JP2007063107A - Method for producing carbon nanotube dispersion - Google Patents

Method for producing carbon nanotube dispersion Download PDF

Info

Publication number
JP2007063107A
JP2007063107A JP2005255227A JP2005255227A JP2007063107A JP 2007063107 A JP2007063107 A JP 2007063107A JP 2005255227 A JP2005255227 A JP 2005255227A JP 2005255227 A JP2005255227 A JP 2005255227A JP 2007063107 A JP2007063107 A JP 2007063107A
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon
dimensional
dispersion
constituting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005255227A
Other languages
Japanese (ja)
Other versions
JP4834832B2 (en
Inventor
Fumiji Furuzuki
文志 古月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2005255227A priority Critical patent/JP4834832B2/en
Publication of JP2007063107A publication Critical patent/JP2007063107A/en
Application granted granted Critical
Publication of JP4834832B2 publication Critical patent/JP4834832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and quickly producing a carbon nanotube dispersion in which carbon nanotubes are stable in an isolated dispersed state. <P>SOLUTION: A magnetic substance 5 is allowed to adhere on the surface of a carbon nanotube bundle 1, thereby the magnetic substance 5 covering the carbon nanotube bundle 1 magnetically couples with another magnetic substance 5 covering another carbon nanotube bundle 1. As a result, a carbon nanotube 3 constituting the carbon nanotube bundle 1 is peeled off from the carbon nanotube bundle 1, since a plurality of carbon nanotube bundles 1 pull one another by virtue of magnetic force. The above processes are repeated until all carbon nanotubes 3 are completely dispersed so that a stable carbon nanotube dispersion in an isolated dispersion state is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カーボンナノチューブ分散体の製造方法に関する。   The present invention relates to a method for producing a carbon nanotube dispersion.

カーボンナノチューブ(以下「CNT」と略記する)は、1991年に発見された炭素原子のみから成る炭素の新物質である。CNTは、ナノメートル・オーダーの構造であること、円筒状であること、炭素原子がらせん状に配列すること、など通常の物質にはない特徴をもっている。そのため、CNTは、その電気的特性、引っ張り強度、復元性、熱伝導度などに優れた特徴を示し、様々な応用技術が提案されている。   A carbon nanotube (hereinafter abbreviated as “CNT”) is a new substance of carbon consisting only of carbon atoms discovered in 1991. CNTs have characteristics that are not found in ordinary materials, such as nanometer-order structures, cylindrical shapes, and helical arrangement of carbon atoms. For this reason, CNTs exhibit excellent characteristics such as electrical characteristics, tensile strength, resilience, and thermal conductivity, and various applied technologies have been proposed.

しかし、CNT、特に単層カーボンナノチューブ(以下「SWCNT」と略記する)は、構成原子が全て表面原子であるため、隣接するCNT間のファンデルワールス力による凝集が生じやすく、複数本のCNTから成る強いバンドル構造が形成されてしまうことが知られている。この高い凝集性は、CNTの化学的・物理的操作や、CNTの産業利用への最大の障害となっており、孤立分散したCNTを得るための様々な分散方法が提案されている。なお、ここで「孤立分散する」とは、CNTが1本ずつバラバラになることをいう。   However, CNTs, particularly single-walled carbon nanotubes (hereinafter abbreviated as “SWCNT”), are all surface atoms, and are therefore likely to aggregate due to van der Waals forces between adjacent CNTs. It is known that a strong bundle structure will be formed. This high agglomeration property is the biggest obstacle to chemical and physical operation of CNTs and industrial use of CNTs, and various dispersion methods for obtaining isolated and dispersed CNTs have been proposed. Here, “isolated and dispersed” means that CNTs are separated one by one.

溶液中でCNTを孤立分散する方法としては、まず、超音波処理などの物理的分散処理を行う方法が提案されている。例えば、特許文献1では、アセトンにSWCNTを入れて超音波処理をすることで、SWCNTがアセトン中に分散することが報告されている。   As a method for isolating and dispersing CNTs in a solution, first, a method of performing physical dispersion processing such as ultrasonic treatment has been proposed. For example, Patent Document 1 reports that SWCNT is dispersed in acetone by placing SWCNT in acetone and performing ultrasonic treatment.

次に、超音波処理に加えて、界面活性剤などの物質を溶媒に加え、これらの物質でCNTを覆うことによってCNTの親溶媒性(特に親水性)を高める方法が提案されている。ここで用いられる物質は多種多様であるが、例えば、非特許文献1では、SWCNT凝集体を界面活性剤のドデシル硫酸ナトリウム(SDS)水溶液中に入れることで、疎水性のCNT表面がSDSによって親水性が増し、超音波処理による分散がより効率的になることが報告されている。   Next, in addition to ultrasonic treatment, a method has been proposed in which a substance such as a surfactant is added to a solvent, and the CNT is covered with these substances to enhance the solvophilicity (particularly hydrophilicity) of the CNT. There are a wide variety of substances used here. For example, in Non-Patent Document 1, a hydrophobic CNT surface is made hydrophilic by SDS by placing SWCNT aggregates in an aqueous solution of sodium dodecyl sulfate (SDS) as a surfactant. It has been reported that the properties increase and the dispersion by sonication becomes more efficient.

さらに、親溶媒性を高めるだけではなく、同じ極性を有する分子同士の斥力を利用して、分散したCNT同士が凝集しないようにする方法も提案されている。例えば、特許文献2では、疎水部および正または負の電荷を有する親水部を有する分散剤を使用している。この場合も、分散剤がCNTに吸着することによってCNTの親溶媒性が高まる。さらに、分散剤の各分子には同じ電荷を有する親水部が存在するので、CNT全体が正負のいずれか一方の電荷を帯びるようになり、CNT同士が反発するようになる。
特開2000−86219号公報 特開2005−35810号公報 Michael J. O'Connell et al., Science, 2002, Vol. 297, p.593-596.
Furthermore, a method has been proposed in which not only the solvophilicity is enhanced but also the dispersed CNTs are not aggregated by utilizing the repulsive force between molecules having the same polarity. For example, in Patent Document 2, a dispersant having a hydrophobic part and a hydrophilic part having a positive or negative charge is used. Also in this case, the solvophilicity of the CNT is enhanced by the dispersant adsorbing to the CNT. Further, since each hydrophilic molecule has a hydrophilic portion having the same charge, the entire CNT is charged with either positive or negative charge, and the CNTs repel each other.
JP 2000-86219 A JP 2005-35810 A Michael J. O'Connell et al., Science, 2002, Vol. 297, p.593-596.

しかしながら、従来の方法においては、いずれもCNTの分散に多くの時間を要するという問題がある。その理由を以下に挙げる。   However, all the conventional methods have a problem that it takes a long time to disperse CNTs. The reasons are listed below.

第一に、超音波処理などの物理的分散処理は、CNTの分散過程の間は常に行わなければならないためである。これは、界面活性剤などを用いたとしても同じである。すなわち、界面活性剤など親溶媒性を高めるために用いられる物質は、CNTのバンドル構造を分散させるのに単独では十分な力は備えていないといえる。また、同じ極性を有する分子同士の斥力を利用した方法も超音波処理などは必要であり、これらの分子はバンドルを分散させるというよりは、分散しているCNTが再び凝集しないように維持しているといえる。   First, physical dispersion treatment such as ultrasonic treatment must always be performed during the CNT dispersion process. This is the same even when a surfactant or the like is used. That is, it can be said that a substance such as a surfactant used for improving the solvophilicity does not have sufficient force to disperse the CNT bundle structure. In addition, the method using the repulsive force between molecules having the same polarity also requires sonication, and these molecules maintain the dispersed CNTs so that they do not aggregate again rather than dispersing the bundles. It can be said that.

第二に、得られた分散溶液には、孤立分散したCNTだけでなく、細い(小さい)CNTバンドルも混ざっており、分離精製処理が必要であるためである。分散溶液から孤立分散したCNTを得るためには、高性能の遠心分離機が必要であり、その分離には多くの時間を要する。   Secondly, the obtained dispersion solution contains not only isolated and dispersed CNTs but also thin (small) CNT bundles, which require separation and purification treatment. In order to obtain isolated and dispersed CNTs from the dispersion solution, a high-performance centrifuge is required, and the separation takes a lot of time.

第三に、上記物理的分散処理および分離精製処理は、全てのバンドルが孤立分散するまで繰り返し行わなければならないためである。   Third, the physical dispersion process and separation / purification process must be repeated until all bundles are isolated and dispersed.

また、上記の問題点とは別に、従来の方法においては、分離精製した孤立分散CNTが、CNT間のファンデルワールス力により、再度バンドル構造を形成してしまうという問題もある。すなわち、従来の方法において得られた孤立分散したCNTは、その状態では不安定であり、長期保存には適していない。   In addition to the above problems, in the conventional method, there is also a problem that the isolated and dispersed CNTs form a bundle structure again due to van der Waals force between the CNTs. That is, the isolated and dispersed CNTs obtained by the conventional method are unstable in that state and are not suitable for long-term storage.

本発明はかかる点に鑑みてなされたものであり、CNTが孤立分散状態で安定であるCNT分散体を簡単かつ迅速に製造することができる製造方法を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the manufacturing method which can manufacture CNT dispersion | distribution which CNT is stable in an isolated dispersion state simply and rapidly.

上記目的は、複数のCNTバンドルを構成する各CNTの少なくとも一部分に磁性体を付着させ、前記複数のCNTバンドルのうち、一のCNTバンドルを構成するCNTに付着した磁性体が、隣接する他のCNTバンドルを構成するCNTに付着した磁性体と磁気的に引き合うことにより、前記複数のCNTバンドルを構成する各CNTを孤立分散させることによって達成される。   The object is to attach a magnetic material to at least a part of each CNT constituting a plurality of CNT bundles, and among the plurality of CNT bundles, a magnetic material attached to a CNT constituting one CNT bundle is adjacent to another CNT bundle. This is achieved by isolating and dispersing each CNT constituting the plurality of CNT bundles by magnetically attracting magnetic substances attached to the CNT constituting the CNT bundle.

本発明によれば、CNTが孤立分散状態で安定であるCNT分散体を簡単かつ迅速に製造することができる。   According to the present invention, it is possible to easily and quickly produce a CNT dispersion in which CNTs are stable in an isolated dispersion state.

上記方法では、磁性体間の磁気的引力を利用して分散過程が進行していくので、従来技術のように超音波処理などの物理的分散処理を行う必要がない。   In the above method, since the dispersion process proceeds using the magnetic attractive force between the magnetic bodies, it is not necessary to perform physical dispersion processing such as ultrasonic processing unlike the prior art.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係るCNT分散体は、孤立分散させたいCNT凝集体(バンドル)に磁性体を付着させることで作製する。なお、ここでいう分散体とは、CNTが分散した溶液および分散したCNTの乾燥体をいう。   The CNT dispersion according to the present invention is prepared by attaching a magnetic material to a CNT aggregate (bundle) to be isolated and dispersed. Here, the dispersion means a solution in which CNTs are dispersed and a dried body of dispersed CNTs.

磁性体は、本発明における分散処理において主たる役割を果たす。N極およびS極を有する磁性体は、CNTバンドルの表面上で磁性薄膜を形成する。なお、ここでいう磁性薄膜とは、完全な膜状であることに限定されず、磁性体の粒がCNT表面上に並んでいる状態も指す。   The magnetic material plays a main role in the dispersion treatment in the present invention. A magnetic material having an N pole and an S pole forms a magnetic thin film on the surface of the CNT bundle. The magnetic thin film here is not limited to a perfect film shape, but also refers to a state in which magnetic particles are arranged on the CNT surface.

CNTバンドルを覆う磁性薄膜は、双極子間の強い磁気的相互作用によって、他のCNTバンドルを覆う磁性薄膜と磁気的に結合する傾向がある。この磁気的な力によって混合物中の各CNTバンドルが互いに引っ張り合うことにより、CNTバンドルを構成する各CNTの引き剥がれが起き、新たなCNTバンドルの表面が露出する。新しく露出した表面は、新たに磁気薄膜によって覆われる。以上の反応が、CNTバンドルを構成するCNTが完全に孤立分散するまで繰り返されるので、最終的にはCNTが完全に孤立分散する。   Magnetic thin films covering CNT bundles tend to be magnetically coupled to magnetic thin films covering other CNT bundles due to strong magnetic interactions between dipoles. When the CNT bundles in the mixture are pulled together by this magnetic force, the CNTs constituting the CNT bundle are peeled off, and the surface of the new CNT bundle is exposed. The newly exposed surface is newly covered with a magnetic thin film. Since the above reaction is repeated until the CNTs constituting the CNT bundle are completely isolated and dispersed, finally the CNTs are completely isolated and dispersed.

具体例として、磁性体として四酸化三鉄(FeSO)を使用した場合の分散の仕組みを、図1の模式図を用いて説明する。なお、本発明に係る分散処理法は、この例に限定されない。特に、この例では、磁性体をCNT表面に付着させるのに両親媒性分子を用いているが、磁性体をCNT表面に付着させる方法はこれに限定されない。 As a specific example, a dispersion mechanism in the case where triiron tetroxide (Fe 3 SO 4 ) is used as a magnetic material will be described with reference to the schematic diagram of FIG. The distributed processing method according to the present invention is not limited to this example. In particular, in this example, amphiphilic molecules are used to attach the magnetic substance to the CNT surface, but the method of attaching the magnetic substance to the CNT surface is not limited to this.

(磁性体の付着)
CNTバンドル1と両親媒性分子とを水溶液中で混合し、CNT表面に逆ミセルを形成させる。さらに、この混合溶液中に、硫酸鉄(II)(FeSO・7HO)および塩化鉄(III)(FeCl・6HO)を加え、塩基性環境下で加熱攪拌すると、逆ミセル内で鉄(II)イオン、鉄(III)イオンおよび水酸化物イオンが反応し、逆ミセルを鋳型として四酸化三鉄が成長する。結果として、CNTバンドル1の表面が四酸化三鉄による磁性薄膜で覆われた状態になる。なお、磁性薄膜は、正確には完全な膜状ではなく、図1(A)のように両親媒性分子に覆われた四酸化三鉄の粒5の集まりとなっている。このとき、隣り合う四酸化三鉄の粒5の間で、同じ極性を有する領域が接近すると斥力が働いてしまう。このため、四酸化三鉄の粒5は、図1(A)のようにN極とS極が交互になるように磁性薄膜を構成する。なお、図1では四酸化三鉄の粒5のN極−S極の軸はCNTバンドル1と平行であるが、N極−S極の軸の向きはこれに限定されない。
(Magnetic adhesion)
The CNT bundle 1 and amphiphilic molecules are mixed in an aqueous solution to form reverse micelles on the CNT surface. Furthermore, when iron (II) sulfate (FeSO 4 · 7H 2 O) and iron (III) chloride (FeCl 3 · 6H 2 O) were added to this mixed solution and heated and stirred in a basic environment, Iron (II) ion, iron (III) ion and hydroxide ion react with each other, and triiron tetroxide grows using reverse micelle as a template. As a result, the surface of the CNT bundle 1 is covered with a magnetic thin film made of triiron tetroxide. In addition, the magnetic thin film is not exactly a complete film shape, but is a collection of triiron tetroxide grains 5 covered with amphiphilic molecules as shown in FIG. At this time, if a region having the same polarity approaches between the adjacent triiron tetroxide grains 5, a repulsive force acts. Therefore, the triiron tetroxide grains 5 constitute a magnetic thin film so that the N poles and the S poles are alternated as shown in FIG. In FIG. 1, the axis of the N pole-S pole of the ferrous tetraoxide grain 5 is parallel to the CNT bundle 1, but the direction of the axis of the N pole-S pole is not limited to this.

(分散過程)
CNTバンドル1を覆う磁性薄膜は、双極子間の強い磁気的相互作用によって、他のCNTバンドル1を覆う磁性薄膜と磁気的に結合する。このような双極子間の磁気的相互作用は容易に起こり、静置しておくだけで十分である。このとき、この磁気的な力によって各CNTバンドル1が互いに引っ張り合うことにより、CNTバンドル1を構成する各CNT3の引き剥がしが起き、四酸化三鉄の粒5が吸着していないCNT3が露出する(図1(B))。この新しく露出した表面は、新たに四酸化三鉄の粒5によって覆われる。以上の反応が、CNTバンドル1を構成するCNT3が完全に孤立分散するまで繰り返されるので、最終的にはCNT3が四酸化三鉄の粒5によって完全に孤立分散する(図1(C))。
(Dispersion process)
The magnetic thin film covering the CNT bundle 1 is magnetically coupled to the magnetic thin film covering the other CNT bundle 1 by strong magnetic interaction between the dipoles. Such magnetic interactions between dipoles occur easily and it is sufficient to leave them standing. At this time, the CNT bundles 1 are pulled together by this magnetic force, whereby the CNTs 3 constituting the CNT bundle 1 are peeled off, and the CNTs 3 on which the triiron tetroxide particles 5 are not adsorbed are exposed. (FIG. 1 (B)). This newly exposed surface is newly covered with the ferric tetraoxide grains 5. Since the above reaction is repeated until the CNT 3 constituting the CNT bundle 1 is completely isolated and dispersed, the CNT 3 is finally completely isolated and dispersed by the triiron tetroxide grains 5 (FIG. 1 (C)).

この過程は、磁性体の物理的特性によって自動的に進行するため、従来技術で見られる超音波処理などの物理的分散処理は不必要である。   Since this process automatically proceeds depending on the physical characteristics of the magnetic material, a physical dispersion process such as ultrasonic processing, which is found in the prior art, is unnecessary.

上記磁性体は、強磁性体が好ましく、例えば、四酸化三鉄、コバルト、ニッケル、酸化クロム(IV)、フェライトなどを挙げることができる。なお、CNTバンドル上の磁性薄膜の形成方法は上記方法に限定されず、用いる磁性体によってそれぞれ異なる。   The magnetic material is preferably a ferromagnetic material, and examples thereof include triiron tetroxide, cobalt, nickel, chromium (IV) oxide, and ferrite. In addition, the formation method of the magnetic thin film on a CNT bundle is not limited to the said method, It changes with each magnetic body to be used.

上記両親媒性分子は、水溶液中でも逆ミセルを形成できるのであれば特に限定されない。例えば、コール酸を母核とする3−[(3−コールアミドプロピル)ジメチルアンモニオ]−1−プロパンスルホネート(以下「CHAPS」と略記する)や3−[(3−コールアミドプロピル)ジメチルアンモニオ]−2−ヒドロキシプロパンスルホネート(以下「CHAPSO」と略記する)などを挙げることができる。これらの両親媒性分子は、水溶液中でも逆ミセルを形成でき、かつ、逆ミセルの大きさが小さいので、上記分散方法に用いるのに好適である。   The amphiphilic molecule is not particularly limited as long as it can form reverse micelles even in an aqueous solution. For example, 3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate (hereinafter abbreviated as “CHAPS”) or 3-[(3-cholamidopropyl) dimethylammoni having cholic acid as a nucleus. O] -2-hydroxypropane sulfonate (hereinafter abbreviated as “CHAPSO”). These amphiphilic molecules can form reverse micelles even in an aqueous solution, and since the size of the reverse micelles is small, they are suitable for use in the dispersion method.

上記分散過程を経て得られたCNT分散溶液は、磁性体が付着したCNTが溶解する磁気粘性流体である。この分散溶液を磁気粘性流体として使用するときは、一般的な磁気粘性流体の作製法と同じように、CNTをより凝集させにくくするための界面活性剤をさらにこのCNT分散溶液に加えてもよい。   The CNT dispersion solution obtained through the dispersion process is a magnetorheological fluid in which the CNTs to which the magnetic material is attached dissolves. When this dispersion solution is used as a magnetorheological fluid, a surfactant for making CNTs less likely to aggregate may be added to the CNT dispersion solution in the same manner as a general method for producing a magnetorheological fluid. .

また、上記分散過程を経て得られた分散溶液中のCNTは、洗浄後に乾燥することにより、分散CNTの乾燥体とすることもできる。   In addition, the CNT in the dispersion obtained through the above dispersion process can be made into a dried product of dispersed CNTs by drying after washing.

このように作られたCNT分散体(溶液または乾燥体)は、バンドルを構成していたCNTは孤立分散しているが、それらは磁性体を介して磁気的に結合している。しかし、磁場をかけることなどによってこの磁気的結合を一時的に切り、1本ずつ完全にバラバラにすることは容易である。   In the CNT dispersion (solution or dry body) produced in this way, the CNTs constituting the bundle are isolated and dispersed, but they are magnetically coupled via the magnetic material. However, it is easy to temporarily disconnect this magnetic coupling by applying a magnetic field or the like to completely separate them one by one.

なお、上記分散体の製法では、硬磁性体を用いてCNTを分散させるようにしているが、本発明の原理によれば、軟磁性体でもCNTを分散させることができる。   In the above-described dispersion manufacturing method, CNTs are dispersed using a hard magnetic material. However, according to the principle of the present invention, CNTs can be dispersed even with a soft magnetic material.

例えば、硬磁性体の代わりに軟磁性体で磁性薄膜を形成した場合は、CNT分散過程で混合溶液に磁場をかけることで磁性体に磁力を生じさせればよい。この方法を用いた場合、得られたCNT分散体は磁力を有しないため、それぞれのCNTは磁気的に結合せず、完全にバラバラなものとなる。   For example, when a magnetic thin film is formed of a soft magnetic material instead of a hard magnetic material, a magnetic force may be generated in the magnetic material by applying a magnetic field to the mixed solution in the CNT dispersion process. When this method is used, since the obtained CNT dispersion has no magnetic force, the respective CNTs are not magnetically coupled and are completely disjoint.

(応用例)
本発明によって製造された、CNT分散体(磁気粘性流体を含む)は、様々な物質への塗布または混合が可能である。
(Application examples)
The CNT dispersion (including magnetorheological fluid) produced according to the present invention can be applied to or mixed with various substances.

例えば、本発明に係るCNT分散体をDNAから成る膜に塗布または混合することが可能であり、それを乾燥後、DNAを分解することにより、CNT膜を調製することが可能となる。本発明に係るCNT分散体を用いた場合、従来の分散方法に比べて孤立分散したCNTが再バンドル化しにくいため、従来の分散方法で調整されたCNTよりもより多くのCNTを膜に含有させることができる。また、このようにして得られたCNT膜は、孤立分散したCNTから調製されているので、従来のCNTバンドルを含む溶液から調製された膜と比較して、一本一本のCNT同士の絡み合いが密となる。結果として極めて高強度のCNT膜になる。このような高強度CNT膜は、細胞培養用の基材などとして利用できる。   For example, the CNT dispersion according to the present invention can be applied to or mixed with a film made of DNA, and after drying it, the DNA can be decomposed to prepare a CNT film. When the CNT dispersion according to the present invention is used, isolated CNTs are less likely to be re-bundled as compared to the conventional dispersion method, so that more CNTs are included in the film than the CNTs prepared by the conventional dispersion method. be able to. In addition, since the CNT film thus obtained is prepared from isolated and dispersed CNTs, the CNT films are entangled with each other as compared with a film prepared from a solution containing a conventional CNT bundle. Becomes dense. The result is a very high strength CNT film. Such a high-strength CNT film can be used as a substrate for cell culture.

また、本発明に係るCNT分散体を一方向に力学的に伸展しながら物質に塗布すること、または物質に塗布または混合した後に電場を印加すること、などによって、CNT分散体内のそれぞれのCNTを一方向に配向させることができる。その結果、CNTを塗布または混合した物質に、電気的特性および/または力学的特性を付与することが可能となる。   In addition, by applying the CNT dispersion according to the present invention to a material while dynamically extending in one direction, or applying an electric field after applying or mixing to the material, etc. It can be oriented in one direction. As a result, it is possible to impart electrical properties and / or mechanical properties to the material coated or mixed with CNTs.

さらに、本発明によって得られた、孤立分散したCNTは、凝集状態またはバンドル状態のCNTと比較して柔軟性に優れているため、柔軟性を持つ足場材料として利用できる。例えば、孤立分散したCNTにアパタイトを析出させ、それを足場に骨芽細胞を培養することで、柔軟な骨組織再生基材を提供することができる。   Furthermore, the isolated and dispersed CNTs obtained by the present invention are superior in flexibility as compared with aggregated or bundled CNTs, and therefore can be used as a flexible scaffold material. For example, a flexible bone tissue regeneration substrate can be provided by depositing apatite on isolated and dispersed CNTs and culturing osteoblasts on the CNTs.

また、本発明のCNTの分散方法は、CNTと同様の理由により凝集している0次元/1次元炭素構造体にも適用できる。   The CNT dispersion method of the present invention can also be applied to 0-dimensional / 1-dimensional carbon structures that are aggregated for the same reason as CNTs.

具体的には、0次元(点として表しうる、すなわち概略球状の粒子)の形態を有する炭素構造体として、フラーレン(C60、C70、C82、C90、C100など)など、1次元(線として表しうる、針状、棒状の粒子)の形態を有する炭素構造体として、カーボンナノチューブ、カーボンナノワイヤー、カーボンナノホーン、カーボンナノシート、カーボンナノベルトなど、に対しても本発明に係る分散方法を適用することができる。   Specifically, as a carbon structure having a 0-dimensional form (which can be represented as a point, that is, a substantially spherical particle), fullerene (C60, C70, C82, C90, C100, etc.), etc. The dispersion method according to the present invention can also be applied to carbon nanotubes, carbon nanowires, carbon nanohorns, carbon nanosheets, carbon nanobelts, etc., as carbon structures having the form of (needle-like, rod-like particles). it can.

以下の実施例で、本発明に係るCNT分散方法によって、CNTを分散できることを示す。なお、本発明に係るCNT分散方法は、もちろん以下の実施例に限定されない。   The following examples show that CNTs can be dispersed by the CNT dispersion method according to the present invention. Of course, the CNT dispersion method according to the present invention is not limited to the following examples.

磁性体として四酸化三鉄(Fe)、逆相ミセルを形成するための両親媒性分子としてCHAPSを用いて、SWCNT分散体を調整した。なお、アンモニア水、硫酸鉄(II)および塩化鉄(III)は、四酸化三鉄を合成するために用いた。 A SWCNT dispersion was prepared using triiron tetroxide (Fe 3 O 4 ) as a magnetic material and CHAPS as an amphiphilic molecule for forming reversed-phase micelles. Aqueous ammonia, iron (II) sulfate and iron (III) chloride were used to synthesize triiron tetroxide.

SWCNT(Nano−Lab)0.5gを30%アンモニア水(CHAPS含有:1g/20mL)50mLに入れ、自動乳鉢で練り、混合した。さらに、自動乳鉢で混合しながら、0.7M硫酸鉄(II)(FeSO・7HO)50mLおよび1.2M塩化鉄(III)(FeCl・6HO)60mLを加え、15分間攪拌した。その後、界面活性剤として1%ラウリン酸ナトリウム水溶液を加え、87℃で50分間加熱攪拌することにより、磁気粘性流体を得た。得られた磁気粘性流体中に含まれているSWCNTを洗浄および乾燥することにより、SWCNT分散体を得た。 0.5 g of SWCNT (Nano-Lab) was placed in 50 mL of 30% aqueous ammonia (containing CHAPS: 1 g / 20 mL), kneaded in an automatic mortar, and mixed. Further, while mixing in an automatic mortar, 0.7M iron sulfate (II) (FeSO 4 · 7H 2 O) 50mL , and 1.2M ferric chloride (III) to (FeCl 3 · 6H 2 O) 60mL was added, stirred for 15 minutes did. Thereafter, a 1% sodium laurate aqueous solution was added as a surfactant, and the mixture was heated and stirred at 87 ° C. for 50 minutes to obtain a magnetorheological fluid. The SWCNT contained in the obtained magnetorheological fluid was washed and dried to obtain a SWCNT dispersion.

図2は、SWCNT分散体中のSWCNTの走査型電子顕微鏡像である。スケールバーは、500nmを示している。中央部に写っているSWCNT(矢じり)は、バンドル状ではなく分散していることがわかる。また、SWCNT表面には、四酸化三鉄が付着しているため(矢印)、SWCNTの直径が太くなっている。なお、SWCNTの下に見えるハニカム状のものは、観察用基板(グリッド)である。   FIG. 2 is a scanning electron microscope image of SWCNT in the SWCNT dispersion. The scale bar indicates 500 nm. It can be seen that SWCNTs (arrowheads) shown in the center are not bundled but dispersed. Moreover, since ferric tetroxide is attached to the surface of SWCNT (arrow), the diameter of SWCNT is thick. In addition, the honeycomb-like thing seen under SWCNT is the board | substrate for observation (grid).

本発明によって、CNTが均一に孤立分散した、CNT分散体を提供できるため、例えば、CNTの吸着性を利用した有害物質除去剤、および、CNTの強度、柔軟性を生かしたCNTガラス、CNT細胞培養基材、CNT配向膜、CNT繊維、CNTの物理的特性を生かしたCNT塗料、ならびに電子デバイスなどの多様な用途に向けてCNT材料を提供することができる。   According to the present invention, it is possible to provide a CNT dispersion in which CNTs are uniformly isolated and dispersed. For example, a toxic substance removing agent that utilizes CNT adsorption, and CNT glass and CNT cells that take advantage of CNT strength and flexibility. The CNT material can be provided for various uses such as a culture substrate, a CNT alignment film, CNT fiber, a CNT coating utilizing the physical characteristics of CNT, and an electronic device.

本発明の一実施の形態に係る分散体の製造方法の模式図であって、(A)は、カーボンナノチューブバンドルに磁性体が付着した状態を示す模式図、(B)は、カーボンナノチューブバンドルが分離した直後を示す模式図、(C)は、カーボンナノチューブ分散体の状態を示す模式図BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the manufacturing method of the dispersion which concerns on one embodiment of this invention, Comprising: (A) is a schematic diagram which shows the state which the magnetic body adhered to the carbon nanotube bundle, (B) is a carbon nanotube bundle Schematic diagram showing immediately after separation, (C) is a schematic diagram showing the state of the carbon nanotube dispersion カーボンナノチューブ分散体中のカーボンナノチューブの走査型電子顕微鏡写真Scanning electron micrograph of carbon nanotubes in carbon nanotube dispersion

符号の説明Explanation of symbols

1 カーボンナノチューブバンドル
3 カーボンナノチューブ
5 四酸化三鉄の粒(磁性体)
1 Carbon nanotube bundle 3 Carbon nanotube 5 Triiron tetroxide grains (magnetic material)

Claims (10)

複数のカーボンナノチューブバンドルを構成する各カーボンナノチューブの少なくとも一部分に磁性体を付着させ、前記複数のカーボンナノチューブバンドルのうち、一のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した磁性体が、隣接する他のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した磁性体と磁気的に引き合うことにより、前記複数のカーボンナノチューブバンドルを構成する各カーボンナノチューブを孤立分散させて、分散体を製造する、
カーボンナノチューブ分散体の製造方法。
A magnetic material is attached to at least a part of each carbon nanotube constituting the plurality of carbon nanotube bundles, and among the plurality of carbon nanotube bundles, the magnetic material attached to the carbon nanotube constituting one carbon nanotube bundle is adjacent to another carbon nanotube bundle. By magnetically attracting the magnetic substance attached to the carbon nanotubes constituting the carbon nanotube bundles of the carbon nanotube bundles, the carbon nanotubes constituting the plurality of carbon nanotube bundles are dispersed in isolation to produce a dispersion.
A method for producing a carbon nanotube dispersion.
前記磁性体は、両親媒性分子によって形成された逆ミセルに含まれた状態で、前記カーボンナノチューブに付着する、請求項1記載のカーボンナノチューブ分散体の製造方法。   The method for producing a carbon nanotube dispersion according to claim 1, wherein the magnetic substance is attached to the carbon nanotube in a state of being contained in a reverse micelle formed by an amphiphilic molecule. 前記磁性体は、強磁性体である、請求項1または請求項2記載のカーボンナノチューブ分散体の製造方法。   The method for producing a carbon nanotube dispersion according to claim 1, wherein the magnetic body is a ferromagnetic body. 前記強磁性体は、四酸化三鉄、コバルト、ニッケル、酸化クロム(IV)またはフェライトのいずれかである、請求項3記載のカーボンナノチューブ分散体の製造方法。   The method for producing a carbon nanotube dispersion according to claim 3, wherein the ferromagnetic material is any one of triiron tetroxide, cobalt, nickel, chromium (IV) oxide, or ferrite. 前記両親媒性分子は、水溶液中で逆ミセルを形成する両親媒性分子である、請求項2記載のカーボンナノチューブ分散体の製造方法。   The method for producing a carbon nanotube dispersion according to claim 2, wherein the amphiphilic molecule is an amphiphilic molecule that forms reverse micelles in an aqueous solution. 前記両親媒性分子は、3−[(3−コールアミドプロピル)ジメチルアンモニオ]−1−プロパンスルホネートまたは3−[(3−コールアミドプロピル)ジメチルアンモニオ]−2−ヒドロキシプロパンスルホネートのいずれかである、請求項5記載のカーボンナノチューブ分散体の製造方法。   The amphiphilic molecule is either 3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate or 3-[(3-cholamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate. The method for producing a carbon nanotube dispersion according to claim 5, wherein 複数のカーボンナノチューブバンドルを構成する各カーボンナノチューブの少なくとも一部分に磁性体を付着させ、前記複数のカーボンナノチューブバンドルのうち、一のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した磁性体が、隣接する他のカーボンナノチューブバンドルを構成するカーボンナノチューブに付着した磁性体と磁気的に引き合うことにより、前記複数のカーボンナノチューブバンドルを構成する各カーボンナノチューブを孤立分散させる、
カーボンナノチューブの分散方法。
A magnetic material is attached to at least a part of each carbon nanotube constituting the plurality of carbon nanotube bundles, and among the plurality of carbon nanotube bundles, the magnetic material attached to the carbon nanotube constituting one carbon nanotube bundle is adjacent to another carbon nanotube bundle. Each of the carbon nanotubes constituting the plurality of carbon nanotube bundles is isolated and dispersed by magnetically attracting a magnetic material attached to the carbon nanotubes constituting the carbon nanotube bundle of
A method for dispersing carbon nanotubes.
カーボンナノチューブおよび磁性体を有するカーボンナノチューブ分散体であって、
前記カーボンナノチューブの少なくとも一部に前記磁性体が付着し、前記磁性体同士が磁気的に引き合うことにより、前記カーボンナノチューブが孤立分散している、
カーボンナノチューブ分散体。
A carbon nanotube dispersion having a carbon nanotube and a magnetic material,
The magnetic body adheres to at least a part of the carbon nanotubes, and the carbon bodies are isolated and dispersed by magnetically attracting the magnetic bodies to each other.
Carbon nanotube dispersion.
請求項1から請求項6記載のいずれかの方法を用いて得られたカーボンナノチューブ分散体を含有する磁気粘性流体。   A magnetorheological fluid containing a carbon nanotube dispersion obtained by using the method according to any one of claims 1 to 6. 複数の0次元/1次元炭素構造体の凝集体を構成する各0次元/1次元炭素構造体の少なくとも一部分に磁性体を付着させ、前記複数の0次元/1次元炭素構造体の凝集体のうち、一の0次元/1次元炭素構造体の凝集体を構成する0次元/1次元炭素構造体に付着した磁性体が、隣接する他の0次元/1次元炭素構造体の凝集体を構成する0次元/1次元炭素構造体に付着した磁性体と磁気的に引き合うことにより、前記複数の0次元/1次元炭素構造体の凝集体を構成する各0次元/1次元炭素構造体を孤立分散させて、分散体を製造する、
0次元/1次元炭素構造体分散体の製造方法。
A magnetic material is attached to at least a part of each of the 0-dimensional / 1-dimensional carbon structures constituting the aggregates of the plurality of 0-dimensional / 1-dimensional carbon structures, and the aggregates of the plurality of 0-dimensional / 1-dimensional carbon structures are Among them, the magnetic material attached to the zero-dimensional / one-dimensional carbon structure constituting the aggregate of one zero-dimensional / one-dimensional carbon structure constitutes the aggregate of another adjacent zero-dimensional / one-dimensional carbon structure. Each 0-dimensional / 1-dimensional carbon structure constituting the aggregate of the plurality of 0-dimensional / 1-dimensional carbon structures is isolated by magnetically attracting a magnetic material attached to the 0-dimensional / 1-dimensional carbon structure. Dispersing to produce a dispersion,
A method for producing a zero-dimensional / one-dimensional carbon structure dispersion.
JP2005255227A 2005-09-02 2005-09-02 Method for producing carbon nanotube dispersion Active JP4834832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255227A JP4834832B2 (en) 2005-09-02 2005-09-02 Method for producing carbon nanotube dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255227A JP4834832B2 (en) 2005-09-02 2005-09-02 Method for producing carbon nanotube dispersion

Publications (2)

Publication Number Publication Date
JP2007063107A true JP2007063107A (en) 2007-03-15
JP4834832B2 JP4834832B2 (en) 2011-12-14

Family

ID=37925707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255227A Active JP4834832B2 (en) 2005-09-02 2005-09-02 Method for producing carbon nanotube dispersion

Country Status (1)

Country Link
JP (1) JP4834832B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214177A (en) * 2007-03-05 2008-09-18 Sony Corp Method for producing single layer carbon nanotube, and methohd for producing single layer carbon nanotube-applied device
WO2009028379A1 (en) * 2007-08-31 2009-03-05 Hokkaido University Synthetic fiber, yarn made of synthetic fiber, or fibrous structure each with adherent carbon nanotube and process for producing these
KR100936013B1 (en) * 2009-08-04 2010-01-11 알엠에스테크놀러지(주) Magneto-rheological damping fluid composite
WO2011099617A1 (en) * 2010-02-15 2011-08-18 国立大学法人北海道大学 Carbon nanotube sheet and process for production thereof
US20110210282A1 (en) * 2010-02-19 2011-09-01 Mike Foley Utilizing nanoscale materials as dispersants, surfactants or stabilizing molecules, methods of making the same, and products produced therefrom
CN102649044A (en) * 2012-05-03 2012-08-29 湖南大学 Non-oxidative magnetic multi-wall carbon nanotube and preparation method as well as application thereof
CN107403023A (en) * 2016-04-14 2017-11-28 株式会社新纪元综合顾问 The distributional analysis method of the fibrous material of clava and fibre reinforced concrete
KR20220003901A (en) 2020-07-02 2022-01-11 알엠에스테크놀러지(주) Magneto-Rheological Damping Fluid composition with improved yield strength and apparatus and manufacturing method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
JP2003238126A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Hydrophilic dispersion fluid of carbon nanotube and its manufacturing method
JP2005246538A (en) * 2004-03-03 2005-09-15 Toyo Univ Aggregation control method for material containing magnetic particle by alternating magnetic field

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
JP2003238126A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Hydrophilic dispersion fluid of carbon nanotube and its manufacturing method
JP2005246538A (en) * 2004-03-03 2005-09-15 Toyo Univ Aggregation control method for material containing magnetic particle by alternating magnetic field

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214177A (en) * 2007-03-05 2008-09-18 Sony Corp Method for producing single layer carbon nanotube, and methohd for producing single layer carbon nanotube-applied device
WO2009028379A1 (en) * 2007-08-31 2009-03-05 Hokkaido University Synthetic fiber, yarn made of synthetic fiber, or fibrous structure each with adherent carbon nanotube and process for producing these
KR100936013B1 (en) * 2009-08-04 2010-01-11 알엠에스테크놀러지(주) Magneto-rheological damping fluid composite
JPWO2011099617A1 (en) * 2010-02-15 2013-06-17 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
WO2011099617A1 (en) * 2010-02-15 2011-08-18 国立大学法人北海道大学 Carbon nanotube sheet and process for production thereof
JP5540419B2 (en) * 2010-02-15 2014-07-02 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
US20110210282A1 (en) * 2010-02-19 2011-09-01 Mike Foley Utilizing nanoscale materials as dispersants, surfactants or stabilizing molecules, methods of making the same, and products produced therefrom
US10049783B2 (en) * 2010-02-19 2018-08-14 Mike Foley Utilizing nanoscale materials as dispersants, surfactants or stabilizing molecules, methods of making the same, and products produced therefrom
US11961630B2 (en) 2010-02-19 2024-04-16 Mike Foley Utilizing nanoscale materials and dispersants, surfactants or stabilizing molecules, methods of making the same, and the products produced therefrom
CN102649044A (en) * 2012-05-03 2012-08-29 湖南大学 Non-oxidative magnetic multi-wall carbon nanotube and preparation method as well as application thereof
CN107403023A (en) * 2016-04-14 2017-11-28 株式会社新纪元综合顾问 The distributional analysis method of the fibrous material of clava and fibre reinforced concrete
CN107403023B (en) * 2016-04-14 2021-07-30 株式会社新纪元综合顾问 Rod-shaped body and method for analyzing distribution of fiber material in fiber-reinforced concrete
KR20220003901A (en) 2020-07-02 2022-01-11 알엠에스테크놀러지(주) Magneto-Rheological Damping Fluid composition with improved yield strength and apparatus and manufacturing method using same

Also Published As

Publication number Publication date
JP4834832B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4834832B2 (en) Method for producing carbon nanotube dispersion
Ye et al. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption
Liang et al. Recent developments concerning the dispersion methods and mechanisms of graphene
JP4982734B2 (en) Carbon nanotube dispersion paste, carbon nanotube dispersion solution and method for producing the same
Zhu et al. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field
Jia et al. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process
JP5323263B2 (en) Separation of carbon nanotubes using magnetic particles
TW572846B (en) Carbon nanotube, carbon nanohorn coposite and process
US10971281B2 (en) Conducting polymer composite containing ultra-low loading of graphene
CN1643192A (en) Compositions of suspended carbon nanotubes, methods of making the same, and uses thereof
Hens et al. Nanodiamond-assisted dispersion of carbon nanotubes and hybrid nanocarbon-based composites
KR20150020552A (en) Compositions,methods, and systems for separating carbon-based nanostructures
Luan et al. Improving mechanical properties of PVA based nano composite using aligned single-wall carbon nanotubes
Morales et al. One-step chemical vapor deposition synthesis of magnetic CNT–hercynite (FeAl2O4) hybrids with good aqueous colloidal stability
Li et al. Preparation and characterization of CNTs–SrFe12O19 composites
CN106582533A (en) Amino and thiol-modified graphene/carbon nanotube composite material and preparation method therefor
Huang et al. A facile carboxylation of CNT/Fe3O4 composite nanofibers for biomedical applications
CN106582532B (en) The Graphene/carbon nanotube composite material and preparation method of mercapto modification
KR101835223B1 (en) Fabrication Method of Copper―Carbon Composite Nanomaterials for Anti-biofilm application
CN104399431B (en) Amino-modified and thiol-group-modified magnetic carbon nanotube composite material and preparation method thereof
CN112142039A (en) PMMA-coated magnetic alkynyl carbon nanotube and preparation method thereof
Kharissova et al. Magnetic-graphene-based nanocomposites and respective applications
Lazzeri et al. Carbon-based nanoscience
Liu et al. Preparation and characterization of size-controlled silver nanoparticles decorated multi-walled carbon nanotubes and their electrocatalytic reduction properties for hydrogen peroxide
Jang et al. Influence of shape and size on the alignment of multi-wall carbon nanotubes under magnetic fields

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4834832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250