JP2007063659A - High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium - Google Patents

High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium Download PDF

Info

Publication number
JP2007063659A
JP2007063659A JP2005277896A JP2005277896A JP2007063659A JP 2007063659 A JP2007063659 A JP 2007063659A JP 2005277896 A JP2005277896 A JP 2005277896A JP 2005277896 A JP2005277896 A JP 2005277896A JP 2007063659 A JP2007063659 A JP 2007063659A
Authority
JP
Japan
Prior art keywords
copper
alloy
magnesium
yttrium
trace amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277896A
Other languages
Japanese (ja)
Inventor
Kazuya Konno
一弥 今野
Makoto Matsuura
眞 松浦
Mitsuhiko Yoshida
光彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005277896A priority Critical patent/JP2007063659A/en
Publication of JP2007063659A publication Critical patent/JP2007063659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength magnesium alloy producible by a relatively simple process at a lower cost. <P>SOLUTION: An alloy obtained by adding a trace amount of copper or copper and yttrium to magnesium and performing melting under heating in a crucible made of carbon in an inert atmosphere such as argon is rapidly cooled by a method where it is sprayed on a rotating drum made of copper at a high speed. From the rapidly solidified alloy, a magnesium alloy containing a trace amount of copper or copper and yttrium can be obtained. In the case of the independent addition of copper, the obtained alloy has fine crystal grains and uniform precipitates. Further, in the case of the composite addition of copper and yttrium, a long period hexagonal dense structure is formed around a fine amorphous phase dispersed into the crystal grains. The alloy obtained in this way is a material having high mechanical strength. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅を単独またはイットリウムと共に微量添加したマグネシウムの溶融物を急冷凝固する方法を用い、銅単独の添加の場合には、結晶粒を微細化すると共に析出物を均一分散させ、銅とイットリウムの添加の場合には、結晶粒内に均一分散した微細なアモルファス相の周囲に長周期六方稠密構造を生成させ、マグネシウムの機械的強度を著しく向上させたマグネシウム合金及びその製造法に関するものである。   The present invention uses a method of rapidly solidifying magnesium melt obtained by adding a small amount of copper alone or together with yttrium. In the case of adding copper alone, the crystal grains are refined and precipitates are uniformly dispersed, In the case of addition of yttrium, it relates to a magnesium alloy in which a long-period hexagonal close-packed structure is formed around a fine amorphous phase uniformly dispersed in crystal grains, and the mechanical strength of magnesium is remarkably improved, and a manufacturing method thereof. is there.

銅はマグネシウムに対して固溶領域がほとんど存在しないことから、これまで添加元素として注目されてこなかった。このため銅を含むマグネシウム系合金として、これまで知られている物は、その多くが3元系以上の多元素系であった。増本等はMg−(Cu+M)(M=Ni,Sn,Zn)合金について開示しているが、高強度を得るためには非晶質合金で無ければならないし、また経時と共にもろさが出るといった合金の安定性に欠けるものであった。更に、強度の高い合金を得るためには銅を含む添加元素の添加量は10〜60原子%とかなり多量添加する必要がある(特許文献1参照)。また増本等は、溶融急冷法を用いたMg−Zn−Y系合金等では、高強度のマグネシウム合金が得られることを開示しているが、50%以上の非晶質相を有する非晶質合金を条件としている(特許文献2参照)。さらに井上等は、Mg97Zn(原子%)合金で500MPa以上の降伏強度を報告しているが、その製造過程は、溶融急冷法を利用したガスアトマイズによって作製した粉末を、573Kで押し出し成形した後に、さらに機械加工によって成形したものを測定試料としており、複雑な製造過程を有しているため実用性に乏しいという問題点を有している(特許文献3参照)。マグネシウムへの銅とイットリウムの2種の添加について井上等は、Mg−M−Yの非晶質合金を報告しているが、比較的高価なイットリウム元素を15〜35原子%添加する必要がある上に、Mg−M−YのMには銅,銀,パラジウムから2種類の元素を選択する必要があり、材料構成もより複雑である。このように、これまでの高強度マグネシウム合金では、比較的高価な添加元素を含んだものであり、多元素系の高強度マグネシウム合金の作製方法も複雑な製造過程を必要としている。従って高強度マグネシウム基合金では、より製造コストを抑えた合金の開発が求められている。また、一般的な溶融急冷法に用いられる石英製の溶融金属噴射ノズルは、マグネシウムと反応しやすく、作製されたマグネシウム合金への珪素及び酸素の混入によって、著しく合金の機械的特性を弱める。そのため、合金の溶解時に珪素や酸素等の不純物の混入を防ぐノズルの開発も求められている。 Since copper has almost no solid solution region with respect to magnesium, it has not been noted as an additive element so far. For this reason, as for the magnesium-type alloy containing copper, the thing known so far was many multielement system of the ternary system or more. Masumoto et al. Discloses an Mg- (Cu + M) (M = Ni, Sn, Zn) alloy. However, in order to obtain high strength, the alloy must be an amorphous alloy and becomes brittle over time. The lack of stability. Furthermore, in order to obtain an alloy with high strength, it is necessary to add a large amount of additive elements including copper, such as 10 to 60 atomic% (see Patent Document 1). Further, Masumoto et al. Discloses that a Mg-Zn-Y alloy using a melt quenching method can obtain a high-strength magnesium alloy, but an amorphous material having an amorphous phase of 50% or more. The condition is an alloy (see Patent Document 2). Furthermore, Inoue et al. Reported a yield strength of 500 MPa or more with an Mg 97 Zn 1 Y 2 (atomic%) alloy, but the manufacturing process was performed by extruding a powder produced by gas atomization using a melt quenching method at 573K. After molding, a sample that is molded by machining is used as a measurement sample, which has a problem of poor practicality because it has a complicated manufacturing process (see Patent Document 3). Inoue et al. Have reported Mg-MY amorphous alloys for the addition of two types of copper and yttrium to magnesium, but it is necessary to add 15 to 35 atomic percent of a relatively expensive yttrium element. Furthermore, it is necessary to select two types of elements from copper, silver, and palladium for M in Mg-MY, and the material configuration is more complicated. Thus, conventional high-strength magnesium alloys contain relatively expensive additive elements, and a method for producing a multi-element high-strength magnesium alloy also requires a complicated production process. Therefore, for high-strength magnesium-based alloys, there is a demand for the development of an alloy with a lower manufacturing cost. Further, a quartz molten metal injection nozzle used in a general melting and quenching method easily reacts with magnesium, and the mechanical properties of the alloy are significantly weakened by mixing silicon and oxygen into the produced magnesium alloy. Therefore, the development of a nozzle that prevents the entry of impurities such as silicon and oxygen during melting of the alloy is also required.

特開平3−10041号公報JP-A-3-10041 特開平6−41701号公報Japanese Patent Laid-Open No. 6-41701 特開平2002−256370号公報JP-A-2002-256370 特開平2002−254157号公報Japanese Patent Laid-Open No. 2002-254157

本発明ではマグネシウムに、より安価な金属を微量添加し、珪素及び酸素等の不純物が混入しない、より単純な製造方法を用いることによって、製造コストを抑えた高強度マグネシウム合金を提供することを課題としている。   It is an object of the present invention to provide a high-strength magnesium alloy with reduced manufacturing cost by adding a trace amount of a cheaper metal to magnesium and using a simpler manufacturing method in which impurities such as silicon and oxygen are not mixed. It is said.

マグネシウムに対して固溶領域をほとんど持たない銅を単独またはイットリウムと共に添加した合金を溶融状態から急冷凝固すること、さらに従来の石英製ノズルに代わるカーボン製ノズルを使用することにより、高強度のMg−Cu合金およびMg−Cu−Y合金が得られることを見出し、本発明に至った。そのような方法にて得られるマグネシウム合金は上記問題点の解決策を与えるものである。   High-strength Mg can be obtained by rapidly solidifying an alloy in which copper, which has almost no solid solution region with respect to magnesium, alone or together with yttrium is melted, and by using a carbon nozzle instead of a conventional quartz nozzle. The inventors have found that a -Cu alloy and a Mg-Cu-Y alloy can be obtained, and have reached the present invention. The magnesium alloy obtained by such a method provides a solution to the above problems.

マグネシウムに銅を添加したMg−Cu合金の場合は、加熱溶解した溶融合金を適当な方法にて急速に冷却すると、得られた合金は微細な結晶粒を有すると共に、微細な析出物が均一に分散した高強度マグネシウム合金となる。さらに、銅の濃度や急冷速度によって、結晶粒径を自由に選択できると同時に、合金の強度を任意に制御するが可能になる。マグネシウムに銅とイットリウムを共に添加したMg−Cu−Y合金の場合は、結晶粒内に均一に分散した微細な非晶質相を形成すると共に、その非晶質相の周囲には長周期六方稠密構造を持つ複相構造を示す。また、この溶融急冷時にカーボン製のノズルを使用することによって、合金への珪素及び酸素等の不純物の混入を防ぎ、より高強度なMg基合金を作製することが可能となる。より安価な銅元素とイットリウム元素を微量に用い、単純な製造方法によって作製されるこのMg−Cu合金及びMg−Cu−Y合金は、従来のマグネシウム合金よりも製造コストを抑えることが可能となる。   In the case of an Mg—Cu alloy in which copper is added to magnesium, when the molten alloy melted by heating is rapidly cooled by an appropriate method, the resulting alloy has fine crystal grains and uniform fine precipitates. It becomes a dispersed high strength magnesium alloy. Furthermore, the crystal grain size can be freely selected according to the copper concentration and the rapid cooling rate, and at the same time, the strength of the alloy can be arbitrarily controlled. In the case of Mg-Cu-Y alloy in which both copper and yttrium are added to magnesium, a fine amorphous phase uniformly dispersed in the crystal grains is formed, and a long-period hexagon is formed around the amorphous phase. It shows a multiphase structure with a dense structure. Further, by using a carbon nozzle at the time of melting and quenching, impurities such as silicon and oxygen can be prevented from being mixed into the alloy, and a higher strength Mg-based alloy can be produced. This Mg-Cu alloy and Mg-Cu-Y alloy produced by a simple manufacturing method using less expensive copper elements and yttrium elements can be manufactured at a lower cost than conventional magnesium alloys. .

本法のMg100−(a+b)Cuの成分組成は、原子%で0.1≦a≦5%,0≦b≦10の範囲が好ましい。この合金は例えば、マグネシウムと銅およびイットリウム金属をノズル状容器内において、高周波溶解法を用い溶融した状態から、冷却速度約5000〜10000℃/secで急冷凝固することによって作製される。ノズルの材質としては石英、セラミックス、カーボンなど色々なものを使用できる。その中でもカーボン製のノズルを使用すると非常に特性的に良好な合金が得ることができる。薄帯リボンの場合は、縦に高速回転させた銅製ロールの回転表面に、溶融状態の合金を射出し、溶融合金をロール表面に接触急冷させることによって、リボン状の合金の作製が可能となる。また、インゴットの場合は、冶金型鋳造法や遠心鋳造法を用いることによって、インゴット状の合金の作製が可能になる。さらに粉末試料の場合は、粉末凝固法による作製方法も適用できる。この急冷凝固では、より高い冷却速度によって結晶粒の微細化が促進され、高強度のマグネシウム合金を得ることができる。マグネシウムへの銅の添加量は、銅5原子%までであれば、実用性を確保することが可能である。イットリウムは10原子%までの添加が好ましい。 The component composition of Mg 100- (a + b) Cu a Y b in this method is preferably in the range of 0.1 ≦ a ≦ 5% and 0 ≦ b ≦ 10 in atomic percent. This alloy is produced, for example, by rapidly solidifying magnesium, copper, and yttrium metal in a nozzle-like container at a cooling rate of about 5000 to 10000 ° C./sec from a melted state using a high frequency melting method. Various materials such as quartz, ceramics, and carbon can be used as the nozzle material. Among them, when a carbon nozzle is used, an alloy with very good characteristics can be obtained. In the case of ribbon ribbons, a ribbon-like alloy can be produced by injecting a molten alloy onto the rotating surface of a copper roll that has been rotated at a high speed in the vertical direction and rapidly cooling the molten alloy in contact with the roll surface . In the case of an ingot, an ingot-like alloy can be produced by using a metallurgical mold casting method or a centrifugal casting method. Furthermore, in the case of a powder sample, a production method by a powder coagulation method can also be applied. In this rapid solidification, refinement of crystal grains is promoted by a higher cooling rate, and a high-strength magnesium alloy can be obtained. If the amount of copper added to magnesium is up to 5 atomic%, practicality can be ensured. Yttrium is preferably added up to 10 atomic%.

総量約3gのマグネシウムおよび銅のインゴットを、射出口径0.5mmのカーボン製のノズルに入れ、アルゴン雰囲気中、800℃、5分間の高周波溶解によって溶融する。その後、溶融した合金を周速度40m/sで回転する銅製の単ロール表面へ、0.2MPaの圧力で射出することにより急速冷却し、薄帯状のマグネシウム−銅合金を作製した。得られた薄帯試料は、およそ幅1.5mm、厚さ0.4mmの形状をもつ。この方法によって作製されたMg96Cu(原子%)の薄帯試料の0.2%耐力の値は、純マグネシウムの薄帯に対して約3倍であった。(図1参照)。 A total of about 3 g of magnesium and copper ingots are placed in a carbon nozzle having an injection diameter of 0.5 mm and melted by high frequency melting at 800 ° C. for 5 minutes in an argon atmosphere. Thereafter, the molten alloy was rapidly cooled by injection at a pressure of 0.2 MPa onto the surface of a copper single roll rotating at a peripheral speed of 40 m / s, thereby producing a ribbon-like magnesium-copper alloy. The obtained ribbon sample has a shape with a width of about 1.5 mm and a thickness of 0.4 mm. The 0.2% proof stress value of the Mg 96 Cu 4 (atomic%) ribbon sample produced by this method was about three times that of the pure magnesium ribbon. (See FIG. 1).

総量約3gのマグネシウム、銅およびイットリウムのインゴットから、実施例1と同様の溶融状態からの急冷凝固によって薄帯試料を作製した。得られたMg98Cuの薄帯試料の0.2%耐力の値は、純マグネシウムの薄帯に対して約2倍であった。 A ribbon sample was prepared from an ingot of magnesium, copper and yttrium in a total amount of about 3 g by rapid solidification from the molten state as in Example 1. The 0.2% proof stress value of the obtained Mg 98 Cu 2 Y 1 ribbon sample was about twice that of the pure magnesium ribbon.

従来のマグネシウム合金と異なり、比較的安価な銅と微量なイットリウムのみを添加元素としている点や、複雑な熱処理過程および製造工程を必要としない点、更に銅およびイットリウムの添加量と急冷速度のみによって、任意に合金強度を制御できることから、製造コストを抑えた高強度マグネシウム合金として、携帯電子機器や航空機及び自動車等の部品材料として利用される可能性を有している。 Unlike conventional magnesium alloys, only relatively inexpensive copper and a small amount of yttrium are used as additive elements, complicated heat treatment and manufacturing processes are not required, and only the addition amount of copper and yttrium and the rapid cooling rate. Since the alloy strength can be controlled arbitrarily, it has the possibility of being used as a component material for portable electronic devices, aircrafts, automobiles and the like as a high-strength magnesium alloy with reduced manufacturing costs.

溶融急冷法によって作製されたMg100−xCuの急冷薄帯試料における0.2%耐力の銅濃度依存性Dependence of 0.2% yield strength on copper concentration in Mg 100-x Cu x quenched ribbon samples prepared by melt quenching method

Claims (3)

銅を単独またはイットリウムと共にマグネシウムに微量に添加し、その溶融物を急冷凝固することにより作製した高強度マグネシウム合金   A high-strength magnesium alloy made by adding a small amount of copper alone or together with yttrium to magnesium and rapidly solidifying the melt. 原子%による組成が、組成式Mg100−(a+b)Cuで、0.1≦a≦5、0≦b≦10で表される請求項1記載の高強度マグネシウム合金。 2. The high-strength magnesium alloy according to claim 1, wherein the composition by atomic% is represented by the composition formula Mg 100− (a + b) Cu a Y b by 0.1 ≦ a ≦ 5 and 0 ≦ b ≦ 10. 加熱溶融した合金組成物を急速冷却する場合に、溶融物を噴射するのに用いるノズルとしてカーボン製のノズルを使用することを特徴とする請求項1,2記載の高強度マグネシウム合金。
The high-strength magnesium alloy according to claim 1 or 2, wherein a nozzle made of carbon is used as a nozzle used for spraying the melt when rapidly cooling the alloy composition heated and melted.
JP2005277896A 2005-08-04 2005-09-26 High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium Pending JP2007063659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277896A JP2007063659A (en) 2005-08-04 2005-09-26 High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005226219 2005-08-04
JP2005277896A JP2007063659A (en) 2005-08-04 2005-09-26 High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium

Publications (1)

Publication Number Publication Date
JP2007063659A true JP2007063659A (en) 2007-03-15

Family

ID=37926187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277896A Pending JP2007063659A (en) 2005-08-04 2005-09-26 High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium

Country Status (1)

Country Link
JP (1) JP2007063659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088779A (en) * 2021-04-02 2021-07-09 河南科技大学 Cast rare earth magnesium alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088779A (en) * 2021-04-02 2021-07-09 河南科技大学 Cast rare earth magnesium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI607093B (en) Metal alloy composite material and method for making the same
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
WO2006016614A1 (en) Master alloy for use in modifying copper alloy and casting method using the same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
KR101264219B1 (en) Mg alloy and the manufacturing method of the same
KR101214939B1 (en) Grain refiner of magnesium alloys and method for grain refining, method for manufacturing of magnesium alloys using the same, and magnesium alloys prepared thereby
JP2007211310A (en) Raw material brass alloy for casting half-melted alloy
CN101629252B (en) Plastic bulk metallic glass in situ composite material and method for preparing same
CN1818108A (en) High-strength and conductive thin band of copper alloy and production thereof
JP2011144443A (en) Aluminum alloy for semisolid casting
CN102965556B (en) Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof
EP1281780B1 (en) Method of grain refining cast magnesium alloy
CN111593244A (en) Novel multi-element corrosion-resistant magnesium alloy and preparation method thereof
KR101224911B1 (en) Environment-friendly manufacturing method of ingot for hot dipped zinc-aluminium-magnesium alloy coating
JP2007063659A (en) High strength magnesium alloy essentially consisting of magnesium and admixed with trace amount of copper or copper and yttrium
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
WO2003033750A1 (en) Grain refining agent for cast aluminum products
CN108517433B (en) Solidification preparation method of Cu-Cr electrical contact alloy
JP2004068110A (en) Heat resistant magnesium alloy and method for producing the same
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
KR102450479B1 (en) KINIZ Alloy having excellent electrical conductivity and shielding performance, and Wire having excellent electrical conductivity and shielding performance
Mahmoud et al. Grain refinement of commercial pure aluminium by zirconium
CN108425032B (en) Solidification preparation method of Cu-Cr electrical contact alloy with dispersion type composite solidification structure
JP4296158B2 (en) Method for producing Mg alloy