電極に屈曲性を持たせることができ、また、薄肉・軽量化できる。   Since the above-described electrode for a photovoltaic cell has a semiconductor film formed from the above-described coating material for forming a semiconductor film, the transparent substrate can be made into plastic. As a result, the electrode for the photovoltaic cell can be given flexibility, and it can be made thinner and lighter.

(光電池用電極の製造方法)
本発明の光電池用電極の第1の製造方法について説明する。
第1の製造方法は、上述した半導体膜形成用塗料を、透明基材上に設けられた透明導電膜に塗布、乾燥する方法である。
半導体膜形成用塗料の塗布方法としては、例えば、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等を適用できる。
半導体膜形成用塗料を塗布後、乾燥する際の乾燥条件としては、溶媒を揮発させて除去できる条件であればよく、例えば、100〜150℃で、1〜30分間程度である。
(Method for producing photovoltaic cell electrode)
A first method for producing the electrode for a photovoltaic cell of the present invention will be described.
The first manufacturing method is a method of applying and drying the above-described coating for forming a semiconductor film on a transparent conductive film provided on a transparent substrate.
For example, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, or the like can be applied as a coating method of the semiconductor film forming coating.
Drying conditions for drying after applying the semiconductor film-forming coating material may be any conditions that can be removed by volatilizing the solvent, and are, for example, at 100 to 150 ° C. for about 1 to 30 minutes.

上述した第1の製造方法によれば、簡便な操作により、図1に示すような、透明基材11と透明導電膜12と半導体膜13とを有する光電池用電極10を製造できる。   According to the first manufacturing method described above, the photovoltaic cell electrode 10 having the transparent base material 11, the transparent conductive film 12, and the semiconductor film 13 as shown in FIG.

次に、本発明の光電池用電極の第2の製造方法について説明する。
第2の製造方法では、まず、剥離性支持体上に上述した半導体膜形成用塗料を塗布し、乾燥して半導体膜を形成して半導体膜積層体を作製する。次いで、透明基材上にあらかじめ形成した透明導電膜の表面に、半導体膜が隣接するように前記半導体膜積層体を積層する。そして、半導体膜から剥離性支持体を剥離して、図1に示す光電池用電極10を得る。第2の製造方法における半導体膜形成用塗料の塗布、乾燥は第1の製造方法と同様である。
Next, the 2nd manufacturing method of the electrode for photovoltaic cells of this invention is demonstrated.
In the second manufacturing method, first, the above-described coating for forming a semiconductor film is applied onto a peelable support and dried to form a semiconductor film, thereby producing a semiconductor film laminate. Subsequently, the said semiconductor film laminated body is laminated | stacked so that a semiconductor film may adjoin to the surface of the transparent conductive film previously formed on the transparent base material. Then, the peelable support is peeled from the semiconductor film to obtain the photovoltaic cell electrode 10 shown in FIG. Application and drying of the semiconductor film-forming paint in the second production method are the same as in the first production method.

上記第2の製造方法において、剥離性支持体としては、例えば、紙またはプラスチックフィルムがシリコーン樹脂などで表面処理された剥離紙や剥離性プラスチックフィルムなどが挙げられる。中でも、表面の平滑性から剥離性PETフィルムが好ましい。
透明導電膜の表面に半導体膜積層体を積層した後には、挟持装置により挟持し、透明導電膜と半導体膜との密着性を高めることが好ましい。
In the second manufacturing method, examples of the peelable support include release paper and peelable plastic film in which a paper or plastic film is surface-treated with a silicone resin or the like. Among these, a peelable PET film is preferable from the surface smoothness.
After laminating the semiconductor film laminate on the surface of the transparent conductive film, it is preferable that the adhesion between the transparent conductive film and the semiconductor film is improved by sandwiching with a sandwiching device.

この第2の製造方法は、剥離性支持体上の半導体膜を透明導電膜の表面に転写する方法であり、生産性の高い塗工設備や印刷装置を使用して半導体膜積層体を作製でき、作成された半導体膜積層体は保管することができる。また、転写法であるため、1種類の半導体膜積層体に種々の透明基材を組み合わせることができ、融通性が高く、品種を容易に多様化できる。   This second manufacturing method is a method of transferring a semiconductor film on a peelable support to the surface of a transparent conductive film, and a semiconductor film laminate can be produced using a highly productive coating facility or printing apparatus. The produced semiconductor film laminate can be stored. In addition, since it is a transfer method, various types of transparent base materials can be combined with one type of semiconductor film laminate, which has high flexibility and can easily diversify the variety.

(光電池)
次に、本発明の光電池の一例について説明する。
この光電池は、図2に示すように、上述した光電池用電極10と、光電池用電極10の半導体膜13に対向する位置に設けられた対向電極20とを具備し、光電池用電極10と対向電極20との間に電解質材料30が充填されているものである。
また、光電池用電極の透明導電膜12と対向電極20とは外部負荷回路40を介して電気的に接続されている。
(Photo battery)
Next, an example of the photovoltaic cell of the present invention will be described.
As shown in FIG. 2, the photovoltaic cell includes the photovoltaic cell electrode 10 described above and the opposing electrode 20 provided at a position facing the semiconductor film 13 of the photovoltaic cell electrode 10, and the photovoltaic cell electrode 10 and the opposing electrode are provided. 20 is filled with an electrolyte material 30.
Further, the transparent conductive film 12 of the photovoltaic cell electrode and the counter electrode 20 are electrically connected via an external load circuit 40.

ここで、対向電極20としては、白金板、白金スパッタ膜を設けたガラス板、カーボン電極などが挙げられる。対向電極20を光電池用電極10に対向するように設ける際には、例えば、光電池用電極10と対向電極20との間にスペーサ50を配置することが好ましい。
電解質材料30としては、ヨウ素とヨウ素化合物を溶媒に溶解したものが好ましい。ヨウ素化合物としてはヨウ化リチウム、例えば、ヨウ化カリウム、テトラプロピルアンモニウムヨウ素、テトラブチルアンモニウムヨウ素、ジメチルプロピルイミダゾリルヨウ素などが挙げられる。溶媒としては、例えば、アセトニトリル、メトキシアセトニトリル、エチレンカーボネート、プロピオンカーボネート、ジメチルカーボネートやこれらの混合溶剤が使用でき、さらに、t−ブチルピリジンを添加することもできる。
Here, examples of the counter electrode 20 include a platinum plate, a glass plate provided with a platinum sputtered film, and a carbon electrode. When the counter electrode 20 is provided so as to face the photovoltaic cell electrode 10, for example, it is preferable to arrange the spacer 50 between the photovoltaic cell electrode 10 and the opposing electrode 20.
As the electrolyte material 30, a material in which iodine and an iodine compound are dissolved in a solvent is preferable. Examples of the iodine compound include lithium iodide such as potassium iodide, tetrapropylammonium iodine, tetrabutylammonium iodine, dimethylpropylimidazolyl iodine and the like. As the solvent, for example, acetonitrile, methoxyacetonitrile, ethylene carbonate, propion carbonate, dimethyl carbonate or a mixed solvent thereof can be used, and t-butylpyridine can be further added.

光電池の製造方法としては、例えば、まず、上記のように製造された光電池用電極上に、スペーサを設置し、スペーサ上に対向電極を設置した後、この状態で固定する。次いで、光電池用電極と対向電極との間に電解質材料を注入し、最後に光電池用電極および対向電極に配線を取り付けて光電池を得る。   As a manufacturing method of a photovoltaic cell, for example, first, a spacer is installed on the photovoltaic cell electrode manufactured as described above, and a counter electrode is installed on the spacer, and then fixed in this state. Next, an electrolyte material is injected between the photovoltaic cell electrode and the counter electrode, and finally wiring is attached to the photovoltaic cell electrode and the opposing electrode to obtain a photovoltaic cell.

上述した光電池では、光電池用電極の透明基材をプラスチック化できるため、屈曲性を持たせることができ、また、薄肉・軽量化できる。しかも、この光電池は、充分な実用特性を有する。   In the above-described photovoltaic cell, the transparent substrate of the photovoltaic cell electrode can be made plastic, so that it can have flexibility, and can be made thinner and lighter. Moreover, this photovoltaic cell has sufficient practical characteristics.

以下、実施例により本発明をより具体的に説明するが、本発明はそれらの実施例に限定されるものではない。
(実施例1)
式(3)(ただし、R=Hで、R〜Rの全てがCH)で示されるクマリン系色素(林原生物化学研究所社製、商品名NKX2587)の5.0質量%エタノール溶液100gに、酸化亜鉛粒子(ナノファイン50、堺化学社製、粒子径20nm)20gを分散した後、一晩常温で暗所に放置した。その後、濾過してエタノールを除去し、クマリン系色素により染色された酸化亜鉛粒子を得て、これを真空乾燥した。
このクマリン系色素により染色された酸化亜鉛粒子10gと、カルボキシメチルセルロース(CMC−DN−10L、ダイセル化学工業社製)の2質量%水溶液20gと、水10gとを混合し、撹拌した後、超音波ホモジナイザーにより分散性を高めて半導体膜形成用塗料を調製した。
この半導体膜形成用塗料を、ITO膜付きのガラス基板(縦10mm×横15mm×厚さ0.7mm、表面抵抗率10Ω/□)のITO膜上に塗布し、100℃で15分間乾燥して乾燥膜厚13μmの半導体膜を形成して、光電池用電極を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to those Examples.
Example 1
5.0% by mass ethanol of a coumarin dye represented by the formula (3) (where R 1 = H and all of R 2 to R 5 are CH 3 ) (trade name NKX2587, manufactured by Hayashibara Biochemical Laboratories) 20 g of zinc oxide particles (Nanofine 50, manufactured by Sakai Chemical Co., Ltd., particle size: 20 nm) were dispersed in 100 g of the solution, and then left overnight in a dark place at room temperature. Thereafter, the ethanol was removed by filtration to obtain zinc oxide particles dyed with a coumarin-based dye, and this was vacuum-dried.
After mixing and stirring 10 g of zinc oxide particles dyed with this coumarin-based dye, 20 g of a 2% by weight aqueous solution of carboxymethylcellulose (CMC-DN-10L, manufactured by Daicel Chemical Industries), and 10 g of water, ultrasonic waves are mixed. Dispersibility was increased by a homogenizer to prepare a coating for forming a semiconductor film.
This paint for forming a semiconductor film is applied on an ITO film of a glass substrate with an ITO film (length 10 mm × width 15 mm × thickness 0.7 mm, surface resistivity 10Ω / □), and dried at 100 ° C. for 15 minutes. A semiconductor film having a dry film thickness of 13 μm was formed to obtain a photovoltaic cell electrode.

この光電池用電極の半導体膜上に、厚さ0.3mmのポリフルオロエチレンシートからなるスペーサを介して白金電極を設けた。次いで、半導体膜と白金電極との間隙に、ヨウ化テトラプロピルアンモニウム0.5mol/lとヨウ素0.05mol/lのアセトニトリル溶液からなる電解液を注入して、光電池を組み立てた。得られた光電池を、JASCO社製の太陽電池特性評価システムにより、1sun照射下でI−V特性を測定した。結果を表1に示す。なお、この光電池の受光面積は0.25cmであった。 A platinum electrode was provided on the semiconductor film of the photovoltaic cell electrode through a spacer made of a polyfluoroethylene sheet having a thickness of 0.3 mm. Next, an electrolytic solution composed of an acetonitrile solution of tetrapropylammonium iodide 0.5 mol / l and iodine 0.05 mol / l was injected into the gap between the semiconductor film and the platinum electrode to assemble a photovoltaic cell. The obtained photovoltaic cell was measured for IV characteristics under 1 sun irradiation by a solar cell characteristic evaluation system manufactured by JASCO. The results are shown in Table 1. The light receiving area of this photovoltaic cell was 0.25 cm 2 .

Figure 2007067046
Figure 2007067046

(実施例2)
実施例1で調製した半導体膜形成用塗料を、剥離性PETフィルム(PET38X、リンテック社製、厚さ38μm)上にスクリーン印刷法により5mm×5mmのサイズで印刷し、100℃で1分間乾燥して半導体膜を形成して半導体膜積層体を得た。なお、半導体膜の厚さは15μmであった。
この半導体膜積層体の半導体膜と、透明導電性ITOフィルム−300RE(東洋紡社製、表面抵抗率250Ω/□、厚さ188μm)の透明導電膜面とを重ね合わせ、平板熱プレスで120℃、0.3MPa、3分間加圧した。その後、剥離性PETフィルムを剥離して、光電池用電極を得た。この光電池用電極を実施例1と同様にして評価した。評価結果を表1に示す。
(Example 2)
The semiconductor film-forming paint prepared in Example 1 was printed on a peelable PET film (PET38X, manufactured by Lintec Corporation, thickness 38 μm) at a size of 5 mm × 5 mm by a screen printing method and dried at 100 ° C. for 1 minute. The semiconductor film was formed to obtain a semiconductor film stack. The thickness of the semiconductor film was 15 μm.
The semiconductor film of this semiconductor film laminated body and the transparent conductive ITO film-300RE (manufactured by Toyobo Co., Ltd., surface resistivity 250Ω / □, thickness 188 μm) are superposed and 120 ° C. by a flat plate heat press, Pressurization was performed at 0.3 MPa for 3 minutes. Thereafter, the peelable PET film was peeled off to obtain a photovoltaic cell electrode. The photovoltaic cell electrode was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(実施例3)
クマリン系色素を式(4)(ただし、R=Hで、R〜Rの全てがCH)で示されるクマリン系色素(林原生物化学研究所社製、NKX2677)に置き換えたこと以外は、実施例2と同様にして光電池用電極を得た。光電池用電極の半導体膜の乾燥膜厚は14μmであった。
そして、この光電池用電極を実施例1と同様にして評価した。評価結果を表1に示す。
(Example 3)
Other than replacing the coumarin-based dye with a coumarin-based dye represented by the formula (4) (where R 1 = H and R 6 to R 9 are all CH 3 ) (manufactured by Hayashibara Biochemical Laboratories, Inc., NKX2677) Obtained the electrode for photovoltaic cells in the same manner as in Example 2. The dry film thickness of the semiconductor film of the electrode for photovoltaic cells was 14 μm.
This photovoltaic cell electrode was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例1)
クマリン系色素の5.0質量%エタノール溶液を、ミオシンYの3.5質量%エタノール溶液に置き換えたこと以外は、実施例1と同様にして光電池用電極を得た。そして、この光電池用電極を実施例1と同様にして評価した。評価結果を表1に示す。
(Comparative Example 1)
A photovoltaic cell electrode was obtained in the same manner as in Example 1 except that the 5.0 mass% ethanol solution of the coumarin dye was replaced with the 3.5 mass% ethanol solution of myosin Y. This photovoltaic cell electrode was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

(比較例2)
酸化亜鉛を、酸化チタン(TTO−55(N)、石原産業社製、粒子径;40nm)に置き換えたこと以外は、実施例1と同様にして光電池用電極を得た。そして、この光電池用電極を実施例1と同様にして評価した。評価結果を表1に示す。
(Comparative Example 2)
A photovoltaic cell electrode was obtained in the same manner as in Example 1 except that zinc oxide was replaced with titanium oxide (TTO-55 (N), manufactured by Ishihara Sangyo Co., Ltd., particle size: 40 nm). This photovoltaic cell electrode was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

酸化亜鉛とクマリン系色素と結着剤と溶媒とを含有する半導体膜形成用塗料を透明導電膜上に塗布した実施例1〜3、特に実施例2,3では基材としてプラスチックフィルムを用いているにもかかわらず、半導体膜を形成して光電池用電極を得ることができた。この光電池用電極を備えた実施例1〜3の光電池用電極は、充分な光電池特性を有していた。また、屈曲性を有しており、かつ、薄肉・軽量化できた。
これに対し、クマリン系色素の代わりにミオシンYを含む半導体膜形成用塗料を透明導電膜上に塗布した比較例1の光電池用電極、酸化亜鉛の代わりに酸化チタンを含む半導体膜形成用塗料を透明導電膜上に塗布した比較例2の光電池用電極は、光電池特性が低かった。
In Examples 1 to 3, particularly Examples 2 and 3, in which a coating for forming a semiconductor film containing zinc oxide, a coumarin-based dye, a binder, and a solvent is applied on a transparent conductive film, a plastic film is used as a substrate. Nevertheless, a semiconductor film was formed to obtain a photovoltaic cell electrode. The photovoltaic cell electrodes of Examples 1 to 3 provided with this photovoltaic cell electrode had sufficient photovoltaic cell characteristics. In addition, it was flexible and could be made thinner and lighter.
In contrast, the electrode for a photovoltaic cell of Comparative Example 1 in which a coating for forming a semiconductor film containing myosin Y instead of a coumarin dye was applied on a transparent conductive film, and the coating for forming a semiconductor film containing titanium oxide instead of zinc oxide. The photovoltaic cell electrode of Comparative Example 2 applied on the transparent conductive film had low photovoltaic cell characteristics.

本発明の光電池用電極の一例を示す断面図である。It is sectional drawing which shows an example of the electrode for photovoltaic cells of this invention. 本発明の光電池の一例を示す断面図である。It is sectional drawing which shows an example of the photovoltaic cell of this invention.

符号の説明Explanation of symbols

10 光電池用電極
11 透明基材
12 透明導電膜
13 半導体膜
20 対向電極
30 電解質材料
40 外部負荷回路
50 スペーサ

DESCRIPTION OF SYMBOLS 10 Photovoltaic electrode 11 Transparent base material 12 Transparent conductive film 13 Semiconductor film 20 Counter electrode 30 Electrolyte material 40 External load circuit 50 Spacer

Claims (10)

酸化亜鉛粒子とクマリン系色素と結着剤と溶媒とを含有することを特徴とする半導体膜形成用塗料。   A coating for forming a semiconductor film, comprising zinc oxide particles, a coumarin dye, a binder, and a solvent. 前記クマリン系色素が下記一般式(1)で表される置換基を有することを特徴とする請求項1に記載の半導体膜形成用塗料。
−COOR (1)
(式中、Rは水素原子またはアルキル基を示す)
The paint for forming a semiconductor film according to claim 1, wherein the coumarin dye has a substituent represented by the following general formula (1).
-COOR 1 (1)
(Wherein R 1 represents a hydrogen atom or an alkyl group)
前記クマリン系色素が下記一般式(2)で表される置換基を有することを特徴とする請求項2に記載の半導体膜形成用塗料。
Figure 2007067046
(式中、Rは水素原子またはアルキル基を示す)
The coating material for forming a semiconductor film according to claim 2, wherein the coumarin dye has a substituent represented by the following general formula (2).
Figure 2007067046
(Wherein R 1 represents a hydrogen atom or an alkyl group)
前記クマリン系色素が下記一般式(3)または一般式(4)で表される分子構造を有することを特徴とする請求項3に記載の半導体膜形成用塗料。
Figure 2007067046
(式中、R はそれぞれ独立に水素原子またはアルキル基を示す)
The coating material for forming a semiconductor film according to claim 3, wherein the coumarin dye has a molecular structure represented by the following general formula (3) or general formula (4).
Figure 2007067046
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 each independently represents a hydrogen atom or an alkyl group)
前記酸化亜鉛粒子に前記クマリン系色素が吸着されていることを特徴とする請求項1〜4のいずれかに記載の半導体膜形成用塗料。   The semiconductor film-forming paint according to any one of claims 1 to 4, wherein the coumarin dye is adsorbed on the zinc oxide particles. 透明基材と、該透明基材上に形成された透明導電膜と、該透明導電膜上に請求項1〜5のいずれかに記載の半導体膜形成用塗料が塗布されて形成された半導体膜とを有することを特徴とする光電池用電極。   A transparent base material, a transparent conductive film formed on the transparent base material, and a semiconductor film formed by applying the semiconductor film forming paint according to claim 1 on the transparent conductive film And an electrode for a photovoltaic cell. 前記透明基材がプラスチックフィルムからなることを特徴とする請求項6に記載の光電池用電極。   The said transparent base material consists of plastic films, The electrode for photovoltaic cells of Claim 6 characterized by the above-mentioned. 請求項1〜5のいずれかに記載の半導体膜形成用塗料を、透明基材上にあらかじめ形成した透明導電膜上に塗布し、乾燥することを特徴とする光電池用電極の製造方法。   A method for producing an electrode for a photovoltaic cell, comprising applying the coating composition for forming a semiconductor film according to any one of claims 1 to 5 onto a transparent conductive film previously formed on a transparent substrate and drying the coating film. 剥離性支持体上に、請求項1〜5のいずれかに記載の半導体膜形成用塗料を塗布し、乾燥して半導体膜を形成して半導体膜積層体を作製する工程と、
透明基材上にあらかじめ形成した透明導電膜の表面に、半導体膜が隣接するように前記半導体膜積層体を積層する工程と、
半導体膜から剥離性支持体を剥離する工程とを有することを特徴とする光電池用電極の製造方法。
Applying the coating for forming a semiconductor film according to any one of claims 1 to 5 on a peelable support, and forming a semiconductor film by drying to form a semiconductor film laminate,
Laminating the semiconductor film laminate so that the semiconductor film is adjacent to the surface of the transparent conductive film previously formed on the transparent substrate;
And a step of peeling the peelable support from the semiconductor film.
請求項6または7に記載の光電池用電極と、該光電池用電極の半導体膜に対向する位置に設けられた対向電極とを具備し、光電池用電極と対向電極との間に電解質材料が充填されていることを特徴とする光電池。

A photovoltaic cell electrode according to claim 6 or 7 and a counter electrode provided at a position facing the semiconductor film of the photovoltaic cell electrode, wherein an electrolyte material is filled between the photovoltaic cell electrode and the opposing electrode. A photovoltaic cell characterized by comprising:

JP2005249013A 2005-08-30 2005-08-30 Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell Pending JP2007067046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249013A JP2007067046A (en) 2005-08-30 2005-08-30 Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249013A JP2007067046A (en) 2005-08-30 2005-08-30 Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell

Publications (1)

Publication Number Publication Date
JP2007067046A true JP2007067046A (en) 2007-03-15

Family

ID=37928913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249013A Pending JP2007067046A (en) 2005-08-30 2005-08-30 Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell

Country Status (1)

Country Link
JP (1) JP2007067046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070783A (en) * 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd Semiconductor film forming coating, semiconductor film, electrode for photocell, its manufacturing method, and photocell
JP2009088296A (en) * 2007-09-29 2009-04-23 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion material, and solar cell
JP2009193705A (en) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd Dye-sensitized solar cell, dye-sensitized solar cell module, and coating liquid for forming electrolyte layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006235A (en) * 2002-03-29 2004-01-08 Nagoya Industrial Science Research Inst Porous zinc oxide thin film for substrate of pigment sensitized solar battery, zinc oxide/pigment composite thin film for optical electrode material of the solar battery, manufacturing method therefor, and the solar battery of which the optical electrode is used with the thin film
JP2004095450A (en) * 2002-09-02 2004-03-25 National Institute Of Advanced Industrial & Technology Semiconductor thin film electrode using organic dye as photosensitizer, photoelectric conversion element, and optical electrochemical solar battery
JP2005135798A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Semiconductor film for photocell, lamination body, and paint for manufacturing semiconductor film
JP2005135799A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Electrode for photocell and manufacturing method of the same, and photocell using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006235A (en) * 2002-03-29 2004-01-08 Nagoya Industrial Science Research Inst Porous zinc oxide thin film for substrate of pigment sensitized solar battery, zinc oxide/pigment composite thin film for optical electrode material of the solar battery, manufacturing method therefor, and the solar battery of which the optical electrode is used with the thin film
JP2004095450A (en) * 2002-09-02 2004-03-25 National Institute Of Advanced Industrial & Technology Semiconductor thin film electrode using organic dye as photosensitizer, photoelectric conversion element, and optical electrochemical solar battery
JP2005135798A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Semiconductor film for photocell, lamination body, and paint for manufacturing semiconductor film
JP2005135799A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Electrode for photocell and manufacturing method of the same, and photocell using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070783A (en) * 2007-09-18 2009-04-02 Tomoegawa Paper Co Ltd Semiconductor film forming coating, semiconductor film, electrode for photocell, its manufacturing method, and photocell
JP2009088296A (en) * 2007-09-29 2009-04-23 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion material, and solar cell
JP2009193705A (en) * 2008-02-12 2009-08-27 Dainippon Printing Co Ltd Dye-sensitized solar cell, dye-sensitized solar cell module, and coating liquid for forming electrolyte layer

Similar Documents

Publication Publication Date Title
Yamaguchi et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
US7790980B2 (en) Dye for dye sensitized photovoltaic cell and dye sensitized photovoltaic cell prepared using the same
Flynn et al. Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells
Wu et al. Scaling of the flexible dye sensitized solar cell module
JP4775512B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and coating solution for forming electrolyte layer
Liu et al. Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications
JP2007128895A (en) Solar battery and its manufacturing method
JP2008130553A (en) Dye-sensitized solar battery and manufacturing method of dye-sensitized solar battery
JP5620469B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photoelectrochemical cell
Oh et al. UV-assisted chemical sintering of inkjet-printed TiO2 photoelectrodes for low-temperature flexible dye-sensitized solar cells
KR101084208B1 (en) Photoelectrode for dye sensitized solar cell, manufacturing method thereof, and Dye sensitized solar cell using the same
JP5689351B2 (en) Photoelectric conversion element and photoelectrochemical cell
KR20100088310A (en) Electrodes comprising metal oxide-polymer composite and preparation method thereof, and dye-sensitized solar cells using the same
WO2009113342A1 (en) Dye-sensitized solar cell
Ito et al. Porous carbon layers for counter electrodes in dye-sensitized solar cells: Recent advances and a new screen-printing method
JP2007067046A (en) Semiconductor film forming paint, photoelectric cell electrode, its manufacturing method and photoelectric cell
KR101166515B1 (en) Photoelectrode for dye-sensitized solar cell, preparing method of the same, and dye-sensitized solar cell having the same
WO2016006227A1 (en) Viscous dispersion liquid and method for producing same, porous semiconductor electrode substrate, and dye-sensitized solar cell
JP2005135799A (en) Electrode for photocell and manufacturing method of the same, and photocell using the same
JP4919448B2 (en) Semiconductor film for photovoltaic cell, laminated body, and coating material for producing semiconductor film
JP2006172722A (en) Composition for coating formation, electrode obtained by using it and photoelectric conversion element
JP2011040288A (en) Method of manufacturing semiconductor film, the semiconductor film, and dye-sensitized solar cell
JP2003243052A (en) Photoelectric transducing module
CN103380535B (en) Low-light (level) DSSC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131