JP2007066527A - Test piece observation method and charged particle beam device - Google Patents

Test piece observation method and charged particle beam device Download PDF

Info

Publication number
JP2007066527A
JP2007066527A JP2005246984A JP2005246984A JP2007066527A JP 2007066527 A JP2007066527 A JP 2007066527A JP 2005246984 A JP2005246984 A JP 2005246984A JP 2005246984 A JP2005246984 A JP 2005246984A JP 2007066527 A JP2007066527 A JP 2007066527A
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
observation method
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246984A
Other languages
Japanese (ja)
Other versions
JP4845452B2 (en
Inventor
Mitsuru Konno
充 今野
Norie Yaguchi
紀恵 矢口
Takeshi Onishi
毅 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005246984A priority Critical patent/JP4845452B2/en
Publication of JP2007066527A publication Critical patent/JP2007066527A/en
Application granted granted Critical
Publication of JP4845452B2 publication Critical patent/JP4845452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device in which solve the problem wherein conventionally a levelness adjustment is made relying on a vision by repeating test piece processing or observation in a material having no means of showing directivity. <P>SOLUTION: In the test piece observation method and a charged particle beam device, a test piece is inclined or rotated so that, when viewed from the charged particle beam source side, structures formed ranging over the front portion and the inner portion of the test piece, or structures with a prescribed relation between the front portion and the inner portion of the test piece may be in a prescribed relationship. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料の観察方法、及び荷電粒子線装置に係り、特に試料の特定方向から観察を行うための観察方法、及び装置に関するものである。   The present invention relates to a sample observation method and a charged particle beam apparatus, and more particularly to an observation method and apparatus for performing observation from a specific direction of a sample.

特許文献1に説明されているように、試料を任意の方向から観察する方法として、イオンビームや電子ビームのような荷電粒子ビームを照射し、当該照射個所から放出された二次電子等に基づいて画像を形成し、この画像から試料の姿勢を確認し、傾斜機構等を用いて、上記任意の方向からビームが照射されるように、試料の姿勢を調整する手法がある。   As described in Patent Document 1, as a method for observing a sample from an arbitrary direction, a charged particle beam such as an ion beam or an electron beam is irradiated, and secondary electrons emitted from the irradiated portion are used. There is a method in which an image is formed, the posture of the sample is confirmed from the image, and the posture of the sample is adjusted using a tilting mechanism or the like so that the beam is irradiated from the arbitrary direction.

特開2005−44817号公報JP-A-2005-44817

加工または観察目的の構造体が、単結晶基板上に位置していない場合、方向を示すものが無く、試料の向きを調整するのが困難であった。そのため、従来は方向を示すものが無い材料では、試料加工または観察を繰り返し行い、視覚を頼りに水平度調整を行っていた。本発明の目的は、上記問題点を解消し、試料の水平度調整を簡便に行う方法を提供することにある。   When the structure for processing or observation was not located on the single crystal substrate, there was no indication of the direction, and it was difficult to adjust the direction of the sample. For this reason, conventionally, with materials that have no direction, sample processing or observation is repeatedly performed, and the leveling adjustment is performed by relying on vision. An object of the present invention is to solve the above-mentioned problems and provide a method for easily adjusting the level of a sample.

上記目的を達成するために、本発明では、荷電粒子源側から見て、試料の手前部分と、奥行き部分に跨って形成される構造体、或いは試料の手前部分と、奥行き部分との間に、所定の関係を持って形成されている構造体が、所定の関係となるように、試料を傾斜、或いは回転する試料観察方法、及び荷電粒子線装置を提案する。   In order to achieve the above object, according to the present invention, when viewed from the charged particle source side, the front portion of the sample and the structure formed across the depth portion or the front portion of the sample and the depth portion are provided. The present invention proposes a sample observation method and a charged particle beam apparatus in which a sample is tilted or rotated so that structures formed with a predetermined relationship have a predetermined relationship.

本発明は、簡便な試料水平度調整法を提供することが可能である。   The present invention can provide a simple sample leveling adjustment method.

以下に、荷電粒子源から見て、試料の手前の部位から奥行き部分まで、跨って形成される素子が、荷電粒子線の光軸に並行となるように、試料を傾斜することで、試料の角度調整を行う本発明方法、及び装置について、図面を交えて説明する。   In the following, the sample is tilted so that the element formed across the portion from the front of the sample to the depth as viewed from the charged particle source is parallel to the optical axis of the charged particle beam. The method and apparatus of the present invention for adjusting the angle will be described with reference to the drawings.

図1に、本発明の方法を説明する手順を示す。試料は、多方向観察できる方が望ましい。(a)試料は、マイクロサンプリング法により試料片を摘出し、試料台に固定する。
(b)次に、試料片の一部を階段状または斜めに加工し、試料厚さの異なる部位を作製する。(c)次に、試料表面または試料内部の構造を観察し、連続する構造体が同一直線状に並ぶように試料を傾斜または回転する。(d)その結果、試料加工装置または試料観察装置において試料を正確に水平度調整することが可能になる。
FIG. 1 shows a procedure for explaining the method of the present invention. It is desirable that the sample can be observed in multiple directions. (A) A sample is extracted by a microsampling method and fixed to a sample stage.
(B) Next, a part of the sample piece is processed stepwise or obliquely to produce portions having different sample thicknesses. (C) Next, the structure of the sample surface or the inside of the sample is observed, and the sample is tilted or rotated so that the continuous structures are arranged in the same straight line. (D) As a result, it is possible to accurately adjust the level of the sample in the sample processing apparatus or the sample observation apparatus.

本発明を示す模式図を図2に示す。連続的な構造体2を持つ水平な試料1と水平でない試料の透過像を観察した場合、連続した構造体の幅L1およびL2が異なる。そこで、
L2を最小の値L1に近づけるように試料を回転または傾斜することで、試料の水平度調整が可能である。また、連続的な構造体の他に、規則的に点在した構造体3を持つ試料でも同様の調整が可能である。
A schematic diagram showing the present invention is shown in FIG. When the transmission images of the horizontal sample 1 having the continuous structure 2 and the non-horizontal sample are observed, the widths L1 and L2 of the continuous structure are different. Therefore,
The level of the sample can be adjusted by rotating or tilting the sample so that L2 approaches the minimum value L1. In addition to a continuous structure, the same adjustment can be made for a sample having structures 3 that are regularly scattered.

図3は、本発明の試料の形態である。その形態は、試料片側,試料左右および試料上下左右に段差を設ける、または傾斜部を設けた試料など、試料の一部に試料厚さの異なる領域を作製することが特徴である。その理由は以下の通りである。通常、透過電子を観察する試料の厚さは、100nm以下の薄膜である。薄膜試料の場合、100nm以下の領域の連続構造体は少なく、連続する構造体を観察することが困難である。そのため、水平度調整のために、厚い領域を持たせている。厚い領域が確保できれば、その形状は階段または傾斜のどちらでも応用が可能である。   FIG. 3 shows the form of the sample of the present invention. The form is characterized in that regions having different sample thicknesses are formed in a part of the sample, such as a sample provided with steps on the sample side, the sample right and left, and the sample up and down, left and right, or a sample provided with an inclined portion. The reason is as follows. Usually, the thickness of a sample for observing transmitted electrons is a thin film of 100 nm or less. In the case of a thin film sample, there are few continuous structures in the region of 100 nm or less, and it is difficult to observe a continuous structure. Therefore, a thick region is provided for adjusting the level. If a thick region can be secured, the shape can be applied to either a staircase or an inclination.

図4は、階段状に加工した試料の二次電子像である。試料は、針状の試料台の先端5に固定されている。上部が透過像観察用に薄膜化した部位、その下が水平度調整に用いる階段状に加工した部位4である。   FIG. 4 is a secondary electron image of a sample processed into a staircase shape. The sample is fixed to the tip 5 of a needle-like sample base. The upper portion is a thinned portion for transmission image observation, and the lower portion is a stepped portion 4 used for adjusting the level.

図4中の矢印方向から電子線を入射し同試料の走査透過像を観察した例を図5に示す。厚い試料の透過電子の観察には、透過電子顕微鏡よりも色収差の影響が小さい走査透過電子顕微鏡の方が有効である。走査透過電子顕微鏡を用いることで、約10μm厚さの試料まで観察することが出来る。(a)が水平度調整実施前、(b)が実施後の像である。上部が透過像観察用に薄膜化した部位、およびその下の水平度調整に用いる階段状に加工した部位である。両者に、連続する構造体が存在している。しかし、薄膜化した部位は、水平度調整実施前後において、像の変化が見られず、この画像に示すように、一般的に薄膜試料での水平度調整は困難である。しかし、階段状に加工した部位は、拡大像に示す通り水平度調整実施前と水平度調整実施後では、その差が明らかである。   FIG. 5 shows an example in which an electron beam is incident from the direction of the arrow in FIG. 4 and a scanning transmission image of the sample is observed. A scanning transmission electron microscope that is less affected by chromatic aberration than a transmission electron microscope is more effective in observing transmission electrons of a thick sample. By using a scanning transmission electron microscope, a sample having a thickness of about 10 μm can be observed. (A) is an image before the adjustment of the level, and (b) is an image after the execution. The upper part is a part thinned for transmission image observation, and the part processed into a staircase used for adjusting the horizontality below the upper part. Both have a continuous structure. However, the image of the thinned portion is not changed before and after the adjustment of the level, and as shown in this image, it is generally difficult to adjust the level of the thin film sample. However, as shown in the enlarged image, the difference between the parts processed in a staircase shape is clear before and after the horizontality adjustment.

このとき画像上で、黒いコントラストで観察される連続的な構造体8の大きさが最小となるように試料の傾斜を行うことで試料の水平度調整が実現できる。透過電子を用いた観察において、格子像レベルの観察するには試料を厚さ0.1μm 程度にする必要がある。薄膜部に連続的な構造体もしくは規則的に配列した構造体を正確に薄膜部に納めるためには、加工装置においても試料の水平度調整が重要である。   At this time, it is possible to adjust the level of the sample by inclining the sample so that the size of the continuous structure 8 observed with black contrast is minimized on the image. In observation using transmission electrons, it is necessary to make the sample about 0.1 μm thick in order to observe the lattice image level. In order to accurately store a continuous structure or a regularly arranged structure in the thin film portion in the thin film portion, it is important to adjust the level of the sample in the processing apparatus.

図6は、図4の二次電子像観察方向と同方向から観察した走査透過像である。マイクロサンプルの薄膜部に連続的な構造体もしくは規則的に配列した構造体を正確に薄膜部が位置していることを確認するためには、この方向からの観察が有効である。しかし、この場合、電子線入射方向に対して試料厚さは数μm〜10μmとなり走査透過電子顕微鏡を用いる必要がある。図6は、回転軸9に対して、5°回転した試料、10°回転した試料の走査透過電子顕微鏡像である。試料の画像上に観察できる規則的に点在した構造体7および連続的な構造体8のサイズが最小となる。回転することにより、規則的に点在した構造体7および連続的な構造体8の両者で水平度調整が実現でき、微細化の進む半導体材料でも薄膜内部に連続的に並んだ微細構造体を納めることが出来る。   FIG. 6 is a scanning transmission image observed from the same direction as the secondary electron image observation direction of FIG. Observation from this direction is effective for confirming that the continuous structure or the regularly arranged structure is accurately positioned in the thin film portion of the microsample. However, in this case, the sample thickness is several μm to 10 μm with respect to the electron beam incident direction, and it is necessary to use a scanning transmission electron microscope. FIG. 6 is a scanning transmission electron microscope image of the sample rotated 5 ° with respect to the rotating shaft 9 and the sample rotated 10 °. The sizes of regularly scattered structures 7 and continuous structures 8 that can be observed on the sample image are minimized. By rotating, both the regularly dispersed structures 7 and the continuous structures 8 can adjust the horizontality, and even finer semiconductor materials can continuously form fine structures arranged in the thin film. I can pay.

次に、表面構造を観察しながら、試料の水平度調整を行う例について示す。図7は、二段に加工したマイクロサンプルの断面像である。図8および図9は、上部から観察した二段に加工したマイクロサンプルである。上段10と下段11には、試料の構造体が観察できる。この構造体は試料の深さ方向に伸びている。つまり、上段10と下段11には、同じ構造体の高さの違う面が観察されていることになる。そのため、この構造体が同一直線状になるように試料回転および試料傾斜を調整することで、試料上部から観察した場合の試料の水平度調整が実現できる。このあとコンタクトの列の中央部分を残すように薄膜化することにより、直線状に並んだ目的の構造物を含む薄膜試料の作製および観察が可能となる(図10)。   Next, an example of adjusting the level of the sample while observing the surface structure will be described. FIG. 7 is a cross-sectional image of a microsample processed in two steps. 8 and 9 are microsamples processed in two stages as observed from above. In the upper stage 10 and the lower stage 11, the structure of the sample can be observed. This structure extends in the depth direction of the sample. That is, on the upper stage 10 and the lower stage 11, different surfaces of the same structure are observed. Therefore, by adjusting the sample rotation and the sample inclination so that the structures are in the same straight line, it is possible to adjust the level of the sample when observed from above the sample. Thereafter, the thin film is formed so as to leave the central portion of the contact row, whereby a thin film sample including a target structure arranged in a straight line can be manufactured and observed (FIG. 10).

図11〜図13は、同様のことを斜め加工したマイクロサンプルで実施した例である。構造体が既知であれば、他の構造体との関係から試料の水平度調整が実現できる。   FIGS. 11 to 13 show an example in which the same thing is carried out with a micro sample obliquely processed. If the structure is known, the level of the sample can be adjusted from the relationship with other structures.

本発明の第2の実施例について、図面を用いて以下に説明する。   A second embodiment of the present invention will be described below with reference to the drawings.

図14は、集束イオンビーム光学系51と電子ビーム光学系61が設けられたいわゆるFIB−SEMの一例を示す図である。装置システムの中心部には集束イオンビーム光学系51と電子ビーム光学系61が真空試料室80の上部に設置されている。   FIG. 14 is a diagram showing an example of a so-called FIB-SEM provided with a focused ion beam optical system 51 and an electron beam optical system 61. A focused ion beam optical system 51 and an electron beam optical system 61 are installed in the upper part of the vacuum sample chamber 80 at the center of the apparatus system.

真空試料室80の内部には試料となるウェーハ41を載置する試料台44が設置されている。イオンビーム光学系51及び電子ビーム光学系61は各々の中心軸がウェーハ41表面付近で一点に交わるように調整されている。   Inside the vacuum sample chamber 80, a sample stage 44 on which a wafer 41 to be a sample is placed is installed. The ion beam optical system 51 and the electron beam optical system 61 are adjusted so that the respective central axes intersect at one point near the surface of the wafer 41.

集束イオンビーム光学系51には、イオン源21,集束レンズ22、及び走査偏向器
23が備えられ、イオンビーム24をコントロールするように制御される。電子ビーム光学系61にも同様に、電子源27,集束レンズ29、及び走査偏向器30が備えられ、電子ビーム38をコントロールするよう制御される。
The focused ion beam optical system 51 includes an ion source 21, a focusing lens 22, and a scanning deflector 23, and is controlled so as to control the ion beam 24. Similarly, the electron beam optical system 61 includes an electron source 27, a focusing lens 29, and a scanning deflector 30, and is controlled to control the electron beam 38.

試料台44にはウェーハ41を前後左右に高精度で移動する機構を内蔵しており、ウェーハ41上の指定箇所が集束イオンビーム光学系51の真下に来るように、試料台制御装置41によって制御される。試料台44は回転,上下、あるいは傾斜する機能を有する。真空試料室80には図示を省略した排気装置が接続され適切な圧力に制御されている。   The sample stage 44 has a built-in mechanism for moving the wafer 41 in the front-rear and left-right directions with high accuracy, and is controlled by the sample stage control device 41 so that the designated position on the wafer 41 is directly below the focused ion beam optical system 51. Is done. The sample stage 44 has a function of rotating, up and down, or tilting. An exhaust device (not shown) is connected to the vacuum sample chamber 80 and is controlled to an appropriate pressure.

なお、イオンビーム光学系51,電子ビーム光学系61にも図示を省略した排気系が個別に備えられ、適切な圧力が維持されている。   Note that the ion beam optical system 51 and the electron beam optical system 61 are individually provided with an exhaust system (not shown), and an appropriate pressure is maintained.

真空試料室80内には、二次電子検出器26,X線検出器36,ガス供給装置37などが設けられている。更に、その先端に微小試料を保持するプローブ92,そのプローブを支持するアーム90、及び当該アーム90を移動可能に支持するアーム制御装置35が設けられている。更に、上記FIB−SEMを構成する各構成要素は、制御装置100によってコントロールされる。   In the vacuum sample chamber 80, a secondary electron detector 26, an X-ray detector 36, a gas supply device 37, and the like are provided. Furthermore, a probe 92 that holds a micro sample at its tip, an arm 90 that supports the probe, and an arm control device 35 that movably supports the arm 90 are provided. Furthermore, each component constituting the FIB-SEM is controlled by the control device 100.

プローブ92は、アーム90の長手方向に回転軸を持つ回転機構によって、回転可能に支持されており、イオンビーム24,電子ビーム38に向かって、観察面、或いは加工面を向けるように制御される。更にアーム制御装置35は、プローブ92を、X,Y,Z方向に移動可能に構成されている。   The probe 92 is rotatably supported by a rotation mechanism having a rotation axis in the longitudinal direction of the arm 90, and is controlled so that the observation surface or the processing surface is directed toward the ion beam 24 and the electron beam 38. . Furthermore, the arm control device 35 is configured to be able to move the probe 92 in the X, Y, and Z directions.

なお、図14では理解を容易にするために、プローブ92の回転軸が紙面横方向にあるように図示されているが、イオンビーム24によって切り出した微小試料の断面を、電子ビーム38に向けて回転できるように、紙面垂直方向に回転軸を設置することが望ましい。   In FIG. 14, for easy understanding, the rotation axis of the probe 92 is shown in the horizontal direction of the drawing, but the cross section of the micro sample cut out by the ion beam 24 is directed toward the electron beam 38. It is desirable to install a rotation axis in the direction perpendicular to the paper surface so that it can rotate.

制御装置100内には、二次電子検出器26によって検出された二次電子に基づいて、形成された画像を記憶するためのフレームメモリが内蔵されている。また、制御装置100は、フレームメモリに登録された画像のコントラスト、或いは二次電子量に基づいて、ラインプロファイルを形成し、当該プロファイル形状に基づいて、試料上の特定部分の測長を行うための機能が設けられている。なお、図14は、FIB−SEMを説明するための図であるが、SEMの部分をSTEM(Scanning Transmission Electron Microscope) とすることも可能である。その際には、薄膜試料を透過した電子を検出するための透過電子検出器が設けられる。   In the control device 100, a frame memory for storing an image formed based on the secondary electrons detected by the secondary electron detector 26 is incorporated. In addition, the control device 100 forms a line profile based on the contrast of the image registered in the frame memory or the amount of secondary electrons, and measures a specific portion on the sample based on the profile shape. Functions are provided. FIG. 14 is a diagram for explaining the FIB-SEM, but the SEM portion may be a STEM (Scanning Transmission Electron Microscope). In that case, a transmission electron detector for detecting electrons transmitted through the thin film sample is provided.

以上のような構成のFIB−SEM(又はSTEM)を用いて、実施例1において説明した断面加工観察を行う例について、以下に説明する。   An example in which the cross-sectional processing observation described in the first embodiment is performed using the FIB-SEM (or STEM) having the above configuration will be described below.

図15は、図5を用いて説明した水平度調整を、自動的に行うためのシーケンスを説明するためのフローチャートである。先ず、イオンビーム24を用いて、連続的な構造体8を含む試料1をウェーハ41等から切り出し、プローブ92を用いて試料1を持ち上げる(S0001)。次に、図5にて説明したように、画面の手前部分と奥行き部分に跨って形成される連続的な構造体を露出させると共に、断面観察を可能とすべく、試料の薄膜加工を行う(S0002)。そして、形成された断面が電子ビーム38の光軸に垂直となるように、プローブ92を回転させる(S0003)。回転後、SEM像、或いはSTEM像を形成する(S0004)。取得された画像は、上記のフレームメモリに登録される。   FIG. 15 is a flowchart for explaining a sequence for automatically performing the horizontality adjustment described with reference to FIG. First, the sample 1 including the continuous structure 8 is cut out from the wafer 41 or the like using the ion beam 24, and the sample 1 is lifted using the probe 92 (S0001). Next, as described with reference to FIG. 5, the thin film processing of the sample is performed in order to expose the continuous structure formed across the front portion and the depth portion of the screen and to enable cross-sectional observation ( S0002). Then, the probe 92 is rotated so that the formed cross section is perpendicular to the optical axis of the electron beam 38 (S0003). After the rotation, an SEM image or STEM image is formed (S0004). The acquired image is registered in the frame memory.

形成された画像を元に、連続的な構造体8の紙面上下方向の寸法を測定する。この寸法が最小となるまで、S0003〜S0006を繰り返す。連続的な構造体8の寸法が最小値を示すということは、電子ビームの照射方向と、連続的な構造体8の奥行き方向がほぼ並行な状態を示している。連続的な構造体8と試料断面は、垂直となるように形成されているため、連続的な構造体8の寸法が最小を示すプローブ92の回転角が、断面観察
(S0007)にとって最適な角度となる。なお、本例の場合、プローブを必要以上に、回転させると、連続的な構造体8の奥行き部分が、試料1の下部に隠れてしまうため、一旦最小値を確認した後、傾斜角を戻すことによって、回転角の変化に対する寸法値の変化が止まった角度(電子ビームと連続的な構造体の長手方向がちょうど並行になる角度)を正確に把握するようにしても良い。
Based on the formed image, the dimension of the continuous structure 8 in the vertical direction on the paper surface is measured. S0003 to S0006 are repeated until this dimension is minimized. That the dimension of the continuous structure 8 shows the minimum value indicates that the irradiation direction of the electron beam and the depth direction of the continuous structure 8 are substantially parallel. Since the continuous structure 8 and the sample cross section are formed to be perpendicular to each other, the rotation angle of the probe 92 showing the minimum dimension of the continuous structure 8 is the optimum angle for cross-sectional observation (S0007). It becomes. In the case of this example, if the probe is rotated more than necessary, the depth portion of the continuous structure 8 is hidden under the sample 1, and after confirming the minimum value, the inclination angle is returned. Accordingly, the angle at which the change in the dimension value with respect to the change in the rotation angle stops (the angle at which the longitudinal direction of the electron beam and the continuous structure is just parallel) may be accurately grasped.

なお、本例では、連続的な構造体8の寸法が最小となる点を見出すことによって、プローブの最適な回転角を求めているが、これに限られることはなく、例えば公知のパターンマッチング技術を用いるようにしても良い。この場合、連続的な構造体8の形状を示すテンプレートを事前に登録しておき、パターンマッチングによって、連続的な構造体8が最小を示す回転角を把握する。パターンマッチングに基づく回転角の把握は、例えば図7〜図13にて説明した連続的な構造体の場合に特に有効である。   In this example, the optimum rotation angle of the probe is obtained by finding a point where the dimension of the continuous structure 8 is minimum. However, the present invention is not limited to this. For example, a known pattern matching technique is used. May be used. In this case, a template indicating the shape of the continuous structure 8 is registered in advance, and the rotation angle at which the continuous structure 8 is minimum is grasped by pattern matching. Grasping the rotation angle based on pattern matching is particularly effective in the case of the continuous structure described with reference to FIGS.

イオンビームや電子ビームを含む荷電粒子ビームに対しての水平度調整を容易に実現することができる。   It is possible to easily realize leveling adjustment for charged particle beams including ion beams and electron beams.

なお、本実施例では、プローブ92を回転させることによって、試料の方向を変化させる例について説明したが、これに限られることはなく、例えばウェーハを載せた試料台
44とは別のステージを設け、切り出した微小試料をその別のステージに載せ、当該別のステージを傾斜させることによって、上記のような水平度調整を行うようにしても良い。また、試料台44に傾斜機構を設け、同様のことをしても良い。
In this embodiment, the example in which the direction of the sample is changed by rotating the probe 92 has been described. However, the present invention is not limited to this. For example, a stage different from the sample stage 44 on which a wafer is placed is provided. Alternatively, the horizontal degree adjustment as described above may be performed by placing the cut micro sample on the other stage and inclining the other stage. In addition, the sample table 44 may be provided with an inclination mechanism to perform the same thing.

荷電粒子線を用いて試料を観察する方法,装置であって、試料の姿勢を適正に制御するのに好適な試料観察方法、及び荷電粒子線装置である。   A method and apparatus for observing a sample using a charged particle beam, and a sample observation method and a charged particle beam apparatus suitable for appropriately controlling the posture of the sample.

本発明の実施例を示すフローチャートである。It is a flowchart which shows the Example of this invention. 本発明の原理を説明する図である。It is a figure explaining the principle of this invention. 本発明の形態を示す模式図である。It is a schematic diagram which shows the form of this invention. 本発明の形態を示す二次電子像である。It is a secondary electron image which shows the form of this invention. 本発明の形態を示す走査透過像である。It is a scanning transmission image which shows the form of this invention. 本発明の形態を示す走査透過像である。It is a scanning transmission image which shows the form of this invention. 本発明の形態に加工した試料の断面二次電子像である。It is a cross-sectional secondary electron image of the sample processed into the form of this invention. 本発明の形態に加工した試料の上部から観察した二次電子像である。It is the secondary electron image observed from the upper part of the sample processed into the form of this invention. 本発明の形態に加工した試料の上部から観察した二次電子像である。It is the secondary electron image observed from the upper part of the sample processed into the form of this invention. 本発明の形態に加工した試料の断面走査透過像である。It is a cross-sectional scanning transmission image of the sample processed into the form of this invention. 本発明の形態に加工した試料の断面二次電子像である。It is a cross-sectional secondary electron image of the sample processed into the form of this invention. 本発明の形態に加工した試料の上部から観察した二次電子像である。It is the secondary electron image observed from the upper part of the sample processed into the form of this invention. 本発明の形態に加工した試料の上部から観察した二次電子像である。It is the secondary electron image observed from the upper part of the sample processed into the form of this invention. 荷電粒子線装置の一例を示す図である。It is a figure which shows an example of a charged particle beam apparatus. 水平度調整を、自動的に行うためのシーケンスを説明するためのフローチャートである。It is a flowchart for demonstrating the sequence for performing horizontality adjustment automatically.

符号の説明Explanation of symbols

1…試料、2,8…連続的な構造体、3,7…点在した構造体、4…水平度調整に用いる階段状に加工した部位、5…針状の試料台の先端、6…薄膜化した部位、9…回転軸、10…上段、11…下段、12…斜め加工部。
DESCRIPTION OF SYMBOLS 1 ... Sample, 2, 8 ... Continuous structure, 3, 7 ... Interspersed structure, 4 ... The part processed into the step shape used for leveling adjustment, 5 ... The tip of a needle-like sample stand, 6 ... Thinned parts, 9 ... rotating shaft, 10 ... upper stage, 11 ... lower stage, 12 ... obliquely processed part.

Claims (6)

荷電粒子線を走査して得られた画像に基づいて試料の観察を行う試料観察方法において、
前記荷電粒子源から見て、試料の手前の部分から奥行き部分まで、跨って形成される構造体が、荷電粒子線の光軸に並行となるように、前記試料を傾斜又は回転することを特徴とする試料観察方法。
In a sample observation method for observing a sample based on an image obtained by scanning a charged particle beam,
The sample is tilted or rotated so that a structure formed across the portion from the front side to the depth portion of the sample as viewed from the charged particle source is parallel to the optical axis of the charged particle beam. Sample observation method.
荷電粒子線を走査して得られた画像に基づいて試料の観察を行う試料観察方法において、
前記荷電粒子源から見て、試料の手前から奥行き方向に跨って形成される構造体の大きさが最小となるように前記試料を傾斜又は回転することを特徴とする試料観察方法。
In a sample observation method for observing a sample based on an image obtained by scanning a charged particle beam,
A sample observation method characterized by tilting or rotating the sample so that the size of a structure formed across the depth direction from the front of the sample as viewed from the charged particle source is minimized.
請求項2において、前記素子が画像の奥行き方向に、同一直線状に並ぶように前記試料を傾斜させることを特徴とする試料観察方法。   3. The sample observation method according to claim 2, wherein the sample is tilted so that the elements are arranged in the same straight line in the depth direction of the image. 請求項2において、試料表面あるいは試料内部の連続的な構造体の、少なくともどちらか一方を観察して前記試料を傾斜することを特徴とする試料観察方法。   3. The sample observation method according to claim 2, wherein the sample is tilted by observing at least one of the surface of the sample or a continuous structure inside the sample. 荷電粒子線を走査して得られた画像に基づいて試料の観察を行う試料観察方法において、
前記荷電粒子源から見て、試料の手前部分と奥行き部分に同様に点在する構造体間の位置合せを行うように、前記試料を傾斜又は回転させることを特徴とする試料観察方法。
In a sample observation method for observing a sample based on an image obtained by scanning a charged particle beam,
A sample observation method characterized by tilting or rotating the sample so as to perform alignment between structures scattered in the front and depth portions of the sample as viewed from the charged particle source.
荷電粒子源と、当該荷電粒子源から放出される荷電粒子線を走査する走査偏向器と、前記荷電粒子線に対して前記試料を傾斜させる試料傾斜機構、あるいは試料を回転させる試料回転機構の少なくともいずれかと、前記試料から放出された荷電粒子に基づいて、前記試料像を形成する制御装置を備えた荷電粒子線装置において、
前記制御装置は、前記荷電粒子源側から見て、試料の手前の部位から奥行き部分に跨って形成される構造体が前記試料像上、最小となるように、前記試料傾斜機構、或いは試料回転機構を制御することを特徴とする荷電粒子線装置。
At least a charged particle source, a scanning deflector that scans a charged particle beam emitted from the charged particle source, a sample tilting mechanism that tilts the sample with respect to the charged particle beam, or a sample rotating mechanism that rotates the sample In any one of the charged particle beam devices including a control device that forms the sample image based on the charged particles emitted from the sample,
The control device may be configured such that the sample tilting mechanism or the sample rotation is performed so that a structure formed from a portion in front of the sample to a depth portion as viewed from the charged particle source side is minimized on the sample image. A charged particle beam device characterized by controlling a mechanism.
JP2005246984A 2005-08-29 2005-08-29 Sample observation method and charged particle beam apparatus Active JP4845452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246984A JP4845452B2 (en) 2005-08-29 2005-08-29 Sample observation method and charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246984A JP4845452B2 (en) 2005-08-29 2005-08-29 Sample observation method and charged particle beam apparatus

Publications (2)

Publication Number Publication Date
JP2007066527A true JP2007066527A (en) 2007-03-15
JP4845452B2 JP4845452B2 (en) 2011-12-28

Family

ID=37928504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246984A Active JP4845452B2 (en) 2005-08-29 2005-08-29 Sample observation method and charged particle beam apparatus

Country Status (1)

Country Link
JP (1) JP4845452B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078332A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Sample for microscope, sample preparing method and microscopic observation method
JP2013196972A (en) * 2012-03-21 2013-09-30 Hitachi High-Tech Science Corp Specimen observation method, specimen preparation method and charged particle beam device
CN110031403A (en) * 2019-04-04 2019-07-19 山东大学 A kind of full-automatic rock sample image collecting device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517431A (en) * 1978-07-24 1980-02-06 Jeol Ltd Film thickness measurement method for test piece
JPH06111748A (en) * 1992-09-29 1994-04-22 Hitachi Ltd Scanning type charged particle microscope
JPH08124507A (en) * 1994-10-25 1996-05-17 Hitachi Ltd Sample mounting base and device using the same
JP2004198276A (en) * 2002-12-19 2004-07-15 Jeol Ltd Method for fabricating sample for transmission electron microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517431A (en) * 1978-07-24 1980-02-06 Jeol Ltd Film thickness measurement method for test piece
JPH06111748A (en) * 1992-09-29 1994-04-22 Hitachi Ltd Scanning type charged particle microscope
JPH08124507A (en) * 1994-10-25 1996-05-17 Hitachi Ltd Sample mounting base and device using the same
JP2004198276A (en) * 2002-12-19 2004-07-15 Jeol Ltd Method for fabricating sample for transmission electron microscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078332A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Sample for microscope, sample preparing method and microscopic observation method
JP2013196972A (en) * 2012-03-21 2013-09-30 Hitachi High-Tech Science Corp Specimen observation method, specimen preparation method and charged particle beam device
US9287087B2 (en) 2012-03-21 2016-03-15 Hitachi High-Tech Science Corporation Sample observation method, sample preparation method, and charged particle beam apparatus
CN110031403A (en) * 2019-04-04 2019-07-19 山东大学 A kind of full-automatic rock sample image collecting device and method

Also Published As

Publication number Publication date
JP4845452B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
JP5612493B2 (en) Compound charged particle beam system
JP6224612B2 (en) High-throughput TEM preparation process and hardware for backside thinning of cross-section observation slices
KR102221931B1 (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
CN110021513B (en) Method for sample orientation for TEM flake preparation
JP6529264B2 (en) Charged particle beam apparatus and sample observation method
US8227781B2 (en) Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
JP5357889B2 (en) Charged particle beam equipment
JP2013257317A5 (en)
JP5309552B2 (en) Electron beam tomography method and electron beam tomography apparatus
JP5378185B2 (en) Focused ion beam apparatus and focused ion beam processing method
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP5560246B2 (en) Standard sample used for charged particle beam apparatus and method for producing standard sample used for charged particle beam apparatus
JP6207081B2 (en) Focused ion beam device
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP2007248082A (en) Standard sample to be used for charged particle beam device, charged particle beam device, and method for manufacturing standard sample to be used for charged particle beam device
US11087953B2 (en) Moveable detector
JP2011222426A (en) Composite charged particle beam device
CN111065907B (en) Sample manufacturing device and sample sheet manufacturing method
JP3684943B2 (en) Beam scanning inspection system
JP6487294B2 (en) Compound charged particle beam system
JP2008262921A (en) Three-dimensional structure observation sample formation device, electron microscope, and its method
JPH01206551A (en) Surface analyzer
JP2010267461A (en) Scanning electron microscope, and image display method in scanning electron microscope
JP2009026620A (en) Compact column electron microscope combined device, and defect observation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350