JP2007064632A - Spectrophotometer - Google Patents

Spectrophotometer Download PDF

Info

Publication number
JP2007064632A
JP2007064632A JP2005246986A JP2005246986A JP2007064632A JP 2007064632 A JP2007064632 A JP 2007064632A JP 2005246986 A JP2005246986 A JP 2005246986A JP 2005246986 A JP2005246986 A JP 2005246986A JP 2007064632 A JP2007064632 A JP 2007064632A
Authority
JP
Japan
Prior art keywords
cooling
spectrophotometer
light source
sample
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005246986A
Other languages
Japanese (ja)
Other versions
JP4448808B2 (en
Inventor
Hideyuki Akiyama
秀之 秋山
Masatoshi Mori
聖年 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005246986A priority Critical patent/JP4448808B2/en
Publication of JP2007064632A publication Critical patent/JP2007064632A/en
Application granted granted Critical
Publication of JP4448808B2 publication Critical patent/JP4448808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a spectrophotometer of high sensitivity not affected by a change in the open air temperature. <P>SOLUTION: In the spectrophotometer, the sending amount of a cooling wind is varied on the basis of the temperature of the cooling wind for cooling a light source part. The change in cooling efficiency due to the temperature change of the cooling wind is canceled by a change in the amount of the cooling wind to be kept constant. By this constitution, the spectrophotometer, which is enhanced sensitivity and keeps the temperature of the light source part constant even if the open air temperature is changed, can be realized inexpensively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は分光光度計に関する。例えば、溶液中の微量物質の吸光度を測定する分光光度計に関する。   The present invention relates to a spectrophotometer. For example, the present invention relates to a spectrophotometer that measures the absorbance of a trace substance in a solution.

従来の分光光度計は、主に、試料への入射光を発生させる光源と、測定対象の試料を収容する試料セルと、試料を透過した光を検出するための分光器と光学検出器から構成されている。光源より発生した光は、集光系により、試料セルに収容された試料へ入射される。試料セルを透過した光から、分光器により、試料に固有の吸収波長にあたる光を取り出す。光電検出器により、光の透過率を測定することにより、試料内成分の定量分析を行うことができる。   A conventional spectrophotometer mainly includes a light source that generates light incident on a sample, a sample cell that houses a sample to be measured, and a spectroscope and an optical detector for detecting light transmitted through the sample. Has been. The light generated from the light source is incident on the sample accommodated in the sample cell by the condensing system. From the light transmitted through the sample cell, light corresponding to the absorption wavelength specific to the sample is taken out by the spectroscope. Quantitative analysis of the components in the sample can be performed by measuring the light transmittance with a photoelectric detector.

光源としては、重水素ランプやハロゲンランプといったランプが使用される。また、ランプを格納する光源室の他、光源室を冷却する冷却手段をもつことが通例である。これは、光源に使用するランプに、通常、最適な発光を実現するための最適管面温度が設定されており、ランプ管面がこの温度となるように光源室を冷却することが必要なためである。冷却手段としては、安価で冷却効率も高い強制空冷ファンを用いることが多い。   As the light source, a lamp such as a deuterium lamp or a halogen lamp is used. In addition to the light source chamber for storing the lamp, it is usual to have cooling means for cooling the light source chamber. This is because the optimal tube surface temperature for achieving optimal light emission is usually set for the lamp used for the light source, and it is necessary to cool the light source chamber so that the lamp tube surface is at this temperature. It is. As a cooling means, a forced air cooling fan that is inexpensive and has high cooling efficiency is often used.

近年、分光光度計の一種である液体クロマトグラフ用検出器では、吸収スペクトルをリアルタイムに取得でき、試料の定性能力に優れた3次元検出器が主流となりつつある。しかし、3次元検出器は従来型検出器と比較して感度面で劣り、特に測定出力が環境温度の変動の影響を受けやすい。これは、3次元検出器は、測定の原理上、シングルビーム測光方式を採らざるを得ず、従来のダブルビーム測光方式の単一波長検出器のように光源光量変動を補正することができず、光源光量変動がそのまま出力値のノイズ・ドリフトとなるためである。   In recent years, in liquid chromatograph detectors, which are a kind of spectrophotometer, three-dimensional detectors that can acquire absorption spectra in real time and have excellent qualitative ability of samples are becoming mainstream. However, the three-dimensional detector is inferior in sensitivity as compared with the conventional detector, and the measurement output is particularly susceptible to fluctuations in environmental temperature. This is because the three-dimensional detector has to adopt a single beam photometry method on the principle of measurement, and cannot correct the light source light amount fluctuation like the conventional single beam detector of the double beam photometry method. This is because the light amount fluctuation of the light source directly becomes the noise drift of the output value.

特開平11−108830号公報では、3次元検出器の環境温度変化による光学検知器の暗出力の変動を、光遮光を行った検知素子からの出力を用いて補正することにより、環境温度変化による検出器のノイズ・ドリフト発生を少なくする発明が開示されている。   In Japanese Patent Application Laid-Open No. 11-108830, the fluctuation in the dark output of the optical detector due to the change in the environmental temperature of the three-dimensional detector is corrected by using the output from the detection element that has been shielded from light. An invention that reduces the occurrence of detector noise drift is disclosed.

特開平11−108830号公報JP-A-11-108830

本願発明者が鋭意検討した結果、3次元検出器を用いた分光光度計の冷却手段に強制空冷ファンを用いた場合、以下のような問題が生じることが判明した。   As a result of intensive studies by the inventors of the present application, it has been found that the following problems arise when a forced air cooling fan is used as a cooling means of a spectrophotometer using a three-dimensional detector.

3次元検出器のようなシングルビーム測光方式の分光光度計の場合、ランプの輝度が変化すると、輝度変化がそのまま光度計出力値のノイズ・ドリフトとなる。このため、光度計の高感度化を実現するためには、光源の発光状態を安定に保つことが重要である。ランプの管面温度が変化しないように、光源部の温度を一定に保つことが大事である。   In the case of a single-beam photometric spectrophotometer such as a three-dimensional detector, if the lamp brightness changes, the brightness change directly becomes a noise drift of the photometer output value. For this reason, in order to realize high sensitivity of the photometer, it is important to keep the light emission state of the light source stable. It is important to keep the temperature of the light source part constant so that the tube surface temperature of the lamp does not change.

しかし、光源部の冷却手段に強制空冷ファンを用いた場合、光度計周囲の外気を冷媒として用いるため、外気温が変化すると、冷却系の冷却効率が変化し、外気温変動に対応して光源部の温度が変動する。   However, when a forced air cooling fan is used as the cooling means of the light source unit, the outside air around the photometer is used as a refrigerant. Therefore, when the outside air temperature changes, the cooling efficiency of the cooling system changes, and the light source responds to the outside air temperature fluctuation. The temperature of the part fluctuates.

このため、結果的に外気温変動によって分光光度計の出力値が変動し、これが光度計の感度悪化の一因となっていた。   For this reason, as a result, the output value of the spectrophotometer fluctuates due to fluctuations in the outside air temperature, which contributes to the deterioration of the sensitivity of the photometer.

これを避けるには、外的要因によって冷却効率が変動しにくい電子冷熱等の冷却手段を用いることが考えられるが、これらの方法は強制空冷ファンと比較すると冷却能力が不充分である。光源部の冷却を可能とするためには大掛かりなシステムが必要となり、現実的なコストで実現することは非常に困難である。   In order to avoid this, it is conceivable to use a cooling means such as electronic cold heat whose cooling efficiency is unlikely to fluctuate due to external factors. However, these methods have insufficient cooling capacity as compared with a forced air cooling fan. In order to enable cooling of the light source unit, a large-scale system is required, and it is very difficult to realize at a realistic cost.

また、特開平11−108830号公報によって補正されるのは、光学検知器の暗出力に由来する変動分のみであり、環境温度変化に伴う光源光量変化については効果がない。   Further, only the variation derived from the dark output of the optical detector is corrected by Japanese Patent Laid-Open No. 11-108830, and there is no effect on the light source light quantity change accompanying the environmental temperature change.

本発明の目的は、外気温変化の影響を受けず、高感度な分光光度計を安価に提供することに関する。   An object of the present invention relates to providing a low-sensitivity spectrophotometer that is not affected by changes in outside air temperature.

本発明は、分光光度計において、光源部を冷却する冷却風の温度により、冷却風の送風量を可変することに関する。冷却風の温度変化による冷却効率変化を冷却風量変化によりキャンセルし、冷却風の冷却効率を一定に保つことができる。   The present invention relates to varying the amount of cooling air blown according to the temperature of cooling air for cooling a light source unit in a spectrophotometer. The change in cooling efficiency due to the temperature change of the cooling air can be canceled by the change in the cooling air volume, and the cooling efficiency of the cooling air can be kept constant.

本発明により、外気温が変化しても光源部の温度を一定に保つことができる、高感度な分光光度計を安価に実現できる。   According to the present invention, a highly sensitive spectrophotometer that can keep the temperature of the light source unit constant even when the outside air temperature changes can be realized at low cost.

以下、上記及びその他の本発明の新規な特徴と効果について、図面を参酌して説明する。   The above and other novel features and effects of the present invention will be described below with reference to the drawings.

図1に、液体クロマトグラフ用3次元検出器の構成を示す。   FIG. 1 shows the configuration of a three-dimensional detector for a liquid chromatograph.

3次元検出器は、測定対象の試料を収容する試料セルであるフローセル7と、試料に入射する入射光を供給する光源部である光源1と、光源1を冷却する冷却手段である冷却ファン4と、試料を透過した光を分光する分光器であるグレーティング9と、分光された光を検出する光学検知器であるフォトダイオードアレイ検知器10を備える。   The three-dimensional detector includes a flow cell 7 that is a sample cell that stores a sample to be measured, a light source 1 that is a light source unit that supplies incident light incident on the sample, and a cooling fan 4 that is a cooling unit that cools the light source 1. And a grating 9 that is a spectroscope that splits the light transmitted through the sample, and a photodiode array detector 10 that is an optical detector that detects the split light.

光源1より放出された光源光を集光レンズ6にてフローセル7に導入し、フローセル透過光を集光レンズ6にてスリット8に集光し、スリット透過光をグレーティング9にて分光し、分光した光を500〜1000個の受光素子を持つフォトダイオードアレイ検知器10にて各波長の光を同時に測定する。これにより、液体クロマトグラフの分離部により分離された試料の成分ごとの吸収スペクトルが取得可能であり、未知試料の定性能力に優れるばかりでなく、吸収スペクトルの形状異常より、各成分の純度を知ることも可能である。   The light source light emitted from the light source 1 is introduced into the flow cell 7 by the condenser lens 6, the flow cell transmitted light is condensed on the slit 8 by the condenser lens 6, and the slit transmitted light is dispersed by the grating 9. The light of each wavelength is simultaneously measured by the photodiode array detector 10 having 500 to 1000 light receiving elements. As a result, the absorption spectrum of each component of the sample separated by the separation unit of the liquid chromatograph can be acquired. Not only is the qualitative ability of the unknown sample excellent, but the purity of each component is known from the abnormal shape of the absorption spectrum. It is also possible.

光源1は光源室2に格納され、これを冷却ファン4により発生させた冷却風3によって冷却し、光源1が最適発光する光源温度を実現する。   The light source 1 is stored in the light source chamber 2 and is cooled by the cooling air 3 generated by the cooling fan 4 to realize a light source temperature at which the light source 1 emits light optimally.

図2は、液体クロマトグラフ用3次元検出器の光源部の冷却系の模式図である。   FIG. 2 is a schematic diagram of a cooling system of the light source unit of the liquid chromatograph three-dimensional detector.

この冷却系は、光源室2を冷却する冷却風を発生させるファン4と、冷却風流路を流れる冷却風の温度を測定する温度センサ12と、温度センサの出力値によりファンへの供給電圧を制御する制御手段であるファン駆動部13からなる。   The cooling system includes a fan 4 that generates cooling air for cooling the light source chamber 2, a temperature sensor 12 that measures the temperature of the cooling air that flows through the cooling air flow path, and a supply voltage to the fan that is controlled by an output value of the temperature sensor. It comprises a fan drive unit 13 which is a control means.

図3に、冷却系の制御フローを示す。   FIG. 3 shows a control flow of the cooling system.

温度センサ12は、冷却風の温度Tに対応した出力電圧Vsをファン駆動部13に出力する。ファン駆動部13は、その内部の制御回路により温度センサ出力Vsに対応したファン駆動電圧Vdを発生し、これを冷却ファン4に出力する。冷却ファン4は、ファン駆動電圧Vdに対応した回転数ωにて回転し、所望の風量の冷却風3を発生する。   The temperature sensor 12 outputs an output voltage Vs corresponding to the temperature T of the cooling air to the fan driving unit 13. The fan drive unit 13 generates a fan drive voltage Vd corresponding to the temperature sensor output Vs by an internal control circuit, and outputs this to the cooling fan 4. The cooling fan 4 rotates at a rotational speed ω corresponding to the fan drive voltage Vd and generates the cooling air 3 having a desired air volume.

ファン駆動部における入力Vsと出力Vdの関係は、冷却風の温度Tと冷却風量を決定するファン回転数ωによって決まる冷却効率F(T,ω)を一定にするようにあらかじめ定義されている。以下、実際の冷却風量制御の様子を詳述する。
(1)外気温がT′からT′+ΔT′に上昇した場合、それにともなって冷却風の温度も TからT+ΔTに上昇し、これによって冷却風の冷却効率がΔF=(∂F/∂T) ・ΔTだけ低下する。
(2)冷却風の温度上昇T→T+ΔTに対応して、温度センサの出力VsがVs+ΔVs に上昇する。
(3)ファン駆動部が温度センサ出力変化Vs→Vs+ΔVsに対応しファン駆動電圧を Vd→Vd+ΔVdに増加させる。
(4)ファン駆動電圧変化Vd→Vd+ΔVdに対し、ファン回転数ωがω+Δωに増加 し、冷却効率が上昇する。
(5)このとき、冷却風温度Tとファン回転数ωは中間関数Vs(T)とVd(Vs)に よって、F(T,ω)=一定となるよう関連づけられているので、
ΔF=(∂F/∂T)・ΔT+(∂F/∂ω)・Δω=0
となる。
(6)ゆえに、冷却風の温度上昇による冷却効率の低下分(∂F/∂T)・ΔTと、ファ ン回転数増加による冷却効率の上昇分(∂F/∂ω)・Δωがキャンセルし、冷却 効率Fを一定に保つことができる。
The relationship between the input Vs and the output Vd in the fan drive unit is defined in advance so that the cooling efficiency F (T, ω) determined by the fan rotation speed ω that determines the cooling air temperature T and the cooling air volume is constant. Hereinafter, the actual cooling air flow control will be described in detail.
(1) When the outside air temperature rises from T ′ to T ′ + ΔT ′, the temperature of the cooling air also rises from T to T + ΔT, whereby the cooling efficiency of the cooling air becomes ΔF = (∂F / ∂T)・ Decreases by ΔT.
(2) Corresponding to the temperature rise T → T + ΔT of the cooling air, the output Vs of the temperature sensor rises to Vs + ΔVs.
(3) The fan drive unit increases the fan drive voltage from Vd to Vd + ΔVd in response to the temperature sensor output change Vs → Vs + ΔVs.
(4) With respect to the fan drive voltage change Vd → Vd + ΔVd, the fan rotational speed ω increases to ω + Δω, and the cooling efficiency increases.
(5) At this time, the cooling air temperature T and the fan rotational speed ω are related by the intermediate functions Vs (T) and Vd (Vs) so that F (T, ω) = constant.
ΔF = (∂F / ∂T) · ΔT + (∂F / ∂ω) · Δω = 0
It becomes.
(6) Therefore, the decrease in cooling efficiency due to the rise in cooling air temperature (∂F / 上昇 T) · ΔT and the increase in cooling efficiency due to the increase in fan speed (∂F / ∂ω) · Δω are cancelled. The cooling efficiency F can be kept constant.

本実施例により、冷却風の冷却効率を一定に保ち、光源部の温度を一定に保つことができる。これにより、外気温が変化しても常に光源ランプの管面温度が一定となるため、ノイズ・ドリフトの少ない高感度な分光光度計を安価に提供できる。   According to this embodiment, the cooling efficiency of the cooling air can be kept constant, and the temperature of the light source unit can be kept constant. Accordingly, since the tube surface temperature of the light source lamp is always constant even when the outside air temperature changes, a highly sensitive spectrophotometer with less noise drift can be provided at a low cost.

尚、光源室自体の温度をモニタし、光源室の温度を一定に保つようにする考え方もある。しかし、光源室は高温の光源ランプを収納するため、通常堅牢な構造となっており、結果、熱容量も大きくなる。このため光源室の温度変動は外気温の変動に対して遅れを生じ、また、変動幅も小さくなる。温度センサの検出温度範囲が狭くなるため、温度分解能が高く、かつ特性の個体間差が少ない高品質な温度センサを用いる必要がある。   There is also an idea of monitoring the temperature of the light source chamber itself so as to keep the temperature of the light source chamber constant. However, since the light source chamber accommodates a high-temperature light source lamp, it usually has a robust structure, resulting in an increase in heat capacity. For this reason, the temperature fluctuation of the light source chamber is delayed with respect to the fluctuation of the outside air temperature, and the fluctuation width is reduced. Since the detection temperature range of the temperature sensor is narrowed, it is necessary to use a high-quality temperature sensor with high temperature resolution and little individual difference in characteristics.

液体クロマトグラフ用3次元検出器の基本構成図。The basic block diagram of the three-dimensional detector for liquid chromatographs. 分光光度計光源部の冷却系の構成図。The block diagram of the cooling system of a spectrophotometer light source part. 冷却風量制御のフロー図。The flow chart of cooling air volume control.

符号の説明Explanation of symbols

1…光源、2…光源室、3…冷却風、4…冷却ファン、5…光学系、6…集光レンズ、7…フローセル、8…スリット、9…グレーティング、10…フォトダイオードアレイ検知器、11…計算部、12…温度センサ、13…ファン駆動部。

DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Light source chamber, 3 ... Cooling air, 4 ... Cooling fan, 5 ... Optical system, 6 ... Condensing lens, 7 ... Flow cell, 8 ... Slit, 9 ... Grating, 10 ... Photodiode array detector, DESCRIPTION OF SYMBOLS 11 ... Calculation part, 12 ... Temperature sensor, 13 ... Fan drive part.

Claims (7)

測定対象の試料を収容する試料セルと、
試料に入射する入射光を供給する光源部と、
光源部を冷却する冷却手段と、
試料を透過した光を分光する分光器と、
分光された光を検出する光学検知器とを含む分光光度計において、
冷却手段が、光源部を冷却する冷却風を送風する送風手段を含み、冷却風の温度に基づいて送風手段の送風量を変えることを特徴とする分光光度計。
A sample cell containing a sample to be measured;
A light source unit for supplying incident light incident on the sample;
A cooling means for cooling the light source unit;
A spectroscope that splits the light transmitted through the sample;
In a spectrophotometer including an optical detector for detecting the dispersed light,
The spectrophotometer characterized in that the cooling means includes air blowing means for blowing cooling air for cooling the light source unit, and changes the air blowing amount of the air blowing means based on the temperature of the cooling air.
測定対象の試料を収容する試料セルと、
試料に入射する入射光を供給する光源部と、
光源部を冷却する冷却手段と、
試料を透過した光を分光する分光器と、
分光された光を検出する光学検知器とを含む分光光度計において、
冷却手段が、光源部を冷却する冷却風を送風する冷却手段と、冷却風の温度を測定する温度センサが配置された冷却風流路とを含み、温度センサの出力に基づいて送風手段の送風量を変えることを特徴とする分光光度計。
A sample cell containing a sample to be measured;
A light source unit for supplying incident light incident on the sample;
A cooling means for cooling the light source unit;
A spectroscope that splits the light transmitted through the sample;
In a spectrophotometer including an optical detector for detecting the dispersed light,
The cooling means includes a cooling means for blowing cooling air for cooling the light source unit, and a cooling air flow path in which a temperature sensor for measuring the temperature of the cooling air is arranged, and the air blowing amount of the blowing means based on the output of the temperature sensor A spectrophotometer characterized by changing.
測定対象の試料を収容する試料セルと、
試料に入射する入射光を供給する光源部と、
光源部を冷却する冷却手段と、
試料を透過した光を分光する分光器と、
分光された光を検出する光学検知器とを含む分光光度計において、
冷却手段が、光源部を冷却する冷却風を送風する送風手段を含み、
冷却風の温度と冷却風量により算出される冷却手段の冷却効率を一定に維持するよう送風手段の送風量を制御する制御手段を備えることを特徴とする分光光度計。
A sample cell containing a sample to be measured;
A light source unit for supplying incident light incident on the sample;
A cooling means for cooling the light source unit;
A spectroscope that splits the light transmitted through the sample;
In a spectrophotometer including an optical detector for detecting the dispersed light,
The cooling means includes a blowing means for blowing cooling air for cooling the light source unit,
A spectrophotometer comprising control means for controlling the air flow rate of the air blowing means so as to maintain the cooling efficiency of the cooling means calculated by the temperature of the cooling air and the amount of air flow.
請求項1〜3記載の分光光度計であって、
送風手段がファンであり、ファンの回転数を変更することに送風量を変更することを特徴とする分光光度計。
A spectrophotometer according to claims 1-3,
A spectrophotometer characterized in that the blowing means is a fan, and the amount of blowing is changed by changing the number of rotations of the fan.
請求項1〜3記載の分光光度計であって、
光学検知器が、分光された光をリアルタイムに取得できることを特徴とする分光光度計。
A spectrophotometer according to claims 1-3,
A spectrophotometer characterized in that the optical detector can acquire the dispersed light in real time.
請求項1〜3記載の分光光度計であって、
光学検知器が、3次元検出器であることを特徴とする分光光度計。
A spectrophotometer according to claims 1-3,
The spectrophotometer, wherein the optical detector is a three-dimensional detector.
請求項1〜3記載の分光光度計であって、
シングルビーム測光方式であることを特徴とする分光光度計。

A spectrophotometer according to claims 1-3,
A spectrophotometer characterized by single beam photometry.

JP2005246986A 2005-08-29 2005-08-29 Spectrophotometer Active JP4448808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246986A JP4448808B2 (en) 2005-08-29 2005-08-29 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246986A JP4448808B2 (en) 2005-08-29 2005-08-29 Spectrophotometer

Publications (2)

Publication Number Publication Date
JP2007064632A true JP2007064632A (en) 2007-03-15
JP4448808B2 JP4448808B2 (en) 2010-04-14

Family

ID=37927023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246986A Active JP4448808B2 (en) 2005-08-29 2005-08-29 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP4448808B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002310A (en) * 2009-06-18 2011-01-06 Hitachi High-Technologies Corp Spectrophotometer and cooling method of the same
JP2011153830A (en) * 2010-01-26 2011-08-11 Hitachi High-Technologies Corp Liquid chromatograph device
WO2012176851A1 (en) * 2011-06-24 2012-12-27 株式会社島津製作所 Spectroscopic device
WO2013145112A1 (en) * 2012-03-27 2013-10-03 株式会社島津製作所 Spectrometry device
JP2014048176A (en) * 2012-08-31 2014-03-17 Shimadzu Corp Spectrophotometer
WO2014045805A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Detector and liquid chromatograph
WO2020183595A1 (en) * 2019-03-12 2020-09-17 株式会社島津製作所 Spectrophotometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002310A (en) * 2009-06-18 2011-01-06 Hitachi High-Technologies Corp Spectrophotometer and cooling method of the same
JP2011153830A (en) * 2010-01-26 2011-08-11 Hitachi High-Technologies Corp Liquid chromatograph device
WO2012176851A1 (en) * 2011-06-24 2012-12-27 株式会社島津製作所 Spectroscopic device
US9459143B2 (en) 2011-06-24 2016-10-04 Shimadzu Corporation Spectroscopic device
WO2013145112A1 (en) * 2012-03-27 2013-10-03 株式会社島津製作所 Spectrometry device
CN104204739A (en) * 2012-03-27 2014-12-10 株式会社岛津制作所 Spectrometry device
US9086316B2 (en) 2012-03-27 2015-07-21 Shimadzu Corporation Spectrometry device
JP2014048176A (en) * 2012-08-31 2014-03-17 Shimadzu Corp Spectrophotometer
WO2014045805A1 (en) * 2012-09-24 2014-03-27 株式会社島津製作所 Detector and liquid chromatograph
WO2020183595A1 (en) * 2019-03-12 2020-09-17 株式会社島津製作所 Spectrophotometer
JPWO2020183595A1 (en) * 2019-03-12 2021-11-11 株式会社島津製作所 Spectrophotometer
JP7021717B2 (en) 2019-03-12 2022-02-17 株式会社島津製作所 Spectrophotometer

Also Published As

Publication number Publication date
JP4448808B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4448808B2 (en) Spectrophotometer
JP4605838B2 (en) Apparatus and method for measuring particle size distribution
CN104204739B (en) Spectroscopic measurement device
JP5915470B2 (en) Spectrophotometer
JP4605839B2 (en) Apparatus and method for measuring particle size distribution
JP2011002310A (en) Spectrophotometer and cooling method of the same
JP5825349B2 (en) Spectrometer
JP2014038055A (en) Spectrophotometer
JPH08233659A (en) Spectrophotometer
JP2006201156A (en) Device and method for compensating temperature dependence of detector used for spectrometer
IT201900006954A1 (en) DEVICE FOR THE ANALYSIS OF THE GAS COMPOSITION, AND RELATIVE METHOD OF ANALYSIS OF THE GAS COMPOSITION.
JP5358466B2 (en) Liquid chromatograph
JP2009257808A (en) Infrared gas analyzer
WO2019016846A1 (en) Spectroscopic detector
JP2000346805A (en) Fluorescence spectrophotometer
US20050063186A1 (en) Light source apparatus, analyzer using the same, and method for controlling light source apparatus
JP6515749B2 (en) Detector system
JP5790596B2 (en) Photodiode array detector
JP2005037180A (en) Absorptiometric analyzer
JPH11304706A (en) Infrared gas analyser
CN113348345B (en) Spectrophotometer and liquid chromatograph
JP2005037242A (en) Spectroanalytical instrument
JPH11508053A (en) Analysis system
JP2003185498A (en) Spectrophotometer
KR20010053938A (en) method and apparatus for measuring dust concentration of photo-absorption

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4448808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350