JP2007063421A - Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device - Google Patents

Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
JP2007063421A
JP2007063421A JP2005251743A JP2005251743A JP2007063421A JP 2007063421 A JP2007063421 A JP 2007063421A JP 2005251743 A JP2005251743 A JP 2005251743A JP 2005251743 A JP2005251743 A JP 2005251743A JP 2007063421 A JP2007063421 A JP 2007063421A
Authority
JP
Japan
Prior art keywords
film
group
cellulose acylate
mass
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005251743A
Other languages
Japanese (ja)
Inventor
Yoichi Maruyama
陽一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005251743A priority Critical patent/JP2007063421A/en
Publication of JP2007063421A publication Critical patent/JP2007063421A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a cellulose acylate film with less display unevenness and in which the light leakage brought about with the lapse of time is suppressed, and to provide a cellulose acylate film produced using the production method. <P>SOLUTION: The method for producing a cellulose acylate film comprises, in which Rth/Re is 0.8-3.5 when in-surface retardation of the film is Re(nm) and the retardation in the thickness direction is Rth(nm), a process D0 in which the separated cellulose acylate film, after casting dope containing the cellulose acylate having a specific degree of substitution, is conveyed, a process A of grasping the ends of the width of the film, and a process B of stretching the film in the width direction, in which the amount of a residual solvent at the start of stretching is 90-5% by mass. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セルロースアシレートフィルムの製造方法に関する。更に、該製造方法により得られるセルロースアシレートフィルム、それを用いた偏光板、および液晶表示装置に関する。   The present invention relates to a method for producing a cellulose acylate film. Furthermore, it is related with the cellulose acylate film obtained by this manufacturing method, a polarizing plate using the same, and a liquid crystal display device.

液晶表示装置は、低電圧・低消費電力で小型化・薄膜化が可能など様々な利点からパーソナルコンピューターや携帯機器のモニター、テレビ用途に広く利用されている。このような液晶表示装置は液晶セル内の液晶分子の配列状態により様々なモードが提案されているが、従来は液晶セルの下側基板から上側基板に向かって約90°捩れた配列状態になるTNモードが主流であった。
一般に液晶表示装置は液晶セル、光学補償シート、偏光子から構成される。光学補償シートは画像着色を解消したり、視野角を拡大するために用いられており、延伸した複屈折フィルムや透明フィルムに液晶を塗布したフィルムが使用されている。例えば、特許文献1ではディスコティック液晶をトリアセチルセルロースフィルム上に塗布し配向させて固定化した光学補償シートをTNモードの液晶セルに適用し、視野角を広げる技術が開示されている。しかしながら、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は視野角依存性に対する要求が厳しく、前述のような手法をもってしても要求を満足することはできていない。そのため、IPS(In−Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、TNモードとは異なる液晶表示装置が研究されている。特にVAモードはコントラストが高く、比較的製造の歩留まりが高いことからTV用の液晶表示装置として着目されている。
Liquid crystal display devices are widely used in monitors for personal computers and portable devices, and for television applications because of their various advantages, such as low voltage and low power consumption, enabling miniaturization and thinning. Various modes have been proposed for such a liquid crystal display device depending on the alignment state of the liquid crystal molecules in the liquid crystal cell. Conventionally, the liquid crystal display device is in an alignment state twisted by about 90 ° from the lower substrate to the upper substrate of the liquid crystal cell. The TN mode was mainstream.
In general, a liquid crystal display device includes a liquid crystal cell, an optical compensation sheet, and a polarizer. The optical compensation sheet is used for eliminating image coloring or expanding the viewing angle, and a stretched birefringent film or a film obtained by applying a liquid crystal to a transparent film is used. For example, Patent Document 1 discloses a technique for applying an optical compensation sheet in which a discotic liquid crystal is applied on a triacetyl cellulose film, aligned, and fixed to a TN mode liquid crystal cell to widen the viewing angle. However, a liquid crystal display device for television that is expected to be viewed from various angles on a large screen has a strict requirement for viewing angle dependency, and even with the above-described method, the requirement cannot be satisfied. Therefore, liquid crystal display devices different from the TN mode, such as an IPS (In-Plane Switching) mode, an OCB (Optically Compensatory Bend) mode, and a VA (Vertically Aligned) mode, have been studied. In particular, the VA mode is attracting attention as a liquid crystal display device for TV because of its high contrast and relatively high production yield.

液晶表示装置に不可欠な偏光子の素材としては、一般に、ポリビニルアルコール(以下、「PVA」とも記す。)が主に用いられており、PVAフィルムを一軸延伸してから、ヨウ素あるいは二色性染料で染色するかあるいは染色してから延伸し、さらにホウ素化合物で架橋することにより偏光子が形成される。
また、セルロースアシレートフィルムは、他のポリマーフィルムと比較して、光学的等方性が高い(レターデーション値が低い)という特徴がある。従って、偏光板の保護膜のように光学的等方性が要求される用途には、セルロースアシレートフィルムを用いることが普通である。
一方、液晶表示装置の光学補償シート(位相差フィルム)には、逆に光学的異方性(高いレターデーション値)が要求される。特にVA用の光学補償シートでは30乃至200nmの正面レターデーション(Re)、70乃至400nmの膜厚方向レターデーション(Rth)が必要とされる。従って、光学補償シートとしては、ポリカーボネートフィルムやポリスルホンフィルムのようなレターデーション値が高い合成ポリマーフィルムを用いることが普通であった。
以上のように光学材料の技術分野では、ポリマーフィルムに光学的異方性(高いレターデーション値)が要求される場合には合成ポリマーフィルムを使用し、光学的等方性(低いレターデーション値)が要求される場合にはセルロースアシレートフィルムを使用することが一般的な原則であった。
In general, polyvinyl alcohol (hereinafter also referred to as “PVA”) is mainly used as a polarizer material indispensable for a liquid crystal display device, and after uniaxially stretching a PVA film, iodine or a dichroic dye is used. A polarizer is formed by dyeing with or stretching after dyeing and further crosslinking with a boron compound.
In addition, the cellulose acylate film is characterized by high optical isotropy (low retardation value) compared to other polymer films. Therefore, it is common to use a cellulose acylate film for applications that require optical isotropy, such as a protective film for polarizing plates.
On the other hand, the optical compensation sheet (retardation film) of the liquid crystal display device is required to have optical anisotropy (high retardation value). In particular, a VA optical compensation sheet requires a front retardation (Re) of 30 to 200 nm and a thickness direction retardation (Rth) of 70 to 400 nm. Therefore, it is common to use a synthetic polymer film having a high retardation value such as a polycarbonate film or a polysulfone film as the optical compensation sheet.
As described above, in the technical field of optical materials, when a polymer film requires optical anisotropy (high retardation value), a synthetic polymer film is used and optical isotropy (low retardation value) is used. It was a general rule to use cellulose acylate films when required.

特許文献2には、従来の一般的な原則を覆して、光学的異方性が要求される用途にも使用できる高いレターデーション値を有するセルロースアセテートフィルムが提案されている。この提案ではセルローストリアセテートで高いレターデーション値を実現するために、少なくとも2つの芳香環を有する芳香族化合物、中でも1,3,5−トリアジン環を有する化合物を添加し、延伸処理を行っている。一般にセルローストリアセテートは延伸しにくい高分子素材であり、複屈折率を大きくすることは困難であることが知られているが、添加剤を延伸処理で同時に配向させることにより複屈折率を大きくすることを可能にし、高いレターデーション値を実現している。このフィルムは偏光板の保護膜を兼ねることができるため、安価で薄膜な液晶表示装置を提供することができる利点がある。   Patent Document 2 proposes a cellulose acetate film having a high retardation value that can be used for applications requiring optical anisotropy, overcoming the conventional general principle. In this proposal, in order to realize a high retardation value with cellulose triacetate, an aromatic compound having at least two aromatic rings, particularly a compound having a 1,3,5-triazine ring, is added and subjected to stretching treatment. Cellulose triacetate is generally a polymer material that is difficult to stretch, and it is known that it is difficult to increase the birefringence, but it is necessary to increase the birefringence by simultaneously orienting the additives in the stretching process. To achieve a high retardation value. Since this film can also serve as a protective film for the polarizing plate, there is an advantage that an inexpensive and thin liquid crystal display device can be provided.

特許文献3には炭素数2〜4のアシル基を置換基として有し、アセチル基の置換度をAとし、プロピオニル基またはブチリル基の置換度をBとしたとき、式2.0≦A+B≦3.0及び式A<2.4を同時に満たすセルロースエステルを含有する光学フィルムであって、更に、波長590nmにおける遅相軸方向の屈折率Nx及び進相軸方向の屈折率Nyが式0.0005≦Nx−Ny≦0.0050を満たすことを特徴とする光学フィルムが開示されている。   Patent Document 3 has an acyl group having 2 to 4 carbon atoms as a substituent, where the substitution degree of acetyl group is A and the substitution degree of propionyl group or butyryl group is B, formula 2.0 ≦ A + B ≦ 3.0 and an optical film containing cellulose ester that simultaneously satisfies the formula A <2.4, and the refractive index Nx in the slow axis direction and the refractive index Ny in the fast axis direction at a wavelength of 590 nm are expressed by the formula 0. An optical film characterized by satisfying 0005 ≦ Nx−Ny ≦ 0.0050 is disclosed.

特許文献4にはVAモード液晶表示装置に用いられる偏光板において、該偏光板が、偏光子と光学的に二軸性の混合脂肪酸セルロースエステルフィルムとを有し、液晶セルと偏光子の間に該光学的に二軸性の混合脂肪酸セルロースエステルフィルムが配置されていることを特徴とする偏光板が開示されている。
さらに特許文献5には、アシル基の総置換度が2.40〜2.80かつ6位の水酸基の未置換度が0.15〜0.42のセルロースエステルを用いて製膜したことを特徴とする位相差フィルムが開示されている。
In Patent Document 4, a polarizing plate used in a VA mode liquid crystal display device, the polarizing plate has a polarizer and an optically biaxial mixed fatty acid cellulose ester film, and the liquid crystal cell and the polarizer are interposed. A polarizing plate is disclosed in which the optically biaxial mixed fatty acid cellulose ester film is disposed.
Further, Patent Document 5 is characterized in that a film is formed using a cellulose ester having a total acyl group substitution degree of 2.40 to 2.80 and a 6-position hydroxyl group unsubstituted degree of 0.15 to 0.42. A retardation film is disclosed.

一方特許文献6には、物理的、光学的に均一なセルロースエステルフィルムの製造方法について開示してある。
特許第2587398号公報 欧州特許出願公開第911656号明細書 特開2002−71957号公報 特開2003−270442号公報 特開2004−170760号公報 US6814914B2号
On the other hand, Patent Document 6 discloses a method for producing a physically and optically uniform cellulose ester film.
Japanese Patent No. 2587398 European Patent Application No. 91656 JP 2002-71957 A JP 2003-270442 A JP 2004-170760 A US6814914B2

上述の特許文献1〜6に開示されている方法は、安価でかつ薄い液晶表示装置が得られる点で有効である。しかしながら近年、需要増にしたがい、液晶表示装置の品質要求レベルが高まり、フィルムの均一性に起因すると考えられる表示むらの問題や、使用年数が増すにつれて、パネルの端部分に光漏れが生じるという問題が明らかになってきている。
前述の、パネルの端部分に生じる光漏れは、パネルに対する偏光板の吸収軸の角度によって現れ方が異なり、TNモードのようにパネルに対して吸収軸が45°に傾いているものは、画面周辺部に額縁状の光漏れが生じる。また、VAモードやIPSモードのようにパネルに対して吸収軸が0°又は90°であるものは、画面の4隅に光漏れが生じる(コーナーむら)。
いずれのモードでも、このような端部分の光漏れの発生しない偏光板の開発が要望されている。
本発明の目的は、表示むらが少なく、かつ経時による光漏れを抑制するセルロースアシレートフィルムの製造方法および該製造方法によるセルロースフィルムを提供することである。また、このフィルムを用いた偏光板、および該偏光板を使用した液晶表示装置を提供することである。
The methods disclosed in Patent Documents 1 to 6 described above are effective in that an inexpensive and thin liquid crystal display device can be obtained. However, in recent years, as demand has increased, the level of quality requirements for liquid crystal display devices has increased, and the problem of display unevenness that can be attributed to film uniformity and light leakage at the edge of the panel as the years of use increase. It has become clear.
The light leakage occurring at the end portion of the panel described above varies depending on the angle of the absorption axis of the polarizing plate with respect to the panel, and when the absorption axis is inclined to 45 ° with respect to the panel as in the TN mode, A frame-shaped light leak occurs in the peripheral part. Further, when the absorption axis is 0 ° or 90 ° with respect to the panel as in the VA mode or IPS mode, light leakage occurs at the four corners of the screen (corner unevenness).
In any mode, there is a demand for the development of a polarizing plate that does not cause such light leakage at the end portion.
An object of the present invention is to provide a method for producing a cellulose acylate film with less display unevenness and suppressing light leakage over time, and a cellulose film produced by the production method. Moreover, it is providing the polarizing plate using this film, and the liquid crystal display device using this polarizing plate.

これらの目的は以下の手段によって達成された。
(1)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3、DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを搬送する工程D0、幅手の端部把持する工程A、幅手方向に延伸する工程Bを有し、
延伸開始(工程B開始)時の下記一般式(1)で表されるフィルムの残留溶媒量が90質量%〜5質量%であることを特徴とするセルロースアシレートフィルムの製造方法。
(I) 2.0≦DS2+DS3+DS6≦3.0
(II) DS6/(DS2+DS3+DS6)≧0.315
一般式(1)
フィルムの残留溶媒量(質量%)=[(M-N)/N]×100
[式中、Mはウェブの測定時点での質量、NはMを測定したウェブを110℃で3時間乾燥させたときの質量である。]
(2)上記工程D0終点でのフィルム搬送張力が30N/m〜300N/mの範囲であることを特徴とする上記(1)記載のセルロースアシレートフィルムの製造方法。
(3)上記工程D0終点で、下記一般式(2)で表されるフィルムの残留溶媒における貧溶媒含量(%)が15質量%〜95質量%であることを特徴とする上記(1)または(2)記載のセルロースアシレートフィルムの製造方法。
一般式(2)
フィルム中の残留溶媒における貧溶媒含有量(%)=[(フィルムの残留溶媒中の貧溶媒の質量)/(フィルムの残留溶媒量中の貧溶媒の質量+良溶媒の質量)
(4)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程B開始時のフィルム残留溶媒量B0%が90質量%〜10質量%であり、該フィルムの温度が30℃〜140℃であり、更に工程B終了時の前記フィルムの温度が70℃〜140℃でありかつ、工程B終了時のフィルムの残留溶媒量をB1%としたときに、B0%とB1%とが、0.4×B0≦B1≦0.8×B0の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
(5)工程B終了時におけるフィルム中の残留溶媒における貧溶媒含有量(%)が15質量%〜95質量%の範囲であることを特徴とする上記(4)記載のセルロースアシレートフィルムの製造方法。
These objects have been achieved by the following means.
(1) A method for producing a cellulose acylate film in which Rth / Re is 0.8 to 3.5 when the in-plane retardation is Re (nm) and the retardation in the thickness direction is Rth (nm). And
The hydroxyl group of the glucose unit constituting the cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group is DS2, DS3, A process D0 for transporting a peeled cellulose acylate film after casting a dope containing a cellulose acylate satisfying the following formulas (I) and (II) when DS6 is adopted, and a process A for gripping the end of the width. , Having a process B extending in the width direction,
A method for producing a cellulose acylate film, wherein the residual solvent amount of the film represented by the following general formula (1) at the start of stretching (start of Step B) is 90% by mass to 5% by mass.
(I) 2.0 ≦ DS2 + DS3 + DS6 ≦ 3.0
(II) DS6 / (DS2 + DS3 + DS6) ≧ 0.315
General formula (1)
Residual solvent amount of film (mass%) = [(MN) / N] × 100
[Wherein, M is the mass at the time of measurement of the web, and N is the mass when the web of which M is measured is dried at 110 ° C. for 3 hours. ]
(2) The method for producing a cellulose acylate film as described in (1) above, wherein the film conveyance tension at the end point of the step D0 is in the range of 30 N / m to 300 N / m.
(3) The above-mentioned (1) or (2) The manufacturing method of the cellulose acylate film of description.
General formula (2)
Poor solvent content (%) in residual solvent in film = [(mass of poor solvent in residual solvent of film) / (mass of poor solvent in residual solvent amount of film + mass of good solvent)
(4) A method for producing a cellulose acylate film wherein Rth / Re is 0.8 to 3.5, where Re (nm) is the retardation in the film plane and Rth (nm) is the retardation in the thickness direction. And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose acylate film in the width direction;
The film residual solvent amount B0% at the start of Step B is 90% by mass to 10% by mass, the temperature of the film is 30 ° C to 140 ° C, and the temperature of the film at the end of Step B is 70 ° C to 140 ° C. And when the residual solvent amount of the film at the end of Step B is B1%, B0% and B1% satisfy the relationship of 0.4 × B0 ≦ B1 ≦ 0.8 × B0 A method for producing a cellulose acylate film.
(5) Production of cellulose acylate film as described in (4) above, wherein the poor solvent content (%) in the residual solvent in the film at the end of Step B is in the range of 15% by mass to 95% by mass. Method.

(6)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程Bのフィルム雰囲気温度が110℃〜140℃であり、且つ工程B終了時の該フィルムの残留溶媒量をB3%、工程B開始時の前記フィルムの残留溶媒量をB2%としたとき、B3%とB2%とが0.4×B2≦B3≦0.8×B2の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
(7)工程B終了時におけるフィルム中の残留溶媒における貧溶媒含有量(%)が15質量%〜95質量%であることを特徴とする上記(6)に記載のセルロースアシレートフィルムの製造方法。
(8)工程Bにおけるフィルムの幅手方向への下記一般式(3)で表される延伸速度が50%/min〜500%/minであることを特徴とする上記(1)〜(7)のいずれか1項に記載のセルロースアシレートフィルムの製造方法。
一般式(3)
延伸速度(%/min)=[(延伸後幅手寸法/延伸前幅手寸法)−1]×100(%)/延伸に要する時間(min)。
(9)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
工程AおよびBにおける雰囲気の良溶媒濃度が、2000ppm以上、飽和蒸気量未満であることを特徴とするセルロースアシレートフィルムの製造方法。
(6) A method for producing a cellulose acylate film in which Rth / Re is 0.8 to 3.5 when the in-plane retardation is Re (nm) and the retardation in the thickness direction is Rth (nm). And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose acylate film in the width direction;
When the film atmosphere temperature in Step B is 110 ° C. to 140 ° C., the residual solvent amount of the film at the end of Step B is B3%, and the residual solvent amount of the film at the start of Step B is B2%, B3 % And B2% satisfy the relationship of 0.4 × B2 ≦ B3 ≦ 0.8 × B2.
(7) The method for producing a cellulose acylate film as described in (6) above, wherein the poor solvent content (%) in the residual solvent in the film at the end of Step B is 15% by mass to 95% by mass. .
(8) The above-mentioned (1) to (7), wherein the stretching speed represented by the following general formula (3) in the width direction of the film in Step B is 50% / min to 500% / min. The manufacturing method of the cellulose acylate film of any one of these.
General formula (3)
Stretching speed (% / min) = [(width dimension after stretching / width dimension before stretching) -1] × 100 (%) / time required for stretching (min).
(9) A method for producing a cellulose acylate film wherein Rth / Re is 0.8 to 3.5, where Re (nm) is the retardation in the film plane and Rth (nm) is the retardation in the thickness direction. And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When DS6 is adopted, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), step A for gripping the width end of the peeled cellulose film, stretching in the width direction Process B, grip relaxation process C,
A method for producing a cellulose acylate film, wherein the good solvent concentration of the atmosphere in steps A and B is 2000 ppm or more and less than a saturated vapor amount.

(10)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程Bで幅手方向のフィルム延伸倍率が1.1〜2.5の範囲であることを特徴とするセルロースアシレートフィルムの製造方法。
(11)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程B開始前にスリッターによりフィルム端部を切除することを特徴とするセルロースアシレートフィルムの製造方法。
(12)フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
工程A、B、Cの間にニュートラルゾーンを設けることを特徴とするセルロースアシレートフィルムの製造方法。
(13)上記(1)〜(11)のいずれかに記載のセルロースアシレートフィルムの製造方法において、前記ドープ流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
且つ、工程A、B、Cの間にニュートラルゾーンを有することを特徴とするセルロースアシレートフィルムの製造方法。
(14)上記(1)〜(13)のいずれかに記載の製造方法で製造されたことを特徴とするセルロースアシレートフィルム。
(15)偏光子と該偏光子の両面に保護膜を有してなる偏光板であって、少なくとも一方の保護膜に上記(14)に記載のセルロースアシレートフィルムを用いたことを特徴とする偏光板。
(16)上記(15)に記載の偏光板を具備したことを特徴とする液晶表示装置。
(10) A method for producing a cellulose acylate film wherein Rth / Re is 0.8 to 3.5, where Re (nm) is the retardation in the film plane and Rth (nm) is the retardation in the thickness direction. And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose film in the width direction,
A process for producing a cellulose acylate film, wherein the film stretch ratio in the width direction in step B is in the range of 1.1 to 2.5.
(11) A method for producing a cellulose acylate film in which Rth / Re is 0.8 to 3.5 when Re (nm) is the retardation in the film plane and Rth (nm) is the retardation in the thickness direction. And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose film in the width direction,
A method for producing a cellulose acylate film, wherein a film end is cut with a slitter before the start of step B.
(12) A method for producing a cellulose acylate film in which Rth / Re is 0.8 to 3.5 when Re (nm) is the retardation in the film plane and Rth (nm) is the retardation in the thickness direction. And
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When DS6 is adopted, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), step A for gripping the width end of the peeled cellulose film, stretching in the width direction Process B, grip relaxation process C,
A method for producing a cellulose acylate film, wherein a neutral zone is provided between steps A, B, and C.
(13) In the method for producing a cellulose acylate film according to any one of the above (1) to (11), after the dope casting, a step A and a width for gripping the edge of the width of the peeled cellulose film It has a process B that extends in the hand direction, a grip relaxation process C,
And the manufacturing method of the cellulose acylate film characterized by having a neutral zone between process A, B, and C.
(14) A cellulose acylate film produced by the production method according to any one of (1) to (13) above.
(15) A polarizing plate comprising a polarizer and protective films on both sides of the polarizer, wherein the cellulose acylate film according to (14) is used for at least one protective film. Polarizer.
(16) A liquid crystal display device comprising the polarizing plate according to (15).

本発明の製造方法により得られるセルロースアシレートフィルムを具備する偏光板を使用することにより、表示むらが小さく、かつ経時によるパネルの端部分の光漏れが改良された液晶表示装置を作製することができる。   By using a polarizing plate having a cellulose acylate film obtained by the production method of the present invention, it is possible to produce a liquid crystal display device in which display unevenness is small and light leakage at the edge of the panel over time is improved. it can.

以下、本発明について更に詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレート及びメタクリレートの少なくともいずれか」の意味を表す。「(メタ)アクリル酸」等も同様である。   Hereinafter, the present invention will be described in more detail. In the present specification, when a numerical value represents a physical property value, a characteristic value, etc., the description “(numerical value 1) to (numerical value 2)” means “(numerical value 1) or more and (numerical value 2) or less”. . In the present specification, the description “(meth) acrylate” means “at least one of acrylate and methacrylate”. The same applies to “(meth) acrylic acid” and the like.

(セルロースアシレート)
セルロースを構成するβ−1,4結合しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。セルロースアシレートはこれらの水酸基の一部または全部を炭素数2以上のアシル基によりエステル化した重合体(ポリマー)である。アシル置換度は、2位、3位および6位それぞれについてセルロースの水酸基がエステル化している割合(100%のエステル化は置換度1)を意味する。
全アシル置換度、すなわちDS2+DS3+DS6は2.00〜3.00であり、好ましくは2.20〜2.90であり、より好ましくは2.40〜2.82である。またDS6/(DS2+DS3+DS6)は0.315以上であり、好ましくは0.32以上、より好ましくは、0.325以上である。
アシル置換度を上記範囲とすることで、表示むらが小さく、かつ経時によるパネルの端部の光漏れが改良されたフイルムを得ることができた。
ここでDS2はグルコース単位の2位の水酸基のアシル化による置換度(以下「2位のアシル置換度」とも言う)であり、DS3は3位の水酸基のアシル化による置換度(以下「3位のアシル置換度」とも言う)でありDS6は6位の水酸基のアシル化による置換度(以下「6位のアシル置換度」とも言う)である。
(Cellulose acylate)
Glucose units having β-1,4 bonds constituting cellulose have free hydroxyl groups at the 2nd, 3rd and 6th positions. Cellulose acylate is a polymer obtained by esterifying some or all of these hydroxyl groups with an acyl group having 2 or more carbon atoms. The degree of acyl substitution means the ratio at which the hydroxyl group of cellulose is esterified at each of the 2-position, 3-position and 6-position (100% esterification has a degree of substitution of 1).
The total acyl substitution degree, that is, DS2 + DS3 + DS6 is 2.00 to 3.00, preferably 2.20 to 2.90, more preferably 2.40 to 2.82. DS6 / (DS2 + DS3 + DS6) is 0.315 or more, preferably 0.32 or more, more preferably 0.325 or more.
By setting the acyl substitution degree within the above range, it was possible to obtain a film with small display unevenness and improved light leakage at the edge of the panel over time.
Here, DS2 is the substitution degree due to acylation of the hydroxyl group at the 2-position of the glucose unit (hereinafter also referred to as “acyl substitution degree at 2-position”), and DS3 is the substitution degree due to acylation of the hydroxyl group at the 3-position (hereinafter referred to as “3-position”). DS6 is the substitution degree due to acylation of the hydroxyl group at the 6-position (hereinafter also referred to as “acyl substitution degree at the 6-position”).

本発明のセルロースアシレートに用いられるアシル基は1種類だけでも良いし、あるいは2種類以上のアシル基が使用されても良い。2種類以上のアシル基を用いる時は、その一つがアセチル基であることが好ましい。2位、3位および6位の水酸基のアセチル基による置換度の総和をAとし、2位、3位および6位の水酸基のプロピオニル基による置換度をB、ブチリル基による置換度をCとすると、Aは1.60〜2.0が好ましく、より好ましくは1.7〜1.9である。また、B+Cは0.60〜0.80が好ましく、より好ましくは0.65〜0.75である。   Only one type of acyl group may be used in the cellulose acylate of the present invention, or two or more types of acyl groups may be used. When two or more types of acyl groups are used, one of them is preferably an acetyl group. When the sum of the substitution degrees of the hydroxyl groups at the 2nd, 3rd and 6th positions by the acetyl group is A, the substitution degree of the 2nd, 3rd and 6th hydroxyl groups by the propionyl group is B, and the substitution degree by the butyryl group is C. , A is preferably 1.60 to 2.0, more preferably 1.7 to 1.9. Further, B + C is preferably 0.60 to 0.80, more preferably 0.65 to 0.75.

アセチル基、プロピオニル基および/またはブチル基の置換度はASTM:D−817−96(セルロースアセテート等の試験方法)に従い測定し、計算で求めることができる。   The degree of substitution of the acetyl group, propionyl group and / or butyl group can be determined by calculation according to ASTM: D-817-96 (test method for cellulose acetate, etc.).

セルロースエステルの2位、3位および6位の未置換の水酸基量は、セルロースアセテートの残存水酸基を別のアシル基で置換処理した後、13C−NMRによる測定によって求めることができる。測定方法の詳細については、手塚他(Carbohydr.Res.273(1995)p.83−91)に記載がある。 The amount of unsubstituted hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose ester can be determined by measuring the residual hydroxyl group of cellulose acetate with another acyl group and then measuring by 13 C-NMR. Details of the measurement method are described in Tezuka et al. (Carbohydr. Res. 273 (1995) p. 83-91).

(セルロースアシレートの合成方法)
セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物−酢酸−硫酸触媒による液相酢化法である。
前記セルロースアシレートを得るには、具体的には、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記カルボン酸化混液は、一般に溶媒としての酢酸、エステル化剤としての無水カルボン酸および触媒としての硫酸を含む。無水カルボン酸は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。エステル化反応終了後に、系内に残存している過剰の無水カルボン酸の加水分解およびエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことによりケン化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは中和することなく水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理を行う等して、前記の特定のセルロースアシレートを得ることができる。
(Method for synthesizing cellulose acylate)
The basic principle of the cellulose acylate synthesis method is described in Mita et al., Wood chemistry, 180-190 (Kyoritsu Shuppan, 1968). A typical synthesis method is a liquid phase acetylation method using a carboxylic acid anhydride-acetic acid-sulfuric acid catalyst.
In order to obtain the cellulose acylate, specifically, a cellulose raw material such as cotton linter or wood pulp is pretreated with an appropriate amount of acetic acid, and is then esterified by introducing it into a pre-cooled carboxylated mixed solution. Synthesize the rate (the sum of the acyl substitution degree at the 2nd, 3rd and 6th positions is approximately 3.00). The carboxylated mixed solution generally contains acetic acid as a solvent, carboxylic anhydride as an esterifying agent, and sulfuric acid as a catalyst. The carboxylic anhydride is usually used in a stoichiometric excess over the sum of the cellulose that reacts with it and the water present in the system. After completion of the esterification reaction, a neutralizing agent (for example, calcium, magnesium, iron, aluminum or zinc) is used for hydrolysis of excess carboxylic anhydride remaining in the system and neutralization of a part of the esterification catalyst. Of carbonate, acetate or oxide). Next, the obtained complete cellulose acylate is saponified and aged by maintaining it at 50 to 90 ° C. in the presence of a small amount of an acetylation reaction catalyst (generally, remaining sulfuric acid) to obtain a desired acyl substitution degree and polymerization. The cellulose acylate having a degree is changed. When the desired cellulose acylate is obtained, the catalyst remaining in the system is completely neutralized with the neutralizing agent as described above, or in water or dilute sulfuric acid without neutralization. The cellulose acylate solution is added (or water or dilute sulfuric acid is added to the cellulose acylate solution), the cellulose acylate is separated, washed and stabilized, and the like. Can be obtained.

前記セルロースアシレートフィルムは、フィルムを構成するポリマー成分が実質的に上記の特定のセルロースアシレートからなることが好ましい。『実質的に』とは、ポリマー成分の55質量%以上(好ましくは70質量%以上、さらに好ましくは80質量%以上)を意味する。
前記セルロースアシレートは、粒子状で使用することが好ましい。使用する粒子の90質量%以上は、0.5〜5mmの粒子径を有することが好ましい。また、使用する粒子の50質量%以上が1〜4mmの粒子径を有することが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが好ましい。
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で、好ましくは200〜700、より好ましくは250〜550、更に好ましくは250〜400であり、特に好ましくは250〜350である。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、「繊維学会誌」、1962年、第18巻第1号、105〜120頁)により測定できる。更に特開平9−95538号公報に詳細に記載されている。
In the cellulose acylate film, it is preferable that a polymer component constituting the film is substantially composed of the specific cellulose acylate. “Substantially” means 55% by mass or more (preferably 70% by mass or more, more preferably 80% by mass or more) of the polymer component.
The cellulose acylate is preferably used in the form of particles. 90% by mass or more of the particles to be used preferably have a particle diameter of 0.5 to 5 mm. Moreover, it is preferable that 50 mass% or more of the particle | grains to be used have a particle diameter of 1-4 mm. The cellulose acylate particles preferably have a shape as close to a sphere as possible.
The degree of polymerization of cellulose acylate preferably used in the present invention is a viscosity average degree of polymerization, preferably 200 to 700, more preferably 250 to 550, still more preferably 250 to 400, and particularly preferably 250 to 350. . The average degree of polymerization can be measured by the intrinsic viscosity method of Uda et al. (Kazuo Uda, Hideo Saito, “Journal of Textile Society”, 1962, Vol. 18, No. 1, pages 105-120). Further details are described in JP-A-9-95538.

低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため、前記セルロースアシレートとしては低分子成分を除去したものが有用である。低分子成分の少ないセルロースアシレートは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロースアシレート100質量部に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。セルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下である。一般に、セルロースアシレートは、水を含有しており含水率2.5〜5質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。
前記セルロースアシレートの原料綿や合成方法は、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.7−12に詳細に記載されている原料綿や合成方法を採用できる。
When the low molecular component is removed, the average molecular weight (polymerization degree) is increased, but the viscosity is lower than that of ordinary cellulose acylate. Therefore, the cellulose acylate from which the low molecular component is removed is useful. . Cellulose acylate having a small amount of low molecular components can be obtained by removing low molecular components from cellulose acylate synthesized by a usual method. The removal of the low molecular component can be carried out by washing the cellulose acylate with an appropriate organic solvent. In addition, when manufacturing a cellulose acylate with few low molecular components, it is preferable to adjust the sulfuric acid catalyst amount in an acetylation reaction to 0.5-25 mass parts with respect to 100 mass parts of cellulose acylates. When the amount of the sulfuric acid catalyst is within the above range, cellulose acylate that is preferable in terms of molecular weight distribution (uniform molecular weight distribution) can be synthesized. When used in the production of cellulose acylate, the water content is preferably 2% by mass or less, more preferably 1% by mass or less, and particularly 0.7% by mass or less. In general, cellulose acylate contains water and is known to have a water content of 2.5 to 5% by mass. In order to obtain the moisture content of the cellulose acylate in the present invention, it is necessary to dry, and the method is not particularly limited as long as the desired moisture content is obtained.
The cellulose acylate raw material cotton and the synthesis method thereof are disclosed in JIII Journal of Technical Disclosure No. 2001-1745 (issued March 15, 2001, Invention Association) p. Raw material cotton and synthesis methods described in detail in 7-12 can be employed.

本発明に関するセルロースアシレートフィルムは、前記の特定のセルロースアシレートと必要に応じて添加剤とを有機溶媒に溶解させた溶液を用いてフィルム化することにより得ることができる。   The cellulose acylate film according to the present invention can be obtained by forming a film using a solution obtained by dissolving the specific cellulose acylate and, if necessary, an additive in an organic solvent.

(添加剤)
本発明において前記セルロースアシレート溶液に用いることができる添加剤としては、例えば、可塑剤、紫外線吸収剤、劣化防止剤、レターデーション(光学異方性)発現剤、レターデーション(光学異方性)減少剤、微粒子、染料、剥離促進剤、赤外吸収剤などを挙げることができる。本発明においては、レターデーション発現剤を用いるのが好ましい。また、可塑剤、紫外線吸収剤、染料及び剥離促進剤の少なくとも1種以上を用いるのが好ましい。
それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば融点が20℃以下と20℃以上の紫外線吸収剤を混合して用いたり、同様に可塑剤を混合して用いることができ、例えば特開2001−151901号公報などに記載されている。
紫外線吸収剤としては、目的に応じ任意の種類のものを選択することができ、サリチル酸エステル系、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、シアノアクリレート系、ニッケル錯塩系等の吸収剤を用いることができ、好ましくはベンゾフェノン系、ベンゾトリアゾール系、サリチル酸エステル系である。ベンゾフェノン系紫外線吸収剤の例として、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−アセトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4,4’−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メタクリロキシ)プロポキシベンゾフェノン等を挙げることができる。ベンゾトリアゾール系紫外線吸収剤としては、2(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール等を挙げることができる。サリチル酸エステル系としては、フェニルサリシレート、p−オクチルフェニルサリシレート、p−tert−ブチルフェニルサリシレート等を挙げることができる。これら例示した紫外線吸収剤の中でも、特に2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジ−ヒドロキシ−4,4’−メトキシベンゾフェノン、2(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロルベンゾトリアゾール、2(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロルベンゾトリアゾールが特に好ましい。
(Additive)
Examples of the additive that can be used in the cellulose acylate solution in the present invention include a plasticizer, an ultraviolet absorber, a deterioration preventing agent, a retardation (optical anisotropy) developing agent, and a retardation (optical anisotropy). Examples thereof include a reducing agent, fine particles, a dye, a peeling accelerator, and an infrared absorber. In the present invention, it is preferable to use a retardation developer. Moreover, it is preferable to use at least one of a plasticizer, an ultraviolet absorber, a dye and a peeling accelerator.
They may be solid or oily. That is, the melting point and boiling point are not particularly limited. For example, ultraviolet absorbers having melting points of 20 ° C. or lower and 20 ° C. or higher can be mixed and used, and plasticizers can also be mixed and used, for example, as described in JP-A-2001-151901.
As the ultraviolet absorber, any type can be selected according to the purpose, and a salicylic acid ester-based, benzophenone-based, benzotriazole-based, benzoate-based, cyanoacrylate-based, nickel complex-based absorber or the like is used. Preferred are benzophenone series, benzotriazole series, and salicylic acid ester series. Examples of benzophenone ultraviolet absorbers include 2,4-dihydroxybenzophenone, 2-hydroxy-4-acetoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-di-hydroxy-4-methoxybenzophenone, 2, 2′-di-hydroxy-4,4′-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy-4- (2-hydroxy-3- And methacryloxy) propoxybenzophenone. As a benzotriazole ultraviolet absorber, 2 (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2 (2′-hydroxy-5′-tert-butylphenyl) ) Benzotriazole, 2 (2′-hydroxy-3 ′, 5′-di-tert-amylphenyl) benzotriazole, 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5 Examples include chlorobenzotriazole, 2 (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, and the like. Examples of salicylic acid esters include phenyl salicylate, p-octylphenyl salicylate, and p-tert-butylphenyl salicylate. Among these exemplified ultraviolet absorbers, in particular, 2-hydroxy-4-methoxybenzophenone, 2,2′-di-hydroxy-4,4′-methoxybenzophenone, 2 (2′-hydroxy-3′-tert-butyl- 5'-methylphenyl) -5-chlorobenzotriazole, 2 (2'-hydroxy-5'-tert-butylphenyl) benzotriazole, 2 (2'-hydroxy-3 ', 5'-di-tert-amylphenyl) ) Benzotriazole, 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5-chlorobenzotriazole is particularly preferred.

紫外線吸収剤は、吸収波長の異なる複数の吸収剤を複合して用いることが、広い波長範囲で高い遮断効果を得ることができるので好ましい。液晶用紫外線吸収剤は、液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れ、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。特に好ましい紫外線吸収剤は、先に上げたベンゾトリアゾール系化合物やベンゾフェノン系化合物、サリチル酸エステル系化合物である。中でも、ベンゾトリアゾール系化合物は、セルロースエステルに対する不要な着色が少ないことから、好ましい。   As the ultraviolet absorber, it is preferable to use a combination of a plurality of absorbers having different absorption wavelengths because a high blocking effect can be obtained in a wide wavelength range. From the viewpoint of preventing deterioration of the liquid crystal, the ultraviolet absorbent for liquid crystal is preferably excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, the absorption of visible light having a wavelength of 400 nm or more is small. Particularly preferred ultraviolet absorbers are the benzotriazole compounds, benzophenone compounds, and salicylic acid ester compounds mentioned above. Among these, a benzotriazole-based compound is preferable because unnecessary coloring with respect to the cellulose ester is small.

また、紫外線吸収剤については、特開昭60−235852号、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号、同6−118233号、同6−148430号、同7−11056号、同7−11055号、同7−11056号、同8−29619号、同8−239509号、特開2000−204173号の各公報に記載の化合物も用いることができる。   As for the UV absorber, JP-A-60-235852, JP-A-3-199201, JP-A-51907073, JP-A-5-194789, JP-A-5-271471, JP-A-6-107854, JP-A-6-107854. 118233, 6-148430, 7-11056, 7-11055, 7-11056, 8-29619, 8-239509, JP-A-2000-204173 These compounds can also be used.

紫外線吸収剤の添加量は、セルロースアシレートに対し0.001〜5質量%が好ましく、0.01〜1質量%がより好ましい。添加量が0.001質量%未満では添加効果を十分に発揮することができず、添加量が5質量%を超えると、フィルム表面へ紫外線吸収剤がブリードアウトする場合がある。   0.001-5 mass% is preferable with respect to a cellulose acylate, and, as for the addition amount of a ultraviolet absorber, 0.01-1 mass% is more preferable. If the addition amount is less than 0.001% by mass, the effect of addition cannot be sufficiently exhibited. If the addition amount exceeds 5% by mass, the ultraviolet absorber may bleed out to the film surface.

また、紫外線吸収剤はセルロースアシレート溶解時に同時に添加しても良いし、溶解後のドープに添加しても良い。特にスタティックミキサ等を用い、流延直前にドープに紫外線吸収剤溶液を添加する形態が、分光吸収特性を容易に調整することができ、好ましい。   Further, the ultraviolet absorber may be added simultaneously with the dissolution of cellulose acylate, or may be added to the dope after dissolution. In particular, a mode in which an ultraviolet absorbent solution is added to the dope immediately before casting using a static mixer or the like is preferable because the spectral absorption characteristics can be easily adjusted.

前記劣化防止剤は、セルローストリアセテート等が劣化、分解するのを防止することができる。劣化防止剤としては、ブチルアミン、ヒンダードアミン化合物(特開平8−325537号公報)、グアニジン化合物(特開平5−271471号公報)、ベンゾトリアゾール系UV吸収剤(特開平6−235819号公報)、ベンゾフェノン系UV吸収剤(特開平6−118233号公報)などの化合物がある。   The deterioration inhibitor can prevent cellulose triacetate and the like from deteriorating and decomposing. Examples of the deterioration preventing agent include butylamine, hindered amine compounds (JP-A-8-325537), guanidine compounds (JP-A-5-271471), benzotriazole-based UV absorbers (JP-A-6-235819), and benzophenone-based compounds. There are compounds such as UV absorbers (JP-A-6-118233).

可塑剤としては、リン酸エステル、カルボン酸エステルであることが好ましい。また、前記可塑剤が、トリフェニルフォスフェート(TPP)、トリクレジルホスフェート(TCP)、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート(BDP)、トリオクチルホスフェート、トリブチルホスフェート、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)、ジエチルヘキシルフタレート(DEHP)、O−アセチルクエン酸トリエチル(OACTE)、O−アセチルクエン酸トリブチル(OACTB)、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレートから選ばれたものであることがより好ましい。さらに、前記可塑剤が、(ジ)ペンタエリスリトールエステル類、グリセロールエステル類、ジグリセロールエステル類であることが好ましい。
剥離促進剤としてはクエン酸のエチルエステル類が例として挙げられる。さらに赤外吸収剤としては例えば特開平2001−194522号公報に記載されている。
The plasticizer is preferably a phosphate ester or a carboxylic acid ester. The plasticizer may be triphenyl phosphate (TPP), tricresyl phosphate (TCP), cresyl diphenyl phosphate, octyl diphenyl phosphate, biphenyl diphenyl phosphate (BDP), trioctyl phosphate, tributyl phosphate, dimethyl phthalate (DMP) ), Diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diphenyl phthalate (DPP), diethyl hexyl phthalate (DEHP), triethyl O-acetylcitrate (OACTE), tributyl O-acetylcitrate ( OACTB), acetyl triethyl citrate, acetyl tributyl citrate, butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, tria Chin, tributyrin, butyl phthalyl butyl glycolate, ethyl phthalyl ethyl glycolate, methyl phthalyl ethyl glycolate, and more preferably one selected from butyl phthalyl butyl glycolate. Furthermore, the plasticizer is preferably (di) pentaerythritol esters, glycerol esters, diglycerol esters.
Examples of the peeling accelerator include citric acid ethyl esters. Further, infrared absorbers are described in, for example, JP-A-2001-194522.

また、本発明では、色相調整のための染料を添加してもよい。染料の含有量は、セルロースアシレートに対する質量割合で10〜1000ppmが好ましく、50〜500ppmが更に好ましい。この様に染料を含有させることにより、セルロースアシレートフィルムのライトパイピングが減少でき、黄色味を改良することができる。これらの化合物は、セルロースアシレート溶液の調製の際に、セルロースアシレートや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。又インライン添加する紫外線吸収剤液に添加しても良い。
本発明で用いられる染料は好ましくは下記一般式(I)または(II)で表される化合物である。
一般式(I)
In the present invention, a dye for adjusting the hue may be added. The content of the dye is preferably 10 to 1000 ppm, more preferably 50 to 500 ppm in terms of a mass ratio with respect to cellulose acylate. By containing the dye in this way, light piping of the cellulose acylate film can be reduced, and yellowness can be improved. These compounds may be added together with cellulose acylate and a solvent during the preparation of the cellulose acylate solution, or may be added during or after the solution preparation. Moreover, you may add to the ultraviolet absorber liquid added in-line.
The dye used in the present invention is preferably a compound represented by the following general formula (I) or (II).
Formula (I)

Figure 2007063421
Figure 2007063421

式中、R1、R2、R3、R4、R5、R6、R7及びR8は、各々水素原子、水酸基、脂肪族基、芳香族基、複素環基、ハロゲン原子、シアノ基、ニトロ基、COR9、COOR9、NR910、NR10COR11、NR10SO211、CONR910、SO2NR910、COR11、SO211、OCOR11、NR9CONR1011、CONHSO211、SO2NHCOR11を表わし、R9、R10は各々水素原子、脂肪族基、芳香族基、複素環基を表わし、R11は脂肪族基、芳香族基、複素環基を表わし、R9とR10は連結して5又は6員環を形成していてもよく、R1とR2もしくはR2とR3は各々連結して環を形成してもよい。
一般式(II)
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each hydrogen atom, hydroxyl group, aliphatic group, aromatic group, heterocyclic group, halogen atom, cyano, Group, nitro group, COR 9 , COOR 9 , NR 9 R 10 , NR 10 COR 11 , NR 10 SO 2 R 11 , CONR 9 R 10 , SO 2 NR 9 R 10 , COR 11 , SO 2 R 11 , OCOR 11 , represents a NR 9 CONR 10 R 11, CONHSO 2 R 11, SO 2 NHCOR 11, R 9, R 10 are each a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, R 11 is an aliphatic group, R 9 and R 10 may be linked to form a 5- or 6-membered ring, and R 1 and R 2 or R 2 and R 3 may be linked to form a ring. It may be formed.
Formula (II)

Figure 2007063421
Figure 2007063421

式中、R21、R23、R24は水素原子、水酸基、ニトロ基、シアノ基、脂肪族基、芳香族基、COR29、COOR29、NR2930、NR30COR31、NR30SO231を表わし、R22は脂肪族基又は芳香族基を表わし、R29、R30は一般式(I)におけるR9、R10と同義であり、R31は一般式(I)におけるR11と同義である。但し、R21、R22、R23、R24のうち1個以上は水素以外の基である。 In the formula, R 21 , R 23 and R 24 are a hydrogen atom, a hydroxyl group, a nitro group, a cyano group, an aliphatic group, an aromatic group, COR 29 , COOR 29 , NR 29 R 30 , NR 30 COR 31 , NR 30 SO 2 represents R 31 , R 22 represents an aliphatic group or an aromatic group, R 29 and R 30 have the same meanings as R 9 and R 10 in formula (I), and R 31 represents in formula (I) R 11 as synonymous. However, one or more of R 21 , R 22 , R 23 , and R 24 are groups other than hydrogen.

以下に一般式(I)の各基について詳細に説明する。R1〜R11で表わされる脂肪族基は、炭素数1〜20のアルキル基(例えば、メチル、エチル、n−ブチル、イソプロピル、2−エチルヘキシル、n−デシル、n−オクタデシル)、炭素数1〜20のシクロアルキル基(例えば、シクロペンチル、シクロヘキシル)又はアリル基を表わし、置換基〔例えば、ハロゲン原子(例えば、F、Cl、Br、I)、水酸基、シアノ基、ニトロ基、カルボン酸基、炭素数6〜10のアリール基(例えば、フェニル、ナフチル)、炭素数0〜20のアミノ基(例えば、NH2、NHCH3、N(C252、N(C492、N(C8172、アニリノ、4−メトキシアニリノ)、炭素数1〜20のアミド基(例えば、アセチルアミノ、ヘキサノイルアミノ、ベンゾイルアミノ、オクタデカノイルアミノ)、炭素数1〜20のカルバモイル基(例えば、無置換のカルバモイル、メチルカルバモイル、エチルカルバモイル、オクチルカルバモイル、ヘキサデシルカルバモイル)、炭素数2〜20のエステル基(例えば、メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、n−ブトキシカルボニル、ドデシルオキシカルボニル)、炭素数1〜20のアルコキシ基又はアリーロキシ基(メトキシ、エトキシ、ブトキシ、イソプロポキシ、ベンジルオキシ、フェノキシ、オクタデシルオキシ)、炭素数1〜20のスルホンアミド基(例えば、メタンスルホンアミド、エタンスルホンアミド、ブタンスルホンアミド、ベンゼンスルホンアミド、オクタンスルホンアミド)、炭素数0〜20のスルファモイル基(例えば、無置換のスルファモイル、メチルスルファモイル、ブチルスルファモイル、デシルスルファモイル)、5又は6員の複素環(例えば、ピリジル、ピラゾリル、モルホリノ、ピペリジノ、ピロリノ、ベンズオキサゾリル)〕を有していてもよい。 Below, each group of general formula (I) is demonstrated in detail. The aliphatic group represented by R 1 to R 11 is an alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, n-butyl, isopropyl, 2-ethylhexyl, n-decyl, n-octadecyl), carbon number 1 Represents a cycloalkyl group of -20 (for example, cyclopentyl, cyclohexyl) or an allyl group, a substituent [for example, a halogen atom (for example, F, Cl, Br, I), a hydroxyl group, a cyano group, a nitro group, a carboxylic acid group, aryl group having 6 to 10 carbon atoms (e.g., phenyl, naphthyl), amino group having 0 to 20 carbon atoms (e.g., NH 2, NHCH 3, N (C 2 H 5) 2, N (C 4 H 9) 2 N (C 8 H 17 ) 2 , anilino, 4-methoxyanilino), an amide group having 1 to 20 carbon atoms (for example, acetylamino, hexanoylamino, benzoylamino, octadecanoyl) Amino), a carbamoyl group having 1 to 20 carbon atoms (for example, unsubstituted carbamoyl, methylcarbamoyl, ethylcarbamoyl, octylcarbamoyl, hexadecylcarbamoyl), an ester group having 2 to 20 carbon atoms (for example, methoxycarbonyl, ethoxycarbonyl, Phenoxycarbonyl, n-butoxycarbonyl, dodecyloxycarbonyl), alkoxy group having 1 to 20 carbon atoms or aryloxy group (methoxy, ethoxy, butoxy, isopropoxy, benzyloxy, phenoxy, octadecyloxy), sulfone having 1 to 20 carbon atoms Amido groups (for example, methanesulfonamide, ethanesulfonamide, butanesulfonamide, benzenesulfonamide, octanesulfonamide), sulfamoyl groups having 0 to 20 carbon atoms (for example, unsubstituted Famoyl, methylsulfamoyl, butylsulfamoyl, decylsulfamoyl) or a 5- or 6-membered heterocyclic ring (eg, pyridyl, pyrazolyl, morpholino, piperidino, pyrrolino, benzoxazolyl)) Good.

1〜R11で表わされる芳香族基は炭素数6〜10のアリール基(例えば、フェニル、ナフチル)を表わし、置換基〔例えば、前記した脂肪族基が有しても良い置換基として挙げた各基の他、炭素数1〜20のアルキル基(例えば、メチル、エチル、ブチル、t−ブチル、オクチル)等〕を有していてもよい。 The aromatic group represented by R 1 to R 11 represents an aryl group having 6 to 10 carbon atoms (for example, phenyl or naphthyl), and is a substituent [for example, a substituent that the above-described aliphatic group may have. In addition to each group, it may have an alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, butyl, t-butyl, octyl, etc.).

1〜R11で表わされる複素環基は5又は6員の複素環(例えば、ピリジン、ピペリジン、モルホリン、ピロリジン、ピラゾール、ピラゾリジン、ピラゾリン、ピラゾロン、ベンズオキサゾール)を表わし、置換基(例えば、前記した芳香族基が有しても良い置換基として挙げた各基)を有していてもよい。 The heterocyclic group represented by R 1 to R 11 represents a 5- or 6-membered heterocyclic ring (for example, pyridine, piperidine, morpholine, pyrrolidine, pyrazole, pyrazolidine, pyrazoline, pyrazolone, benzoxazole) and a substituent (for example, the above-mentioned Each group mentioned as a substituent that the aromatic group may have.

9とR10が連結して形成される5又は6員環としては、モルホリン環、ピペリジン環、ピロリジン環を挙げることができる。R1とR2又はR2とR3が連結して形成される環としては5又は6員環(例えば、ベンゼン環、フタルイミド環)が好ましい。 Examples of the 5- or 6-membered ring formed by connecting R 9 and R 10 include a morpholine ring, a piperidine ring, and a pyrrolidine ring. The ring formed by connecting R 1 and R 2 or R 2 and R 3 is preferably a 5- or 6-membered ring (for example, a benzene ring or a phthalimide ring).

次に一般式(II)の各基について説明する。R21〜R24で表わされる脂肪族基は、一般式(I)におけるR1〜R11が表わす脂肪族基と同義であり、R21〜R24で表わされる芳香族基は、一般式(I)におけるR1〜R11が表わす芳香族基と同義である。 Next, each group of general formula (II) is demonstrated. The aliphatic group represented by R 21 to R 24 has the same meaning as the aliphatic group represented by R 1 to R 11 in formula (I), and the aromatic group represented by R 21 to R 24 represents the formula (I is synonymous with the aromatic group R 1 to R 11 represents in I).

これらの添加剤を添加する時期はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層である場合、各層の添加物の種類や添加量が異なってもよい。例えば特開2001−151902号公報などに記載されているが、これらは従来から知られている技術である。これら添加剤の種類や添加量の選択によって、セルロースアシレートフィルムの動的粘弾性測定機(バイブロン:DVA−225(アイティー計測制御(株)製)で測定するガラス転移点Tgを70〜150℃に、より好ましくは、ガラス転移点Tgが80〜135℃にすることが好ましい。すなわち、本発明に関するセルロースアシレートフィルムは、偏光板加工や液晶表示装置組立ての工程適性の点で、ガラス転移点Tgを上記の範囲とすることが好ましい。
さらに添加剤については、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.16以降に詳細に記載されているものを適宜用いることができる。
These additives may be added at any time in the dope preparation step, but may be added to the final preparation step of the dope preparation step by adding a preparation step. Furthermore, the amount of each material added is not particularly limited as long as the function is manifested. Moreover, when a cellulose acylate film is a multilayer, the kind and addition amount of the additive of each layer may differ. For example, it is described in Japanese Patent Application Laid-Open No. 2001-151902, but these are conventionally known techniques. The glass transition point Tg measured by a dynamic viscoelasticity measuring device for cellulose acylate film (Vibron: DVA-225 (manufactured by IT Measurement Control Co., Ltd.)) is adjusted to 70 to 150 depending on the selection of the types and addition amounts of these additives. More preferably, the glass transition point Tg is 80 to 135 ° C. That is, the cellulose acylate film according to the present invention has a glass transition point from the viewpoint of process suitability for polarizing plate processing and liquid crystal display device assembly. The point Tg is preferably within the above range.
Furthermore, regarding the additive, the Japan Institute of Invention and Innovation Technical Bulletin No. 2001-1745 (issued on March 15, 2001, Japan Institute of Invention) p. Those described in detail after 16 can be used as appropriate.

(レターデーション発現剤)
本発明では光学異方性を大きく発現させ、好ましいレターデーション値を実現するため、レターデーション発現剤を用いることが好ましい。
レターデーション発現剤とは、セルロースアシレートを含むポリマー成分100質量部に対して1質量部の添加により、Rthの値をフィルム膜厚1ミクロンあたり0.11以上上昇させるものである。より好ましくはフィルム膜厚1ミクロンあたり0.2以上、さらに好ましくはフィルム膜厚1ミクロンあたり0.3以上レターデーションを上昇させるものである。
本発明において用いることができるレターデーション発現剤としては、棒状又は円盤状化合物からなるものを挙げることができる。
上記棒状又は円盤状化合物としては、少なくとも二つの芳香族環を有する化合物を用いることが好ましい。
棒状化合物からなるレターデーション発現剤の添加量は、セルロースアシレートを含むポリマー成分100質量部に対して0.1乃至30質量部であることが好ましく、0.5乃至20質量部であることがさらに好ましい。
円盤状のレターデーション発現剤は、前記セルロースアシレートを含むポリマー成分100質量部に対して、0.05乃至30質量部の範囲で使用することが好ましく、0.1乃至20質量部の範囲で使用することがより好ましく、0.2乃至15質量部の範囲で使用することがさらに好ましく、0.5乃至10質量部の範囲で使用することが最も好ましい。
円盤状化合物はRthレターデーション発現性において棒状化合物よりも優れているため、特に大きなRthレターデーションを必要とする場合には好ましく使用される。
本発明では、二種類以上のレターデーション発現剤を併用してもよい。
棒状または円盤状化合物からなる前記レターデーション発現剤は、250乃至400nmの波長領域に最大吸収を有することが好ましく、可視領域に実質的に吸収を有していないことが好ましい。
(Retardation expression agent)
In the present invention, it is preferable to use a retardation enhancer in order to greatly develop optical anisotropy and realize a preferable retardation value.
The retardation enhancer increases Rth by 0.11 or more per micron film thickness by adding 1 part by mass to 100 parts by mass of the polymer component containing cellulose acylate. More preferably, the retardation is increased by 0.2 or more per micron of film thickness, more preferably 0.3 or more per micron of film thickness.
Examples of the retardation enhancer that can be used in the present invention include those composed of rod-like or discotic compounds.
As the rod-like or discotic compound, it is preferable to use a compound having at least two aromatic rings.
The addition amount of the retardation developer composed of the rod-like compound is preferably 0.1 to 30 parts by mass, and preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component containing cellulose acylate. Further preferred.
The discotic retardation enhancer is preferably used in a range of 0.05 to 30 parts by mass, and in a range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component containing the cellulose acylate. More preferably, it is used in the range of 0.2 to 15 parts by mass, and most preferably in the range of 0.5 to 10 parts by mass.
Since the discotic compound is superior to the rod-like compound in Rth retardation expression, it is preferably used when a particularly large Rth retardation is required.
In the present invention, two or more retardation developing agents may be used in combination.
The retardation developer composed of a rod-like or discotic compound preferably has maximum absorption in the wavelength region of 250 to 400 nm, and preferably has substantially no absorption in the visible region.

円盤状化合物について説明する。円盤状化合物としては少なくとも二つの芳香族環を有する化合物を用いることが好ましい。
本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。
芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が含まれる。
芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が好ましく、特に1,3,5−トリアジン環が好ましく用いられる。具体的には例えば特開2001−166144号公報に開示の化合物が円盤状化合物として好ましく用いられる。
The discotic compound will be described. It is preferable to use a compound having at least two aromatic rings as the discotic compound.
In the present specification, the “aromatic ring” includes an aromatic hetero ring in addition to an aromatic hydrocarbon ring.
The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
The aromatic heterocycle is generally an unsaturated heterocycle. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring.
As the aromatic ring, benzene ring, furan ring, thiophene ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring are preferable, In particular, a 1,3,5-triazine ring is preferably used. Specifically, for example, a compound disclosed in JP 2001-166144 A is preferably used as the discotic compound.

前記円盤状化合物が有する芳香族環の数は、2乃至20であることが好ましく、2乃至12であることがより好ましく、2乃至8であることがさらに好ましく、2乃至6であることが最も好ましい。
二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合および(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。
The number of aromatic rings contained in the discotic compound is preferably 2 to 20, more preferably 2 to 12, still more preferably 2 to 8, and most preferably 2 to 6. preferable.
The bond relationship between two aromatic rings can be classified into (a) a condensed ring, (b) a direct bond with a single bond, and (c) a bond through a linking group (for aromatic rings). , Spiro bonds cannot be formed). The connection relationship may be any of (a) to (c).

(a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ビフェニレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環およびチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環およびキノリン環が好ましい。   Examples of the condensed ring (a condensed ring of two or more aromatic rings) include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an acenaphthylene ring, a biphenylene ring, a naphthacene ring, Pyrene ring, indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring, purine ring, indazole ring, chromene ring, quinoline ring, isoquinoline Ring, quinolidine ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthalazine ring, pteridine ring, carbazole ring, acridine ring, phenanthridine ring, xanthene ring, phenazine ring, phenothiazine ring, phenoxathiin ring, phenoxazine ring and thiant It includes emissions ring. Naphthalene ring, azulene ring, indole ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, benzotriazole ring and quinoline ring are preferred.

(b)の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環または非芳香族性複素環を形成してもよい。   The single bond (b) is preferably a bond between carbon atoms of two aromatic rings. Two aromatic rings may be bonded with two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.

(c)の連結基も、二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、−CO−、−O−、−NH−、−S−またはそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。
c1:−CO−O−
c2:−CO−NH−
c3:−アルキレン−O−
c4:−NH−CO−NH−
c5:−NH−CO−O−
c6:−O−CO−O−
c7:−O−アルキレン−O−
c8:−CO−アルケニレン−
c9:−CO−アルケニレン−NH−
c10:−CO−アルケニレン−O−
c11:−アルキレン−CO−O−アルキレン−O−CO−アルキレン−
c12:−O−アルキレン−CO−O−アルキレン−O−CO−アルキレン−O−
c13:−O−CO−アルキレン−CO−O−
c14:−NH−CO−アルケニレン−
c15:−O−CO−アルケニレン−
The linking group in (c) is also preferably bonded to carbon atoms of two aromatic rings. The linking group is preferably an alkylene group, an alkenylene group, an alkynylene group, —CO—, —O—, —NH—, —S—, or a combination thereof. Examples of linking groups composed of combinations are shown below. In addition, the relationship between the left and right in the following examples of the linking group may be reversed.
c1: -CO-O-
c2: —CO—NH—
c3: -alkylene-O-
c4: —NH—CO—NH—
c5: —NH—CO—O—
c6: —O—CO—O—
c7: -O-alkylene-O-
c8: -CO-alkenylene-
c9: -CO-alkenylene-NH-
c10: -CO-alkenylene-O-
c11: -alkylene-CO-O-alkylene-O-CO-alkylene-
c12: -O-alkylene-CO-O-alkylene-O-CO-alkylene-O-
c13: -O-CO-alkylene-CO-O-
c14: -NH-CO-alkenylene-
c15: -O-CO-alkenylene-

芳香族環および連結基は、置換基を有していてもよい。
置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、ニトロ基、スルホ基、カルバモイル基、スルファモイル基、ウレイド基、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基および非芳香族性複素環基が含まれる。
The aromatic ring and the linking group may have a substituent.
Examples of substituents include halogen atoms (F, Cl, Br, I), hydroxyl groups, carboxyl groups, cyano groups, amino groups, nitro groups, sulfo groups, carbamoyl groups, sulfamoyl groups, ureido groups, alkyl groups, alkenyls. Group, alkynyl group, aliphatic acyl group, aliphatic acyloxy group, alkoxy group, alkoxycarbonyl group, alkoxycarbonylamino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic sulfonamido group, aliphatic substituted amino group An aliphatic substituted carbamoyl group, an aliphatic substituted sulfamoyl group, an aliphatic substituted ureido group, and a non-aromatic heterocyclic group.

アルキル基の炭素原子数は、1乃至8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、さらに置換基(例、ヒドロキシ基、カルボキシ基、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル基、エチル基、n−ブチル基、n−ヘキシル基、2−ヒドロキシエチル基、4−カルボキシブチル基、2−メトキシエチル基および2−ジエチルアミノエチル基が含まれる。
アルケニル基の炭素原子数は、2乃至8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル基、アリル基および1−ヘキセニル基が含まれる。
アルキニル基の炭素原子数は、2乃至8であることが好ましい。環状アルキケニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル基、1−ブチニル基および1−ヘキシニル基が含まれる。
The alkyl group preferably has 1 to 8 carbon atoms. A chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable. The alkyl group may further have a substituent (eg, hydroxy group, carboxy group, alkoxy group, alkyl-substituted amino group). Examples of alkyl groups (including substituted alkyl groups) include methyl, ethyl, n-butyl, n-hexyl, 2-hydroxyethyl, 4-carboxybutyl, 2-methoxyethyl, and 2- A diethylaminoethyl group is included.
The alkenyl group preferably has 2 to 8 carbon atoms. A chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable. The alkenyl group may further have a substituent. Examples of the alkenyl group include a vinyl group, an allyl group, and a 1-hexenyl group.
The alkynyl group preferably has 2 to 8 carbon atoms. A chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable. The alkynyl group may further have a substituent. Examples of the alkynyl group include ethynyl group, 1-butynyl group and 1-hexynyl group.

脂肪族アシル基の炭素原子数は、1乃至10であることが好ましい。脂肪族アシル基の例には、アセチル基、プロパノイル基およびブタノイル基が含まれる。
脂肪族アシルオキシ基の炭素原子数は、1乃至10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシ基が含まれる。
アルコキシ基の炭素原子数は、1乃至8であることが好ましい。アルコキシ基は、さらに置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ基、エトキシ基、ブトキシ基およびメトキシエトキシ基が含まれる。
アルコキシカルボニル基の炭素原子数は、2乃至10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル基が含まれる。
アルコキシカルボニルアミノ基の炭素原子数は、2乃至10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ基およびエトキシカルボニルアミノ基が含まれる。
The aliphatic acyl group preferably has 1 to 10 carbon atoms. Examples of the aliphatic acyl group include an acetyl group, a propanoyl group, and a butanoyl group.
The aliphatic acyloxy group preferably has 1 to 10 carbon atoms. Examples of the aliphatic acyloxy group include an acetoxy group.
The number of carbon atoms of the alkoxy group is preferably 1 to 8. The alkoxy group may further have a substituent (eg, alkoxy group). Examples of the alkoxy group (including a substituted alkoxy group) include a methoxy group, an ethoxy group, a butoxy group, and a methoxyethoxy group.
The alkoxycarbonyl group preferably has 2 to 10 carbon atoms. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.
The number of carbon atoms of the alkoxycarbonylamino group is preferably 2 to 10. Examples of the alkoxycarbonylamino group include a methoxycarbonylamino group and an ethoxycarbonylamino group.

アルキルチオ基の炭素原子数は、1乃至12であることが好ましい。アルキルチオ基の例には、メチルチオ基、エチルチオ基およびオクチルチオ基が含まれる。
アルキルスルホニル基の炭素原子数は、1乃至8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル基およびエタンスルホニル基が含まれる。
脂肪族アミド基の炭素原子数は、1乃至10であることが好ましい。脂肪族アミド基の例には、アセトアミド基が含まれる。
脂肪族スルホンアミド基の炭素原子数は、1乃至8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド基、ブタンスルホンアミド基およびn−オクタンスルホンアミド基が含まれる。
脂肪族置換アミノ基の炭素原子数は、1乃至10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ基、ジエチルアミノ基および2−カルボキシエチルアミノ基が含まれる。
脂肪族置換カルバモイル基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル基およびジエチルカルバモイル基が含まれる。
脂肪族置換スルファモイル基の炭素原子数は、1乃至8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル基およびジエチルスルファモイル基が含まれる。
脂肪族置換ウレイド基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイド基が含まれる。
非芳香族性複素環基の例には、ピペリジノ基およびモルホリノ基が含まれる。
円盤状化合物からなるレターデーション発現剤の分子量は、300乃至800であることが好ましい
The alkylthio group preferably has 1 to 12 carbon atoms. Examples of the alkylthio group include a methylthio group, an ethylthio group, and an octylthio group.
The alkylsulfonyl group preferably has 1 to 8 carbon atoms. Examples of the alkylsulfonyl group include a methanesulfonyl group and an ethanesulfonyl group.
The aliphatic amide group preferably has 1 to 10 carbon atoms. Examples of the aliphatic amide group include an acetamide group.
The aliphatic sulfonamide group preferably has 1 to 8 carbon atoms. Examples of the aliphatic sulfonamido group include a methanesulfonamido group, a butanesulfonamido group, and an n-octanesulfonamido group.
The number of carbon atoms of the aliphatic substituted amino group is preferably 1 to 10. Examples of the aliphatic substituted amino group include a dimethylamino group, a diethylamino group, and a 2-carboxyethylamino group.
The aliphatic substituted carbamoyl group preferably has 2 to 10 carbon atoms. Examples of the aliphatic substituted carbamoyl group include a methylcarbamoyl group and a diethylcarbamoyl group.
The aliphatic substituted sulfamoyl group preferably has 1 to 8 carbon atoms. Examples of the aliphatic substituted sulfamoyl group include a methylsulfamoyl group and a diethylsulfamoyl group.
The number of carbon atoms in the aliphatic substituted ureido group is preferably 2 to 10. Examples of the aliphatic substituted ureido group include a methylureido group.
Examples of the non-aromatic heterocyclic group include a piperidino group and a morpholino group.
The molecular weight of the retardation developer composed of a discotic compound is preferably 300 to 800.

本発明では前述の円盤状化合物の他に、直線的な分子構造を有する棒状化合物も好ましく用いることができる。直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析または分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト(例、WinMOPAC2000、富士通(株)製)を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造で主鎖の構成する角度が140度以上であることを意味する。   In the present invention, in addition to the aforementioned discotic compound, a rod-shaped compound having a linear molecular structure can also be preferably used. The linear molecular structure means that the molecular structure of the rod-like compound is linear in the most thermodynamically stable structure. The most thermodynamically stable structure can be obtained by crystal structure analysis or molecular orbital calculation. For example, molecular orbital calculation can be performed using molecular orbital calculation software (eg, WinMOPAC2000, manufactured by Fujitsu Limited) to obtain a molecular structure that minimizes the heat of formation of a compound. The molecular structure being linear means that in the thermodynamically most stable structure obtained by calculation as described above, the angle of the main chain constituting the molecular structure is 140 degrees or more.

棒状化合物としては、少なくとも二つの芳香族環を有するものが好ましく、少なくとも二つの芳香族環を有する棒状化合物としては、下記一般式(1)で表される化合物が好ましい。   As the rod-shaped compound, those having at least two aromatic rings are preferable, and as the rod-shaped compound having at least two aromatic rings, a compound represented by the following general formula (1) is preferable.

一般式(1):Ar1−L1−Ar2 Formula (1): Ar 1 -L 1 -Ar 2

上記一般式(1)において、Ar1およびAr2は、それぞれ独立に、芳香族基である。
以下の棒状化合物にかかる説明において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。
アリール基および置換アリール基の方が、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。
In the general formula (1), Ar 1 and Ar 2 are each independently an aromatic group.
In the following description of the rod-shaped compound, the aromatic group includes an aryl group (aromatic hydrocarbon group), a substituted aryl group, an aromatic heterocyclic group, and a substituted aromatic heterocyclic group.
An aryl group and a substituted aryl group are more preferable than an aromatic heterocyclic group and a substituted aromatic heterocyclic group. The heterocycle of the aromatic heterocyclic group is generally unsaturated. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As a hetero atom, a nitrogen atom, an oxygen atom or a sulfur atom is preferable, and a nitrogen atom or a sulfur atom is more preferable.
As the aromatic ring of the aromatic group, a benzene ring, a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring and a pyrazine ring are preferable, and a benzene ring is particularly preferable. .

置換アリール基および置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、アルキルアミノ基(例、メチルアミノ基、エチルアミノ基、ブチルアミノ基、ジメチルアミノ基)、ニトロ基、スルホ基、カルバモイル基、アルキルカルバモイル基(例、N−メチルカルバモイル基、N−エチルカルバモイル基、N,N−ジメチルカルバモイル基)、スルファモイル基、アルキルスルファモイル基(例、N−メチルスルファモイル基、N−エチルスルファモイル基、N,N−ジメチルスルファモイル基)、ウレイド基、アルキルウレイド基(例、N−メチルウレイド基、N,N−ジメチルウレイド基、N,N,N'−トリメチルウレイド基)、アルキル基(例、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、イソプロピル基、s−ブチル基、t−アミル基、シクロヘキシル基、シクロペンチル基)、アルケニル基(例、ビニル基、アリル基、ヘキセニル基)、アルキニル基(例、エチニル基、ブチニル基)、アシル基(例、ホルミル基、アセチル基、ブチリル基、ヘキサノイル基、ラウリル基)、アシルオキシ基(例、アセトキシ基、ブチリルオキシ基、ヘキサノイルオキシ基、ラウリルオキシ基)、アルコキシ基(例、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘプチルオキシ基、オクチルオキシ基)、アリールオキシ基(例、フェノキシ基)、アルコキシカルボニル基(例、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘプチルオキシカルボニル基)、アリールオキシカルボニル基(例、フェノキシカルボニル基)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基)、アルキルチオ基(例、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘプチルチオ基、オクチルチオ基)、アリールチオ基(例、フェニルチオ基)、アルキルスルホニル基(例、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基)、アミド基(例、アセトアミド基、ブチルアミド基、ヘキシルアミド基、ラウリルアミド基)および非芳香族性複素環基(例、モルホリル基、ピラジニル基)が含まれる。   Examples of the substituent of the substituted aryl group and the substituted aromatic heterocyclic group include a halogen atom (F, Cl, Br, I), a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkylamino group (eg, methyl). Amino group, ethylamino group, butylamino group, dimethylamino group), nitro group, sulfo group, carbamoyl group, alkylcarbamoyl group (eg, N-methylcarbamoyl group, N-ethylcarbamoyl group, N, N-dimethylcarbamoyl group) ), Sulfamoyl group, alkylsulfamoyl group (eg, N-methylsulfamoyl group, N-ethylsulfamoyl group, N, N-dimethylsulfamoyl group), ureido group, alkylureido group (eg, N -Methylureido group, N, N-dimethylureido group, N, N, N'-trimethylureido group), alkyl group (eg, Methyl, ethyl, propyl, butyl, pentyl, heptyl, octyl, isopropyl, s-butyl, t-amyl, cyclohexyl, cyclopentyl), alkenyl (eg, vinyl, allyl) Group, hexenyl group), alkynyl group (eg, ethynyl group, butynyl group), acyl group (eg, formyl group, acetyl group, butyryl group, hexanoyl group, lauryl group), acyloxy group (eg, acetoxy group, butyryloxy group, Hexanoyloxy group, lauryloxy group), alkoxy group (eg, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, heptyloxy group, octyloxy group), aryloxy group (eg, phenoxy group), Alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, Ropoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, heptyloxycarbonyl group), aryloxycarbonyl group (eg, phenoxycarbonyl group), alkoxycarbonylamino group (eg, butoxycarbonylamino group, hexyloxycarbonylamino group) , Alkylthio groups (eg, methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, heptylthio group, octylthio group), arylthio groups (eg, phenylthio group), alkylsulfonyl groups (eg, methylsulfonyl group, ethylsulfonyl group) , Propylsulfonyl group, butylsulfonyl group, pentylsulfonyl group, heptylsulfonyl group, octylsulfonyl group), amide group (eg, acetamido group, butyramide group, hexylamide group, Uriruamido group) and a non-aromatic Hajime Tamaki (e.g., morpholyl groups include pyrazinyl group).

置換アリール基および置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ基、カルボキシル基、ヒドロキシル基、アミノ基、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基およびアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。
Examples of the substituent of the substituted aryl group and the substituted aromatic heterocyclic group include a halogen atom, a cyano group, a carboxyl group, a hydroxyl group, an amino group, an alkyl-substituted amino group, an acyl group, an acyloxy group, an amide group, an alkoxycarbonyl group, Alkoxy groups, alkylthio groups and alkyl groups are preferred.
The alkyl part and alkyl group of the alkylamino group, alkoxycarbonyl group, alkoxy group and alkylthio group may further have a substituent. Examples of alkyl moieties and substituents of alkyl groups include halogen atom, hydroxyl, carboxyl, cyano, amino, alkylamino group, nitro, sulfo, carbamoyl, alkylcarbamoyl group, sulfamoyl, alkylsulfamoyl group, ureido, alkylureido Group, alkenyl group, alkynyl group, acyl group, acyloxy group, acylamino group, alkoxy group, aryloxy group, alkoxycarbonyl group, aryloxycarbonyl group, alkoxycarbonylamino group, alkylthio group, arylthio group, alkylsulfonyl group, amide group And non-aromatic heterocyclic groups. As the substituent for the alkyl moiety and the alkyl group, a halogen atom, hydroxyl, amino, alkylamino group, acyl group, acyloxy group, acylamino group, alkoxycarbonyl group and alkoxy group are preferable.

一般式(1)において、L1は、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、−O−、−CO−およびそれらの組み合わせからなる基から選ばれる二価の連結基である。
アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。
アルキレン基の炭素原子数は、1乃至20であることが好ましく、より好ましくは1乃至15であり、さらに好ましくは1乃至10であり、さらに好ましくは1乃至8であり、最も好ましくは1乃至6である。
In the general formula (1), L 1 is a divalent linking group selected from an alkylene group, an alkenylene group, an alkynylene group, an arylene group, —O—, —CO—, and a combination thereof.
The alkylene group may have a cyclic structure. As the cyclic alkylene group, cyclohexylene is preferable, and 1,4-cyclohexylene is particularly preferable. As the chain alkylene group, a linear alkylene group is more preferable than a branched alkylene group.
The alkylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 15, more preferably 1 to 10, still more preferably 1 to 8, and most preferably 1 to 6. It is.

アルケニレン基およびアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。
アルケニレン基およびアルキニレン基の炭素原子数は、好ましくは2乃至10であり、より好ましくは2乃至8であり、さらに好ましくは2乃至6であり、さらに好ましくは2乃至4であり、最も好ましくは2(ビニレンまたはエチニレン)である。
アリーレン基は、炭素原子数は6乃至20であることが好ましく、より好ましくは6乃至16であり、さらに好ましくは6乃至12である。
The alkenylene group and alkynylene group preferably have a chain structure rather than a cyclic structure, and more preferably have a linear structure rather than a branched chain structure.
The number of carbon atoms of the alkenylene group and the alkynylene group is preferably 2 to 10, more preferably 2 to 8, further preferably 2 to 6, further preferably 2 to 4, and most preferably 2. (Vinylene or ethynylene).
The arylene group preferably has 6 to 20 carbon atoms, more preferably 6 to 16, and still more preferably 6 to 12.

一般式(1)の分子構造において、L1を挟んで、Ar1とAr2とが形成する角度は、140度以上であることが好ましい。
棒状化合物は、文献記載の方法により合成できる。文献としては、Mol.Cryst.Liq.Cryst.,53巻,229ページ(1979年)、同89巻,93ページ(1982年)、同145巻,111ページ(1987年)、同170巻,43ページ(1989年)、J.Am.Chem.Soc.,113巻,1349ページ(1991年)、同118巻,5346ページ(1996年)、同92巻,1582ページ(1970年)、J.Org.Chem.,40巻,420ページ(1975年)、Tetrahedron,48巻,16号,3437ページ(1992年)を挙げることができる。
また、一般式(I)で表される棒状化合物を用いることがさらに好ましい。以下に一般式(I)で表される化合物について説明する。
In the molecular structure of the general formula (1), the angle formed by Ar 1 and Ar 2 across L 1 is preferably 140 degrees or more.
The rod-like compound can be synthesized by a method described in the literature. As literature, Mol. Cryst. Liq. Cryst. 53, 229 (1979), 89, 93 (1982), 145, 111 (1987), 170, 43 (1989), J. Am. Am. Chem. Soc. 113, 1349 (1991), 118, 5346 (1996), 92, 1582 (1970); Org. Chem. 40, 420 pages (1975), Tetrahedron, 48, No. 16, page 3437 (1992).
Further, it is more preferable to use a rod-like compound represented by the general formula (I). The compound represented by general formula (I) is demonstrated below.

Figure 2007063421
Figure 2007063421

(式中、R1、R2、R3、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子または置換基を表し、R1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表す。R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。) (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 each independently represents a hydrogen atom or a substituent, and R 1 , R 2 , R 3 At least one .R 8 which represents an electron-donating group is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, aryl having 6 to 12 carbon atoms of R 4 and R 5 Group, an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom.)

一般式(I)中、R1、R2、R3、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表し、置換基は後述の置換基Tが適用できる。
1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表す。好ましくはR1、R3またはR5のうちの1つが電子供与性基であり、R3が電子供与性基であることがより好ましい。
電子供与性基とはHammetのσp値が0以下のものを表し、Chem.Rev.,91,165(1991)記載のHammetのσp値が0以下のものが好ましく適用でき、より好ましくは−0.85〜0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、水酸基などが挙げられる。
電子供与性基として好ましくはアルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4である。)である。
In general formula (I), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 each independently represents a hydrogen atom or a substituent, and the substituent will be described later. The substituent T can be applied.
At least one of R 1 , R 2 , R 3 , R 4 and R 5 represents an electron donating group. Preferably, one of R 1 , R 3 or R 5 is an electron donating group, and R 3 is more preferably an electron donating group.
An electron donating group is one having a Hammett σp value of 0 or less. Rev. , 91, 165 (1991), and those having a Hammett σp value of 0 or less are preferably applicable, and those having −0.85 to 0 are more preferably used. Examples thereof include an alkyl group, an alkoxy group, an amino group, and a hydroxyl group.
The electron donating group is preferably an alkyl group or an alkoxy group, more preferably an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, particularly preferably carbon). 1 to 4).

1として好ましくは、水素原子または電子供与性基であり、より好ましくはアルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、最も好ましくはメトキシ基である。 R 1 is preferably a hydrogen atom or an electron donating group, more preferably an alkyl group, an alkoxy group, an amino group, or a hydroxyl group, and still more preferably an alkyl group having 1 to 4 carbon atoms or a carbon number 1 to 12 Particularly preferably an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms). Most preferred is a methoxy group.

2として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4、より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。 R 2 is preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group or a hydroxyl group, more preferably a hydrogen atom, an alkyl group or an alkoxy group, still more preferably a hydrogen atom or an alkyl group (preferably a carbon number). 1 to 4, more preferably a methyl group), an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to carbon atoms). 4). Particularly preferred are a hydrogen atom, a methyl group and a methoxy group.

3として好ましくは、水素原子または電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、アルキル基、アルコキシ基であり、特に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)である。最も好ましくはn−プロポキシ基、エトキシ基、メトキシ基である。 R 3 is preferably a hydrogen atom or an electron donating group, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxyl group, still more preferably an alkyl group or an alkoxy group, particularly preferably. An alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms). Most preferred are n-propoxy group, ethoxy group and methoxy group.

4として好ましくは、水素原子または電子供与性基であり、より好ましくは水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、更に好ましくは、水素原子、炭素数1〜4のアルキル基、炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)であり、特に好ましくは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基であり、最も好ましくは水素原子、メチル基、メトキシ基である。 R 4 is preferably a hydrogen atom or an electron donating group, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or a hydroxyl group, and still more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. , An alkoxy group having 1 to 12 carbon atoms (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms), particularly preferably. Is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and most preferably a hydrogen atom, a methyl group, or a methoxy group.

5として好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、水酸基であり、より好ましくは、水素原子、アルキル基、アルコキシ基であり、更に好ましくは水素原子、アルキル基(好ましくは炭素数1〜4より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。 R 5 is preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group or a hydroxyl group, more preferably a hydrogen atom, an alkyl group or an alkoxy group, still more preferably a hydrogen atom or an alkyl group (preferably a carbon number). 1 to 4 is more preferably a methyl group), an alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 4 carbon atoms). It is. Particularly preferred are a hydrogen atom, a methyl group and a methoxy group.

6、R7、R9およびR10として好ましくは水素原子、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ハロゲン原子であり、より好ましくは、水素原子、ハロゲン原子であり、更に好ましくは水素原子である。 R 6 , R 7 , R 9 and R 10 are preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a halogen atom, more preferably a hydrogen atom or a halogen atom. More preferably a hydrogen atom.

8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数6〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表し、可能な場合には置換基を有してもよく、置換基としては後述の置換基Tが適用できる。
8として好ましくは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基であり、より好ましくは、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基であり、更に好ましくは炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
R 8 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryloxy having 6 to 12 carbon atoms. Group, an alkoxycarbonyl group having 6 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom, which may have a substituent if possible. The group T can be applied.
R 8 is preferably an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an aryloxy group having 6 to 12 carbon atoms. And more preferably an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an aryloxy group having 6 to 12 carbon atoms, still more preferably an alkoxy group having 1 to 12 carbon atoms (preferably Is preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms, and particularly preferably a methoxy group, an ethoxy group, n-propoxy group, iso-propoxy group and n-butoxy group.

一般式(I)のうちより好ましくは下記一般式(I−A)である。
一般式(I−A)
Of the general formula (I), the following general formula (IA) is more preferable.
General formula (IA)

Figure 2007063421
Figure 2007063421

(式中、R11は炭素数1〜12のアルキル基を表す。R1、R2、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表す。R8は水素原子、炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。)
一般式(I−A)中、R1、R2、R4、R5、R6、R7、R8、R9およびR10はそれぞれ一般式(I)におけるそれらと同義であり、また好ましい範囲も同様である。
(In the formula, R 11 represents an alkyl group having 1 to 12 carbon atoms. R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 are each independently a hydrogen atom or substituted. R 8 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or 6 to 6 carbon atoms. 12 represents an aryloxy group, an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom.)
In the general formula (IA), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are respectively synonymous with those in the general formula (I), and The preferable range is also the same.

一般式(I−A)中、R11は炭素数1〜12のアルキル基を表し、R11で表されるアルキル基は直鎖でも分岐があってもよく、また更に置換基を有してもよい。R11は好ましくは炭素数1〜8のアルキル基、更に好ましくは炭素数1〜6のアルキル基、特に好ましくは炭素数1〜4のアルキル基(例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基などが挙げられる)を表す。 In General Formula (IA), R 11 represents an alkyl group having 1 to 12 carbon atoms, and the alkyl group represented by R 11 may be linear or branched, and further has a substituent. Also good. R 11 is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms (for example, a methyl group, an ethyl group, an n-propyl group). , Iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group and the like).

一般式(I)のうちより好ましくは下記一般式(I−B)である。
一般式(I−B)
Of the general formula (I), the following general formula (IB) is more preferable.
General formula (IB)

Figure 2007063421
Figure 2007063421

(式中、R1、R2、R4、R5、R6、R7、R9およびR10はそれぞれ独立に水素原子、または置換基を表す。R11は炭素数1〜12のアルキル基を表す。Xは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。) (Wherein R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 and R 10 each independently represents a hydrogen atom or a substituent. R 11 is an alkyl having 1 to 12 carbon atoms. X represents an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an aryloxy group having 6 to 12 carbon atoms. A group, an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom.)

一般式(I−B)中、R1、R2、R4、R5、R6、R7、R9、およびR10は一般式(I)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(I−B)中、R11は一般式(I−A)におけるそれらと同義であり、また好ましい範囲も同様である。
In the general formula (IB), R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , and R 10 have the same meanings as those in the general formula (I), and preferred ranges are also included. It is the same.
In general formula (IB), R < 11 > is synonymous with those in general formula (IA), and the preferred range is also the same.

一般式(I−B)中、Xは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基、炭素数2〜12のアルコキシカルボニル基、炭素数2〜12のアシルアミノ基、シアノ基またはハロゲン原子を表す。
1、R2、R4、およびR5がすべて水素原子の場合にはXとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、メトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
In general formula (IB), X is an alkyl group having 1 to 4 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or 6 carbon atoms. Represents an aryloxy group having 12 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, an acylamino group having 2 to 12 carbon atoms, a cyano group, or a halogen atom.
When R 1 , R 2 , R 4 , and R 5 are all hydrogen atoms, X is preferably an alkyl group, an alkynyl group, an aryl group, an alkoxy group, or an aryloxy group, and more preferably an aryl group, an alkoxy group Group, aryloxy group, more preferably alkoxy group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms). And particularly preferably a methoxy group, a methoxy group, an n-propoxy group, an iso-propoxy group or an n-butoxy group.

1、R2、R4、およびR5のうち少なくとも1つが置換基の場合にはXとして好ましくはアルキニル基、アリール基、アルコキシカルボニル基、シアノ基、であり、より好ましくはアリール基(好ましくは炭素数6〜12)、シアノ基、アルコキシカルボニル基(好ましくは炭素数2〜12)であり、更に好ましくはアリール基(好ましくは炭素数6〜12のアリール基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニルである。)、アルコキシカルボニル基(好ましくは炭素2〜12、より好ましくは炭素数2〜6、更に好ましくは炭素数2〜4、特に好ましくはメトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニルである。)、シアノ基であり、特に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。 When at least one of R 1 , R 2 , R 4 and R 5 is a substituent, X is preferably an alkynyl group, an aryl group, an alkoxycarbonyl group or a cyano group, more preferably an aryl group (preferably Is a C6-C12), cyano group, alkoxycarbonyl group (preferably C2-C12), more preferably aryl group (preferably C6-C12 aryl group, more preferably phenyl group). , P-cyanophenyl group and p-methoxyphenyl group), an alkoxycarbonyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbon atoms, and particularly preferably methoxycarbonyl group). , Ethoxycarbonyl, n-propoxycarbonyl), cyano group, particularly preferably phenyl group, methoxy group. Group, an ethoxycarbonyl group, n- propoxycarbonyl group, a cyano group.

一般式(I)のうち更に好ましくは下記一般式(I−C)である。
一般式(I−C)
Of the general formula (I), the following general formula (IC) is more preferable.
General formula (IC)

Figure 2007063421
Figure 2007063421

式中、R1、R2、R4、R5、R11およびXは一般式(I−B)におけるそれらと同義であり、また好ましい範囲も同様である。 In the formula, R 1 , R 2 , R 4 , R 5 , R 11 and X have the same meanings as those in formula (IB), and preferred ranges are also the same.

一般式(I)で表される化合物の中でより好ましいのは下記一般式(I−D)で表される化合物である。
一般式(I−D)
Among the compounds represented by the general formula (I), a compound represented by the following general formula (ID) is more preferable.
General formula (ID)

Figure 2007063421
Figure 2007063421

(式中、R2、R4およびR5は一般式(I−C)におけるそれらと同義であり、また好ましい範囲も同様である。R21、R22はそれぞれ独立に炭素数1〜4のアルキル基である。X1は炭素数6〜12のアリール基、炭素数2〜12のアルコキシカルボニル基、又はシアノ基である。) (In the formula, R 2 , R 4 and R 5 have the same meanings as those in formula (IC), and preferred ranges are also the same. R 21 and R 22 are each independently of 1 to 4 carbon atoms. X 1 is an aryl group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, or a cyano group.

21は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基である。
22は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
R 21 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably an ethyl group or a methyl group.
R 22 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably an ethyl group or a methyl group, and still more preferably a methyl group.

1は炭素数6〜12のアリール基、炭素2〜12アルコキシカルボニル基、又はシアノ基であり、好ましくは炭素数6〜10のアリール基、炭素数2〜6アルコキシカルボニル基、シアノ基であり、より好ましくはフェニル基、p−シアノフェニル基、p−メトキシフェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基であり、更に好ましくは、フェニル基、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、シアノ基である。 X 1 is an aryl group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 2 to 12 carbon atoms, or a cyano group, preferably an aryl group having 6 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 6 carbon atoms, or a cyano group. More preferably a phenyl group, a p-cyanophenyl group, a p-methoxyphenyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and a cyano group, and still more preferably a phenyl group, a methoxycarbonyl group, and an ethoxy group. A carbonyl group, an n-propoxycarbonyl group, and a cyano group.

一般式(I)のうち最も好ましくは下記一般式(I−E)である。
一般式(I−E)
Of the general formula (I), the following general formula (IE) is most preferable.
Formula (IE)

Figure 2007063421
Figure 2007063421

(式中、R2、R4およびR5は一般式(I−D)におけるそれらと同義であり、また好ましい範囲も同様だが、いずれか1つは−OR13で表される基である(R13は炭素数1〜4のアルキル基である。)。R21、R22、およびX1は一般式(I−D)におけるそれらと同義であり、また好ましい範囲も同様である。) (Wherein R 2 , R 4 and R 5 have the same meanings as those in formula (ID) and preferred ranges are also the same, but one of them is a group represented by —OR 13 ( R 13 is an alkyl group having 1 to 4 carbon atoms.) R 21 , R 22 and X 1 have the same meanings as those in formula (ID), and preferred ranges are also the same.)

一般式(I−E)中、R2、R4およびR5は一般式(I−D)におけるそれらと同義であり、また好ましい範囲も同様だが、いずれか1つは−OR13で表される基であり(R13は炭素数1〜4のアルキル基である。)、好ましくはR4、およびR5が−OR13で表される基であり、より好ましくはR4が−OR13で表される基である。
13は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
In the general formula (IE), R 2 , R 4 and R 5 have the same meanings as those in the general formula (ID), and preferred ranges are also the same, but any one of them is represented by —OR 13. (R 13 is an alkyl group having 1 to 4 carbon atoms), preferably R 4 and R 5 are groups represented by —OR 13 , more preferably R 4 is —OR 13. It is group represented by these.
R 13 represents an alkyl group having 1 to 4 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, more preferably an ethyl group or a methyl group, and still more preferably a methyl group.

以下に前述の置換基Tについて説明する。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
The aforementioned substituent T will be described below.
Examples of the substituent T include an alkyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 8 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, and n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2 to 8, for example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), an alkynyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably carbon number). 2-8, for example, propargyl, 3-pentynyl, etc.), aryl groups (preferably having 6-30 carbon atoms) More preferably, it has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyl, p-methylphenyl, naphthyl and the like, and a substituted or unsubstituted amino group (preferably having 0 to 0 carbon atoms). 20, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, etc.), an alkoxy group (preferably having a carbon number) 1 to 20, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as methoxy, ethoxy, butoxy, etc.), an aryloxy group (preferably 6 to 20 carbon atoms, more Preferably it has 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 2-naphthyloxy and the like. An acyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl). An alkoxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 10 carbon atoms, and examples thereof include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 20 carbon atoms, More preferably, it has 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms. Nzoyloxy and the like. ), An acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino group (Preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryloxycarbonylamino group (preferably having carbon number) 7 to 20, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino, and the like, and sulfonylamino groups (preferably 1 to 20 carbon atoms, more preferably Has 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms. And sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl and methylsulfamoyl). , Dimethylsulfamoyl, phenylsulfamoyl, etc.), a carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl). , Methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, Ethylthio etc.), arylthio group (preferably Has 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a sulfonyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably Has 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms). For example, ureido, methylureido, phenylureido, etc.), phosphoric acid amide group (preferably having 1 to 20 carbon atoms) More preferably, it is C1-C16, Most preferably, it is C1-C12, for example, diethyl phosphoric acid amide, phenylphosphoric acid amide etc. are mentioned. ), Hydroxy group, mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, Heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, specifically, for example, imidazolyl, pyridyl, quinolyl, furyl, piperidyl , Morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms). For example, trimethylsilyl, triphenylsilyl, etc.) . These substituents may be further substituted.

また、置換基が二つ以上ある場合は、同じでも異なってもよい。また、可能な場合には互いに連結して環を形成してもよい。   Moreover, when there are two or more substituents, they may be the same or different. If possible, they may be linked together to form a ring.

以下に一般式(I)で表される化合物に関して具体例をあげて詳細に説明するが、本発明は以下の具体例によって何ら限定されることはない。   Hereinafter, the compound represented by formula (I) will be described in detail with specific examples, but the present invention is not limited to the following specific examples.

Figure 2007063421
Figure 2007063421

Figure 2007063421
Figure 2007063421

Figure 2007063421
Figure 2007063421

Figure 2007063421
Figure 2007063421

Figure 2007063421
Figure 2007063421

Figure 2007063421
Figure 2007063421

本発明一般式(I)で表される化合物は置換安息香酸とフェノール誘導体の一般的なエステル反応によって合成でき、エステル結合形成反応であればどのような反応を用いてもよい。例えば、置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法、縮合剤あるいは触媒を用いて置換安息香酸とフェノール誘導体を脱水縮合する方法などがあげられる。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
The compound represented by the general formula (I) of the present invention can be synthesized by a general ester reaction of a substituted benzoic acid and a phenol derivative, and any reaction may be used as long as it is an ester bond forming reaction. Examples thereof include a method of converting a substituted benzoic acid to an acid halide and then condensing with phenol, a method of dehydrating condensation of a substituted benzoic acid and a phenol derivative using a condensing agent or a catalyst, and the like.
In view of the production process and the like, a method in which the substituted benzoic acid is functionally converted to an acid halide and then condensed with phenol is preferable.

反応溶媒として炭化水素系溶媒(好ましくはトルエン、キシレンが挙げられる。)、エーテル系溶媒(好ましくはジメチルエーテル、テトラヒドロフラン、ジオキサンなどが挙げられる)、ケトン系溶媒、エステル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドなどを用いることができる。これらの溶媒は単独でも数種を混合して用いてもよく、反応溶媒として好ましくはトルエン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミドである。   Reaction solvents include hydrocarbon solvents (preferably toluene and xylene), ether solvents (preferably dimethyl ether, tetrahydrofuran, dioxane, etc.), ketone solvents, ester solvents, acetonitrile, dimethylformamide, dimethyl Acetamide or the like can be used. These solvents may be used alone or in admixture of several kinds, and preferred reaction solvents are toluene, acetonitrile, dimethylformamide and dimethylacetamide.

反応温度としては、好ましくは0〜150℃、より好ましくは0〜100℃、更に好ましくは0〜90℃であり、特に好ましくは20℃〜90℃である。
本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
The reaction temperature is preferably 0 to 150 ° C, more preferably 0 to 100 ° C, still more preferably 0 to 90 ° C, and particularly preferably 20 ° C to 90 ° C.
In this reaction, it is preferable not to use a base. When a base is used, either an organic base or an inorganic base may be used, preferably an organic base such as pyridine, tertiary alkylamine (preferably triethylamine, ethyldiisopropyl). Pyramine and the like).

溶液の紫外線吸収スペクトルにおいて最大吸収波長(λmax)が250nmより短波長である棒状化合物を、二種類以上併用してもよい。   Two or more rod-shaped compounds whose maximum absorption wavelength (λmax) is shorter than 250 nm in the ultraviolet absorption spectrum of the solution may be used in combination.

[マット剤微粒子]
本発明に関するセルロースアシレートフィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
前記二酸化珪素微粒子を用いる場合の使用量は、セルロースアシレートを含むポリマー成分100質量部に対して0.01〜0.3質量部とするのが好ましい。
[Matting agent fine particles]
It is preferable to add fine particles as a matting agent to the cellulose acylate film according to the present invention. The fine particles used in the present invention include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, silica Mention may be made of magnesium and calcium phosphates. Fine particles containing silicon are preferable from the viewpoint of low turbidity, and silicon dioxide is particularly preferable. The fine particles of silicon dioxide preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more. Those having an average primary particle size as small as 5 to 16 nm are more preferred because they can reduce the haze of the film. The apparent specific gravity is preferably 90 to 200 g / liter or more, and more preferably 100 to 200 g / liter or more. A larger apparent specific gravity is preferable because a high-concentration dispersion can be produced, and haze and aggregates are improved.
The amount of silicon dioxide fine particles used is preferably 0.01 to 0.3 parts by mass with respect to 100 parts by mass of the polymer component containing cellulose acylate.

これらの微粒子は、通常平均粒子径が0.1〜3.0μmの2次粒子を形成し、これらの微粒子はフィルム中では、1次粒子の凝集体として存在し、フィルム表面に0.1〜3.0μmの凹凸を形成させる。2次平均粒子径は0.2μm以上1.5μm以下が好ましく、0.4μm以上1.2μm以下がさらに好ましく、0.6μm以上1.1μm以下が最も好ましい。1.5μmよりも大きいとヘイズが強くなり、0.2μmよりも小さいときしみ防止効果が小さくなる。
1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とする。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
These fine particles usually form secondary particles having an average particle diameter of 0.1 to 3.0 μm, and these fine particles are present as aggregates of primary particles in the film, and 0.1 to 0.1 μm on the film surface. An unevenness of 3.0 μm is formed. The secondary average particle size is preferably from 0.2 μm to 1.5 μm, more preferably from 0.4 μm to 1.2 μm, and most preferably from 0.6 μm to 1.1 μm. When it is larger than 1.5 μm, the haze becomes strong, and when it is smaller than 0.2 μm, the effect of preventing stain is reduced.
The primary and secondary particle diameters are determined by observing the particles in the film with a scanning electron microscope and using the diameter of a circle circumscribing the particles as the particle diameter. Also, 200 particles are observed at different locations, and the average value is taken as the average particle diameter.

二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)などの市販品を使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。   As the fine particles of silicon dioxide, for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.) can be used. Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.

これらの中でアエロジル200V、アエロジルR972Vが1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上である二酸化珪素の微粒子であり、光学フィルムの濁度を低く保ちながら、摩擦係数をさげる効果が大きいため特に好ましい。   Among these, Aerosil 200V and Aerosil R972V are fine particles of silicon dioxide having a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more, and the coefficient of friction is maintained while keeping the turbidity of the optical film low. It is particularly preferable because it has a great effect of reducing the effect.

本発明において2次平均粒子径の小さな粒子を有するセルロースアシレートフィルムを得るために、微粒子の分散液を調製する際にいくつかの手法が考えられる。例えば、溶剤と微粒子を撹拌混合した微粒子分散液をあらかじめ作成し、この微粒子分散液を別途用意した少量のセルロースアシレート溶液に加えて撹拌溶解し、さらにメインのセルロースアシレートドープ液と混合する方法がある。この方法は二酸化珪素微粒子の分散性がよく、二酸化珪素微粒子が更に再凝集しにくい点で好ましい調製方法である。ほかにも、溶剤に少量のセルロースエステルを加え、撹拌溶解した後、これに微粒子を加えて分散機で分散を行いこれを微粒子添加液とし、この微粒子添加液をインラインミキサーでドープ液と十分混合する方法もある。本発明はこれらの方法に限定されないが、二酸化珪素微粒子を溶剤などと混合して分散するときの二酸化珪素の濃度は5〜30質量%が好ましく、10〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度が高い方が添加量に対する液濁度は低くなり、ヘイズ、凝集物が良化するため好ましい。最終的なセルロースアシレートのドープ溶液中でのマット剤の添加量は1m2あたり0.01〜1.0gが好ましく、0.03〜0.3gが更に好ましく、0.08〜0.16gが最も好ましい。 In order to obtain a cellulose acylate film having particles having a small secondary average particle size in the present invention, several methods are conceivable when preparing a fine particle dispersion. For example, a method of preparing a fine particle dispersion in which a solvent and fine particles are stirred and mixed in advance, adding the fine particle dispersion to a small amount of a separately prepared cellulose acylate solution, stirring and dissolving, and further mixing with the main cellulose acylate dope solution There is. This method is a preferable preparation method in that the dispersibility of the silicon dioxide fine particles is good and the silicon dioxide fine particles are more difficult to reaggregate. In addition, a small amount of cellulose ester is added to the solvent, stirred and dissolved, and then the fine particles are added and dispersed with a disperser to make this fine particle additive solution. There is also a way to do it. The present invention is not limited to these methods, but the concentration of silicon dioxide when the silicon dioxide fine particles are mixed and dispersed with a solvent or the like is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and 15 to 20%. Mass% is most preferred. A higher dispersion concentration is preferable because the liquid turbidity with respect to the added amount is lowered, and haze and aggregates are improved. The addition amount of the matting agent in the final cellulose acylate dope solution is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.3 g, and 0.08 to 0.16 g per 1 m 2. Most preferred.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

次に、本発明に関するセルロースアシレートが溶解される前記有機溶媒について記述する。
本発明における良溶媒とは25℃において溶媒100gに5g以上のセルロースを溶解する溶媒とする。一方本発明における貧溶媒とは25℃において溶媒100gに5g未満のセルロースアシレートを溶解する溶媒とする。
本発明においては、有機溶媒として、塩素系有機溶媒を主溶媒とする塩素系溶媒と塩素系有機溶媒を含まない非塩素系溶媒とのいずれをも用いることができる。
Next, the organic solvent in which the cellulose acylate according to the present invention is dissolved will be described.
The good solvent in the present invention is a solvent that dissolves 5 g or more of cellulose in 100 g of the solvent at 25 ° C. On the other hand, the poor solvent in the present invention is a solvent that dissolves less than 5 g of cellulose acylate in 100 g of solvent at 25 ° C.
In the present invention, any of a chlorinated solvent containing a chlorinated organic solvent as a main solvent and a non-chlorinated solvent not containing a chlorinated organic solvent can be used as the organic solvent.

(塩素系溶媒)
本発明に関するセルロースアシレートの溶液を作製するに際しては、主溶媒として塩素系有機溶媒が好ましく用いられる。本発明においては、セルロースアシレートが溶解し流延,製膜できる範囲において、その目的が達成できる限りはその塩素系有機溶媒の種類は特に限定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムである。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合することも特に問題ない。その場合は、ジクロロメタンは有機溶媒全体量中少なくとも50質量%使用することが必要である。本発明で塩素系有機溶剤と併用される他の有機溶媒について以下に記す。すなわち、好ましい他の有機溶媒としては、炭素原子数が3〜12の、エステル、ケトンおよびエーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケトン、エーテルおよびアルコールは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を同時に有していてもよい。二種類以上の官能基を有する溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテート等が挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンおよびメチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトール等が挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノール等が挙げられる。
(Chlorine solvent)
In preparing the cellulose acylate solution according to the present invention, a chlorinated organic solvent is preferably used as the main solvent. In the present invention, the type of the chlorinated organic solvent is not particularly limited as long as the object can be achieved within the range in which cellulose acylate can be dissolved and cast and formed. These chlorinated organic solvents are preferably dichloromethane and chloroform. Particularly preferred is dichloromethane. In addition, there is no particular problem in mixing an organic solvent other than the chlorinated organic solvent. In that case, it is necessary to use at least 50% by mass of dichloromethane in the total amount of the organic solvent. Other organic solvents used in combination with the chlorinated organic solvent in the present invention will be described below. That is, as another preferable organic solvent, a solvent having 3 to 12 carbon atoms selected from esters, ketones and ethers, alcohols, hydrocarbons and the like is preferable. Esters, ketones, ethers and alcohols may have a cyclic structure. A compound having two or more functional groups of esters, ketones and ethers (that is, —O—, —CO— and —COO—) can also be used as a solvent. You may have group simultaneously. In the case of a solvent having two or more types of functional groups, the number of carbon atoms may be within the specified range of the compound having any functional group. Examples of the esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate. Examples of ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, and methylcyclohexanone. Examples of ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole. Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol.

また塩素系有機溶媒と併用されるアルコールとしては、好ましくは直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノールおよびシクロヘキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエンおよびキシレンが含まれる。
塩素系有機溶媒と他の有機溶媒との組合せ例としては以下の組成を挙げることができるが、これらに限定されるものではない。
The alcohol used in combination with the chlorinated organic solvent may be linear, branched or cyclic, and among them, saturated aliphatic hydrocarbon is preferable. The hydroxyl group of the alcohol may be any of primary to tertiary. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, 1-pentanol, 2-methyl-2-butanol and cyclohexanol. As the alcohol, fluorine-based alcohol is also used. Examples thereof include 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like. Furthermore, the hydrocarbon may be linear, branched or cyclic. Either aromatic hydrocarbons or aliphatic hydrocarbons can be used. The aliphatic hydrocarbon may be saturated or unsaturated. Examples of hydrocarbons include cyclohexane, hexane, benzene, toluene and xylene.
Examples of combinations of chlorinated organic solvents and other organic solvents include the following compositions, but are not limited thereto.

・ジクロロメタン/メタノール/エタノール/ブタノール(80/10/5/5、質量部)、
・ジクロロメタン/アセトン/メタノール/プロパノール(80/10/5/5、質量部)、
・ジクロロメタン/メタノール/ブタノール/シクロヘキサン(80/10/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/メタノール/ブタノール(80/10/5/5、質量部)、
・ジクロロメタン/アセトン/メチルエチルケトン/エタノール/イソプロパノール(75/8/5/5/7、質量部)、
・ジクロロメタン/シクロペンタノン/メタノール/イソプロパノール(80/7/5/8、質量部)、
・ジクロロメタン/酢酸メチル/ブタノール(80/10/10、質量部)、
・ジクロロメタン/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
・ジクロロメタン/1、3ジオキソラン/メタノール/エタノール(70/20/5/5、質量部)、
・ジクロロメタン/ジオキサン/アセトン/メタノール/エタノール(60/20/10/5/5、質量部)、
・ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン(65/10/10/5/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール(70/10/10/5/5、質量部)、
・ジクロロメタン/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン(65/10/10/5/5/5、質量部)、
・ジクロロメタン/アセト酢酸メチル/メタノール/エタノール(65/20/10/5、質量部)、
・ジクロロメタン/シクロペンタノン/エタノール/ブタノール(65/20/10/5、質量部)、
などを挙げることができる。
Dichloromethane / methanol / ethanol / butanol (80/10/5/5, parts by mass),
Dichloromethane / acetone / methanol / propanol (80/10/5/5, parts by mass),
Dichloromethane / methanol / butanol / cyclohexane (80/10/5/5, parts by mass),
Dichloromethane / methyl ethyl ketone / methanol / butanol (80/10/5/5, parts by mass),
Dichloromethane / acetone / methyl ethyl ketone / ethanol / isopropanol (75/8/5/5/7, parts by mass),
Dichloromethane / cyclopentanone / methanol / isopropanol (80/7/5/8, parts by mass),
Dichloromethane / methyl acetate / butanol (80/10/10, parts by mass),
Dichloromethane / cyclohexanone / methanol / hexane (70/20/5/5, parts by mass)
Dichloromethane / methyl ethyl ketone / acetone / methanol / ethanol (50/20/20/5/5, parts by mass),
Dichloromethane / 1, 3 dioxolane / methanol / ethanol (70/20/5/5, parts by mass),
Dichloromethane / dioxane / acetone / methanol / ethanol (60/20/10/5/5, parts by mass),
Dichloromethane / acetone / cyclopentanone / ethanol / isobutanol / cyclohexane (65/10/10/5/5/5, parts by mass),
Dichloromethane / methyl ethyl ketone / acetone / methanol / ethanol (70/10/10/5/5, parts by mass),
Dichloromethane / acetone / ethyl acetate / ethanol / butanol / hexane (65/10/10/5/5/5, parts by mass),
Dichloromethane / methyl acetoacetate / methanol / ethanol (65/20/10/5, parts by mass),
Dichloromethane / cyclopentanone / ethanol / butanol (65/20/10/5, parts by mass),
And so on.

(非塩素系溶媒)
次に、本発明に関するセルロースアシレートの溶液を作製するに際して好ましく用いられる非塩素系有機溶媒について記載する。本発明においては、セルロースアシレートが溶解し流延,製膜できる範囲において、その目的が達成できる限りは非塩素系有機溶媒は特に限定されない。本発明で用いられる非塩素系有機溶媒は、炭素原子数が3〜12の、エステル、ケトンおよびエーテルから選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを2つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンおよびメチルシクロヘキサノンが挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが挙げられる。
(Non-chlorine solvent)
Next, a non-chlorine organic solvent that is preferably used in preparing a cellulose acylate solution according to the present invention will be described. In the present invention, the non-chlorine organic solvent is not particularly limited as long as the object can be achieved as long as the cellulose acylate can be dissolved and cast and formed into a film. The non-chlorine organic solvent used in the present invention is preferably a solvent having 3 to 12 carbon atoms and selected from esters, ketones and ethers. Esters, ketones and ethers may have a cyclic structure. A compound having two or more functional groups of esters, ketones and ethers (that is, —O—, —CO— and —COO—) can also be used as a main solvent, such as an alcoholic hydroxyl group. It may have a functional group of In the case of the main solvent having two or more kinds of functional groups, the number of carbon atoms may be within the specified range of the compound having any functional group. Examples of esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate. Examples of ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone. Examples of ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole. Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol.

以上のセルロースアシレートに用いられる非塩素系有機溶媒については、前述のいろいろな観点から選定されるが、好ましくは以下のとおりである。すなわち、非塩素系溶媒としては、前記非塩素系有機溶媒を主溶媒とする混合溶媒が好ましく、互いに異なる3種類以上の溶媒の混合溶媒であって、第1の溶媒が酢酸メチル、酢酸エチル、蟻酸メチル、蟻酸エチル、アセトン、ジオキソラン、ジオキサンから選ばれる少なくとも一種あるいは或いはそれらの混合液であり、第2の溶媒が炭素原子数が4〜7のケトン類またはアセト酢酸エステルから選ばれ、第3の溶媒として炭素数が1〜10のアルコールまたは炭化水素、より好ましくは炭素数1〜8のアルコールから選ばれる、混合溶媒である。なお第1の溶媒が、2種以上の溶媒の混合液である場合は、第2の溶媒がなくてもよい。第1の溶媒は、さらに好ましくは酢酸メチル、アセトン、蟻酸メチル、蟻酸エチルあるいはこれらの混合物であり、第2の溶媒は、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、アセチル酢酸メチルが好ましく、これらの混合溶媒であってもよい。   The non-chlorine organic solvent used in the above cellulose acylate is selected from the various viewpoints described above, and is preferably as follows. That is, the non-chlorine solvent is preferably a mixed solvent containing the non-chlorine organic solvent as a main solvent, and is a mixed solvent of three or more different solvents, wherein the first solvent is methyl acetate, ethyl acetate, At least one selected from methyl formate, ethyl formate, acetone, dioxolane, and dioxane, or a mixture thereof; the second solvent is selected from ketones having 4 to 7 carbon atoms or acetoacetate; The solvent is a mixed solvent selected from alcohols or hydrocarbons having 1 to 10 carbon atoms, more preferably alcohols having 1 to 8 carbon atoms. Note that when the first solvent is a mixed liquid of two or more kinds of solvents, the second solvent may not be provided. The first solvent is more preferably methyl acetate, acetone, methyl formate, ethyl formate, or a mixture thereof, and the second solvent is preferably methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl acetyl acetate, or a mixed solvent thereof. It may be.

第3の溶媒であるアルコールは、直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール、1−ペンタノール、2−メチル−2−ブタノールおよびシクロヘキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロヘキサン、ヘキサン、ベンゼン、トルエンおよびキシレンが含まれる。これらの第3の溶媒であるアルコールおよび炭化水素は単独でもよいし2種類以上の混合物でもよく特に限定されない。第3の溶媒としては、好ましい具体的化合物は、アルコールとしてはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、およびシクロヘキサノール、シクロヘキサン、ヘキサンを挙げることができ、特にはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールである。   The alcohol as the third solvent may be linear, branched or cyclic, and is preferably a saturated aliphatic hydrocarbon. The hydroxyl group of the alcohol may be any of primary to tertiary. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, 1-pentanol, 2-methyl-2-butanol and cyclohexanol. As the alcohol, fluorine-based alcohol is also used. Examples thereof include 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol and the like. Furthermore, the hydrocarbon may be linear, branched or cyclic. Either aromatic hydrocarbons or aliphatic hydrocarbons can be used. The aliphatic hydrocarbon may be saturated or unsaturated. Examples of hydrocarbons include cyclohexane, hexane, benzene, toluene and xylene. These alcohols and hydrocarbons as the third solvent may be used alone or in combination of two or more, and are not particularly limited. As the third solvent, preferred specific compounds include alcohol, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and cyclohexanol, cyclohexane, hexane, Are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol.

以上の3種類の混合溶媒の混合割合は、混合溶媒全体量中、第1の溶媒が20〜95質量%、第2の溶媒が2〜60質量%さらに第3の溶媒が2〜30質量%の比率で含まれることが好ましく、さらに第1の溶媒が30〜90質量%であり、第2の溶媒が3〜50質量%、さらに第3のアルコールが3〜25質量%含まれることが好ましい。また特に第1の溶媒が30〜90質量%であり、第2の溶媒が3〜30質量%、第3の溶媒がアルコールであり3〜15質量%含まれることが好ましい。以上の本発明で用いられる非塩素系有機溶媒は、さらに詳細には発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.12−16に詳細に記載されている。本発明の好ましい非塩素系有機溶媒の組合せは以下挙げることができるが、これらに限定されるものではない。   The mixing ratio of the above three types of mixed solvents is 20 to 95% by mass for the first solvent, 2 to 60% by mass for the second solvent, and 2 to 30% by mass for the third solvent in the total amount of the mixed solvent. The first solvent is preferably 30 to 90% by mass, the second solvent is 3 to 50% by mass, and the third alcohol is preferably 3 to 25% by mass. . In particular, it is preferable that the first solvent is 30 to 90% by mass, the second solvent is 3 to 30% by mass, and the third solvent is alcohol and 3 to 15% by mass. The non-chlorine-based organic solvent used in the present invention described above is more specifically described in JIII Journal of Technical Disclosure No. 2001-1745 (issued March 15, 2001, Invention Association) p. 12-16. Preferred combinations of non-chlorine organic solvents of the present invention can include the following, but are not limited thereto.

・酢酸メチル/アセトン/メタノール/エタノール/ブタノール(75/10/5/5/5、質量部)、
・酢酸メチル/アセトン/メタノール/エタノール/プロパノール(75/10/5/5/5、質量部)、
・酢酸メチル/アセトン/メタノール/ブタノール/シクロヘキサン(75/10/5/5/5、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(82/10/4/4、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(80/10/4/6、質量部)、
・酢酸メチル/メチルエチルケトン/メタノール/ブタノール(80/10/5/5、質量部)、
・酢酸メチル/アセトン/メチルエチルケトン/エタノール/イソプロパノール(75/8/5/5/7、質量部)、
・酢酸メチル/シクロペンタノン/メタノール/イソプロパノール(80/7/5/8、質量部)、
・酢酸メチル/アセトン/ブタノール(85/10/5、質量部)、
・酢酸メチル/シクロペンタノン/アセトン/メタノール/ブタノール(60/15/14/5/6、質量部)、
・酢酸メチル/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、質量部)、
・酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
・酢酸メチル/1、3−ジオキソラン/メタノール/エタノール(70/20/5/5、質量部)、
・酢酸メチル/ジオキサン/アセトン/メタノール/エタノール(60/20/10/5/5、質量部)、
・酢酸メチル/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン(65/10/10/5/5/5、質量部)、
-Methyl acetate / acetone / methanol / ethanol / butanol (75/10/5/5/5, parts by mass),
-Methyl acetate / acetone / methanol / ethanol / propanol (75/10/5/5/5, parts by mass),
Methyl acetate / acetone / methanol / butanol / cyclohexane (75/10/5/5/5, parts by mass),
Methyl acetate / acetone / ethanol / butanol (81/8/7/4, parts by mass)
-Methyl acetate / acetone / ethanol / butanol (82/10/4/4, parts by mass),
-Methyl acetate / acetone / ethanol / butanol (80/10/4/6, parts by mass),
Methyl acetate / methyl ethyl ketone / methanol / butanol (80/10/5/5, parts by mass),
-Methyl acetate / acetone / methyl ethyl ketone / ethanol / isopropanol (75/8/5/5/7, parts by mass)
Methyl acetate / cyclopentanone / methanol / isopropanol (80/7/5/8, parts by mass),
-Methyl acetate / acetone / butanol (85/10/5, parts by mass),
Methyl acetate / cyclopentanone / acetone / methanol / butanol (60/15/14/5/6, parts by mass),
-Methyl acetate / cyclohexanone / methanol / hexane (70/20/5/5, parts by mass)
Methyl acetate / methyl ethyl ketone / acetone / methanol / ethanol (50/20/20/5/5, parts by mass),
Methyl acetate / 1,3-dioxolane / methanol / ethanol (70/20/5/5, parts by mass),
Methyl acetate / dioxane / acetone / methanol / ethanol (60/20/10/5/5, parts by mass),
Methyl acetate / acetone / cyclopentanone / ethanol / isobutanol / cyclohexane (65/10/10/5/5/5, parts by mass),

・ギ酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
・ギ酸メチル/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン(65/10/10/5/5/5、質量部)、
・アセトン/アセト酢酸メチル/メタノール/エタノール(65/20/10/5、質量部)、
・アセトン/シクロペンタノン/エタノール/ブタノール(65/20/10/5、質量部)、
・アセトン/1,3−ジオキソラン/エタノール/ブタノール(65/20/10/5、質量部)、
・1、3−ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/ブタノール(55/20/10/5/5/5、質量部)
などをあげることができる。
更に下記の方法で調整したセルロースアシレート溶液を用いることもできる。
・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に2質量部のブタノールを追加添加する方法
・酢酸メチル/アセトン/エタノール/ブタノール(84/10/4/2、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に4質量部のブタノールを追加添加する方法
・酢酸メチル/アセトン/エタノール(84/10/6、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に5質量部のブタノールを追加添加する方法
本発明に用いるドープには、上記本発明の非塩素系有機溶媒以外に、ジクロロメタンを本発明の全有機溶媒量の10質量%以下含有させてもよい。
Methyl formate / methyl ethyl ketone / acetone / methanol / ethanol (50/20/20/5/5, parts by mass),
-Methyl formate / acetone / ethyl acetate / ethanol / butanol / hexane (65/10/10/5/5/5, parts by mass)
Acetone / methyl acetoacetate / methanol / ethanol (65/20/10/5, parts by mass)
Acetone / cyclopentanone / ethanol / butanol (65/20/10/5, parts by mass)
Acetone / 1,3-dioxolane / ethanol / butanol (65/20/10/5, parts by mass)
1,3-dioxolane / cyclohexanone / methyl ethyl ketone / methanol / butanol (55/20/10/5/5/5, parts by mass)
Etc.
Further, a cellulose acylate solution prepared by the following method can also be used.
A method of preparing a cellulose acylate solution with methyl acetate / acetone / ethanol / butanol (81/8/7/4, parts by mass) and adding 2 parts by weight of butanol after filtration and concentration. Methyl acetate / acetone / ethanol / Butanol (84/10/4/2, part by mass) A method for adding a cellulose acylate solution and adding 4 parts by weight of butanol after filtration and concentration. Methyl acetate / acetone / ethanol (84/10/6, In addition to the above non-chlorine organic solvent of the present invention, dichloromethane is added to the dope used in the present invention for the addition of 5 parts by weight of butanol after filtration and concentration. You may make it contain 10 mass% or less of the total amount of organic solvents.

(セルロースアシレート溶液特性)
セルロースアシレートの溶液は、前記有機溶媒にセルロースアシレートを10〜30質量%の濃度で溶解させた溶液であるのが製膜流延適性の点で好ましく、より好ましくは13〜27質量%であり、特に好ましくは15〜25質量%である。これらの濃度にセルロースアシレートを実施する方法は、溶解する段階で所定の濃度になるように実施してもよく、また予め低濃度溶液(例えば9〜14質量%)として作製した後に後述する濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースアシレート溶液とした後に、種々の添加物を添加することで所定の低濃度のセルロースアシレート溶液としてもよく、いずれの方法でも本発明に関するセルロースアシレート溶液濃度になるように実施されれば特に問題ない。
(Characteristics of cellulose acylate solution)
The cellulose acylate solution is preferably a solution obtained by dissolving cellulose acylate in the organic solvent at a concentration of 10 to 30% by mass from the viewpoint of film forming casting suitability, and more preferably 13 to 27% by mass. It is particularly preferably 15 to 25% by mass. The method for carrying out the cellulose acylate at these concentrations may be carried out so that the cellulose acylate has a predetermined concentration at the stage of dissolution, or it is prepared as a low-concentration solution (for example, 9 to 14% by mass) and then concentrated as described later. You may adjust to a predetermined high concentration solution by a process. Furthermore, after preparing a cellulose acylate solution with a high concentration in advance, various additives may be added to obtain a predetermined cellulose acylate solution with a low concentration. If implemented, there is no particular problem.

次に、本発明ではセルロースアシレート溶液を同一組成の有機溶媒で0.1〜5質量%にした希釈溶液中のセルロースアシレートの会合体分子量が15万〜1500万であることが、剥ぎ取り性を良くする点で好ましい。さらに好ましくは、会合分子量が18万〜900万である。この会合分子量は静的光散乱法で求めることができる。その際に同時に求められる慣性自乗半径は10〜200nmになるように溶解することが好ましい。さらに好ましい慣性自乗半径は20〜200nmである。更にまた、第2ビリアル係数が−2×10-4〜+4×10-4となるように溶解することが好ましく、より好ましくは第2ビリアル係数が−2×10-4〜+2×10-4である。 Next, in the present invention, it is stripped that the aggregate molecular weight of cellulose acylate in a diluted solution in which the cellulose acylate solution is 0.1 to 5% by mass with an organic solvent having the same composition is 150,000 to 15 million. It is preferable in terms of improving the properties. More preferably, the associated molecular weight is 180,000 to 9 million. This associated molecular weight can be determined by a static light scattering method. In that case, it is preferable to dissolve so that the inertial square radius required at the same time is 10 to 200 nm. A more preferable inertial square radius is 20 to 200 nm. Furthermore, it is preferable to dissolve so that the second virial coefficient is −2 × 10 −4 to + 4 × 10 −4, and more preferably the second virial coefficient is −2 × 10 −4 to + 2 × 10 −4. It is.

ここで、本発明での会合分子量、さらに慣性自乗半径および第2ビリアル係数の定義について述べる。これらは下記方法に従って、静的光散乱法を用いて測定する。測定は装置の都合上希薄領域で測定するが、これらの測定値は本発明の高濃度域でのドープの挙動を反映するものである。
まず、セルロースアシレートをドープに使用する溶剤に溶かし、0.1質量%、0.2質量%、0.3質量%、0.4質量%の溶液を調製する。なお、秤量は吸湿を防ぐためセルロースアシレートは120℃で2時間乾燥したものを用い、25℃,10%RHで行う。溶解方法は、ドープ溶解時に採用した方法(常温溶解法、冷却溶解法、高温溶解法)に従って実施する。続いてこれらの溶液、および溶剤を0.2μmのテフロン(登録商標)製フィルターで濾過する。そして、ろ過した溶液を静的光散乱を、光散乱測定装置(大塚電子(株)製DLS−700)を用い、25℃に於いて30度から140度まで10度間隔で測定する。得られたデータをBERRYプロット法にて解析する。なお、この解析に必要な屈折率はアッベ屈折系で求めた溶剤の値を用い、屈折率の濃度勾配(dn/dc)は、示差屈折計(大塚電子(株)製DRM−1021)を用い、光散乱測定に用いた溶剤、溶液を用いて測定する。
Here, the definition of the associated molecular weight, the inertial square radius and the second virial coefficient in the present invention will be described. These are measured using the static light scattering method according to the following method. Although the measurement is performed in a dilute region for the convenience of the apparatus, these measured values reflect the behavior of the dope in the high concentration region of the present invention.
First, cellulose acylate is dissolved in a solvent used for the dope to prepare 0.1 mass%, 0.2 mass%, 0.3 mass%, and 0.4 mass% solutions. In order to prevent moisture absorption, the cellulose acylate is dried at 120 ° C. for 2 hours, and is measured at 25 ° C. and 10% RH. The dissolution method is carried out according to the method employed at the time of dope dissolution (room temperature dissolution method, cooling dissolution method, high temperature dissolution method). Subsequently, the solution and the solvent are filtered through a 0.2 μm Teflon (registered trademark) filter. The filtered solution is measured for static light scattering at intervals of 10 degrees from 30 degrees to 140 degrees at 25 ° C. using a light scattering measuring device (DLS-700 manufactured by Otsuka Electronics Co., Ltd.). The obtained data is analyzed by the BERRY plot method. In addition, the refractive index required for this analysis uses the value of the solvent calculated | required with the Abbe refractive system, and the refractive index concentration gradient (dn / dc) uses the differential refractometer (Otsuka Electronics Co., Ltd. DRM-1021). Measure using the solvent and solution used for light scattering measurement.

(ドープ調製)
次にセルロースアシレート溶液(ドープ)の調製について述べる。セルロースアシレートの溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。これらに関しては、例えば特開平5−163301号、特開昭61−106628号、特開昭58−127737号、特開平9−95544号、特開平10−95854号、特開平10−45950号、特開2000−53784号、特開平11−322946号、さらに特開平11−322947号、特開平2−276830号、特開2000−273239号、特開平11−71463号、特開平04−259511号、特開2000−273184号、特開平11−323017号、特開平11−302388号各公報などにセルロースアシレート溶液の調製法が記載されている。以上記載したこれらのセルロースアシレートの有機溶媒への溶解方法は、本発明においても適宜本発明の範囲であればこれらの技術を適用できるものである。これらの詳細は、特に非塩素系溶媒系については発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.22−25に詳細に記載されている方法で実施される。さらに本発明に関するセルロースアシレートのドープ溶液は、溶液濃縮、ろ過が通常実施され、同様に発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.25に詳細に記載されている。なお、高温度で溶解する場合は、使用する有機溶媒の沸点以上の場合がほとんどであり、その場合は加圧状態で用いられる。
(Dope preparation)
Next, preparation of a cellulose acylate solution (dope) will be described. The method for dissolving the cellulose acylate is not particularly limited, and may be room temperature, or a cooling dissolution method or a high-temperature dissolution method, or a combination thereof. Regarding these, for example, JP-A-5-163301, JP-A-61-106628, JP-A-58-127737, JP-A-9-95544, JP-A-10-95854, JP-A-10-45950, JP 2000-53784, JP 11-322946, JP 11-322947, JP 2-276830, JP 2000-273239, JP 11-71463, JP 04-259511, Special JP 2000-273184, JP-A-11-323017, JP-A-11-302388, etc. describe methods for preparing cellulose acylate solutions. The above-described method for dissolving cellulose acylate in an organic solvent is applicable to the present invention as long as it is within the scope of the present invention. For details of these, particularly for non-chlorine-based solvent systems, the Japan Society for Invention and Innovation Publication No. 2001-1745 (issued March 15, 2001, Japan Society for Invention) p. It is carried out in the manner described in detail in 22-25. Further, the cellulose acylate dope solution according to the present invention is usually subjected to solution concentration and filtration. Similarly, the Japan Institute of Invention and Innovation Technical Publication No. 2001-1745 (issued March 15, 2001, Invention Association) p. 25 in detail. In addition, when it melt | dissolves at high temperature, it is the case where it is more than the boiling point of the organic solvent to be used, and in that case, it uses in a pressurized state.

セルロースアシレート溶液は、その溶液の粘度と動的貯蔵弾性率が以下に述べる範囲であることが、流延しやすく好ましい。試料溶液1mLをレオメーター(CLS 500)に直径4cm/2°のSteel Cone(共にTA Instruments社製)を用いて測定する。測定条件はOscillation Step/Temperature Rampで40℃〜−10℃の範囲を2℃/分で可変して測定し、40℃の静的非ニュートン粘度n*(Pa・s)および−5℃の貯蔵弾性率G’(Pa)を求める。尚、試料溶液は予め測定開始温度にて液温一定となるまで保温した後に測定を開始する。本発明では、40℃での粘度が1〜400Pa・sであり、15℃での動的貯蔵弾性率が500Pa以上であるのが好ましく、より好ましくは40℃での粘度が10〜200Pa・sで、15℃での動的貯蔵弾性率が500〜100万Paである。さらには低温での動的貯蔵弾性率が大きいほど好ましく、例えば流延支持体が−5℃の場合は動的貯蔵弾性率が−5℃で1万〜100万Paであることが好ましく、支持体が−50℃の場合は−50℃での動的貯蔵弾性率が1万〜500万Paが好ましい。 It is preferable that the cellulose acylate solution has a viscosity and a dynamic storage elastic modulus within the ranges described below because it is easy to cast. 1 mL of the sample solution is measured with a rheometer (CLS 500) using Steel Cone (both manufactured by TA Instruments) having a diameter of 4 cm / 2 °. Measurement conditions were measured by varying the range from 40 ° C. to −10 ° C. at 2 ° C./min using an Oscillation Step / Temperature Ramp, static non-Newtonian viscosity n * (Pa · s) at 40 ° C., and storage at −5 ° C. The elastic modulus G ′ (Pa) is obtained. The sample solution is preliminarily kept at the measurement start temperature until the liquid temperature becomes constant, and then the measurement is started. In the present invention, the viscosity at 40 ° C. is 1 to 400 Pa · s, the dynamic storage elastic modulus at 15 ° C. is preferably 500 Pa or more, and more preferably the viscosity at 40 ° C. is 10 to 200 Pa · s. And the dynamic storage elastic modulus in 15 degreeC is 500-1 million Pa. Furthermore, it is preferable that the dynamic storage elastic modulus at a low temperature is large. For example, when the casting support is −5 ° C., the dynamic storage elastic modulus is preferably 10,000 to 1,000,000 Pa at −5 ° C. When the body is at −50 ° C., the dynamic storage elastic modulus at −50 ° C. is preferably 10,000 to 5 million Pa.

本発明においては、前述の特定のセルロースアシレートを用いているので、高濃度のドープが得られるのが特徴であり、濃縮という手段に頼らずとも高濃度でしかも安定性の優れたセルロースアシレート溶液が得られる。更に溶解し易くするために低い濃度で溶解してから、濃縮手段を用いて濃縮してもよい。濃縮の方法としては、特に限定するものはないが、例えば、低濃度溶液を筒体とその内部の周方向に回転する回転羽根外周の回転軌跡との間に導くとともに、溶液との間に温度差を与えて溶媒を蒸発させながら高濃度溶液を得る方法(例えば、特開平4−259511号公報等)、加熱した低濃度溶液をノズルから容器内に吹き込み、溶液をノズルから容器内壁に当たるまでの間で溶媒をフラッシュ蒸発させるとともに、溶媒蒸気を容器から抜き出し、高濃度溶液を容器底から抜き出す方法(例えば、米国特許第2,541,012号、米国特許第2,858,229号、米国特許第4,414,341号、米国特許第4,504,355号各明細書等などに記載の方法)等で実施できる。   In the present invention, since the above-mentioned specific cellulose acylate is used, it is characterized in that a high concentration dope is obtained, and a cellulose acylate having a high concentration and excellent stability without relying on a means of concentration. A solution is obtained. Furthermore, in order to make it easy to melt | dissolve, after making it melt | dissolve at a low density | concentration, you may concentrate using a concentration means. The concentration method is not particularly limited. For example, the low-concentration solution is guided between the cylindrical body and the rotation trajectory of the outer periphery of the rotating blade rotating in the circumferential direction, and the temperature between the solution and the solution. A method of obtaining a high-concentration solution while evaporating the solvent by giving a difference (for example, JP-A-4-259511), a heated low-concentration solution is blown into the container from the nozzle, and the solution is applied from the nozzle to the inner wall of the container In which the solvent is flash evaporated and the solvent vapor is withdrawn from the container and the concentrated solution is withdrawn from the bottom of the container (eg, US Pat. No. 2,541,012, US Pat. No. 2,858,229, US Pat. No. 4,414,341, US Pat. No. 4,504,355, etc.).

溶液は流延に先だって金網やネルなどの適当な濾材を用いて、未溶解物やゴミ、不純物などの異物を濾過除去しておくのが好ましい。セルロースアシレート溶液の濾過には絶対濾過精度が0.1〜100μmのフィルタを用いることが好ましく、さらには絶対濾過精度が0.5〜25μmであるフィルタを用いることが好ましい。フィルタの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、ろ過圧力は1.6MPa以下が好ましく、より好ましくは1.2MPa以下、更には1.0MPa以下、特に0.2MPa以下で濾過することが好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知である材料を好ましく用いることができ、特にセラミックス、金属等が好ましく用いられる。セルロースアシレート溶液の製膜直前の粘度は、製膜の際に流延可能な範囲であればよく、通常10Pa・s〜2000Pa・sの範囲に調製されることが好ましく、30Pa・s〜1000Pa・sがより好ましく、40Pa・s〜500Pa・sが更に好ましい。なお、この時の温度はその流延時の温度であれば特に限定されないが、好ましくは−5〜+70℃であり、より好ましくは−5〜+55℃である。   Prior to casting, it is preferable to filter off foreign matters such as undissolved matter, dust, and impurities using a suitable filter medium such as a wire mesh or flannel. For the filtration of the cellulose acylate solution, it is preferable to use a filter having an absolute filtration accuracy of 0.1 to 100 μm, and it is more preferable to use a filter having an absolute filtration accuracy of 0.5 to 25 μm. The thickness of the filter is preferably 0.1 to 10 mm, and more preferably 0.2 to 2 mm. In that case, the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, further 1.0 MPa or less, and particularly preferably 0.2 MPa or less. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, fluororesins such as tetrafluoroethylene resin can be preferably used, and ceramics, metals and the like are particularly preferably used. The viscosity of the cellulose acylate solution immediately before film formation may be in a range that can be cast during film formation, and is usually prepared in a range of 10 Pa · s to 2000 Pa · s, preferably 30 Pa · s to 1000 Pa. · S is more preferable, and 40 Pa · s to 500 Pa · s is more preferable. The temperature at this time is not particularly limited as long as it is a temperature at the time of casting, but is preferably −5 to + 70 ° C., more preferably −5 to + 55 ° C.

(製膜)
本発明に関するセルロースアシレートフィルムは、前記セルロースアシレート溶液を用いて製膜を行うことにより得ることができる。製膜方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの幅手方向の両端をクリップで挟み、幅把持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。電子ディスプレイ用機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。以下に各製造工程について簡単に述べるが、これらに限定されるものではない。
(Film formation)
The cellulose acylate film according to the present invention can be obtained by forming a film using the cellulose acylate solution. As the film forming method and equipment, a solution casting film forming method and a solution casting film forming apparatus conventionally used for producing a cellulose triacetate film are used. The dope (cellulose acylate solution) prepared from the dissolving machine (kettle) is once stored in a storage kettle, and the foam contained in the dope is defoamed for final preparation. The dope is sent from the dope discharge port to the pressure die through a pressure metering gear pump capable of delivering a constant amount of liquid with high accuracy, for example, by the number of rotations, and the dope is run endlessly from the die (slit) of the pressure die. The dry-dried dope film (also referred to as web) is peeled off from the metal support at a peeling point that is uniformly cast on the metal support and substantially rounds the metal support. The web is obtained by sandwiching both ends of the web in the width direction with clips, transporting with a tenter while gripping the width, and then transporting with a roll group of a drying device to finish drying and using a winder to a predetermined length Wind up. The combination of the tenter and the roll group dryer varies depending on the purpose. In the solution casting film forming method used for the functional protective film for electronic displays, in addition to the solution casting film forming apparatus, surface processing on films such as an undercoat layer, an antistatic layer, an antihalation layer, a protective layer, etc. Therefore, a coating device is often added. Although each manufacturing process is described briefly below, it is not limited to these.

まず、調製したセルロースアシレート溶液(ドープ)は、ソルベントキャスト法によりセルロースアシレートフィルムを作製する際に、ドープをドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が5〜40質量%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が30℃以下のドラムまたはバンド上に流延することが好ましく用いられ、特には−10〜20℃の金属支持体温度であることが好ましい。さらに特開2000−301555号、特開2000−301558号、特開平07−032391号、特開平03−193316号、特開平05−086212号、特開昭62−037113号、特開平02−276607号、特開昭55−014201号、特開平02−111511号、および特開平02−208650号の各公報に記載の方法を本発明では用いることができる。   First, the prepared cellulose acylate solution (dope) is casted on a drum or band when a cellulose acylate film is produced by a solvent cast method, and the solvent is evaporated to form a film. It is preferable to adjust the concentration of the dope before casting so that the solid content is 5 to 40% by mass. The surface of the drum or band is preferably finished in a mirror state. The dope is preferably cast on a drum or band having a surface temperature of 30 ° C. or lower, and particularly preferably a metal support temperature of −10 to 20 ° C. Further, JP 2000-301555, JP 2000-301558, JP 07-032391, JP 03-193316, JP 05-086212, JP 62-037113, JP 02-276607. The methods described in JP-A Nos. 55-014201, 02-111511, and 02-208650 can be used in the present invention.

本発明において工程D0とは流延したフィルムを剥離した後テンター部分まで搬送を行う工程をあらわす。工程D0では延伸時のフィルム残留溶媒量をコントロールする目的で温度をコントロールすることが好ましい。
テンター部分までの搬送は、千鳥状に配置したロールに交互に通して搬送を行う。
In this invention, process D0 represents the process of conveying to a tenter part, after peeling the cast film. In step D0, it is preferable to control the temperature for the purpose of controlling the amount of residual solvent in the film during stretching.
Transport to the tenter part is performed by alternately passing through rolls arranged in a staggered pattern.

工程D0終点でのフィルム搬送張力はドープの物性、工程D0での残留溶媒量、温度などに影響を受けるが、30N/m2〜300N/m2が好ましい。この範囲を超えると、フィルムの均一性に影響を及ぼし、表示むらの遠因となる。より好ましくは60N/m2〜270N/m2であり、更に好ましくは60N/m2〜160N/m2である。 The film transport tension at the end point of the step D0 is influenced by the physical properties of the dope, the residual solvent amount in the step D0, the temperature, etc., but is preferably 30 N / m 2 to 300 N / m 2 . If this range is exceeded, the uniformity of the film will be affected, which will be a cause of uneven display. More preferably 60N / m 2 ~270N / m 2 , still more preferably 60N / m 2 ~160N / m 2 .

工程D0終点での良溶媒及び貧溶媒の比率はフィルム搬送に対しての伸びを防止する意味で好ましい範囲が規定される。工程D0終点での残留溶媒量(下記一般式(1)で表される)における貧溶媒量(下記一般式(2)で表される)としては95質量%〜15質量%の範囲が好ましく、より好ましくは95質量%〜25質量%であり、特に好ましくは95質量%〜30質量%である。   The ratio of the good solvent and the poor solvent at the end point of the step D0 is defined as a preferable range in the sense of preventing the elongation with respect to film conveyance. As a poor solvent amount (represented by the following general formula (2)) in the residual solvent amount (represented by the following general formula (1)) at the end point of the step D0, a range of 95% by mass to 15% by mass is preferable. More preferably, it is 95 mass%-25 mass%, Most preferably, it is 95 mass%-30 mass%.

一般式(1)
フィルムの残留溶媒量(質量%)=[(M-N)/N]×100
[式中、Mはウェブの測定時点での質量、NはMを測定したウェブを110℃で3時間乾燥させたときの質量である。]
General formula (1)
Residual solvent amount of film (mass%) = [(MN) / N] × 100
[Wherein, M is the mass at the time of measurement of the web, and N is the mass when the web of which M is measured is dried at 110 ° C. for 3 hours. ]

一般式(2)
フィルム中の残留溶媒における貧溶媒含有量(質量%)=[(フィルムの残留溶媒中の貧溶媒の質量)/(フィルムの残留溶媒量中の貧溶媒の質量+良溶媒の質量)]
General formula (2)
Content of poor solvent (% by mass) in residual solvent in film = [(mass of poor solvent in residual solvent of film) / (mass of poor solvent in residual solvent amount of film + mass of good solvent)]

(重層流延)
セルロースアシレート溶液を、金属支持体としての平滑なバンド上或いはドラム上に単層液として流延してもよいし、2層以上の複数のセルロースアシレート液を流延してもよい。複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および特開平6−134933号の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高、低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。更に又、特開昭61−94724号および特開昭61−94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはまた2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらにセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
(Multilayer casting)
The cellulose acylate solution may be cast as a single layer liquid on a smooth band or drum as a metal support, or a plurality of cellulose acylate liquids of two or more layers may be cast. When casting a plurality of cellulose acylate solutions, produce a film while casting and laminating a solution containing cellulose acylate from a plurality of casting openings provided at intervals in the traveling direction of the metal support. For example, the methods described in JP-A-61-158414, JP-A-1-122419, and JP-A-11-198285 can be applied. A film may also be formed by casting a cellulose acylate solution from two casting ports. For example, Japanese Patent Publication Nos. 60-27562, 61-94724, 61-947245, 61-947245, This can be carried out by the methods described in JP-A Nos. 61-104813, 61-158413, and 6-134933. Further, a cellulose acylate film in which a flow of a high-viscosity cellulose acylate solution described in JP-A-56-162617 is wrapped with a low-viscosity cellulose acylate solution and the high- and low-viscosity cellulose acylate solutions are simultaneously extruded. A casting method may be used. Furthermore, it is also a preferable aspect that the outer solution described in JP-A-61-94724 and JP-A-61-94725 contains a larger amount of an alcohol component which is a poor solvent than the inner solution. Alternatively, by using two casting ports, peeling the film formed on the metal support by the first casting port, and performing the second casting on the side that was in contact with the metal support surface, A film may be prepared, for example, a method described in Japanese Patent Publication No. 44-20235. The cellulose acylate solutions to be cast may be the same solution or different cellulose acylate solutions, and are not particularly limited. In order to give a function to a plurality of cellulose acylate layers, a cellulose acylate solution corresponding to the function may be extruded from each casting port. Furthermore, the cellulose acylate solution can be cast by simultaneously casting other functional layers (for example, an adhesive layer, a dye layer, an antistatic layer, an antihalation layer, a UV absorbing layer, a polarizing layer).

従来の単層液では、必要なフィルム厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の場合、前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロースアシレート溶液を共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。又、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び紫外線吸収剤の少なくともいずれかを含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。また、剥離促進剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。また、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていても良く、スキン層のTgよりコア層のTgが低いことが好ましい。又、流延時のセルロースアシレートを含む溶液の粘度もスキン層とコア層で異なっていても良く、スキン層の粘度がコア層の粘度よりも小さいことが好ましいが、コア層の粘度がスキン層の粘度より小さくてもよい。   In the conventional single-layer liquid, it is necessary to extrude a high-concentration and high-viscosity cellulose acylate solution in order to obtain the required film thickness. In many cases, this causes a problem such as a fault or flatness. As a solution to this, by casting a plurality of cellulose acylate solutions from a casting port, a highly viscous solution can be extruded onto a metal support at the same time. Not only can it be produced, but also the use of a concentrated cellulose acylate solution can reduce the drying load and increase the film production speed. In the case of co-casting, the inner and outer thicknesses are not particularly limited, but preferably the outer side is preferably 1 to 50% of the total film thickness, and more preferably 2 to 30%. Here, in the case of co-casting with three or more layers, the total thickness of the layer in contact with the metal support and the layer in contact with the air side is defined as the outer thickness. In the case of co-casting, a cellulose acylate film having a laminated structure can be produced by co-casting cellulose acylate solutions having different additive concentrations such as the above-mentioned plasticizer, ultraviolet absorber and matting agent. For example, a cellulose acylate film having a structure of skin layer / core layer / skin layer can be produced. For example, the matting agent can be contained in the skin layer in a large amount or only in the skin layer. The plasticizer and the ultraviolet absorber can be contained in the core layer more than the skin layer, and may be contained only in the core layer. It is also possible to change the type of plasticizer and ultraviolet absorber between the core layer and the skin layer. For example, the skin layer contains at least one of a low-volatile plasticizer and an ultraviolet absorber, and the core layer is made plastic. It is also possible to add an excellent plasticizer or an ultraviolet absorber excellent in ultraviolet absorption. Moreover, it is also a preferable aspect to contain a peeling accelerator only in the skin layer on the metal support side. It is also preferable to add more alcohol, which is a poor solvent, to the skin layer than the core layer in order to cool the metal support by the cooling drum method to gel the solution. The Tg of the skin layer and the core layer may be different, and the Tg of the core layer is preferably lower than the Tg of the skin layer. Further, the viscosity of the solution containing cellulose acylate during casting may be different between the skin layer and the core layer, and the viscosity of the skin layer is preferably smaller than the viscosity of the core layer. It may be smaller than the viscosity.

(流延)
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明に関するセルロースアシレートフィルムを製造するのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。本発明に関するセルロースアシレートフィルムの製造に用いられる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は、−10〜55℃が好ましくより好ましくは25〜50℃である。その場合、工程のすべてが同一でもよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
(Casting)
As a solution casting method, a method in which the prepared dope is uniformly extruded from a pressure die onto a metal support, and a method using a doctor blade in which the film thickness of the dope once cast on the metal support is adjusted with a blade. Alternatively, there is a method using a reverse roll coater that adjusts with a reverse rotating roll, but a method using a pressure die is preferable. The pressure die includes a coat hanger type and a T die type, and any of them can be preferably used. In addition to the methods listed here, it can be carried out by various methods for casting a cellulose triacetate solution known in the art, and by setting each condition in consideration of differences in the boiling point of the solvent used, etc. The same effects as described in the above publication can be obtained. The endlessly running metal support used for producing the cellulose acylate film according to the present invention includes a drum whose surface is mirror-finished by chrome plating and a stainless steel belt whose surface is mirror-finished by surface polishing (referred to as a band). May be used). One or two or more pressure dies used for producing the cellulose acylate film according to the present invention may be installed above the metal support. Preferably 1 or 2 groups. When two or more are installed, the dope amount to be cast may be divided into various ratios for each die, or the dope may be fed to the dies from each of a plurality of precision quantitative gear pumps. The temperature of the cellulose acylate solution used for casting is preferably −10 to 55 ° C., more preferably 25 to 50 ° C. In that case, all of the processes may be the same, or may be different at various points in the process. If they are different, the temperature may be a desired temperature just before casting.

(乾燥工程 D1)
セルロースアシレートフィルムの製造に係わる金属支持体上におけるドープの乾燥は、一般的には金属支持体(ドラム或いはベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム或いはベルトの裏面から熱風を当てる方法、温度コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム或いはベルトを加熱し表面温度をコントロールする液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度はドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するためには、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1〜10℃低い温度に設定することが好ましい。尚、流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
(Drying process D1)
The drying of the dope on the metal support involved in the production of the cellulose acylate film is generally a method of applying hot air from the surface side of the metal support (drum or belt), that is, the surface of the web on the metal support, A method of applying hot air from the back of the drum or belt, contacting the temperature-controlled liquid from the back of the belt or drum opposite the dope casting surface, and heating the drum or belt by heat transfer to control the surface temperature Although there is a heat transfer method, the back surface liquid heat transfer method is preferable. The surface temperature of the metal support before casting may be any number as long as it is not higher than the boiling point of the solvent used for the dope. However, in order to promote drying and to lose fluidity on the metal support, the temperature should be set to 1 to 10 ° C. lower than the boiling point of the lowest boiling solvent used. Is preferred. This is not the case when the casting dope is cooled and peeled off without drying.

本発明に係わる延伸工程を図2を用いて説明する。   The stretching process according to the present invention will be described with reference to FIG.

図2において工程Aでは図示されていないフィルム搬送工程D0から搬送されてきたフィルムを把持する工程であり、次の工程Bにおいて、後述する図1に示すような延伸角度でフィルムが幅手方向(フィルムの進行方向と直行する方向)に延伸され、工程Cにおいては延伸が終了し、フィルムが把持されたまま搬送される工程である。   In FIG. 2, the process A is a process of gripping the film transported from the film transport process D0 (not shown). In the next process B, the film is stretched in the width direction (at a stretching angle as shown in FIG. 1 to be described later). In the process C, stretching is completed, and the film is conveyed while being gripped.

(工程Bでの延伸開始時の残留溶媒量)
工程B開始時の残留溶媒量としては90質量%〜5質量%に調整することが好ましく、さらに好ましくは90質量%〜10質量%に調整することが好ましく、最も好ましくは40質量%〜10質量%に調整することが好ましい。
(Residual solvent amount at the start of stretching in step B)
The amount of residual solvent at the start of Step B is preferably adjusted to 90% by mass to 5% by mass, more preferably 90% by mass to 10% by mass, and most preferably 40% by mass to 10% by mass. It is preferable to adjust to%.

フィルムを搬送方向に対して垂直方向に延伸する工程でフィルムの幅手方向で光学遅相軸の分布(配向角分布)が悪くなることはよく知られている。ReとRthのバランスを良好なものにし、かかる配向角分布を良好な状態になるように延伸を行うためには、工程A、B、Cでの雰囲気中の良溶媒濃度をそれぞれMa、Mb、Mcとすると、Ma>2000ppmが好ましく、Ma>3000ppmが更に好ましく、最も好ましくはMa>飽和良溶媒蒸気濃度の60%である。また、Mb>2000ppmが好ましく、Mb>3000ppmが更に好ましく、最も好ましくはMb>飽和良溶媒蒸気濃度の60%である。また、Mc<飽和良溶媒蒸気濃度の60%が好ましく、Mc<3000ppmがさらに好ましく、Mc<2500ppmが最も好ましい。   It is well known that the optical slow axis distribution (orientation angle distribution) deteriorates in the width direction of the film in the step of stretching the film in the direction perpendicular to the transport direction. In order to achieve a good balance between Re and Rth and perform stretching so that the orientation angle distribution is in a good state, the good solvent concentrations in the atmosphere in steps A, B, and C are set to Ma, Mb, As for Mc, Ma> 2000 ppm is preferable, Ma> 3000 ppm is more preferable, and Ma> 60% of saturated good solvent vapor concentration is most preferable. Further, Mb> 2000 ppm is preferable, Mb> 3000 ppm is more preferable, and Mb> 60% of the saturated good solvent vapor concentration is most preferable. Also, Mc <60% of saturated good solvent vapor concentration is preferred, Mc <3000 ppm is more preferred, and Mc <2500 ppm is most preferred.

また、工程A、B、Cの間にニュートラルゾーンを設けることが好ましい。ニュートラルゾーンとは、異なる温度区画の間にそれぞれの区画が干渉を起こさないように設けるものであり、配向角分布の改良効果が得られる。   Moreover, it is preferable to provide a neutral zone between the processes A, B, and C. The neutral zone is provided between different temperature zones so that the zones do not interfere with each other, and an effect of improving the orientation angle distribution can be obtained.

(フィルム中の残留溶媒における貧溶媒含有量(%)
延伸工程には好ましい良溶媒及び貧溶媒の比率が存在する。工程A,B,C各終了時点でのそれぞれの残留貧溶媒質量/(残留良溶媒質量+残留貧溶媒質量)×100%が95質量%〜15質量(%)が好ましい。更に95質量%〜25質量%が好ましく、95質量%〜30質量%が最も好ましい。また、工程A,B,C終了時点でのそれぞれの残留貧溶媒質量/(残留良溶媒質量+残留貧溶媒質量)×100%は同一であっても異なっていても良い。
(Poor solvent content in residual solvent in film (%)
There are preferred good and poor solvent ratios in the stretching step. Each residual poor solvent mass / (residual good solvent mass + residual poor solvent mass) × 100% at the end of each step A, B, C is preferably 95% by mass to 15% by mass (%). Furthermore, 95 mass%-25 mass% are preferable, and 95 mass%-30 mass% are the most preferable. Further, the residual poor solvent mass / (residual good solvent mass + residual poor solvent mass) × 100% at the end of the steps A, B, and C may be the same or different.

(工程A,B,Cでのフィルム温度設定と残留溶媒量)
延伸工程において、フィルムの厚みむらを小さくするために工程Bでは軟らかい状態で延伸を行い、工程A,Cは工程Bに比較してベースが硬い状態であることが好ましい。蒸気条件は具体的にはフィルム温度およびフィルム残留溶媒量をコントロールすることで達成できる。
各工程での雰囲気温度としてはフィルム残留溶媒量にも影響されるが、工程Aで30〜40℃、工程B,Cでは30〜140℃が好ましい。具体的には工程B終了時のフィルム残留溶媒量が工程B開始時のフィルム残留溶媒量の0.4〜0.8の範囲にあるとき工程Bのフィルム雰囲気温度は110℃〜140℃であることが好ましい。工程B終了時のフィルム残量溶媒量が工程B開始時のフィルム残留溶媒量の0.4〜0.8の範囲にあるとき工程B開始時のフィルム温度は30℃〜140℃であり、工程B終了時のフィルム温度は70℃〜140℃の範囲であることが好ましい。
(Film temperature setting and residual solvent amount in process A, B, C)
In the stretching step, in order to reduce the thickness unevenness of the film, in step B, stretching is performed in a soft state, and in steps A and C, the base is preferably harder than in step B. Specifically, the vapor condition can be achieved by controlling the film temperature and the film residual solvent amount.
Although the atmospheric temperature in each step is affected by the amount of residual solvent in the film, it is preferably 30 to 40 ° C. in Step A and 30 to 140 ° C. in Steps B and C. Specifically, when the film residual solvent amount at the end of Step B is in the range of 0.4 to 0.8 of the film residual solvent amount at the start of Step B, the film atmosphere temperature in Step B is 110 ° C. to 140 ° C. It is preferable. When the amount of residual solvent at the end of Step B is in the range of 0.4 to 0.8 of the amount of residual solvent at the start of Step B, the film temperature at the start of Step B is 30 ° C to 140 ° C. The film temperature at the end of B is preferably in the range of 70 ° C to 140 ° C.

工程B終了時点でのフィルム中の残留溶媒における貧溶媒含有量(質量%)は、15質量%〜95質量%であることが好ましい。   The poor solvent content (% by mass) in the residual solvent in the film at the end of Step B is preferably 15% by mass to 95% by mass.

工程Bでの延伸時間はフィルムの均一性を高めるために好ましい範囲が存在する。具体的には1〜10秒であることが好ましく、4〜10秒であることがより好ましい。
また、延伸速度は一定で行っても良いし、変化させても良いが、50%/min〜500%/minが好ましく、さらに好ましくは100%/min〜400%/min、200%/min〜300%/minが最も好ましい。
さらに工程Bにおいて、幅方向のフィルム延伸倍率を1.1〜2.5とすることが好ましく、より好ましくは1.1〜2.0であり、特に好ましくは1.1〜1.5である。
The stretching time in step B has a preferable range for improving the uniformity of the film. Specifically, it is preferably 1 to 10 seconds, and more preferably 4 to 10 seconds.
The stretching speed may be constant or may be changed, but is preferably 50% / min to 500% / min, more preferably 100% / min to 400% / min, 200% / min to Most preferred is 300% / min.
Furthermore, in step B, the film stretching ratio in the width direction is preferably 1.1 to 2.5, more preferably 1.1 to 2.0, and particularly preferably 1.1 to 1.5.

また、工程B開始前に、スリッターによりフィルムの幅手端部を切除することが好ましい。これにより、幅手方向に延伸を行った場合、端部を切除しない場合と比較し、配向角分布が改良される効果が得られる。   Moreover, it is preferable to cut out the width | variety edge part of a film with a slitter before the process B start. Thereby, when extending in the width direction, the effect of improving the orientation angle distribution is obtained as compared with the case where the end portion is not cut.

本発明に関するセルロースアシレートフィルムは、延伸処理によりレターデーションを調整することができる。更には、積極的に幅方向に延伸する方法もあり、例えば、特開昭62−115035号、特開平4−152125号、特開平4−284211号、特開平4−298310号、および特開平11−48271号の各公報などに記載されている。これは、セルロースアシレートフィルムの面内レターデーション値を高い値とするために、製造したフィルムを延伸する。
フィルムの延伸は、横だけの一軸延伸でもよく、縦あるいは横方向の同時あるいは逐次2軸延伸でもよい。光学フィルムの複屈折は幅方向の屈折率が長さ方向の屈折率よりも大きくなることが好ましい。従って幅方向により多く延伸することが好ましい。また、延伸処理は製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理しても良い。
The retardation of the cellulose acylate film according to the present invention can be adjusted by stretching. Furthermore, there is also a method of positively stretching in the width direction. For example, JP-A-62-115035, JP-A-4-152125, JP-A-4-284111, JP-A-4-298310, and JP-A-11 -48271, and the like. This stretches the produced film in order to increase the in-plane retardation value of the cellulose acylate film.
The stretching of the film may be uniaxial stretching only in the transverse direction, or may be simultaneous or sequential biaxial stretching in the longitudinal or lateral direction. The birefringence of the optical film is preferably such that the refractive index in the width direction is larger than the refractive index in the length direction. Therefore, it is preferable to stretch more in the width direction. In addition, the stretching process may be performed in the middle of the film forming process, or the raw film that has been formed and wound may be stretched.

以下に、本発明のセルロースアシレートフィルムの製造方法において、均一性および経時での光漏れ抑制の観点から好適な態様を示すが、本発明これに限られるものではない。
(第1の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを搬送する工程D0、幅手の端部把持する工程A、幅手方向に延伸する工程Bを有し、
延伸開始(工程B開始)時のフィルムの残留溶媒量が90質量%〜5質量%であることを特徴とするセルロースアシレートフィルムの製造方法。
In the following, in the method for producing a cellulose acylate film of the present invention, preferred embodiments are shown from the viewpoint of uniformity and suppression of light leakage over time, but the present invention is not limited thereto.
(First aspect)
After casting a dope containing cellulose acylate, it has a step D0 for transporting the peeled cellulose acylate film, a step A for gripping the edge of the width, and a step B for stretching in the width direction.
A method for producing a cellulose acylate film, wherein the residual solvent amount of the film at the start of stretching (start of step B) is 90% by mass to 5% by mass.

(第2の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程B開始時のフィルム残留溶媒量B0%が90質量%〜10質量%であり、該フィルムの温度が30℃〜140℃であり、更に工程B終了時の前記フィルムの温度が70℃〜140℃でありかつ、工程B終了時のフィルムの残留溶媒量をB1%としたときに、B0%とB1%とが、0.4×B0≦B1≦0.8×B0の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
(Second aspect)
After casting a dope containing cellulose acylate, it has a step B of stretching the peeled cellulose acylate film in the width direction,
The film residual solvent amount B0% at the start of Step B is 90% by mass to 10% by mass, the temperature of the film is 30 ° C to 140 ° C, and the temperature of the film at the end of Step B is 70 ° C to 140 ° C. And when the residual solvent amount of the film at the end of Step B is B1%, B0% and B1% satisfy the relationship of 0.4 × B0 ≦ B1 ≦ 0.8 × B0 A method for producing a cellulose acylate film.

(第3の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程Bのフィルム雰囲気温度が110℃〜140℃であり、且つ工程B終了時の該フィルムの残留溶媒量をB3%、工程B開始時の前記フィルムの残留溶媒量をB2%としたとき、B3%とB2%とが0.4×B2≦B3≦0.8×B2の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
(Third aspect)
After casting a dope containing cellulose acylate, it has a step B of stretching the peeled cellulose acylate film in the width direction,
When the film atmosphere temperature in Step B is 110 ° C. to 140 ° C., the residual solvent amount of the film at the end of Step B is B3%, and the residual solvent amount of the film at the start of Step B is B2%, B3 % And B2% satisfy the relationship of 0.4 × B2 ≦ B3 ≦ 0.8 × B2.

(第4の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
工程AおよびBにおける雰囲気の良溶媒濃度が、2000ppm以上、飽和蒸気量未満であることを特徴とするセルロースアシレートフィルムの製造方法。
(Fourth aspect)
After casting a dope containing cellulose acylate, it has a process A for gripping the width end of the peeled cellulose film, a process B for stretching in the width direction, a grip relaxation process C,
A method for producing a cellulose acylate film, wherein the good solvent concentration of the atmosphere in steps A and B is 2000 ppm or more and less than a saturated vapor amount.

(第5の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程Bで幅手方向のフィルム延伸倍率が1.1〜2.5の範囲であることを特徴とするセルロースアシレートフィルムの製造方法。
(5th aspect)
After casting a dope containing cellulose acylate, it has a step B of stretching the peeled cellulose film in the width direction,
A process for producing a cellulose acylate film, wherein the film stretch ratio in the width direction in step B is in the range of 1.1 to 2.5.

(第6の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程B開始前にスリッターによりフィルム端部を切除することを特徴とするセルロースアシレートフィルムの製造方法。
(Sixth aspect)
After casting a dope containing cellulose acylate, it has a step B of stretching the peeled cellulose film in the width direction,
A method for producing a cellulose acylate film, wherein a film end is cut with a slitter before the start of step B.

(第7の態様)
セルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に引き伸ばす工程B、把持緩和工程Cを有し、
工程A、B、Cの間にニュートラルゾーンを設けることを特徴とするセルロースアシレートフィルムの製造方法。
(Seventh aspect)
After casting a dope containing cellulose acylate, it has a process A that grips the width end of the peeled cellulose film, a process B that stretches in the width direction, and a grip relaxation process C.
A method for producing a cellulose acylate film, wherein a neutral zone is provided between steps A, B, and C.

乾燥後得られる本発明に関するセルロースアシレートフィルムの膜厚は、使用目的によって異なり、通常5から500μmの範囲であることが好ましく、更に20〜300μmの範囲が好ましく、特に30〜150μmの範囲が好ましい。また、光学用として特にVA液晶表示装置用としては40〜110μmであることが好ましい。フィルム厚さの調製は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。以上のようにして得られたセルロースアシレートフィルムの幅は0.5〜3mが好ましく、より好ましくは0.6〜2.5m、さらに好ましくは0.8〜2.2mである。長さは1ロールあたり100〜10000mで巻き取るのが好ましく、より好ましくは500〜7000mであり、さらに好ましくは1000〜6000mである。巻き取る際、少なくとも片端にナーリングを付与するのが好ましく、幅は3mm〜50mmが好ましく、より好ましくは5mm〜30mm、高さは0.5〜500μmが好ましく、より好ましくは1〜200μmである。これは片押しであっても両押しであっても良い。
全幅のRe(590)値のばらつきが±5nmであることが好ましく、±3nmであることが更に好ましい。また、Rth(590)値のバラツキは±10nmが好ましく、±5nmであることが更に好ましい。また、長さ方向のRe値、及びRth値のバラツキも幅方向のバラツキの範囲内であることが好ましい。
The film thickness of the cellulose acylate film relating to the present invention obtained after drying varies depending on the purpose of use, and is usually preferably in the range of 5 to 500 μm, more preferably in the range of 20 to 300 μm, and particularly preferably in the range of 30 to 150 μm. . Moreover, it is preferable that it is 40-110 micrometers for VA liquid crystal display devices especially for optical use. The film thickness may be adjusted by adjusting the solid content concentration contained in the dope, the slit gap of the die base, the extrusion pressure from the die, the metal support speed, and the like so as to obtain a desired thickness. The width of the cellulose acylate film obtained as described above is preferably 0.5 to 3 m, more preferably 0.6 to 2.5 m, still more preferably 0.8 to 2.2 m. The length is preferably 100 to 10,000 m per roll, more preferably 500 to 7000 m, and still more preferably 1000 to 6000 m. When winding, knurling is preferably applied to at least one end, the width is preferably 3 mm to 50 mm, more preferably 5 mm to 30 mm, and the height is preferably 0.5 to 500 μm, more preferably 1 to 200 μm. This may be a single push or a double push.
The variation in the Re (590) value of the entire width is preferably ± 5 nm, more preferably ± 3 nm. Further, the variation of the Rth (590) value is preferably ± 10 nm, and more preferably ± 5 nm. Further, it is preferable that the variation in the Re value and the Rth value in the length direction is also within the range of the variation in the width direction.

(セルロースアシレートフィルムの光学特性)
本発明に関するセルロースアシレートフィルムの光学特性は、以下の数式(I)、(II)を満たすことが、液晶表示装置、特にVAモード液晶表示装置の視野角を広くするために好ましい。特に、セルロースアシレートフィルムが偏光板の液晶セル側の保護膜に用いられる場合、好ましい。
数式(I):20nm≦Re(590)≦200nm、
数式(II):70nm≦Rth(590)≦400nm
また、本発明ではRth/Re比を0.1乃至0.8に調節する。好ましくは、0.25乃至0.6に調節する。これらの調整は添加剤の種類、添加量および延伸倍率により行うことが出来る。
(Optical properties of cellulose acylate film)
The optical properties of the cellulose acylate film according to the present invention preferably satisfy the following formulas (I) and (II) in order to widen the viewing angle of a liquid crystal display device, particularly a VA mode liquid crystal display device. In particular, it is preferable when a cellulose acylate film is used for the protective film on the liquid crystal cell side of the polarizing plate.
Formula (I): 20 nm ≦ Re (590) ≦ 200 nm,
Formula (II): 70 nm ≦ Rth (590) ≦ 400 nm
In the present invention, the Rth / Re ratio is adjusted to 0.1 to 0.8. Preferably, it is adjusted to 0.25 to 0.6. These adjustments can be made according to the type of additive, the amount added, and the draw ratio.

本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の計3つの方向で測定したレターデーション値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。セルロースアシレートの平均屈折率は1.48である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。
本明細書では、特に断りのない限り、波長590nmで測定した値を示す。
In this specification, Re (λ) and Rth (λ) respectively represent in-plane retardation and retardation in the thickness direction at a wavelength λ. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH (manufactured by Oji Scientific Instruments). Rth (λ) is light having a wavelength of λ nm from the direction inclined by + 40 ° with respect to the normal direction of the film, with Re (λ) and the in-plane slow axis (determined by KOBRA 21ADH) as the tilt axis (rotation axis). And a retardation value measured by injecting light having a wavelength of λ nm from a direction tilted by −40 ° with respect to the normal direction of the film with the in-plane slow axis as the tilt axis (rotation axis). KOBRA 21ADH is calculated based on the retardation values measured in three directions in total. Here, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. The average refractive index of cellulose acylate is 1.48. The KOBRA 21ADH calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness.
In this specification, unless otherwise specified, values measured at a wavelength of 590 nm are shown.

本発明に関するセルロースアシレートフィルムをVAモードに使用する場合、セルの両側に1枚ずつ合計2枚使用する形態(2枚型)と、セルの上下のいずれか一方の側にのみ使用する形態(1枚型)の2通りがある。
2枚型の場合、Reは20乃至100nmが好ましく、30乃至70nmがさらに好ましい。Rthについては70乃至300nmが好ましく、100乃至200nmがさらに好ましい。
1枚型の場合、Reは30乃至150nmが好ましく、40乃至100nmがさらに好ましい。Rthについては100乃至300nmが好ましく、150乃至250nmがさらに好ましい。
When the cellulose acylate film according to the present invention is used in the VA mode, a mode in which a total of two sheets are used on each side of the cell (two-sheet type) and a mode in which only one of the upper and lower sides of the cell is used ( There are two types: single sheet type.
In the case of the two-sheet type, Re is preferably 20 to 100 nm, and more preferably 30 to 70 nm. Rth is preferably 70 to 300 nm, more preferably 100 to 200 nm.
In the case of a single sheet type, Re is preferably 30 to 150 nm, more preferably 40 to 100 nm. Rth is preferably 100 to 300 nm, more preferably 150 to 250 nm.

本発明に関するセルロースアシレートフィルムのフィルム面内の遅相軸角度のバラつきは、ロールフィルムの基準方向に対して−2度から+2度の範囲にあることが好ましく、−1度から+1度の範囲にあることがさらに好ましく、−0.5度から+0.5度の範囲にあることが最も好ましい。ここで、基準方向とは、セルロースアシレートフィルムを縦延伸する場合はロールフィルムの長手方向であり、横延伸する場合はロールフィルムの幅方向である。   The variation of the slow axis angle in the film plane of the cellulose acylate film according to the present invention is preferably in the range of -2 to +2 degrees with respect to the reference direction of the roll film, and in the range of -1 to +1 degrees. More preferably, it is in the range of -0.5 degree to +0.5 degree. Here, the reference direction is the longitudinal direction of the roll film when the cellulose acylate film is longitudinally stretched, and the width direction of the roll film when laterally stretched.

また、本発明に関するセルロースアシレートフィルムは、25℃10%RHにおけるRe値と25℃80%RHにおけるRe値との差ΔRe(=Re10%RH−Re80%RH)が0〜10nmであり、25℃10%RHにおけるRth値と25℃80%RHにおけるRth値との差ΔRth(=Rth10%RH−Rth80%RH)が0〜30nmであるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
また、本発明に関するセルロースアシレートフィルムは、25℃80%RHにおける平衡含水率が3.2%以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
含水率の測定法は、本発明に関するセルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定する。水分量(g)を試料質量(g)で除して算出する。
Further, the cellulose acylate film according to the present invention has a difference ΔRe (= Re10% RH−Re80% RH) between Re value at 25 ° C. and 10% RH and Re value at 25 ° C. and 80% RH of 0 to 10 nm, 25 The difference ΔRth (= Rth10% RH−Rth80% RH) between the Rth value at 10 ° C. at 10 ° C. and the Rth value at 80% RH at 25 ° C. is from 0 to 30 nm. This is preferable.
In addition, the cellulose acylate film according to the present invention preferably has an equilibrium water content of not more than 3.2% at 25 ° C. and 80% RH in order to reduce the color change with time of the liquid crystal display device.
The moisture content is measured by measuring a cellulose acylate film sample 7 mm × 35 mm according to the present invention by a Karl Fischer method using a moisture meter and a sample drying apparatus (CA-03, VA-05, both Mitsubishi Chemical Corporation). . It is calculated by dividing the amount of water (g) by the sample mass (g).

また、本発明に関するセルロースアシレートフィルムは、60℃、95%RH、24hrの透湿度(膜厚80μm換算)が、400g/m2・24hr以上1800g/m2・24hr以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求める。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができる。
ガラス転移温度の測定は、本発明に関するセルロースアシレートフィルム試料(未延伸)5mm×30mmを、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA−225(アイティー計測制御(株)製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2の交点を、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラス転移領域に移行し始める温度であるため、ガラス転移温度Tg(動的粘弾性)とした。
また、本発明に関するセルロースアシレートフィルムは、ヘイズが0.01〜2%であるのが、好ましい。ここで、ヘイズは、以下のようにして測定できる。
ヘイズの測定は、本発明に関するセルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定する。
また、本発明に関するセルロースアシレートフィルムは、80℃、90%RHの条件下に48時間静置した場合の質量変化が、0〜5%であるのが、好ましい。
また、本発明に関するセルロースアシレートフィルムは、60℃、95%RHの条件下に24時間静置した場合の寸度変化および90℃、5%RHの条件下に24時間静置した場合の寸度変化が、いずれも0〜5%であるのが、好ましい。
光弾性係数が、50×10-13cm2/dyne(50×10-122/N)以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
具体的な測定方法としては、セルロースアシレートフィルム試料10mm×100mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出する。
The cellulose acylate film according to the present invention has a water permeability of 60 ° C., 95% RH, 24 hr (film thickness equivalent to 80 μm) of 400 g / m 2 · 24 hr to 1800 g / m 2 · 24 hr. This is preferable for reducing the change in color of the display device over time.
If the film thickness of the cellulose acylate film is thick, the moisture permeability becomes small, and if the film thickness is thin, the moisture permeability becomes large. Therefore, it is necessary to convert the sample of any film thickness to a standard of 80 μm. Conversion of the film thickness is obtained as (water vapor permeability in terms of 80 μm = measured water vapor permeability × measured film thickness μm / 80 μm).
The measurement method of moisture permeability is “Polymer Physical Properties II” (Polymer Experiment Course 4, Kyoritsu Shuppan), pages 285-294: Measurement of vapor permeation amount (mass method, thermometer method, vapor pressure method, adsorption amount method) The method described in can be applied.
The glass transition temperature was measured by adjusting a cellulose acylate film sample (unstretched) 5 mm × 30 mm according to the present invention at 25 ° C. and 60% RH for 2 hours or more, and then measuring a dynamic viscoelasticity measuring device (Vibron: DVA-225 ( Measured by a distance between grips of 20 mm, a heating rate of 2 ° C./min, a measurement temperature range of 30 ° C. to 200 ° C., and a frequency of 1 Hz, and the vertical axis is the logarithmic axis and the storage elastic modulus, When the horizontal axis is a linear axis (° C), the straight line 1 is drawn in the solid region to draw the straight line 1 in the solid region, and the storage elastic modulus transitions from the solid region to the glass transition region. When the straight line 2 is drawn in the region, the intersection of the straight line 1 and the straight line 2 is a temperature at which the storage elastic modulus suddenly decreases and the film starts to soften when the temperature rises, and the temperature starts to move to the glass transition region. Glass Was the transition temperature Tg (dynamic viscoelasticity).
In addition, the cellulose acylate film according to the present invention preferably has a haze of 0.01 to 2%. Here, the haze can be measured as follows.
The haze is measured by measuring a cellulose acylate film sample 40 mm × 80 mm according to the present invention at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Instruments) according to JIS K-6714.
The cellulose acylate film according to the present invention preferably has a mass change of 0 to 5% when left for 48 hours under conditions of 80 ° C. and 90% RH.
In addition, the cellulose acylate film according to the present invention has a dimensional change when left for 24 hours under conditions of 60 ° C. and 95% RH, and a size when left for 24 hours under conditions of 90 ° C. and 5% RH. The degree of change is preferably 0 to 5%.
It is preferable that the photoelastic coefficient is 50 × 10 −13 cm 2 / dyne (50 × 10 −12 m 2 / N) or less in order to reduce the color change with time of the liquid crystal display device.
As a specific measuring method, a tensile stress is applied to the major axis direction of a 10 mm × 100 mm cellulose acylate film sample, and the retardation at that time is measured with an ellipsometer (M150, JASCO Corporation). The photoelastic coefficient is calculated from the amount of change in retardation with respect to.

(光学異方性層)
さらに、保護フィルムは、高分子フィルム上に光学異方性層を設けたものであっても良い。光学異方性層は、透明なポリマーフィルム上に配向層と光学異方性層をこの順に有したものが好ましい。
(Optically anisotropic layer)
Further, the protective film may be a polymer film provided with an optically anisotropic layer. The optically anisotropic layer preferably has an alignment layer and an optically anisotropic layer in this order on a transparent polymer film.

配向層は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログループを有する層の形成のような手段で設けることができる。さらに電場の付与、磁場の付与あるいは光照射により配向機能が生じる配向層も知られているが、ポリマーのラビング処理により形成する配向層が特に好ましい。ラビング処理はポリマー層の表面を紙や布で一定方向に数回こすることにより好ましく実施される。偏光子の吸収軸方向とラビング方向は実質的に平行であることが好ましい。配向層に使用するポリマーの種類は、ポリイミド、ポリビニルアルコール、特開平9−152509号公報に記載された重合性基を有するポリマー等を好ましく使用することができる。配向層の厚さは0.01〜5μmであることが好ましく、0.05〜2μmであることがさらに好ましい。   The alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique deposition of an inorganic compound, or formation of a layer having a microgroup. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known, but an alignment layer formed by a rubbing treatment of a polymer is particularly preferable. The rubbing treatment is preferably performed by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth. It is preferable that the absorption axis direction and the rubbing direction of the polarizer are substantially parallel. As the polymer used for the alignment layer, polyimide, polyvinyl alcohol, a polymer having a polymerizable group described in JP-A-9-152509, and the like can be preferably used. The thickness of the alignment layer is preferably 0.01 to 5 μm, and more preferably 0.05 to 2 μm.

光学異方性層は液晶性化合物を含有していることが好ましい。本発明に使用される液晶性化合物はディスコティック化合物(ディスコティック液晶)を有していることが特に好ましい。ディスコティック液晶分子は、下記(I)のトリフェニレン誘導体ように円盤状のコア部を有し、そこから放射状に側鎖が伸びた構造を有している。また、経時安定性を付与するため、熱、光等で反応する基をさらに導入することも好ましく行われる。上記ディスコティック液晶の好ましい例は特開平8−50206号公報に記載されている。   The optically anisotropic layer preferably contains a liquid crystalline compound. The liquid crystal compound used in the present invention particularly preferably has a discotic compound (discotic liquid crystal). The discotic liquid crystal molecule has a disk-like core portion like the triphenylene derivative of the following (I), and has a structure in which side chains extend radially therefrom. In order to impart stability over time, it is also preferable to further introduce a group that reacts with heat, light or the like. Preferred examples of the discotic liquid crystal are described in JP-A-8-50206.

Figure 2007063421
Figure 2007063421

ディスコティック液晶分子は、配向層付近ではラビング方向にプレチルト角を持ってほぼフィルム平面に平行に配向しており、反対の空気面側ではディスコティック液晶分子が面に垂直に近い形で立って配向している。ディスコティック液晶層全体としては、ハイブリッド配向を取っており、この層構造によってTNモードのTFT−LCDの視野角拡大を実現することができる。   The discotic liquid crystal molecules are aligned almost parallel to the film plane with a pretilt angle in the rubbing direction in the vicinity of the alignment layer, and the discotic liquid crystal molecules are oriented so that they are perpendicular to the plane on the opposite air side. is doing. The discotic liquid crystal layer as a whole has a hybrid alignment, and this layer structure can realize a wide viewing angle of a TN mode TFT-LCD.

上記光学異方性層は、一般にディスコティック化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向層上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱した後、UV光の照射等により重合させ、さらに冷却することにより得られる。本発明に用いるディスコティック液晶性化合物のディスコティックネマティック液晶相−固相転移温度としては、70〜300℃が好ましく、特に70〜170℃が好ましい。   The optically anisotropic layer is generally a discotic compound and another compound (for example, a polymerizable monomer, a photopolymerization initiator) dissolved in a solvent, coated on the alignment layer, dried, and then discotic nematic. After heating to the phase formation temperature, it is obtained by polymerization by irradiation with UV light or the like and further cooling. The discotic nematic liquid crystal phase-solid phase transition temperature of the discotic liquid crystalline compound used in the present invention is preferably 70 to 300 ° C, particularly preferably 70 to 170 ° C.

また、上記光学異方性層に添加するディスコティック化合物以外の化合物としては、ディスコティック化合物と相溶性を有し、液晶性ディスコティック化合物に好ましい傾斜角の変化を与えられるか、あるいは配向を阻害しない限り、どのような化合物も使用することができる。これらの中で、重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基を有する化合物)、含フッ素トリアジン化合物等の空気界面側の配向制御用添加剤が、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレート等のポリマーを挙げることができる。これらの化合物は、ディスコティック化合物に対して一般に0.1〜50質量%、好ましくは0.1〜30質量%の添加量にて使用される。
光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましい。
In addition to the discotic compound added to the optically anisotropic layer, the compound has compatibility with the discotic compound and can give a preferable change in tilt angle to the liquid crystalline discotic compound or inhibit the alignment. Any compound can be used as long as it is not. Among these, additives for controlling the orientation on the air interface side such as polymerizable monomers (eg, compounds having vinyl group, vinyloxy group, acryloyl group and methacryloyl group), fluorine-containing triazine compounds are cellulose acetate, cellulose acetate pro Mention may be made of polymers such as pionate, hydroxypropylcellulose and cellulose acetate butyrate. These compounds are generally used in an amount of 0.1 to 50% by mass, preferably 0.1 to 30% by mass, based on the discotic compound.
The thickness of the optically anisotropic layer is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm.

また、光学異方性層は、非液晶性化合物を溶媒中に溶解させ、支持体上に塗布し、加熱乾燥させて作製した非液晶性ポリマー層でも良い。この場合、非液晶性化合物は例えば、耐熱性、耐薬品性、透明性に優れ、剛性にも富むことから、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアリールエーテルケトン、ポリアミドイミド、ポリエステルイミド等のポリマーを用いることができる。これらのポリマーは、いずれか一種類を単独で使用してもよいし、例えば、ポリアリールエーテルケトンとポリアミドとの混合物のように、異なる官能基を持つ2種以上の混合物として使用してもよい。このようなポリマーの中でも、高透明性、高配向性、高延伸性であることから、ポリイミドが好ましい。また、支持体としては、TACフィルムが好ましい。
また、非液晶層と支持体の積層体を、1.05倍にテンター横軸延伸し、支持体側を偏光子に貼合することも好ましい。
さらには、光学異方性層は、選択反射の波長域が350nm以下であるコレステリック液晶の配向固化層であっても良い。コレステリック液晶としては、例えば特開平3−67219号公報や特開平3−140921号公報、特開平5−61039号公報や特開平6−186534号公報、特開平9−133810号公報などに記載された、前記の選択反射特性を示す適宜なものを用いうる。配向固化層の安定性等の点より好ましく用いうるものは、例えばコレステリック液晶ポリマーやカイラル剤配合のネマチック液晶ポリマー、光や熱等による重合処理で斯かる液晶ポリマーを形成する化合物などからなるコレステリック液晶層を形成しうるものである。
この場合の光学異方性層は、例えば支持基材上にコレステリック液晶をコーティングする方法などにより形成することができる。その場合、位相差の制御等を目的に必要に応じて、同種又は異種のコレステリック液晶を重ね塗りする方式なども採ることができる。コーティング処理には、例えばグラビア方式やダイ方式、ディッピング方式などの適宜な方式を採ることができる。前記の支持基材にはTACフィルム、又はその他のポリマーフィルムなどの適宜なものを用いうる。
前記において光学異方性層の形成に際しては、液晶を配向させるための手段が採られる。その配向手段については特に限定はなく、液晶化合物を配向させうる適宜な手段を採ることができる。ちなみにその例としては、配向膜(配向層)上に液晶をコーティングして配向させる方式があげられる。またその配向膜としては、ポリマー等の有機化合物からなるラビング処理膜や無機化合物の斜方蒸着膜、マイクログルーブを有する膜、あるいはω−トリコサン酸やジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチルの如き有機化合物のラングミュア・ブロジェット法によるLB膜を累積させた膜などがあげられる。
さらに光の照射で配向機能が生じる配向膜などもあげられる。一方、延伸フィルム上に液晶をコーティングして配向させる方式(特開平3−9325号公報)、電場や磁場等の印加下に液晶を配向させる方式などもなどもあげられる。なお液晶の配向状態は、可及的に均一であることが好ましく、またその配向状態で固定された固化層であることが好ましい。
The optically anisotropic layer may be a non-liquid crystalline polymer layer prepared by dissolving a non-liquid crystalline compound in a solvent, applying the solution onto a support, and drying by heating. In this case, for example, the non-liquid crystalline compound is excellent in heat resistance, chemical resistance, transparency, and has high rigidity, so polyamide, polyimide, polyester, polyether ketone, polyaryl ether ketone, polyamide imide, polyester imide, etc. These polymers can be used. Any one of these polymers may be used alone, or a mixture of two or more having different functional groups such as a mixture of polyaryletherketone and polyamide may be used. . Among such polymers, polyimide is preferable because of its high transparency, high orientation, and high stretchability. Moreover, as a support body, a TAC film is preferable.
Moreover, it is also preferable that the laminate of the non-liquid crystal layer and the support is stretched 1.05 times in the tenter horizontal axis and the support side is bonded to a polarizer.
Furthermore, the optically anisotropic layer may be an alignment solidified layer of cholesteric liquid crystal having a selective reflection wavelength region of 350 nm or less. Examples of the cholesteric liquid crystal are described in JP-A-3-67219, JP-A-3-140921, JP-A-5-61039, JP-A-6-186534, JP-A-9-133810, and the like. Any suitable material showing the selective reflection characteristics can be used. What can be preferably used from the viewpoint of the stability of the alignment solidified layer is, for example, a cholesteric liquid crystal composed of a cholesteric liquid crystal polymer, a nematic liquid crystal polymer containing a chiral agent, a compound that forms such a liquid crystal polymer by polymerization treatment with light, heat, or the like. A layer can be formed.
In this case, the optically anisotropic layer can be formed by, for example, a method of coating a cholesteric liquid crystal on a supporting substrate. In that case, for the purpose of controlling the phase difference or the like, a method of overcoating the same type or different types of cholesteric liquid crystals may be employed as necessary. For the coating treatment, for example, an appropriate method such as a gravure method, a die method, or a dipping method can be adopted. An appropriate material such as a TAC film or other polymer film can be used as the support substrate.
In the above, when forming the optically anisotropic layer, a means for aligning the liquid crystal is employed. The alignment means is not particularly limited, and any appropriate means that can align the liquid crystal compound can be adopted. Incidentally, as an example, there is a method in which liquid crystal is coated on an alignment film (alignment layer) and aligned. As the alignment film, a rubbing treatment film made of an organic compound such as a polymer, an oblique deposition film of an inorganic compound, a film having a microgroove, or an organic material such as ω-tricosanoic acid, dioctadecylmethylammonium chloride, or methyl stearylate. Examples thereof include a film obtained by accumulating LB films by the Langmuir-Blodgett method of compounds.
Further examples include an alignment film that generates an alignment function by light irradiation. On the other hand, a method of aligning liquid crystal on a stretched film (Japanese Patent Application Laid-Open No. 3-9325), a method of aligning liquid crystal under application of an electric field or magnetic field, and the like are also included. The alignment state of the liquid crystal is preferably as uniform as possible, and is preferably a solidified layer fixed in the alignment state.

本発明に関するセルロースアシレートフィルムを偏光板保護膜として用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。例えば、得られたセルロースアシレートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法がある。図3は、本発明の粘着剤付き偏光板の一例の断面構造を模式的に表す。アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施してもよい。保護膜処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が挙げられる。偏光板は偏光子及びその両面を保護する保護膜で構成されており、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成してもよい。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶セルへ貼合する面の反対面側に用いられる。又、セパレートフィルムは液晶セルへ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
本発明に関するセルロスアシレートフィルムの偏光子への貼り合せ方は、偏光子の透過軸と本発明に関するセルロースアシレートフィルムの遅相軸を一致させるように貼り合せることが好ましい。
なお、偏光板クロスニコル下で作製した偏光板は、本発明に関するセルロースアシレートフィルムの遅相軸と偏光子の吸収軸(透過軸と直交する軸)との直交精度が1°より大きいと、偏光板クロスニコル下での偏光度性能が低下して光抜けが生じ、液晶セルと組み合わせた場合に、十分な黒レベルやコントラストが得られない為、本発明に関するセルロースアシレートフィルムの主屈折率nxの方向と偏光板の透過軸の方向とは、そのずれが1°以内、好ましくは0.5°以内であることが好ましい。
When the cellulose acylate film according to the present invention is used as a polarizing plate protective film, the production method of the polarizing plate is not particularly limited, and can be produced by a general method. For example, there is a method in which the obtained cellulose acylate film is treated with an alkali and bonded to both sides of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution. FIG. 3 schematically shows a cross-sectional structure of an example of the polarizing plate with an adhesive of the present invention. Instead of alkali treatment, easy adhesion processing as described in JP-A-6-94915 and JP-A-6-118232 may be performed. Examples of the adhesive used to bond the protective film-treated surface and the polarizer include polyvinyl alcohol adhesives such as polyvinyl alcohol and polyvinyl butyral, vinyl latexes such as butyl acrylate, and the like. The polarizing plate is composed of a polarizer and a protective film that protects both surfaces of the polarizer, and may further comprise a protective film on one surface of the polarizing plate and a separate film on the other surface. The protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection. In this case, the protect film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the liquid crystal cell. Moreover, a separate film is used in order to cover the contact bonding layer bonded to a liquid crystal cell, and is used for the surface side which bonds a polarizing plate to a liquid crystal cell.
The cellulosic acylate film relating to the present invention is preferably bonded to the polarizer so that the transmission axis of the polarizer coincides with the slow axis of the cellulose acylate film relating to the present invention.
In addition, the polarizing plate produced under polarizing plate crossed Nicol, when the accuracy of orthogonality between the slow axis of the cellulose acylate film according to the present invention and the absorption axis of the polarizer (axis orthogonal to the transmission axis) is greater than 1 °, Polarization degree performance under a polarizing plate crossed Nicole is reduced, light leakage occurs, and when combined with a liquid crystal cell, a sufficient black level and contrast cannot be obtained, so the main refractive index of the cellulose acylate film according to the present invention The deviation between the direction of nx and the direction of the transmission axis of the polarizing plate is preferably within 1 °, preferably within 0.5 °.

(表面処理)
本発明に関するセルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。表面処理としては、例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.30−32に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。
(surface treatment)
The cellulose acylate film according to the present invention can achieve improved adhesion between the cellulose acylate film and each functional layer (for example, the undercoat layer and the back layer) by optionally performing a surface treatment. As the surface treatment, for example, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment can be used. The glow discharge treatment here may be low-temperature plasma that occurs under a low pressure gas of 10 −3 to 20 Torr, and plasma treatment under atmospheric pressure is also preferred. A plasma-excitable gas is a gas that is plasma-excited under the above-mentioned conditions, and examples thereof include chlorofluorocarbons such as argon, helium, neon, krypton, xenon, nitrogen, carbon dioxide, tetrafluoromethane, and mixtures thereof. It is done. Regarding these, the details are disclosed in the Invention Association Public Technical Bulletin No. 2001-1745 (issued March 15, 2001, Invention Association) p. 30-32. Note that, in the plasma treatment at atmospheric pressure which has been attracting attention in recent years, for example, irradiation energy of 20 to 500 Kgy is used under 10 to 1000 Kev, and more preferably irradiation energy of 20 to 300 Kgy is used under 30 to 500 Kev. Among these, an alkali saponification treatment is particularly preferable, and it is extremely effective as a surface treatment of a cellulose acylate film.

アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液の槽に直接浸漬する方法または鹸化液をセルロースアシレートフィルム塗布する方法で実施することが好ましい。塗布方法としては、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法およびE型塗布法を挙げることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液をセルロースアシレートフィルムに対して塗布するために、濡れ性が良く、また鹸化液溶媒によってセルロースアシレートフィルム表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上5分以下が好ましく、5秒以上5分以下がさらに好ましく、20秒以上3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。   The alkali saponification treatment is preferably carried out by a method in which the cellulose acylate film is directly immersed in a saponification solution tank or a method in which the saponification solution is applied to the cellulose acylate film. Examples of the coating method include a dip coating method, a curtain coating method, an extrusion coating method, a bar coating method, and an E-type coating method. The solvent of the alkali saponification coating solution has good wettability in order to apply the saponification solution to the cellulose acylate film, and the surface of the cellulose acylate film surface is not formed by the saponification solution solvent. It is preferred to select a solvent that remains good. Specifically, an alcohol solvent is preferable, and isopropyl alcohol is particularly preferable. An aqueous solution of a surfactant can also be used as a solvent. The alkali of the alkali saponification coating solution is preferably an alkali that dissolves in the above solvent, and more preferably KOH or NaOH. The pH of the saponification coating solution is preferably 10 or more, more preferably 12 or more. The reaction conditions during alkali saponification are preferably 1 second to 5 minutes at room temperature, more preferably 5 seconds to 5 minutes, and particularly preferably 20 seconds to 3 minutes. After the alkali saponification reaction, it is preferable to wash the surface on which the saponification solution is applied with water or with an acid and then with water.

また、本発明の偏光板は、偏光板の他方の側の保護膜の表面にハードコート層、防眩層、反射防止層の少なくとも一層を設けたものであるのが好ましい。図4に機能性膜を有する本発明の偏光板の一例の断面構造を示す。すなわち、偏光板の液晶表示装置への使用時において液晶セルと反対側に配置される保護膜には反射防止層などの機能性膜を設けることが好ましく、かかる機能性膜としてハードコート層、防眩層、反射防止層の少なくとも一層を設けるのが好ましい。なお、各層はそれぞれ別個の層として設ける必要はなく、例えば、防眩層を、反射防止層やハードコート層にその機能を持たせることにより、例えば反射防止層を反射防止層及び防眩層として機能させることにより設けても良い。   In the polarizing plate of the present invention, it is preferable that at least one layer of a hard coat layer, an antiglare layer and an antireflection layer is provided on the surface of the protective film on the other side of the polarizing plate. FIG. 4 shows a cross-sectional structure of an example of the polarizing plate of the present invention having a functional film. That is, when the polarizing plate is used for a liquid crystal display device, it is preferable to provide a functional film such as an antireflection layer on the protective film disposed on the side opposite to the liquid crystal cell. It is preferable to provide at least one layer of a glare layer and an antireflection layer. In addition, it is not necessary to provide each layer as a separate layer. For example, by providing the antiglare layer with the function of the antireflection layer or the hard coat layer, for example, the antireflection layer can be used as the antireflection layer and the antiglare layer. It may be provided by functioning.

(反射防止層)
本発明では、保護膜上に少なくとも光散乱層と低屈折率層がこの順で積層されてなる反射防止層又は保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられる。以下にそれらの好ましい例を記載する。
(Antireflection layer)
In the present invention, the intermediate refractive index layer, the high refractive index layer, and the low refractive index layer are arranged in this order on the antireflection layer or protective film in which at least the light scattering layer and the low refractive index layer are laminated in this order on the protective film. The antireflection layer laminated with is preferably used. Preferred examples thereof are described below.

保護膜上に光散乱層と低屈折率層を設けた反射防止層の好ましい例について述べる。
光散乱層には、マット粒子が分散されているのが好ましく、光散乱層のマット粒子以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.20〜1.49の範囲にあることが好ましい。本発明において光散乱層は、防眩性とハードコート性を兼ね備えており、1層でもよいし、複数層、例えば2層〜4層で構成されていてもよい。
A preferred example of an antireflection layer in which a light scattering layer and a low refractive index layer are provided on a protective film will be described.
In the light scattering layer, mat particles are preferably dispersed, and the refractive index of the material other than the mat particles in the light scattering layer is preferably in the range of 1.50 to 2.00, and the low refractive index The refractive index of the layer is preferably in the range of 1.20 to 1.49. In the present invention, the light scattering layer has both antiglare properties and hard coat properties, and may be a single layer or a plurality of layers, for example, 2 to 4 layers.

反射防止層は、その表面凹凸形状として、中心線平均粗さRaが0.08〜0.40μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1〜100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0〜5度の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成され、好ましい。また、C光源下での反射光の色味がa*値−2〜2、b*値−3〜3、380nm〜780nmの範囲内での反射率の最小値と最大値の比0.5〜0.99であることで、反射光の色味がニュートラルとなり、好ましい。またC光源下での透過光のb*値が0〜3とすることで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。また、面光源上と本発明の反射防止フィルムの間に120μm×40μmの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。 The antireflection layer has an uneven surface shape with a center line average roughness Ra of 0.08 to 0.40 μm, a 10-point average roughness Rz of 10 times or less of Ra, an average mountain valley distance Sm of 1 to 100 μm, and an uneven depth. Designed so that the standard deviation of the height of the convex part from the part is 0.5 μm or less, the standard deviation of the average mountain valley distance Sm with respect to the center line is 20 μm or less, and the surface with an inclination angle of 0 to 5 degrees is 10% or more. By doing so, sufficient anti-glare properties and a visually uniform matte feeling are achieved, which is preferable. Further, the ratio of the minimum value and the maximum value of the reflectance within the range of a * value −2 to 2, b * value −3 to 3, and 380 nm to 780 nm under the light source C is 0.5. By being -0.99, the color of reflected light becomes neutral, which is preferable. Further, it is preferable that the b * value of the transmitted light under the C light source is 0 to 3, since the yellow color of white display when applied to a display device is reduced. In addition, when a 120 μm × 40 μm grid is inserted between the surface light source and the antireflection film of the present invention and the luminance distribution is measured on the film, the standard deviation of the luminance distribution is 20 or less. Glare when applying the film of the present invention is reduced, which is preferable.

本発明で用いることができる反射防止層は、その光学特性として、鏡面反射率2.5%以下、透過率90%以上、60度光沢度70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%以下であることが最も好ましい。ヘイズ20%〜50%、内部ヘイズ/全ヘイズ値の比が0.3〜1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20%〜50%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5〜5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成され、好ましい。   The antireflective layer that can be used in the present invention suppresses reflection of external light by setting its optical characteristics to a specular reflectance of 2.5% or less, a transmittance of 90% or more, and a 60 degree gloss of 70% or less. This is preferable because visibility is improved. In particular, the specular reflectance is more preferably 1% or less, and most preferably 0.5% or less. Haze 20% to 50%, ratio of internal haze / total haze value 0.3 to 1, haze value after formation of low refractive index layer from haze value up to light scattering layer within 15%, comb width 0 .Transmission image sharpness at 5 mm to 20% to 50%, vertical transmission light / transmittance ratio of 2 degrees from vertical to 1.5 to 5.0, preventing glare on a high-definition LCD panel, Reduction of blurring of characters and the like is achieved, which is preferable.

(低屈折率層)
本発明で用いることができる低屈折率層の屈折率は、好ましくは1.20〜1.49であり、更に好ましくは1.30〜1.44の範囲にある。さらに、低屈折率層は下記式を満たすことが低反射率化の点で好ましい。
(m/4)λ×0.7<n1d1<(m/4)λ×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
(Low refractive index layer)
The refractive index of the low refractive index layer that can be used in the present invention is preferably 1.20 to 1.49, more preferably 1.30 to 1.44. Furthermore, the low refractive index layer preferably satisfies the following formula from the viewpoint of low reflectance.
(M / 4) λ × 0.7 <n1d1 <(m / 4) λ × 1.3
In the formula, m is a positive odd number, n1 is the refractive index of the low refractive index layer, and d1 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength and is a value in the range of 500 to 550 nm.

低屈折率層を形成する素材について以下に説明する。
低屈折率層は、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。フッ素ポリマーとしては動摩擦係数0.03〜0.20、水に対する接触角90〜120°、純水の滑落角が70°以下の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。本発明の偏光板を画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、引張り試験機で測定した場合に500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難く、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
The material for forming the low refractive index layer will be described below.
The low refractive index layer preferably contains a fluorine-containing polymer as a low refractive index binder. The fluorine polymer is preferably a fluorine-containing polymer that is crosslinked by heat or ionizing radiation with a coefficient of dynamic friction of 0.03 to 0.20, a contact angle with water of 90 to 120 °, and a sliding angle of pure water of 70 ° or less. When the polarizing plate of the present invention is mounted on an image display device, the lower the peel strength from a commercially available adhesive tape, the easier it is to peel off after sticking a seal or memo, and 500 gf or less is preferred when measured with a tensile tester. 300 gf or less is more preferable, and 100 gf or less is most preferable. Further, the higher the surface hardness measured with a microhardness meter, the harder it is to scratch, preferably 0.3 GPa or more, more preferably 0.5 GPa or more.

低屈折率層に用いられる含フッ素ポリマーとしてはパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解に引き続く脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。   Examples of the fluorine-containing polymer used in the low refractive index layer include dehydration condensates subsequent to hydrolysis of perfluoroalkyl group-containing silane compounds (for example, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane). In addition, a fluorine-containing copolymer having a fluorine-containing monomer unit and a structural unit for imparting crosslinking reactivity as constituent components can be mentioned.

含フッ素モノマーの具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。   Specific examples of the fluorine-containing monomer include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc. ), A part of (meth) acrylic acid or a fully fluorinated alkyl ester derivative (for example, Biscoat 6FM (manufactured by Osaka Organic Chemicals) or M-2020 (manufactured by Daikin)), a complete or partially fluorinated vinyl ether, and the like. Perfluoroolefins are preferred, and hexafluoropropylene is particularly preferred from the viewpoints of refractive index, solubility, transparency, availability, and the like.

架橋反応性付与のための構成単位としては、グリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。   As structural units for imparting crosslinking reactivity, structural units obtained by polymerization of monomers having a self-crosslinkable functional group in the molecule in advance such as glycidyl (meth) acrylate and glycidyl vinyl ether, carboxyl groups, hydroxy groups, amino acids Polymerization of monomers having a group, a sulfo group, etc. (eg (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc.) The resulting structural unit, a structural unit in which a crosslinking reactive group such as a (meth) acryloyl group is introduced into these structural units by a polymer reaction (for example, an acrylic acid chloride is allowed to act on a hydroxy group). And the like.

また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。   In addition to the above-mentioned fluorine-containing monomer units and structural units for imparting crosslinking reactivity, monomers not containing fluorine atoms can be copolymerized as appropriate from the viewpoints of solubility in solvents and film transparency. There are no particular limitations on the monomer units that can be used in combination. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2) -Ethylhexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl) Vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate etc.), acrylamides (N-tert-butylacrylamide, N- Black hexyl acrylamide), methacrylamides, and acrylonitrile derivatives.

上記のポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。   As described in JP-A-10-25388 and JP-A-10-147739, a curing agent may be appropriately used in combination with the above polymer.

(光散乱層)
光散乱層は、表面散乱および内部散乱の少なくともいずれかによる光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに付与する目的で形成される。従って、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、および必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。また、このような光散乱層を設けることにより、該光散乱層が防眩層としても機能し、偏光板が防眩層を有することになる。
(Light scattering layer)
The light scattering layer is formed for the purpose of imparting to the film a light diffusibility due to at least one of surface scattering and internal scattering and a hard coat property for improving the scratch resistance of the film. Therefore, it is formed including a binder for imparting hard coat properties, matte particles for imparting light diffusibility, and inorganic fillers for increasing the refractive index, preventing crosslinking shrinkage, and increasing the strength as necessary. The In addition, by providing such a light scattering layer, the light scattering layer also functions as an antiglare layer, and the polarizing plate has an antiglare layer.

光散乱層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。薄すぎるとハード性が不足し、厚すぎるとカールや脆性が悪化して加工適性が不足となる。   The thickness of the light scattering layer is preferably 1 to 10 μm and more preferably 1.2 to 6 μm for the purpose of imparting hard coat properties. If it is too thin, the hard property will be insufficient, and if it is too thick, curling and brittleness will deteriorate and the workability will be insufficient.

光散乱層のバインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。   The binder of the light scattering layer is preferably a polymer having a saturated hydrocarbon chain or a polyether chain as the main chain, and more preferably a polymer having a saturated hydrocarbon chain as the main chain. The binder polymer preferably has a crosslinked structure. As the binder polymer having a saturated hydrocarbon chain as a main chain, a polymer of an ethylenically unsaturated monomer is preferable. As the binder polymer having a saturated hydrocarbon chain as the main chain and having a crosslinked structure, a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferable. In order to make the binder polymer have a high refractive index, the monomer structure contains an aromatic ring, at least one atom selected from halogen atoms other than fluorine, sulfur atoms, phosphorus atoms, and nitrogen atoms. You can also choose.

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、上記のエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。   Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di ( (Meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate), pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-si Rhohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), modified ethylene oxide, vinylbenzene and derivatives thereof (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1, 4-divinylcyclohexanone), vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylenebisacrylamide) and methacrylamide. Two or more of these monomers may be used in combination.

高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。   Specific examples of the high refractive index monomer include bis (4-methacryloylthiophenyl) sulfide, vinyl naphthalene, vinyl phenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenyl thioether, and the like. Two or more of these monomers may be used in combination.

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を保護膜上に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。
Polymerization of these monomers having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
Accordingly, a coating liquid containing a monomer having an ethylenically unsaturated group, a photo radical initiator or a thermal radical initiator, mat particles and an inorganic filler is prepared, and the coating liquid is applied onto a protective film and then ionizing radiation or heat. It can be cured by a polymerization reaction to form an antireflection film. As these photo radical initiators, known ones can be used.

ポリエーテルを主鎖として有するポリマーは、多官能エポキシ化合物の開環重合体が好ましい。多官能エポキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を保護膜上に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することができる。
The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
Therefore, a coating liquid containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, matte particles and an inorganic filler is prepared, and the coating liquid is applied onto a protective film and then cured by ionizing radiation or heat polymerization reaction. Thus, an antireflection film can be formed.

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
Instead of or in addition to a monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by reaction of this crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
Examples of the crosslinkable functional group include isocyanate group, epoxy group, aziridine group, oxazoline group, aldehyde group, carbonyl group, hydrazine group, carboxyl group, methylol group and active methylene group. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group may not react immediately but may exhibit reactivity as a result of decomposition.
These binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.

光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が1〜10μm、好ましくは1.5〜7.0μmのマット粒子、例えば無機化合物の粒子または樹脂粒子が含有される。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
For the purpose of imparting antiglare properties, the light scattering layer contains matte particles having an average particle size of 1 to 10 μm, preferably 1.5 to 7.0 μm, such as inorganic compound particles or resin particles, for the purpose of imparting antiglare properties. Is done.
As specific examples of the mat particles, inorganic particles such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles are preferable. Can be mentioned. Of these, crosslinked styrene particles, crosslinked acrylic particles, crosslinked acrylic styrene particles, and silica particles are preferable. The shape of the mat particles can be either spherical or irregular.

また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。   Two or more kinds of mat particles having different particle diameters may be used in combination. It is possible to impart anti-glare properties with mat particles having a larger particle size and to impart other optical characteristics with mat particles having a smaller particle size.

さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。   Furthermore, the particle size distribution of the mat particles is most preferably monodisperse, and the particle sizes of the particles are preferably closer to each other. For example, when a particle having a particle size of 20% or more than the average particle size is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less, more preferably 0.1% of the total number of particles. Or less, more preferably 0.01% or less. Matt particles having such a particle size distribution are obtained by classification after a normal synthesis reaction, and a matting agent having a more preferable distribution can be obtained by increasing the number of classifications or increasing the degree of classification.

上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2となるように光散乱層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
The mat particles are contained in the light scattering layer so that the amount of mat particles in the formed light scattering layer is preferably 10 to 1000 mg / m 2 , more preferably 100 to 700 mg / m 2 .
The particle size distribution of the mat particles is measured by a Coulter counter method, and the measured distribution is converted into a particle number distribution.

光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の10〜90質量%であることが好ましく、より好ましくは20〜80質量%であり、特に好ましくは30〜75質量%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
The light scattering layer is made of an oxide of at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony, in addition to the matte particles, in order to increase the refractive index of the layer. Thus, it is preferable that an inorganic filler having an average particle diameter of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less is contained.
Conversely, in order to increase the difference in refractive index from the mat particles, it is also preferable to use a silicon oxide in order to keep the refractive index of the light scattering layer using the high refractive index mat particles low. The preferred particle size is the same as that of the aforementioned inorganic filler.
Specific examples of the inorganic filler to be used in the light scattering layer, TiO 2, ZrO 2, Al 2 O 3, In 2 O 3, ZnO, SnO 2, Sb 2 O 3, ITO and SiO 2 and the like. TiO 2 and ZrO 2 are particularly preferable from the viewpoint of increasing the refractive index. The surface of the inorganic filler is preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface is preferably used.
The addition amount of these inorganic fillers is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 30 to 75% by mass with respect to the total mass of the light scattering layer.
Such a filler does not scatter because the particle size is sufficiently smaller than the wavelength of light, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.

光散乱層のバインダーおよび無機フィラーの混合物のバルクの屈折率は、1.50〜2.00であることが好ましく、より好ましくは1.51〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。   The bulk refractive index of the mixture of binder and inorganic filler in the light scattering layer is preferably 1.50 to 2.00, more preferably 1.51 to 1.80. In order to make the refractive index within the above range, the kind and amount ratio of the binder and the inorganic filler may be appropriately selected. How to select can be easily known experimentally in advance.

光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を光散乱層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。   In order to ensure surface uniformity such as uneven coating, uneven drying, point defects, etc., the light scattering layer should be coated with either a fluorine-based surfactant or a silicone-based surfactant, or both for forming the light scattering layer. Contained in the composition. In particular, a fluorine-based surfactant is preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects of the antireflection film of the present invention appears in a smaller addition amount. The purpose is to increase productivity by giving high-speed coating suitability while improving surface uniformity.

次に保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層された反射防止層について述べる。
保護膜上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止層は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>保護膜の屈折率>低屈折率層の屈折率
また、保護膜と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい。
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等に記載の反射防止層が挙げられる。
また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止層のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
Next, an antireflection layer in which a middle refractive index layer, a high refractive index layer, and a low refractive index layer are laminated in this order on the protective film will be described.
The antireflection layer comprising at least a middle refractive index layer, a high refractive index layer, and a low refractive index layer (outermost layer) in order on the protective film is designed to have a refractive index satisfying the following relationship. .
Refractive index of high refractive index layer> refractive index of medium refractive index layer> refractive index of protective film> refractive index of low refractive index layer Further, a hard coat layer may be provided between the protective film and the middle refractive index layer. . Furthermore, it may consist of a medium refractive index hard coat layer, a high refractive index layer and a low refractive index layer.
Examples thereof include antireflection layers described in JP-A-8-122504, JP-A-8-110401, JP-A-10-300902, JP-A-2002-243906, JP-A-2000-11706, and the like.
Other functions may be imparted to each layer, for example, an antifouling low refractive index layer or an antistatic high refractive index layer (eg, JP-A-10-206603, JP-A-2002). -243906 publication etc.) etc. are mentioned.
The haze of the antireflection layer is preferably 5% or less, more preferably 3% or less. Further, the strength of the film is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400.

(高屈折率層および中屈折率層)
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物微粒子及びマトリックスバインダーを少なくとも含有する硬化膜から成る。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(特開2001−166104号公報等)、特定の分散剤併用(例、特開平11−153703号公報、米国特許第6210858号明細書、特開2002−277609号公報等)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に好ましい材料としては、ラジカル重合性及びカチオン重合性の少なくともいずれかの重合性基を2個以上有する多官能性化合物含有組成物、加水分解性基を含有する有機金属化合物を含有する組成物、及びその部分縮合体を含有する組成物から選ばれる少なくとも1種の組成物が挙げられる。
例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
(High refractive index layer and medium refractive index layer)
The layer having a high refractive index of the antireflection film is composed of a cured film containing at least an inorganic compound fine particle having a high refractive index having an average particle diameter of 100 nm or less and a matrix binder.
Examples of the high refractive index inorganic compound fine particles include inorganic compounds having a refractive index of 1.65 or more, preferably those having a refractive index of 1.9 or more. Examples thereof include oxides such as Ti, Zn, Sb, Sn, Zr, Ce, Ta, La, and In, and composite oxides containing these metal atoms.
In order to obtain such fine particles, the surface of the particles is treated with a surface treatment agent (for example, silane coupling agents, etc .: JP-A Nos. 11-295503, 11-153703, 2000-9908). Gazette, anionic compound or organometallic coupling agent: JP 2001-310432 A, a core-shell structure with high refractive index particles as a core (JP 2001-166104 A, etc.), specific dispersion (For example, JP-A-11-153703, US Pat. No. 6,210,858, JP-A-2002-277609, etc.) and the like.
Examples of the material forming the matrix include conventionally known thermoplastic resins and curable resin films.
More preferable materials include a polyfunctional compound-containing composition having at least two polymerizable groups of at least one of radically polymerizable and cationically polymerizable, a composition containing an organometallic compound containing a hydrolyzable group, And at least one composition selected from compositions containing a partial condensate thereof.
Examples thereof include compounds described in JP-A Nos. 2000-47004, 2001-315242, 2001-31871, and 2001-296401.

また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。また、厚さは5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
A curable film obtained from a colloidal metal oxide obtained from a hydrolyzed condensate of metal alkoxide and a metal alkoxide composition is also preferred. For example, it describes in Unexamined-Japanese-Patent No. 2001-293818.
The refractive index of the high refractive index layer is preferably 1.70 to 2.20. The thickness of the high refractive index layer is preferably 5 nm to 10 μm, and more preferably 10 nm to 1 μm.
The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.50 to 1.70. The thickness is preferably 5 nm to 10 μm, and more preferably 10 nm to 1 μm.

(低屈折率層)
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55であることが好ましい。より好ましくは1.30〜1.50である。
低屈折率層は、耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
例えば、特開平9−222503号公報明細書段落番号[0018]〜[0026]、同11−38202号公報明細書段落番号[0019]〜[0030]、特開2001−40284号公報明細書段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋又は重合性基を有する含フッ素ポリマー及びシロキサンポリマーの少なくともいずれかの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより低屈折率層を形成することが好ましい。
又、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
(Low refractive index layer)
The low refractive index layer is formed by sequentially laminating on the high refractive index layer. The refractive index of the low refractive index layer is preferably 1.20 to 1.55. More preferably, it is 1.30-1.50.
The low refractive index layer is preferably constructed as an outermost layer having scratch resistance and antifouling properties. As means for greatly improving the scratch resistance, it is effective to impart slipperiness to the surface, and conventionally known thin film layer means such as introduction of silicone or introduction of fluorine can be applied.
The fluorine-containing compound is preferably a compound containing a crosslinkable or polymerizable functional group containing fluorine atoms in the range of 35 to 80% by mass.
For example, paragraph numbers [0018] to [0026] of Japanese Patent Application Laid-Open No. 9-222503, paragraph numbers [0019] to [0030] of Japanese Patent Application Laid-Open No. 11-38202, and paragraph numbers of Japanese Patent Application Laid-Open No. 2001-40284. [0027] to [0028], JP-A 2000-284102, and the like.
The refractive index of the fluorine-containing compound is preferably 1.35 to 1.50. More preferably, it is 1.36-1.47.
The silicone compound is a compound having a polysiloxane structure, preferably containing a curable functional group or a polymerizable functional group in the polymer chain and having a crosslinked structure in the film. For example, reactive silicone (eg, Silaplane (manufactured by Chisso Corporation), silanol group-containing polysiloxane (Japanese Patent Laid-Open No. 11-258403, etc.) and the like can be mentioned.
The crosslinking or polymerization reaction of at least one of the fluorine-containing polymer having a crosslinking or polymerizable group and the siloxane polymer is performed simultaneously with the application of the coating composition for forming the outermost layer containing a polymerization initiator, a sensitizer, or the like. It is preferable to form the low refractive index layer by light irradiation or heating after coating.
Also preferred is a sol-gel cured film in which an organometallic compound such as a silane coupling agent and a specific fluorine-containing hydrocarbon group-containing silane coupling agent are cured by a condensation reaction in the presence of a catalyst.
For example, a polyfluoroalkyl group-containing silane compound or a partially hydrolyzed condensate thereof (Japanese Patent Laid-Open Nos. 58-142958, 58-147483, 58-147484, Japanese Patent Laid-Open Nos. 9-157582, 11) -106704), silyl compounds containing a poly "perfluoroalkyl ether" group which is a fluorine-containing long chain group (Japanese Patent Application Laid-Open Nos. 2000-117902, 2001-48590, 2002) 53804), and the like.
The low refractive index layer has an average primary particle diameter of 1 to 150 nm such as a filler (for example, silicon dioxide (silica), fluorine-containing particles (magnesium fluoride, calcium fluoride, barium fluoride)) as an additive other than the above. Low refractive index inorganic compounds, organic fine particles described in paragraphs [0020] to [0038] of JP-A-11-3820, etc.), silane coupling agents, slip agents, surfactants, and the like can be contained.
When the low refractive index layer is located below the outermost layer, the low refractive index layer may be formed by a vapor phase method (vacuum deposition method, sputtering method, ion plating method, plasma CVD method, etc.). The coating method is preferable because it can be manufactured at a low cost.
The film thickness of the low refractive index layer is preferably 30 to 200 nm, more preferably 50 to 150 nm, and most preferably 60 to 120 nm.

(ハードコート層)
ハードコート層は、反射防止層を設けた保護膜に物理強度を付与するために、保護膜の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性化合物における硬化性官能基としては、光重合性官能基が好ましい。又加水分解性官能基含有の有機金属化合物や有機アルコキシシリル化合物も好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。
ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層を兼ねることもできる。
ハードコート層の膜厚は、用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
(Hard coat layer)
The hard coat layer is provided on the surface of the protective film in order to impart physical strength to the protective film provided with the antireflection layer. In particular, it is preferably provided between the transparent support and the high refractive index layer. The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a light and / or heat curable compound. The curable functional group in the curable compound is preferably a photopolymerizable functional group. Also, hydrolyzable functional group-containing organometallic compounds and organoalkoxysilyl compounds are preferred.
Specific examples of these compounds are the same as those exemplified for the high refractive index layer. Specific examples of the composition of the hard coat layer include those described in JP-A Nos. 2002-144913, 2000-9908, and WO 00/46617.
The high refractive index layer can also serve as a hard coat layer. In such a case, it is preferable to form fine particles dispersed in the hard coat layer using the method described for the high refractive index layer.
The hard coat layer can also serve as an antiglare layer containing particles having an average particle size of 0.2 to 10 μm and imparted with an antiglare function (antiglare function).
The film thickness of the hard coat layer can be appropriately designed depending on the application. The film thickness of the hard coat layer is preferably 0.2 to 10 μm, more preferably 0.5 to 7 μm.
The strength of the hard coat layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400. Further, in the Taber test according to JIS K5400, the smaller the wear amount of the test piece before and after the test, the better.

(反射防止層の他の層)
さらに、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
(Other layers of antireflection layer)
Further, a forward scattering layer, a primer layer, an antistatic layer, an undercoat layer, a protective layer, and the like may be provided.

(帯電防止層)
帯電防止層を設ける場合には体積抵抗率が10-8(Ωcm-3)以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8(Ωcm-3)の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色しているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が着色してしまい好ましくない。着色のない金属酸化物を形成する金属としてZn,Ti,Sn,Al,In,Si,Mg,Ba,Mo,W,又はVをあげることができ、これらを主成分とした金属酸化物を用いることが好ましい。具体的な例としては、ZnO,TiO2,SnO2,Al23,In23,SiO2,MgO,BaO,MoO3,WO3,V25等、あるいはこれらの複合酸化物がよく、特にZnO,TiO2,及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl,In等の添加物、SnO2に対してはSb,Nb,ハロゲン元素等の添加、またTiO2に対してはNb,Ta等の添加が効果的である。更にまた、特公昭59−6235号公報に記載の如く、他の結晶性金属粒子あるいは繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用しても良い。尚、体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできないが、体積抵抗値で10-8(Ωcm-3)以下の導電性を確保するためには、該導電層が概ね10-10(Ω/□)以下の表面抵抗値を有していればよく更に好ましくは10-8(Ω/□)である。導電層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、本特許に記載の積層フィルムを形成する途中の段階で測定することができる。
(Antistatic layer)
In the case of providing an antistatic layer, it is preferable to impart conductivity with a volume resistivity of 10 −8 (Ωcm −3 ) or less. The use of hygroscopic substances, water-soluble inorganic salts, certain surfactants, cationic polymers, anionic polymers, colloidal silica, etc. can give a volume resistivity of 10 −8 (Ωcm −3 ). There is a problem that dependency is large, and sufficient conductivity cannot be secured at low humidity. Therefore, a metal oxide is preferable as the conductive layer material. Some metal oxides are colored, but using these metal oxides as the conductive layer material is not preferable because the entire film is colored. Zn, Ti, Sn, Al, In, Si, Mg, Ba, Mo, W, or V can be given as the metal that forms a metal oxide without coloring, and a metal oxide containing these as main components is used. It is preferable. Specific examples include ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 3 , WO 3 , V 2 O 5 , or complex oxides thereof. In particular, ZnO, TiO 2 and SnO 2 are preferable. Examples of containing different atoms include, for example, additives such as Al and In for ZnO, addition of Sb, Nb and halogen elements for SnO 2 , and Nb and Ta for TiO 2 . Addition is effective. Furthermore, as described in Japanese Examined Patent Publication No. 59-6235, a material obtained by adhering the above metal oxide to other crystalline metal particles or fibrous materials (for example, titanium oxide) may be used. The volume resistance value and the surface resistance value are different physical properties and cannot be simply compared. However, in order to secure a conductivity of 10 −8 (Ωcm −3 ) or less in volume resistance, It is sufficient that the layer has a surface resistance value of approximately 10 −10 (Ω / □) or less, and more preferably 10 −8 (Ω / □). The surface resistance value of the conductive layer needs to be measured as a value when the antistatic layer is the outermost layer, and can be measured in the middle of forming the laminated film described in this patent.

〔液晶表示装置〕
本発明の液晶表示装置は、本発明の偏光板を用いた液晶表示装置(第1形態)、本発明の偏光板のいずれかをセル上下に2枚用いたVAモード液晶表示装置(第2形態)、及び本発明の偏光板のいずれか1枚をバックライト側に用いたVAモード液晶表示装置(第3形態)である。
すなわち、本発明の偏光板は、液晶表示装置に有利に用いられる。本発明の偏光板は、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti−ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、VAモードに好ましく用いることができる。
[Liquid Crystal Display]
The liquid crystal display device of the present invention includes a liquid crystal display device using the polarizing plate of the present invention (first embodiment) and a VA mode liquid crystal display device using two of the polarizing plates of the present invention above and below the cell (second embodiment). ) And any one of the polarizing plates of the present invention on the backlight side (VA mode liquid crystal display device (third embodiment)).
That is, the polarizing plate of the present invention is advantageously used for a liquid crystal display device. The polarizing plate of the present invention can be used for liquid crystal cells in various display modes. TN (Twisted Nematic), IPS (In-Plane Switching), FLC (Ferroelectric Liquid Crystal, AFLC) Various display modes such as HAN (Hybrid Aligned Nematic) have been proposed. Among these, it can use preferably for VA mode.

VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード、CPAモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶表示装置としては、液晶セル(VAモードセル)およびその両側に配置された二枚の偏光板からなるものが挙げられる。液晶セルは、二枚の電極基板の間に液晶を担持している。図5に本発明の液晶表示装置の一例の断面構造を模式的に示す。
In a VA mode liquid crystal cell, rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
The VA mode liquid crystal cell includes (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Proceedings) 28 (1997) 845 in which the VA mode is converted into a multi-domain (for MVA mode) in order to enlarge the viewing angle. ), (3) Liquid crystal cells (n-ASM mode, CPA mode) in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied 58-59 (1998)) and (4) SURVAVAL mode liquid crystal cells (presented at LCD International 98) are included
Examples of the VA mode liquid crystal display device include a liquid crystal cell (VA mode cell) and two polarizing plates arranged on both sides thereof. The liquid crystal cell carries a liquid crystal between two electrode substrates. FIG. 5 schematically shows a cross-sectional structure of an example of the liquid crystal display device of the present invention.

本発明の透過型液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏光板の保護膜として、本発明に関するセルロースアシレートフィルムが用いられる。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記のセルロースアシレートフィルムを用いてもよいし、あるいは双方の偏光板の(液晶セルと偏光子との間の)二枚の保護膜に、上記のセルロースアシレートフィルムを用いてもよい。液晶セルへの貼り合わせは、本発明に関するセルロースアシレートフィルムをVAセル側にすることが好ましい。一方の偏光板の(液晶セルと偏光子との間の)保護膜のみに上記のセルロースアシレートフィルムを用いた場合、これが、上側偏光板(観察側)、下側偏光板(バックライト側)のどちら側でもよく、機能的には何ら問題がない。ただし、上側偏光板として使用すると機能性膜を観察側(上側)に設ける必要性があり生産得率が下がる可能性があるため、下側偏光板として使用する場合が高いと考えられ、より好ましい実施形態であると考えられる。
そして、光源側及び観察者側の両方を本発明の偏光板で形成したものが第2形態の液晶表示装置であり、光源側のみを本発明の偏光板で形成したものが第3形態の液晶表示装置である。
In another aspect of the transmissive liquid crystal display device of the present invention, a cellulose acylate film according to the present invention is used as a protective film for a polarizing plate disposed between a liquid crystal cell and a polarizer. The cellulose acylate film may be used only for the protective film (between the liquid crystal cell and the polarizer) of one polarizing plate, or between the polarizing plates (between the liquid crystal cell and the polarizer). The cellulose acylate film may be used for the two protective films. For bonding to the liquid crystal cell, the cellulose acylate film according to the present invention is preferably on the VA cell side. When the above cellulose acylate film is used only for the protective film (between the liquid crystal cell and the polarizer) of one polarizing plate, these are the upper polarizing plate (observation side) and the lower polarizing plate (backlight side). Either side can be used and there is no functional problem. However, when used as an upper polarizing plate, it is necessary to provide a functional film on the observation side (upper side), and the production yield may be lowered. It is considered an embodiment.
And what formed both the light source side and the observer side with the polarizing plate of this invention is a liquid crystal display device of 2nd form, and what formed only the light source side with the polarizing plate of this invention is liquid crystal of 3rd form. It is a display device.

液晶セルと反対側に配置される保護膜は、通常のセルレートアシレートフィルムでも良く、たとえば、市販のKC4UX2M(コニカオプト(株)製40μm)、KC5UX(コニカオプト(株)製60μm)、KC80UVSFD(コニカオプト(株)製80μm)、TD80U(富士写真フイルム(株)製80μm)、TF80U(富士写真フイルム(株)製80μm)等が挙げられるが、これらに限定されない。   The protective film disposed on the opposite side of the liquid crystal cell may be a normal cell rate acylate film, for example, commercially available KC4UX2M (40 μm manufactured by Konica Capto), KC5UX (60 μm manufactured by Konica Caputo), KC80UVSFD (80 μm manufactured by Konica Caputo Co., Ltd.), TD80U (80 μm manufactured by Fuji Photo Film Co., Ltd.), TF80U (80 μm manufactured by Fuji Photo Film Co., Ltd.), and the like are exemplified, but not limited thereto.

以下、本発明を実施例に基づき具体的に説明するが、本発明は実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to an Example.

(セルロースアシレートフィルムの作成)
リンターパルプからのセルロース100質量部とセルロースに対して100質量部の氷酢酸を室温にて均一に攪拌混合した混合物を、無水酢酸245重量部、酢酸365重量部および触媒の硫酸15質量部の反応釜中の冷却した混合液中に投入し、47℃で60分間、酢化反応を行った。酢化反応終了時に45.5質量部の加水分解および中和のための酢酸マグネシウム水溶液(30質量%)を加え、過剰に存在する無水酢酸の加水分解と硫酸の中和を行った。その後、反応液を60℃まで昇温しながら、約12.8質量部の熟成のための酢酸マグネシウム水溶液(30質量%)を添加した。その後、水を添加した後、70℃で40分間熟成反応を行った。熟成反応終了後、約20質量部の反応終了後の酢酸マグネシウム水溶液(30質量%)を加え、硫酸を完全に中和して反応を停止した。反応終了後、大過剰の水で沈殿、洗浄、乾燥を行った。
またこの過程で硫酸触媒量、水分量及び熟成時間を調整することで全置換度と6位置換度を調整した。得られたセルロースアシレートの全置換度、6位置換度を表1に示す。
一方、得られたセルロースアセテートの残留水酸基の部分をプロピオネート化するために、セルロースアセテート1000質量部、ピリジン1000質量部、無水プロピオン酸1500質量部、4−(N,N−ジメチルアミノ)ピリジン50質量部を混合し、攪拌しながら100℃1時間加熱し、反応終了後、混合液を大過剰のメタノールに注ぎ沈殿させ、さらにメタノールで洗浄して、得られたフレークを真空乾燥してセルロースアセテートプロピオネートを得た。
また、触媒の硫酸、酢酸マグネシウム量、無水プロピオン酸量を変化させることにより置換度を変化させた。これらの置換度を表1に示した。
(Creation of cellulose acylate film)
Reaction of 245 parts by weight of acetic anhydride, 365 parts by weight of acetic acid, and 15 parts by weight of sulfuric acid as a catalyst, with a mixture of 100 parts by weight of cellulose from linter pulp and 100 parts by weight of glacial acetic acid uniformly mixed with cellulose at room temperature The mixture was put into the cooled mixed liquid in the kettle and subjected to an acetylation reaction at 47 ° C. for 60 minutes. At the end of the acetylation reaction, 45.5 parts by mass of an aqueous magnesium acetate solution (30% by mass) for hydrolysis and neutralization was added to hydrolyze excess acetic anhydride and neutralize sulfuric acid. Thereafter, an aqueous magnesium acetate solution (30% by mass) for aging of about 12.8 parts by mass was added while raising the temperature of the reaction solution to 60 ° C. Then, after adding water, an aging reaction was performed at 70 ° C. for 40 minutes. After completion of the ripening reaction, about 20 parts by mass of the aqueous magnesium acetate solution (30% by mass) after completion of the reaction was added to completely neutralize the sulfuric acid to stop the reaction. After completion of the reaction, precipitation, washing and drying were carried out with a large excess of water.
In this process, the total substitution degree and the 6-position substitution degree were adjusted by adjusting the amount of sulfuric acid catalyst, the amount of water and the aging time. Table 1 shows the total substitution degree and the 6-position substitution degree of the obtained cellulose acylate.
On the other hand, in order to propionate the residual hydroxyl portion of the obtained cellulose acetate, 1000 parts by mass of cellulose acetate, 1000 parts by mass of pyridine, 1500 parts by mass of propionic anhydride, and 50 parts by mass of 4- (N, N-dimethylamino) pyridine. The mixture is heated at 100 ° C. for 1 hour with stirring. After the reaction is complete, the mixture is poured into a large excess of methanol to precipitate it, washed with methanol, and the resulting flakes are vacuum-dried to give cellulose acetate pro. A pionate was obtained.
Further, the degree of substitution was changed by changing the amount of sulfuric acid, magnesium acetate, and propionic anhydride in the catalyst. These substitution degrees are shown in Table 1.

(ドープ作成)
表1に記載したセルロースアシレートに可塑剤(TPP:トリフェニルフォスフェート、BDP:ビフェニルジフェニルフォスフェート)、下記紫外線吸収剤1、2、下記レターデーション発現剤1、2を、塩化メチレン/エタノール(87/13質量部)の混合溶剤にセルロースアシレートの質量濃度が15質量%となるように攪拌しながら投入して加熱攪拌し溶解させた。このとき、同時にセルロースアシレート100質量部に対して微粒子であるマット剤(AEROSIL R972、日本エアロジル(株)製)0.05質量部を投入し、加熱しながら攪拌させた。可塑剤は11.7%、レターデーション発現剤1を3%、レターデーション発現剤2を3%添加した。これら添加割合はセルロースアシレート量を100質量部としたときの質量部でである。
(Dope creation)
A plasticizer (TPP: triphenyl phosphate, BDP: biphenyl diphenyl phosphate), the following ultraviolet absorbers 1 and 2, and the following retardation developing agents 1 and 2 were added to the cellulose acylate described in Table 1 in methylene chloride / ethanol ( 87/13 parts by mass) was mixed with stirring so that the mass concentration of cellulose acylate was 15% by mass, and heated to stir to dissolve. At the same time, 0.05 part by mass of a matting agent (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) as fine particles was added to 100 parts by mass of cellulose acylate and stirred while heating. 11.7% of plasticizer, 3% of retardation developer 1 and 3% of retardation developer 2 were added. These addition ratios are parts by mass when the amount of cellulose acylate is 100 parts by mass.

紫外線吸収剤 1 UV absorber 1

Figure 2007063421
Figure 2007063421

紫外線吸収剤 2 UV absorber 2

Figure 2007063421
Figure 2007063421

レターデーション発現剤 1 Retardation expression agent 1

Figure 2007063421
Figure 2007063421

レターデーション発現剤 2 Retardation developer 2

Figure 2007063421
Figure 2007063421

(流延)
上述のドープをダイからステンレスベルト上にドープ温度30℃で幅1.6mで流延した。ステンレスベルトの裏面から25℃の温度の温水を接触させて温度制御されたステンレスベルト上で1分間乾燥した後、更にステンレスベルトの裏面に15℃の冷水を接触させて15秒間把持した後、ステンレスベルトから剥離した。
(Casting)
The above dope was cast from a die onto a stainless steel belt at a dope temperature of 30 ° C. and a width of 1.6 m. After drying for 1 minute on a stainless steel belt whose temperature is controlled by contacting hot water at a temperature of 25 ° C. from the back surface of the stainless steel belt, 15 ° C. cold water is brought into contact with the back surface of the stainless steel belt and gripping for 15 seconds. Peeled from the belt.

剥離時のウェブ中の残留溶媒量は80質量%であった。ついでD0ゾーンでのフィルム搬送張力を100N/mで搬送を行った。D0終点でのエタノール/(塩化メチレン+エタノール)質量は70%であった。   The amount of residual solvent in the web at the time of peeling was 80% by mass. Subsequently, the film was transported at a film transport tension of 100 N / m in the D0 zone. Ethanol / (methylene chloride + ethanol) mass at the end of D0 was 70%.

次いで一軸延伸テンターを用いて、剥離したウェブの幅手両端をクリップで把持し(工程A)、クリップ間隔を幅手方向に延伸速度250%/minで変化させた(工程B)。このとき、フィルム雰囲気温度は120℃、延伸倍率は1.5倍であった。   Next, both ends of the peeled web in the width direction were held with clips using a uniaxial stretching tenter (Step A), and the clip interval was changed in the width direction at a stretching speed of 250% / min (Step B). At this time, the film atmosphere temperature was 120 ° C., and the draw ratio was 1.5 times.

延伸開始時のフィルム温度は80℃、残留溶媒量は25質量%、延伸終了時、フィルム温度は120℃、残留溶媒量は延伸開始時の60%であり、エタノール/(エタノール+塩化メチレン)質量は93%であった。   The film temperature at the start of stretching is 80 ° C., the residual solvent amount is 25% by mass, the film temperature is 120 ° C. at the end of stretching, the residual solvent amount is 60% at the start of stretching, and ethanol / (ethanol + methylene chloride) mass Was 93%.

次に、フィルムを把持したまま搬送を行った(工程C)。工程Cでは工程Bでの幅に対し、98%となるように緩和を行った。工程A、Bでの塩化メチレン雰囲気濃度は4000ppmであった。また、工程Cでの塩化メチレン雰囲気濃度は飽和濃度の60%以下であった。続いて雰囲気温度を100℃に設定した工程D1でフィルムの乾燥を行い、セルロースアシレートフィルム1〜10を得た。   Next, conveyance was performed while holding the film (step C). In Step C, relaxation was performed so that the width in Step B was 98%. The methylene chloride atmosphere concentration in steps A and B was 4000 ppm. Further, the methylene chloride atmosphere concentration in Step C was 60% or less of the saturation concentration. Subsequently, the film was dried in Step D1 in which the ambient temperature was set to 100 ° C., and cellulose acylate films 1 to 10 were obtained.

得られたセルロースアシレートフィルムをコア径200mmのガラス繊維強化樹脂製のコアに幅1m、長さ100mのフィルムロール状にテーパーテンション法で巻き取った。この際、フィルム端部に温度250℃のエンボスリングを押し当て厚みだし加工を施してフィルム同士の密着を防止した。   The obtained cellulose acylate film was wound around a glass fiber reinforced resin core having a core diameter of 200 mm in a film roll shape having a width of 1 m and a length of 100 m by a taper tension method. At this time, an embossing ring having a temperature of 250 ° C. was pressed against the end of the film to increase the thickness and prevent the films from sticking to each other.

得られたフィルムロールから取り出したフィルム中央部を用いてサンプリングし、ReおよびRthを測定した。結果を表1に示す。膜厚は全て80μmであった。   Sampling was performed using the film central portion taken out from the obtained film roll, and Re and Rth were measured. The results are shown in Table 1. The film thickness was all 80 μm.

本実施例で得られたフィルムのヘイズは、全て0.1〜0.9、マット剤の2次平均粒子径が1.0μm以下であり、80℃90%RHの条件下に48時間静置した場合の質量変化は0〜3%であった。さらに、どのサンプルも光弾性係数は50×10-13cm2/dyne(50×10-122/N)以下であった。 The hazes of the films obtained in this example are all 0.1 to 0.9, the secondary average particle size of the matting agent is 1.0 μm or less, and left for 48 hours under conditions of 80 ° C. and 90% RH. The mass change was 0-3%. Furthermore, all samples had a photoelastic coefficient of 50 × 10 −13 cm 2 / dyne (50 × 10 −12 m 2 / N) or less.

[偏光板1の作製]
厚み75μm、重合度2400のポリビニルアルコール(PVA)フィルムを30℃の温水で40秒間膨潤させた後、ヨウ素濃度0.06質量%、ヨウ化カリウム6質量%の水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%、ヨウ化カリウム3質量%の水溶液中に40℃で60秒浸漬している間に、縦方向が元の長さの5.0倍になるように延伸した。その後、50℃で4分間乾燥させて、偏光子を得た。
[Preparation of Polarizing Plate 1]
A polyvinyl alcohol (PVA) film having a thickness of 75 μm and a polymerization degree of 2400 was swollen with warm water at 30 ° C. for 40 seconds, and then immersed in an aqueous solution having an iodine concentration of 0.06% by mass and potassium iodide of 6% by mass at 30 ° C. for 60 seconds. Then, while immersed in an aqueous solution having a boric acid concentration of 4% by mass and potassium iodide of 3% by mass at 40 ° C. for 60 seconds, the longitudinal direction becomes 5.0 times the original length. Stretched. Then, it was made to dry at 50 degreeC for 4 minute (s), and the polarizer was obtained.

既に作製済みのセルロースアシレートフィルム1乃至10と富士写真フイルム(株)製「TD80U」を、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
前記のように鹸化処理を行ったセルロースアシレートフィルム1乃至10と富士写真フイルム(株)製「TD80U」を前記の偏光子フィルムを挟むようにポリビニルアルコール系接着剤を用いて貼り合せ、さらに70℃で30分間加熱した。この後、幅方向から3cm、カッターにて耳きりをし、有効幅1000mm、長さ50mのロール形態の偏光板1乃至10を作製した。
Already produced cellulose acylate films 1 to 10 and “TD80U” manufactured by Fuji Photo Film Co., Ltd. are immersed in an aqueous solution of sodium hydroxide at 55 ° C. at 1.5 mol / liter, and then sufficiently hydroxylated with water. The sodium was washed away. Then, after being immersed in a diluted sulfuric acid aqueous solution at 0.005 mol / liter at 35 ° C. for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
The cellulose acylate films 1 to 10 subjected to the saponification treatment as described above and “TD80U” manufactured by Fuji Photo Film Co., Ltd. were bonded using a polyvinyl alcohol adhesive so as to sandwich the polarizer film, and further 70 Heat at 30 ° C. for 30 minutes. After this, 3 mm from the width direction was used for cutting with a cutter to produce roll-type polarizing plates 1 to 10 having an effective width of 1000 mm and a length of 50 m.

[粘着剤層の塗工]
(アクリル系ポリマー溶液の作製)
n−ブチルアクリレート(n−BA)75重量部、メチルアクリレート(MA)20重量部、2−ヒドロキシアクリレート(2−HEA)5重量部、酢酸エチル100重量部およびアゾビスイソブチロニトリル(AIBN)0.2重量部を反応容器に入れ、この反応容器内の空気を窒素ガスで置換した後、撹拌下に窒素雰囲気中で、この反応容器を60℃に昇温させ、4時間反応させた。4時間後、トルエン100重量部、α−メチルスチレンダイマー5重量部およびAIBN2重量部を加え、90℃に昇温し、さらに4時間反応させた。反応後、酢酸エチルで希釈し、固形分20%のアクリルポリマー溶液を得た。ポリマー溶液の固形分100重量部にイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン(株)製)1.0重量部を添加し、よく撹拌して粘着剤組成物を得た。
[Coating of adhesive layer]
(Preparation of acrylic polymer solution)
75 parts by weight of n-butyl acrylate (n-BA), 20 parts by weight of methyl acrylate (MA), 5 parts by weight of 2-hydroxyacrylate (2-HEA), 100 parts by weight of ethyl acetate and azobisisobutyronitrile (AIBN) After 0.2 part by weight was put into a reaction vessel and the air in the reaction vessel was replaced with nitrogen gas, the reaction vessel was heated to 60 ° C. in a nitrogen atmosphere with stirring and reacted for 4 hours. After 4 hours, 100 parts by weight of toluene, 5 parts by weight of α-methylstyrene dimer and 2 parts by weight of AIBN were added, the temperature was raised to 90 ° C., and the mixture was further reacted for 4 hours. After the reaction, it was diluted with ethyl acetate to obtain an acrylic polymer solution having a solid content of 20%. 1.0 part by weight of an isocyanate-based crosslinking agent (trade name: Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) was added to 100 parts by weight of the solid content of the polymer solution, and stirred well to obtain an adhesive composition.

(粘着剤付偏光板1〜10の作製)
上記で作製した偏光板1に粘着剤を塗工した。
上記アクリルポリマー溶液を含有する粘着剤組成物を剥離処理したポリエステルフィルム上に25μmの粘着剤層を形成し、それを偏光板(セル側保護フィルム上)に転写し、温度23℃,湿度65%の条件で7日間熟成させて粘着剤付偏光板1〜10を作製した。さらにその粘着剤層の上にセパレートフィルムを貼り付けた。セルと反対側の保護フィルム上にはプロテクトフィルムを貼り付けた。
(Preparation of polarizing plates with adhesive 1 to 10)
An adhesive was applied to the polarizing plate 1 produced above.
A 25 μm pressure-sensitive adhesive layer is formed on a polyester film from which the pressure-sensitive adhesive composition containing the acrylic polymer solution has been peel-treated, and is transferred to a polarizing plate (on the cell-side protective film). Aged for 7 days under the above conditions to produce polarizing plates 1 to 10 with pressure-sensitive adhesive. Further, a separate film was pasted on the adhesive layer. A protective film was affixed on the protective film opposite to the cell.

[偏光板の調湿]
得られた粘着剤付偏光板1を41cm×30cmの大きさで切り出して(辺に対して偏光板の吸収軸が平行になるように切り出した)、プロテクトフィルムを剥離して、25℃60%RHの雰囲気下で48時間調湿した。
[Humidity adjustment of polarizing plate]
The obtained polarizing plate 1 with pressure-sensitive adhesive was cut out in a size of 41 cm × 30 cm (cut out so that the absorption axis of the polarizing plate was parallel to the side), the protective film was peeled off, and 25 ° C. and 60%. The humidity was adjusted for 48 hours in an RH atmosphere.

[パネルへの実装]
(VAパネルへの実装)
VAモードの液晶TV(LC−20C5、シャープ(株)製)の表裏の偏光板および位相差板を剥し、裏側(バックライト側)に実施例で作製・調湿した偏光板1〜10、表側に視野角補償板のない市販の偏光板(HLC2−5618、サンリッツ(株)製)を、ラミネーターロールを用いて貼り付け液晶パネルを作成した。
この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
[Implementation to panel]
(Mounting on VA panel)
Polarizing plates 1 to 10 manufactured and conditioned in the examples on the back side (backlight side) of the VA mode liquid crystal TV (LC-20C5, manufactured by Sharp Corporation). A liquid crystal panel was prepared by laminating a commercially available polarizing plate (HLC2-5618, manufactured by Sanlitz Co., Ltd.) without a viewing angle compensation plate using a laminator roll.
In this case, the absorption axis of the polarizing plate on the viewing side is in the horizontal direction of the panel, the absorption axis of the polarizing plate on the backlight side is in the vertical direction of the panel, and the adhesive material surface is on the liquid crystal cell side.

上記で作製した偏光板を貼り合せた液晶パネルを使用し、液晶TVを組み立て、バックライトを点灯させ、下記のように表示むらおよびコーナーむらの評価を行った。評価には、20インチの液晶パネルを使用した。結果を実施例1表に示す。
(表示むら評価)
○:表示むらが認められない
△:表示むらがやや認められる
×:明らかに表示むらが認められる
Using the liquid crystal panel on which the polarizing plate produced above was bonded, a liquid crystal TV was assembled, the backlight was turned on, and display unevenness and corner unevenness were evaluated as follows. For the evaluation, a 20-inch liquid crystal panel was used. The results are shown in Example 1 table.
(Display unevenness evaluation)
○: Display unevenness is not recognized △: Display unevenness is slightly recognized ×: Display unevenness is clearly recognized

(光漏れ評価)
上記で作製した偏光板を貼り合せた液晶パネルを使用し、液晶TVを組み立て、50℃95%150時間サーモ、もしくは80℃Dry150時間サーモを行った。サーモ後、25℃60%の環境に放置し、50℃95%サーモを行った試料は24時間後、80℃dryサーモを行った試料は1時間後にバックライトを点灯させ、下記のように光漏れの評価を行った。評価には、20インチの液晶パネルを使用した。結果を実施例1表に示す。
(Light leakage evaluation)
Using the liquid crystal panel on which the polarizing plate produced above was bonded, a liquid crystal TV was assembled, and a 50 ° C./95% 150 hour thermo or 80 ° C. Dry 150 hour thermo was performed. After the thermo, the sample was left in an environment of 25 ° C 60%, and the sample subjected to 50 ° C 95% thermo was turned on 24 hours later, and the sample subjected to 80 ° C dry thermo was turned on 1 hour later. Leakage was evaluated. For the evaluation, a 20-inch liquid crystal panel was used. The results are shown in Example 1 table.

(光漏れ(コーナーむら)評価)
○:4隅の光漏れがない
△:4隅のうち、1〜3箇所に光漏れがある
×:4隅に光漏れがある
(Evaluation of light leakage (corner unevenness))
○: No light leakage at the four corners Δ: Light leakage at one to three of the four corners ×: Light leakage at the four corners

Figure 2007063421
Figure 2007063421

本発明の構成であるセルロースアシレートを用いることで表示むらおよび経時での光漏れの少ない偏光板を得ることができる。   By using the cellulose acylate of the present invention, a polarizing plate with little display unevenness and light leakage over time can be obtained.

実施例2
(残留溶媒量変化)
実施例1においてフィルム1の作成時に延伸開始時の残留溶媒量を実施例2表に示すように変化させてフィルム21〜27を作成した。得られたフィルムを用いて、実施例1同様に表示むらおよびコーナーむらのテストを行い、結果を実施例2表に示した。
延伸開始時の残留溶媒量を本発明の範囲内でフィルムを作成することにより、表示むらおよび経時での光漏れの少ない偏光板が得られることがわかる。
Example 2
(Residual solvent amount change)
In Example 1, when the film 1 was produced, the amount of residual solvent at the start of stretching was changed as shown in Table 2 to produce films 21 to 27. Using the obtained film, display unevenness and corner unevenness tests were conducted in the same manner as in Example 1, and the results are shown in Table 2 of Example 2.
It can be seen that a polarizing plate with less display unevenness and light leakage over time can be obtained by forming a film with the residual solvent amount at the start of stretching within the range of the present invention.

Figure 2007063421
Figure 2007063421

実施例3
実施例1のフィルム1の作成においてフィルム作成時のD0終点でのフィルム搬送張力を実施例表3に示すように変化させ、フィルム31〜35を作成した。実施例1同様に偏光板および液晶パネルを作成し、実施例1と同様に表示ムラおよびコーナーむら評価を行った。
Example 3
In the production of the film 1 of Example 1, the film conveyance tension at the D0 end point at the time of film production was changed as shown in Example Table 3, and films 31 to 35 were produced. A polarizing plate and a liquid crystal panel were prepared in the same manner as in Example 1, and display unevenness and corner unevenness were evaluated in the same manner as in Example 1.

Figure 2007063421
Figure 2007063421

実施例3表において、延伸開始時の搬送張力を本発明の範囲内にすることで、サーモ後のコーナーむらおよび表示むらが少なく、本発明の効果が顕著であった。理由は明確ではないが、本発明の範囲内で製造することによりフィルムの均一性が向上し、コーナーむらおよび表示むらが良化すると考えられる。   In Table 3 of Example 3, by setting the transport tension at the start of stretching within the range of the present invention, the corner unevenness and display unevenness after the thermostat were small, and the effect of the present invention was remarkable. Although the reason is not clear, it is considered that the uniformity of the film is improved and the corner unevenness and the display unevenness are improved by manufacturing within the scope of the present invention.

実施例4
実施例1中のフィルム1作成において、D0終点における貧溶媒含量を実施例4表に示すように変化させ、フィルム41〜47を作成した。また実施例1と同様にして偏光板を作成した。
Example 4
In the film 1 preparation in Example 1, the poor solvent content in D0 end point was changed as shown in the Example 4 table | surface, and the films 41-47 were created. A polarizing plate was prepared in the same manner as in Example 1.

Figure 2007063421
Figure 2007063421

D0終了時の貧溶媒含有量を本発明の範囲内にすることにより、表示むらおよびコーナーむらの認められない偏光板が得られることがわかり、本発明の効果が顕著であった。   It was found that by setting the content of the poor solvent at the end of D0 within the range of the present invention, a polarizing plate in which display unevenness and corner unevenness were not obtained was obtained, and the effect of the present invention was remarkable.

実施例5
延伸開始時の残留溶媒量B0(質量%)、フィルム温度、延伸終了時のフィルム温度、および延伸開始時と終了時の残留溶媒量の残留溶媒量比(B1/B0)を実施例5表のように変化させた以外は、実施例1のフィルム1の作成と同様にして、フィルム51〜58を作成し、実施例1同様にして偏光板および液晶パネルを作成した。
実施例1同様にコーナーむらおよび表示むらの評価を行い、結果を実施例5表にまとめた。
Example 5
Table 5 shows the residual solvent amount B0 (mass%) at the start of stretching, the film temperature, the film temperature at the end of stretching, and the residual solvent amount ratio (B1 / B0) of the residual solvent amount at the start and end of stretching. Except for the above changes, films 51 to 58 were produced in the same manner as in the production of film 1 in Example 1, and a polarizing plate and a liquid crystal panel were produced in the same manner as in Example 1.
Corner unevenness and display unevenness were evaluated in the same manner as in Example 1, and the results are summarized in Table 5 of Example 5.

Figure 2007063421
Figure 2007063421

延伸時の工程条件を本発明の範囲内にすることにより、コーナーむらおよび表示ムラにすぐれた偏光板を得ることができる。   By setting the process conditions at the time of stretching within the range of the present invention, a polarizing plate having excellent corner unevenness and display unevenness can be obtained.

実施例6
延伸開始時の残留溶媒量B0(質量%)、フィルム温度、延伸終了時のフィルム温度、延伸開始時と終了時における残留溶媒量比(B1/B0)、および残留溶媒における貧溶媒含有量を実施例6表のように変化させた以外は、実施例1のフィルム1の作成と同様にして、フィルム61〜65を作成し、実施例1同様に偏光板および液晶パネルを作成した。実施例1同様に表示むらおよびコーナーむらの評価を行い、結果を実施例6表にまとめた。
延伸時の工程条件を本発明の範囲内にすることにより、コーナーむらおよび表示むらにすぐれた偏光板を得ることができる。
Example 6
Residual solvent amount B0 (mass%) at the start of stretching, film temperature, film temperature at the end of stretching, residual solvent amount ratio (B1 / B0) at the start and end of stretching, and poor solvent content in the residual solvent Example 6 Films 61 to 65 were produced in the same manner as in the production of the film 1 of Example 1 except that the amount was changed as shown in Table. A polarizing plate and a liquid crystal panel were produced in the same manner as in Example 1. Display unevenness and corner unevenness were evaluated in the same manner as in Example 1, and the results are summarized in Table 6 of Example 6.
By setting the process conditions at the time of stretching within the range of the present invention, a polarizing plate excellent in corner unevenness and display unevenness can be obtained.

Figure 2007063421
Figure 2007063421

実施例7
フィルム雰囲気温度、および延伸開始時(B2)と終了時(B3)の残留溶媒量比(B3/B2)および工程B終了時の残留溶媒における貧溶媒含有量を実施例7表のように変化させた以外は、実施例1のフィルム1の作成と同様にして、フィルム701〜711を作成し、実施例1同様に偏光板および液晶パネルを作成した。
実施例1同様に表示むらおよびコーナーむらの評価を行い、結果を実施例7表にまとめた。延伸時の工程条件を本発明の範囲内にすることにより、コーナーむらおよび表示むらにすぐれた偏光板を得ることができる。
Example 7
The film atmosphere temperature, the residual solvent amount ratio (B3 / B2) at the start of stretching (B2) and the end of (B3) (B3 / B2), and the poor solvent content in the residual solvent at the end of Step B were changed as shown in Table of Example 7. Except for the above, films 701 to 711 were prepared in the same manner as in the preparation of film 1 of Example 1, and a polarizing plate and a liquid crystal panel were prepared in the same manner as in Example 1.
Display unevenness and corner unevenness were evaluated in the same manner as in Example 1, and the results are summarized in Table 7 of Example 7. By setting the process conditions at the time of stretching within the range of the present invention, a polarizing plate excellent in corner unevenness and display unevenness can be obtained.

Figure 2007063421
Figure 2007063421

実施例8
延伸開始時の残留溶媒量B0(質量%)、フィルム温度、延伸終了時のフィルム温度、延伸開始時と終了時の残留溶媒量比(B1/B0)および延伸速度を実施例表8に示したように変化させた以外は、実施例1のフィルム1の作成と同様にして、フィルム801〜805を作成し、実施例1同様にして偏光板および液晶パネルを作成した。実施例1同様に表示むらおよびコーナーむらの評価を行い、結果を実施例8表にまとめた。
延伸時の工程条件を本発明の範囲内にすることにより、コーナーむらおよび表示むらにすぐれた偏光板を得ることができる。
Example 8
Table 8 shows the residual solvent amount B0 (mass%) at the start of stretching, the film temperature, the film temperature at the end of stretching, the ratio of the residual solvent at the start and end of stretching (B1 / B0), and the stretching speed. Except for the above changes, films 801 to 805 were produced in the same manner as in the production of film 1 in Example 1, and a polarizing plate and a liquid crystal panel were produced in the same manner as in Example 1. Display unevenness and corner unevenness were evaluated in the same manner as in Example 1, and the results are summarized in Table 8 of Example 8.
By setting the process conditions at the time of stretching within the range of the present invention, a polarizing plate excellent in corner unevenness and display unevenness can be obtained.

Figure 2007063421
Figure 2007063421

実施例9
工程A,Bでの良溶媒濃度を変化たフィルムを作成し、実施例1のフィルム1の作成と同様にして、同様にしてフィルム91〜96を作成した。
実施例1と同様に表示むらおよびコーナーむらを評価しその結果を実施例9表にまとめた。
本発明の範囲内でフィルムを作成することにより、表示むらおよびコーナーむらが少ない偏光板が得られることがわかる。
Example 9
Films with different good solvent concentrations in Steps A and B were prepared, and films 91 to 96 were prepared in the same manner as in the preparation of film 1 of Example 1.
Display unevenness and corner unevenness were evaluated in the same manner as in Example 1, and the results are summarized in Table 9 of Example 9.
It can be seen that a polarizing plate with less display unevenness and corner unevenness can be obtained by producing a film within the scope of the present invention.

Figure 2007063421
Figure 2007063421

実施例10
実施例1中のフィルム1作成において、延伸倍率を変化させたフィルム1011〜1017を作成し、実施例1同様にして偏光板および液晶パネルを作成した。これらの試料を実施例1同様にして表示むらおよびコーナーむらを評価した。
延伸倍率を本発明の範囲内にすることで、表示むらおよびコーナーむらの小さい偏光板が作成できることがわかる。
Example 10
In the production of the film 1 in Example 1, films 1011 to 1017 having different draw ratios were produced, and a polarizing plate and a liquid crystal panel were produced in the same manner as in Example 1. The display unevenness and corner unevenness of these samples were evaluated in the same manner as in Example 1.
It can be seen that a polarizing plate with small display unevenness and corner unevenness can be produced by setting the draw ratio within the range of the present invention.

Figure 2007063421
Figure 2007063421

延伸工程Bにおける延伸角度を示す図である。It is a figure which shows the extending | stretching angle in the extending process B. FIG. 延伸工程Bおよび延伸工程B前後の工程を示す概略図の一例である。It is an example of the schematic diagram which shows the process before and behind the extending process B and the extending process B. 本発明の偏光板の一例の断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of an example of the polarizing plate of this invention. 本発明の偏光板の別の例の断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of another example of the polarizing plate of this invention. 本発明の液晶表示装置の一例の断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of an example of the liquid crystal display device of this invention.

符号の説明Explanation of symbols

1,11,21 偏光子
2,12.22 片側の保護膜(液晶セル側に配置される)
3,13,23 反対側の保護膜
4,14,24 粘着剤層
5,15 機能性膜(ハードコート層、防眩層、反射防止層)
6,16,26 粘着剤付偏光板
9 液晶セル用ガラス
31 液晶
32,33 液晶セル用ガラス
34 液晶セル(VAモードセル)
1,11,21 Polarizer 2,12.22 One side protective film (disposed on the liquid crystal cell side)
3, 13, 23 Protective film 4, 14, 24 on opposite side Adhesive layer 5, 15 Functional film (hard coat layer, antiglare layer, antireflection layer)
6, 16, 26 Polarizing plate with adhesive 9 Liquid crystal cell glass 31 Liquid crystal 32, 33 Liquid crystal cell glass 34 Liquid crystal cell (VA mode cell)

Claims (16)

フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3、DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを搬送する工程D0、幅手の端部把持する工程A、幅手方向に延伸する工程Bを有し、
延伸開始(工程B開始)時の下記一般式(1)で表されるフィルムの残留溶媒量が90質量%〜5質量%であることを特徴とするセルロースアシレートフィルムの製造方法。
(I) 2.0≦DS2+DS3+DS6≦3.0
(II) DS6/(DS2+DS3+DS6)≧0.315
一般式(1)
フィルムの残留溶媒量(質量%)=[(M-N)/N]×100
[式中、Mはウェブの測定時点での質量、NはMを測定したウェブを110℃で3時間乾燥させたときの質量である。]
A method for producing a cellulose acylate film in which Rth / Re is 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting the cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group is DS2, DS3, A process D0 for transporting a peeled cellulose acylate film after casting a dope containing a cellulose acylate satisfying the following formulas (I) and (II) when DS6 is adopted, and a process A for gripping the end of the width. , Having a process B extending in the width direction,
A method for producing a cellulose acylate film, wherein the residual solvent amount of the film represented by the following general formula (1) at the start of stretching (start of Step B) is 90% by mass to 5% by mass.
(I) 2.0 ≦ DS2 + DS3 + DS6 ≦ 3.0
(II) DS6 / (DS2 + DS3 + DS6) ≧ 0.315
General formula (1)
Residual solvent amount of film (mass%) = [(MN) / N] × 100
[Wherein, M is the mass at the time of measurement of the web, and N is the mass when the web of which M is measured is dried at 110 ° C. for 3 hours. ]
上記工程D0終点でのフィルム搬送張力が30N/m〜300N/mの範囲であることを特徴とする請求項1記載のセルロースアシレートフィルムの製造方法。   The method for producing a cellulose acylate film according to claim 1, wherein the film transport tension at the end point of the step D0 is in a range of 30 N / m to 300 N / m. 上記工程D0終点で、下記一般式(2)で表されるフィルムの残留溶媒における貧溶媒含量(%)が15質量%〜95質量%であることを特徴とする請求項1または2記載のセルロースアシレートフィルムの製造方法。
一般式(2)
フィルム中の残留溶媒における貧溶媒含有量(%)=[(フィルムの残留溶媒中の貧溶媒の質量)/(フィルムの残留溶媒量中の貧溶媒の質量+良溶媒の質量)
The cellulose according to claim 1 or 2, wherein the poor solvent content (%) in the residual solvent of the film represented by the following general formula (2) is 15 mass% to 95 mass% at the end point of the step D0. A method for producing an acylate film.
General formula (2)
Poor solvent content (%) in residual solvent in film = [(mass of poor solvent in residual solvent of film) / (mass of poor solvent in residual solvent amount of film + mass of good solvent)
フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程B開始時のフィルム残留溶媒量B0%が90質量%〜10質量%であり、該フィルムの温度が30℃〜140℃であり、更に工程B終了時の前記フィルムの温度が70℃〜140℃でありかつ、工程B終了時のフィルムの残留溶媒量をB1%としたときに、B0%とB1%とが、0.4×B0≦B1≦0.8×B0の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose acylate film in the width direction;
The film residual solvent amount B0% at the start of Step B is 90% by mass to 10% by mass, the temperature of the film is 30 ° C to 140 ° C, and the temperature of the film at the end of Step B is 70 ° C to 140 ° C. And when the residual solvent amount of the film at the end of Step B is B1%, B0% and B1% satisfy the relationship of 0.4 × B0 ≦ B1 ≦ 0.8 × B0 A method for producing a cellulose acylate film.
工程B終了時におけるフィルム中の残留溶媒における貧溶媒含有量(%)が15質量%〜95質量%の範囲であることを特徴とする請求項4記載のセルロースアシレートフィルムの製造方法。   The method for producing a cellulose acylate film according to claim 4, wherein the content (%) of the poor solvent in the residual solvent in the film at the end of Step B is in the range of 15% by mass to 95% by mass. フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースアシレートフィルムを幅手方向に延伸する工程Bを有し、
工程Bのフィルム雰囲気温度が110℃〜140℃であり、且つ工程B終了時の該フィルムの残留溶媒量をB3%、工程B開始時の前記フィルムの残留溶媒量をB2%としたとき、B3%とB2%とが0.4×B2≦B3≦0.8×B2の関係を満たすことを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose acylate film in the width direction;
When the film atmosphere temperature in Step B is 110 ° C. to 140 ° C., the residual solvent amount of the film at the end of Step B is B3%, and the residual solvent amount of the film at the start of Step B is B2%, B3 % And B2% satisfy the relationship of 0.4 × B2 ≦ B3 ≦ 0.8 × B2.
工程B終了時におけるフィルム中の残留溶媒における貧溶媒含有量(%)が15質量%〜95質量%であることを特徴とする請求項6に記載のセルロースアシレートフィルムの製造方法。   7. The method for producing a cellulose acylate film according to claim 6, wherein the poor solvent content (%) in the residual solvent in the film at the end of Step B is 15% by mass to 95% by mass. 工程Bにおけるフィルムの幅手方向への下記一般式(3)で表される延伸速度が50%/min〜500%/minであることを特徴とする請求項1〜7のいずれか1項に記載のセルロースアシレートフィルムの製造方法。
一般式(3)
延伸速度(%/min)=[(延伸後幅手寸法/延伸前幅手寸法)−1]×100(%)/延伸に要する時間(min)。
The stretching speed represented by the following general formula (3) in the width direction of the film in step B is 50% / min to 500% / min, according to any one of claims 1 to 7, The manufacturing method of the cellulose acylate film of description.
General formula (3)
Stretching speed (% / min) = [(width dimension after stretching / width dimension before stretching) -1] × 100 (%) / time required for stretching (min).
フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
工程AおよびBにおける雰囲気の良溶媒濃度が、2000ppm以上、飽和蒸気量未満であることを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When DS6 is adopted, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), step A for gripping the width end of the peeled cellulose film, stretching in the width direction Process B, grip relaxation process C,
A method for producing a cellulose acylate film, wherein the good solvent concentration of the atmosphere in steps A and B is 2000 ppm or more and less than a saturated vapor amount.
フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程Bで幅手方向のフィルム延伸倍率が1.1〜2.5の範囲であることを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose film in the width direction,
A process for producing a cellulose acylate film, wherein the film stretch ratio in the width direction in step B is in the range of 1.1 to 2.5.
フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムを幅手方向に延伸する工程Bを有し、
工程B開始前にスリッターによりフィルム端部を切除することを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When it is DS6, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), it has a step B of stretching the peeled cellulose film in the width direction,
A method for producing a cellulose acylate film, wherein a film end is cut with a slitter before the start of step B.
フィルム面内のリターデーションをRe(nm)、厚み方向のリターデーションをRth(nm)とした時にRth/Reが0.8〜3.5であるセルロースアシレートフィルムの製造方法であって、
セルロースを構成するグルコース単位の水酸基が炭素原子数2以上のアシル基で置換され、且つ、グルコース単位の2位、3位、6位におけるそれぞれの水酸基のアシル基による置換度を順にDS2、DS3,DS6としたときに、下記式(I)および(II)を満たすセルロースアシレートを含むドープを流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
工程A、B、Cの間にニュートラルゾーンを設けることを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film having Rth / Re of 0.8 to 3.5 when the retardation in the film plane is Re (nm) and the retardation in the thickness direction is Rth (nm),
The hydroxyl group of the glucose unit constituting cellulose is substituted with an acyl group having 2 or more carbon atoms, and the substitution degree of each hydroxyl group at the 2-position, 3-position, and 6-position of the glucose unit with the acyl group in order is DS2, DS3, When DS6 is adopted, after casting a dope containing cellulose acylate satisfying the following formulas (I) and (II), step A for gripping the width end of the peeled cellulose film, stretching in the width direction Process B, grip relaxation process C,
A method for producing a cellulose acylate film, wherein a neutral zone is provided between steps A, B, and C.
請求項1〜11のいずれかに記載のセルロースアシレートフィルムの製造方法において、前記ドープ流延後、剥離されたセルロースフィルムの幅手の端部を把持する工程A、幅手方向に延伸する工程B、把持緩和工程Cを有し、
且つ、工程A、B、Cの間にニュートラルゾーンを有することを特徴とするセルロースアシレートフィルムの製造方法。
The method for producing a cellulose acylate film according to any one of claims 1 to 11, wherein after the dope casting, a step A for gripping a width end of the peeled cellulose film, a step for stretching in the width direction. B, gripping relaxation process C,
And the manufacturing method of the cellulose acylate film characterized by having a neutral zone between process A, B, and C.
請求項1〜13のいずれかに記載の製造方法で製造されたことを特徴とするセルロースアシレートフィルム。   A cellulose acylate film produced by the production method according to claim 1. 偏光子と該偏光子の両面に保護膜を有してなる偏光板であって、少なくとも一方の保護膜に請求項14に記載のセルロースアシレートフィルムを用いたことを特徴とする偏光板。   A polarizing plate comprising a polarizer and protective films on both sides of the polarizer, wherein the cellulose acylate film according to claim 14 is used for at least one of the protective films. 請求項15に記載の偏光板を具備したことを特徴とする液晶表示装置。   A liquid crystal display device comprising the polarizing plate according to claim 15.
JP2005251743A 2005-08-31 2005-08-31 Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device Pending JP2007063421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251743A JP2007063421A (en) 2005-08-31 2005-08-31 Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251743A JP2007063421A (en) 2005-08-31 2005-08-31 Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2007063421A true JP2007063421A (en) 2007-03-15

Family

ID=37925980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251743A Pending JP2007063421A (en) 2005-08-31 2005-08-31 Method for producing cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2007063421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155555A (en) * 2007-12-27 2009-07-16 Daicel Chem Ind Ltd 6-position highly acetylated cellulose diacetate and process for producing the same
JP2012206342A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Method of forming cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155555A (en) * 2007-12-27 2009-07-16 Daicel Chem Ind Ltd 6-position highly acetylated cellulose diacetate and process for producing the same
US8133990B2 (en) 2007-12-27 2012-03-13 Daicel Chemical Industries, Ltd. 6-position highly acetylated cellulose diacetate and process for producing the same
JP2012206342A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Method of forming cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display device
JP2013050482A (en) * 2011-08-30 2013-03-14 Fujifilm Corp Optical laminated film, and polarizing plate and liquid crystal display device using the same

Similar Documents

Publication Publication Date Title
JP4856989B2 (en) Optical resin film, polarizing plate and liquid crystal display device using the same
JP2006308936A (en) Polarizing plate and liquid crystal display device
JP4628140B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP2007079533A (en) Optical resin film, polarizing plate and liquid crystal display device using the same
JP2007538269A (en) Polarizing plate and liquid crystal display device
JP2008505195A (en) Optical cellulose acylate film, polarizing plate and liquid crystal display device
JP4834444B2 (en) Method for producing cellulose acylate film
JP2006030962A (en) Optical cellulose acylate film, polarizing plate and liquid crystal display device
JP4699783B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
KR20060051547A (en) Polarizing plate and liquid crystal display device
JP2006257380A (en) Method for producing cellulose ester film, cellulose ester film, polarizing plate, and liquid crystal display device
JP2008003126A (en) Polarizing plate, liquid crystal display apparatus and manufacturing method of protection film for polarizing plate
JP2006243132A (en) Polarizing plate and liquid crystal display device
JP2007292944A (en) Liquid crystal display device
JP4900898B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP2007304287A (en) Optical film, polarizing plate using the same and liquid crystal display device
JP5010883B2 (en) Liquid crystal display
JP2006126585A (en) Polarizing plate with adhesive and liquid crystal display
JP2006028479A (en) Optical cellulose acylate film, polarizing plate and liquid crystal display
JP2006091374A (en) Polarizing plate and liquid crystal display
JP2007517234A (en) Polarizing plate and liquid crystal display device
JP2007003788A (en) Optical film, polarizer and liquid crystal display device
JP2008052262A (en) Optical film, production method of optical film, polarizing plate, and liquid crystal display device
JP2006299114A (en) Cellulose acylate film for use in optics, polarizing plate, and liquid crystal display unit
JP2007112870A (en) Method for preparation of cellulose acylate solution, cellulose acylate film for optical use, polarizing plate and liquid crystal display

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126