JP2007059242A - Treated gas discharging device, and surface treatment device equipped therewith - Google Patents

Treated gas discharging device, and surface treatment device equipped therewith Download PDF

Info

Publication number
JP2007059242A
JP2007059242A JP2005244196A JP2005244196A JP2007059242A JP 2007059242 A JP2007059242 A JP 2007059242A JP 2005244196 A JP2005244196 A JP 2005244196A JP 2005244196 A JP2005244196 A JP 2005244196A JP 2007059242 A JP2007059242 A JP 2007059242A
Authority
JP
Japan
Prior art keywords
dielectric
external electrode
processing gas
supply
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005244196A
Other languages
Japanese (ja)
Inventor
Tatsuo Kikuchi
辰男 菊池
Masahiko Uehara
雅彦 上原
Kazuo Kasai
一夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2005244196A priority Critical patent/JP2007059242A/en
Publication of JP2007059242A publication Critical patent/JP2007059242A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treated gas discharging device capable of forming plasma uniformly. <P>SOLUTION: The treated gas discharging device 20 is provided with a tubular outer dielectric 23 having a supply hole 23a formed at the upper part outer peripheral face, and an discharging hole 23b formed in the lower part outer peripheral face, a ground electrode 24 installed and grounded at the outer peripheral face of the outer dielectric 23, a tubular inner dielectric 25 coaxially installed in a tube of the outer dielectric 23 with a fixed spacing to this, an inner electrode 26 installed in a tube of the inner dielectric 25, a high frequency power supply 27 to apply a high frequency electric power between the inner electrode 26 and the ground electrode 24, a rod shaped gas flow control member 28 of which the longitudinal direction is arranged and installed in parallel with the axial line of the outer dielectric 23 between the supply hole 23a and the discharging hole 23b in the circumferential direction of the outer dielectric 23 between the outer dielectric 23 and the inner dielectric 25, and a gas supply mechanism 40 to supply a treated gas between the outer dielectric 23 and the inner dielectric 25 via a supply tube 40a connected to the supply hole 23a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、処理ガスをプラズマ化して吐出する処理ガス吐出装置、及び当該処理ガス吐出装置を備えた表面処理装置に関する。   The present invention relates to a processing gas discharge device that converts a processing gas into plasma and discharges it, and a surface treatment device including the processing gas discharge device.

前記処理ガス吐出装置として、従来、例えば、特開2003−109799号公報に開示されたものが知られており、この処理ガス吐出装置は、基板の上方に配設され、当該基板に向け、処理ガスをプラズマ化して吐出する吐出機構と、この吐出機構に処理ガスを供給するガス供給機構とから構成される。   As the processing gas discharge device, conventionally, for example, one disclosed in Japanese Patent Application Laid-Open No. 2003-109799 is known, and this processing gas discharge device is disposed above the substrate and is processed toward the substrate. It comprises a discharge mechanism that discharges gas into plasma and a gas supply mechanism that supplies a processing gas to the discharge mechanism.

前記吐出機構は、管状に形成され、基板の上方に配置される外部誘電体と、外部誘電体の外周面に設けられ、接地された接地電極と、管状に形成され、外部誘電体の管内に、当該外部誘電体と一定間隔を隔てるように且つ当該外部誘電体と同軸に設けられる内部誘電体と、内部誘電体の管内に設けられる内部電極と、内部電極と接地電極との間に高周波電力を印加する高周波電源とを備える。   The ejection mechanism is formed in a tubular shape, and is provided on the outer peripheral surface of the external dielectric disposed above the substrate. The ground electrode is grounded. The discharge mechanism is formed in a tubular shape and is disposed in the tube of the external dielectric. A high-frequency power between the internal electrode and the ground electrode, the internal dielectric provided at a constant distance from the external dielectric and coaxial with the external dielectric, the internal electrode provided in the internal dielectric tube, And a high-frequency power source for applying a voltage.

前記外部誘電体は、上部外周面から内周面に貫通し、ガス供給機構から処理ガスが供給される供給穴と、下部外周面から内周面に貫通し、前記供給された処理ガスを基板に向けて吐出する吐出穴とを備え、この供給穴及び吐出穴は、外部誘電体の軸線方向にそれぞれ所定間隔で複数形成されている。   The external dielectric penetrates from the upper outer peripheral surface to the inner peripheral surface, passes through the supply hole to which the processing gas is supplied from the gas supply mechanism, and penetrates from the lower outer peripheral surface to the inner peripheral surface. And a plurality of supply holes and discharge holes are formed at predetermined intervals in the axial direction of the external dielectric.

前記ガス供給機構は、外部誘電体の供給穴に接続した供給管を備え、当該供給管を介してこの供給穴から外部誘電体と内部誘電体との間に処理ガスを供給する。   The gas supply mechanism includes a supply pipe connected to a supply hole of the external dielectric, and supplies a processing gas from the supply hole to the external dielectric and the internal dielectric via the supply pipe.

この処理ガス吐出装置によれば、ガス供給機構により供給管を介して供給穴から外部誘電体と内部誘電体との間に処理ガスが供給されるとともに、高周波電源により内部電極と接地電極との間に高周波電力が印加され、当該内部電極と接地電極とによって高周波電界が形成される。   According to this processing gas discharge device, the processing gas is supplied between the external dielectric and the internal dielectric from the supply hole through the supply pipe by the gas supply mechanism, and the internal electrode and the ground electrode are connected by the high frequency power source. A high frequency power is applied between them, and a high frequency electric field is formed by the internal electrode and the ground electrode.

外部誘電体と内部誘電体との間に供給された処理ガスは、当該外部誘電体と内部誘電体との間を吐出穴側に向けて流動するとともに、前記高周波電界によって内部電極(内部誘電体)と接地電極(外部誘電体)との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされ、吐出穴からその下方の基板に向けて吐出される。そして、基板は、このようにして吐出された、プラズマ化された処理ガスにより処理される。   The processing gas supplied between the external dielectric and the internal dielectric flows between the external dielectric and the internal dielectric toward the discharge hole side, and the internal electrode (internal dielectric) by the high-frequency electric field. ) And a ground electrode (external dielectric), a plasma containing radical atoms or ions is discharged and discharged from the discharge hole toward the substrate below the discharge hole. Then, the substrate is processed by the plasmatized processing gas discharged in this manner.

特開2003−109799号公報JP 2003-109799 A

ところで、基板処理をムラ無く効率的に行うには、外部誘電体と内部誘電体との間を流動する処理ガスを均一にプラズマ化して(プラズマ化によって生成されるラジカル原子やイオンの生成量を均一にして)、外部誘電体の吐出穴から吐出され基板表面に供給されるラジカル原子やイオンを均一にする必要がある。   By the way, in order to efficiently perform the substrate processing without unevenness, the processing gas flowing between the outer dielectric and the inner dielectric is uniformly converted into plasma (the amount of radical atoms and ions generated by the plasma generation is reduced). It is necessary to make the radical atoms and ions discharged from the discharge holes of the external dielectric material and supplied to the substrate surface uniform.

しかしながら、上記従来の処理ガス吐出装置では、ガス供給機構によって供給穴から外部誘電体と内部誘電体との間に供給された処理ガスの、供給穴の近傍部分における流速が、供給穴から外部誘電体の軸線方向に離れた部分に比べて速く、また、圧力も高くなっており、圧力が高いと、内部電極(内部誘電体)と接地電極(外部誘電体)との間に生じる放電電圧が高くなることから、供給穴の近傍部分における処理ガスがプラズマ化され難く、プラズマの生成が不均一になるという問題があった。   However, in the conventional processing gas discharge device, the flow velocity of the processing gas supplied between the external dielectric and the internal dielectric from the supply hole by the gas supply mechanism in the vicinity of the supply hole is different from the supply hole to the external dielectric. Compared to the part away from the body in the axial direction, the pressure is high and the discharge voltage generated between the internal electrode (internal dielectric) and the ground electrode (external dielectric) is high when the pressure is high. Since it becomes high, there is a problem that the processing gas in the vicinity of the supply hole is not easily converted into plasma, and the generation of plasma becomes non-uniform.

本発明は、以上の実情に鑑みなされたものであって、処理ガスの圧力を均一にしてプラズマを均一に生成することができる処理ガス吐出装置、及び当該処理ガス吐出装置を備えた表面処理装置の提供をその目的とする。   The present invention has been made in view of the above circumstances, and a processing gas discharge apparatus capable of generating plasma uniformly by making the pressure of the processing gas uniform, and a surface treatment apparatus including the processing gas discharge apparatus The purpose is to provide

上記目的を達成するための本発明は、
処理ガスをプラズマ化して吐出する吐出手段と、該吐出手段に前記処理ガスを供給するガス供給手段とからなる処理ガス吐出装置であって、
前記吐出手段は、
接地された管状の部材からなる電極であって、外周面から内周面に貫通し、前記ガス供給手段から前記処理ガスが供給される供給穴と、外周面から内周面に貫通し、前記供給された処理ガスを吐出する吐出穴とを有する外部電極と、
管状に形成され、前記外部電極の管内に、該外部電極と一定間隔を隔てるように且つ該外部電極と同軸に設けられる内部誘電体と、
前記内部誘電体の管内に設けられる内部電極と、
前記内部電極と外部電極との間に電力を印加する電力供給手段とを備え、
前記ガス供給手段は、前記外部電極の供給穴に接続した供給管を備え、該供給管を介して前記供給穴から前記外部電極と内部誘電体との間に前記処理ガスを供給するように構成され、
前記外部電極と内部誘電体との間に供給された処理ガスは、前記電力供給手段により前記内部電極と外部電極との間に電力が印加されることによってプラズマ化された後、前記吐出穴から外部へ吐出されるように構成された処理ガス吐出装置において、
前記外部電極と内部誘電体との間の、該外部電極の円周方向において前記供給穴と吐出穴との間であり且つ該供給穴を塞がない位置に、長手方向が該外部電極の軸線と平行に配設される棒状のガス流制御部材をそれぞれ備えてなることを特徴とする処理ガス吐出装置に係る。
To achieve the above object, the present invention provides:
A processing gas discharge apparatus comprising: discharge means for converting a processing gas into plasma and discharging; and a gas supply means for supplying the processing gas to the discharge means,
The discharge means is
An electrode made of a grounded tubular member, penetrating from the outer peripheral surface to the inner peripheral surface, penetrating from the gas supply means to the processing gas, and penetrating from the outer peripheral surface to the inner peripheral surface, An external electrode having a discharge hole for discharging the supplied processing gas;
An internal dielectric formed in a tubular shape and provided in the tube of the external electrode so as to be spaced apart from the external electrode and coaxially with the external electrode;
An internal electrode provided in the internal dielectric tube;
Power supply means for applying power between the internal electrode and the external electrode,
The gas supply means includes a supply pipe connected to the supply hole of the external electrode, and is configured to supply the processing gas from the supply hole to the external electrode and the internal dielectric via the supply pipe. And
The processing gas supplied between the external electrode and the internal dielectric is turned into plasma by applying power between the internal electrode and the external electrode by the power supply means, and then from the discharge hole. In the processing gas discharge apparatus configured to be discharged to the outside,
Between the external electrode and the internal dielectric, in the circumferential direction of the external electrode, between the supply hole and the discharge hole and at a position where the supply hole is not blocked, the longitudinal direction is the axis of the external electrode And a gas gas flow control member disposed in parallel with each other.

この処理ガス吐出装置によれば、ガス供給手段により供給管を介して供給穴から外部電極と内部誘電体との間に処理ガスが供給されると、供給された処理ガスは、当該外部電極と内部誘電体との間をこれらの円周方向や軸線方向に向けて流動し、円周方向に向けて流動する処理ガスは、ガス流制御部材によって軸線方向に向かう流れとされる。これにより、外部電極と内部誘電体との間の処理ガスは、円周方向の流速が遅くなって軸線方向に広がるように流動し、少なくとも吐出穴側において流速や圧力が略均一な状態で当該外部電極と内部誘電体との間に充満する。   According to this processing gas discharge apparatus, when the processing gas is supplied from the supply hole through the supply pipe by the gas supply means between the external electrode and the internal dielectric, the supplied processing gas is connected to the external electrode. The processing gas that flows between the internal dielectrics in the circumferential direction and the axial direction and flows in the circumferential direction is flowed in the axial direction by the gas flow control member. As a result, the processing gas between the external electrode and the internal dielectric flows such that the flow velocity in the circumferential direction becomes slow and spreads in the axial direction, and the flow velocity and pressure are at least substantially uniform on the discharge hole side. The space between the external electrode and the internal dielectric is filled.

内部電極と外部電極との間には、電力供給手段により電力が印加され、当該内部電極と外部電極とによって電界が形成されており、前記処理ガスは、この電界によって当該内部電極(内部誘電体)と外部電極との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされる。そして、プラズマ化された処理ガスは、吐出穴から外部に向けて吐出される。   Electric power is applied between the internal electrode and the external electrode by a power supply means, and an electric field is formed by the internal electrode and the external electrode, and the processing gas is supplied to the internal electrode (internal dielectric) by the electric field. ) And an external electrode to generate plasma containing radical atoms and ions. The plasma-ized processing gas is discharged from the discharge hole toward the outside.

斯くして、本発明に係る処理ガス吐出装置によれば、外部電極と内部誘電体との間に配設したガス流制御部材により処理ガスを外部電極の軸線方向に流動させて、当該処理ガスをその流速や圧力が少なくとも外部電極の吐出穴側において略均一となるように外部電極と内部誘電体との間に充満させることができるので、当該外部電極と内部誘電体との間の処理ガスを均一にプラズマ化することができる。   Thus, according to the processing gas discharge apparatus of the present invention, the processing gas is caused to flow in the axial direction of the external electrode by the gas flow control member disposed between the external electrode and the internal dielectric, and the processing gas Can be filled between the external electrode and the internal dielectric so that the flow velocity and pressure are substantially uniform at least on the discharge hole side of the external electrode, so that the processing gas between the external electrode and the internal dielectric can be filled. Can be uniformly converted into plasma.

尚、前記外部電極の供給穴と吐出穴とは、該外部電極の円周方向に180°隔てた位置にそれぞれ形成され、前記ガス流制御部材は、前記外部電極の軸線を中心にした配設角度が、前記供給穴の軸線から60°以下に設定されていても良い。   The supply hole and the discharge hole of the external electrode are respectively formed at positions 180 ° apart in the circumferential direction of the external electrode, and the gas flow control member is disposed around the axis of the external electrode. The angle may be set to 60 ° or less from the axis of the supply hole.

これは、供給穴と吐出穴とを外部電極の円周方向に180°隔てて形成すると、当該円周両方向における処理ガスの流動距離を同じにして外部電極と内部誘電体との間を流動する処理ガスの流速や圧力を同じにすることができるからであり、また、ガス流制御部材の、外部電極の軸線を中心にした配設角度を供給穴の軸線から60°よりも大きくすると、当該ガス流制御部材の配設位置が吐出穴側に近づき、吐出穴側において流速や圧力を略均一な状態にして処理ガスを外部電極と内部誘電体との間に充満させることができないからである。   This is because when the supply hole and the discharge hole are formed 180 degrees apart in the circumferential direction of the external electrode, the flow distance of the processing gas in both the circumferential directions is made the same and flows between the external electrode and the internal dielectric. This is because the flow velocity and pressure of the processing gas can be made the same, and when the arrangement angle of the gas flow control member with the axis of the external electrode as the center is larger than 60 ° from the axis of the supply hole, This is because the arrangement position of the gas flow control member approaches the discharge hole side, and the processing gas cannot be filled between the external electrode and the internal dielectric by making the flow velocity and pressure substantially uniform on the discharge hole side. .

したがって、上記のようにすることで、外部電極と内部誘電体との間の処理ガスをより効果的に均一にプラズマ化することができる。尚、ガス流制御部材の、外部電極の軸線を中心にした配設角度の下限は、供給穴を塞がずに当該供給穴に最も接近した位置となる角度である。   Therefore, the processing gas between the external electrode and the internal dielectric can be converted into plasma more effectively and uniformly as described above. The lower limit of the arrangement angle of the gas flow control member around the axis of the external electrode is an angle at which the supply hole is closest to the supply hole without blocking the supply hole.

また、前記処理ガス吐出装置は、前記供給穴の軸線と直交し、前記外部電極の軸線を含む対称面を基準にして前記ガス流制御部材と対称位置に、前記外部電極と内部誘電体との間の間隔を一定にするためのスペーサが設けられていても良い。   In addition, the processing gas discharge device is configured such that the external electrode and the internal dielectric are positioned at a position symmetrical to the gas flow control member with respect to a symmetry plane that is orthogonal to the axis of the supply hole and includes the axis of the external electrode. Spacers may be provided to make the interval between them constant.

これは、外部電極と内部誘電体との間の間隔が一定でないと、プラズマの生成を均一にすることができないからであるが、ガス流制御部材を外部電極と内部誘電体との間に配設することによって外部電極と内部誘電体との間の間隔が一定とならなく恐れがあるため、前記スペーサを設けることで、このような不都合を有効に解消することができる。   This is because the plasma generation cannot be made uniform if the distance between the external electrode and the internal dielectric is not constant, but the gas flow control member is disposed between the external electrode and the internal dielectric. By providing the spacer, the distance between the external electrode and the internal dielectric may not be constant, and thus providing the spacer effectively eliminates such inconvenience.

また、前記ガス流制御部材と外部電極又は内部誘電体との間には、該外部電極と内部誘電体との間の距離の20%〜50%の隙間が形成されていても良い。これは、外部電極と内部誘電体との間をガス流制御部材によって完全に塞ごうとすると、当該ガス流制御部材の製造精度などにより、前記スペーサを設けたとしても、外部電極と内部誘電体との間の間隔を一定にすることができないため、隙間を形成してガス流制御部材を設けることが好ましいからである。但し、隙間の大きさが外部電極と内部誘電体との間の距離の50%よりも大きくなると、当該ガス流制御部材によって、外部電極の円周方向に向けて流動する処理ガスの流れを外部電極の軸線方向に向けるという効果が得られ難くなる。   Further, a gap of 20% to 50% of the distance between the external electrode and the internal dielectric may be formed between the gas flow control member and the external electrode or the internal dielectric. If the space between the external electrode and the internal dielectric is completely covered by the gas flow control member, even if the spacer is provided due to the manufacturing accuracy of the gas flow control member, the external electrode and the internal dielectric This is because it is preferable to provide a gas flow control member by forming a gap. However, when the size of the gap is larger than 50% of the distance between the external electrode and the internal dielectric, the gas flow control member causes the flow of the processing gas flowing in the circumferential direction of the external electrode to be externally applied. It is difficult to obtain the effect of directing in the axial direction of the electrode.

また、前記外部電極には、前記供給穴が200mm〜300mmの間隔で該外部電極の軸線方向に複数形成され、前記ガス流制御部材は、前記各供給穴に対応するように前記外部電極の軸線方向に複数設けられていても良い。   A plurality of the supply holes are formed in the external electrode at intervals of 200 mm to 300 mm in the axial direction of the external electrode, and the gas flow control member corresponds to each of the supply holes. A plurality may be provided in the direction.

これは、供給穴の間隔が200mmよりも短いと、供給穴の数が多くなるために、処理ガスを効率的に外部電極と内部誘電体との間に供給することができないからであり、供給穴の間隔が300mmよりも長いと、供給穴間隔が広くなって処理ガスを外部電極と内部誘電体との間に均一に充満させることができないからである。したがって、上記範囲内であれば、処理ガスを外部電極と内部誘電体との間に効率的に供給することができるとともに、均一に充満させることができる。尚、供給穴の間隔は、220mmであると、更に好ましい。   This is because if the interval between the supply holes is shorter than 200 mm, the number of supply holes increases, so that the processing gas cannot be efficiently supplied between the external electrode and the internal dielectric. This is because if the gap between the holes is longer than 300 mm, the gap between the supply holes becomes wide and the processing gas cannot be uniformly filled between the external electrode and the internal dielectric. Therefore, if it is in the said range, while being able to supply process gas efficiently between an external electrode and an internal dielectric material, it can be made to fill uniformly. It should be noted that the interval between the supply holes is more preferably 220 mm.

また、前記ガス流制御部材は、その長手方向の長さが、前記供給穴の形成間隔の5%〜30%の長さであっても良い。これは、ガス流制御部材の長手方向の長さが供給穴の形成間隔の5%よりも短いと、当該ガス流制御部材によって、外部電極の円周方向に向けて流動する処理ガスの流れを外部電極の軸線方向に向けるという効果が得られ難く、供給穴の形成間隔の30%よりも長いと、外部電極の円周方向においてガス流制御部材と吐出穴との間に処理ガスが充満し難くなって処理ガスが不均一に充満するからである。したがって、上記範囲内であれば、処理ガスの流速や圧力を外部電極の吐出穴側において略均一にすることができるとともに、当該処理ガスを外部電極と内部誘電体との間に均一に充満させることができる。尚、供給穴の間隔が220mmのとき、ガス流制御部材の長手方向の長さは、30mm〜60mmであると、更に好ましい。   Further, the length of the gas flow control member in the longitudinal direction may be 5% to 30% of the formation interval of the supply holes. This is because when the length of the gas flow control member in the longitudinal direction is shorter than 5% of the formation interval of the supply holes, the gas flow control member causes the flow of the processing gas flowing in the circumferential direction of the external electrode. The effect of directing in the axial direction of the external electrode is difficult to obtain, and if it is longer than 30% of the formation interval of the supply holes, the processing gas is filled between the gas flow control member and the discharge hole in the circumferential direction of the external electrode. This is because it becomes difficult and the processing gas is filled unevenly. Therefore, within the above range, the flow rate and pressure of the processing gas can be made substantially uniform on the discharge hole side of the external electrode, and the processing gas is uniformly filled between the external electrode and the internal dielectric. be able to. When the interval between the supply holes is 220 mm, the length of the gas flow control member in the longitudinal direction is more preferably 30 mm to 60 mm.

また、前記外部電極は、その軸線方向の長さが200mm〜300mmであり、前記供給穴が該軸線方向中央部に形成されてなり、前記ガス流制御部材は、その長手方向の長さが、前記外部電極の軸線方向の長さの5%〜30%であっても良い。これは、供給穴の形成間隔を200mm〜300mmにしたときや、ガス流制御部材の長手方向の長さを供給穴の形成間隔の5%〜30%の長さにしたときと同様の理由からである。尚、外部電極の軸線方向の長さが220mmであり、ガス流制御部材の長手方向の長さが30mm〜60mmであれば、更に好ましい。   Further, the external electrode has a length in the axial direction of 200 mm to 300 mm, the supply hole is formed in the central portion in the axial direction, and the gas flow control member has a length in the longitudinal direction, It may be 5% to 30% of the length of the external electrode in the axial direction. This is for the same reason as when the formation interval of the supply holes is 200 mm to 300 mm, or when the length of the gas flow control member in the longitudinal direction is 5% to 30% of the formation interval of the supply holes. It is. It is more preferable that the length of the external electrode in the axial direction is 220 mm and the length of the gas flow control member in the longitudinal direction is 30 mm to 60 mm.

また、前記外部電極は、管状に形成され、前記供給穴及び吐出穴を有する外部誘電体と、該外部誘電体の外周面に前記供給穴及び吐出穴を塞がないように設けられ、接地された電極本体とからなり、前記電力供給手段は、前記内部電極と外部電極の電極本体との間に電力を印加するように構成され、前記ガス供給手段は、前記供給管を介して前記供給穴から前記外部誘電体と内部誘電体との間に前記処理ガスを供給するように構成されていても良い。   Further, the external electrode is formed in a tubular shape, and is provided with an external dielectric having the supply hole and the discharge hole, and an outer peripheral surface of the external dielectric so as not to block the supply hole and the discharge hole, and is grounded. The power supply means is configured to apply power between the electrode body of the internal electrode and the external electrode, and the gas supply means is connected to the supply hole via the supply pipe. The processing gas may be supplied between the outer dielectric and the inner dielectric.

これは、外部電極(電極本体)には、プラズマ中のイオンが当該電極本体側に移動して衝突し、この衝突によって電極本体がスパッタされ、当該電極本体を構成する原子が処理ガス中に不純物として含まれてしまうからであり、外部誘電体の外周面に電極本体を設けることで、このような不都合を防止して、不純物の混入のない処理ガスを外部誘電体の吐出穴から吐出させることができる。   This is because the ions in the plasma move to the electrode body side and collide with the external electrode (electrode body), the electrode body is sputtered by this collision, and atoms constituting the electrode body are impurities in the processing gas. By providing the electrode body on the outer peripheral surface of the external dielectric, such inconvenience can be prevented and the processing gas free from impurities can be discharged from the discharge hole of the external dielectric. Can do.

また、本発明は、
処理対象物を支持する支持手段と、
上述した処理ガス吐出装置とを備え、
前記処理ガス吐出装置は、前記吐出穴が前記支持手段によって支持された処理対象物と対峙するように配置され、
前記処理ガス吐出装置から吐出された処理ガスによって前記処理対象物の表面を処理するように構成されてなることを特徴とする表面処理装置に係る。
The present invention also provides:
Support means for supporting the object to be treated;
Including the processing gas discharge device described above,
The processing gas discharge device is disposed so that the discharge hole faces the processing object supported by the support means,
According to the surface treatment apparatus, the surface of the object to be treated is treated with the treatment gas discharged from the treatment gas discharge apparatus.

この表面処理装置によれば、処理ガス吐出装置が、上述のように、処理ガスを均一にプラズマ化することができることから、処理対象物表面にラジカル原子やイオンを均一に供給することができ、プラズマ表面処理(例えば、成膜処理や表面改質処理など)を効率的且つムラなく実施することができる。   According to this surface treatment apparatus, since the treatment gas discharge device can uniformly turn the treatment gas into plasma as described above, radical atoms and ions can be uniformly supplied to the surface of the treatment object, Plasma surface treatment (for example, film formation treatment or surface modification treatment) can be performed efficiently and without unevenness.

以上のように、本発明に係る処理ガス吐出装置によれば、処理ガスを均一にプラズマ化してラジカル原子やイオンを均一に吐出することができ、また、本発明に係る表面処理装置によれば、プラズマ表面処理を効率的且つムラ無く行うことができる。   As described above, according to the processing gas discharge apparatus according to the present invention, the processing gas can be uniformly converted into plasma and radical atoms and ions can be discharged uniformly, and according to the surface processing apparatus according to the present invention. The plasma surface treatment can be performed efficiently and without unevenness.

以下、本発明の具体的な実施形態について、添付図面に基づき説明する。尚、図1は、本発明の一実施形態に係る表面処理装置の概略構成を示した正断面図であり、図2は、図1における矢示A−A方向の断面図である。   Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings. 1 is a front sectional view showing a schematic configuration of a surface treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view in the direction of arrows AA in FIG.

図1及び図2に示すように、本例の表面処理装置1は、基板Kを水平に支持して所定の方向(図2の矢示方向)に搬送する搬送ローラ10と、この搬送ローラ10によって搬送される基板Kの上方に配設され、当該基板Kに向け処理ガスをプラズマ化して吐出する吐出機構21、及びこの吐出機構21に前記処理ガスを供給するガス供給機構40からなる処理ガス吐出装置20とを備えて構成される。   As shown in FIGS. 1 and 2, the surface treatment apparatus 1 of this example includes a conveyance roller 10 that horizontally supports a substrate K and conveys the substrate K in a predetermined direction (the direction indicated by the arrow in FIG. 2), and the conveyance roller 10. A processing gas comprising a discharge mechanism 21 disposed above the substrate K transported by the substrate and configured to discharge the processing gas into plasma toward the substrate K, and a gas supply mechanism 40 for supplying the processing gas to the discharge mechanism 21. And a discharge device 20.

前記搬送ローラ10は、その複数が基板搬送方向に沿って所定間隔で配設され、その回転軸10aの両端部が支持部材(図示せず)によって回転自在に支持されている。また、搬送ローラ10は、その回転軸10aの一方端が駆動機構(図示せず)に接続されており、この駆動機構(図示せず)によって回転軸10aが軸中心に回転せしめられることで、基板Kを前記基板搬送方向に搬送する。   A plurality of the transport rollers 10 are arranged at predetermined intervals along the substrate transport direction, and both end portions of the rotation shaft 10a are rotatably supported by support members (not shown). Further, the conveyance roller 10 has one end of a rotary shaft 10a connected to a drive mechanism (not shown), and the drive shaft (not shown) causes the rotary shaft 10a to rotate about the axis, The substrate K is transported in the substrate transport direction.

前記吐出機構21は、石英ガラス管などから構成された外部誘電体23、及びこの外部誘電体23の外周面に設けられ、接地された接地電極(電極本体)24からなる外部電極22と、石英ガラス管などから構成され、外部誘電体23の管内に、当該外部誘電体23と一定間隔を隔てるように且つ当該外部誘電体23と同軸に設けられる内部誘電体25と、内部誘電体25の管内に設けられる内部電極26と、内部電極26と接地電極24との間に高周波電力を印加する高周波電源27と、棒状に形成され、外部誘電体23と内部誘電体25との間に配設されるガス流制御部材28と、外部誘電体23と内部誘電体25との間に配設されるスペーサ29と、外部誘電体23の両端部にそれぞれ設けられ、当該両端部を封止する封止部材30と、各封止部材30に支持され、内部誘電体25の両端部を保持する保持部材31とを備える。   The discharge mechanism 21 includes an external dielectric 23 composed of a quartz glass tube or the like, an external electrode 22 formed on the outer peripheral surface of the external dielectric 23 and grounded (electrode body) 24, and quartz. An internal dielectric 25 that is formed of a glass tube or the like and is provided in the tube of the external dielectric 23 so as to be spaced apart from the external dielectric 23 and coaxially with the external dielectric 23, and in the tube of the internal dielectric 25 Are formed between the external dielectric 23 and the internal dielectric 25. The internal electrode 26 is provided on the internal electrode 26, the high-frequency power supply 27 for applying high-frequency power between the internal electrode 26 and the ground electrode 24, and the rod is formed. A gas flow control member 28, a spacer 29 disposed between the outer dielectric 23 and the inner dielectric 25, and a seal that is provided at both ends of the outer dielectric 23 and seals both ends. Member 30 and It is supported on the sealing member 30, and a holding member 31 for holding the opposite ends of the inner dielectric 25.

前記外部誘電体23は、その軸線が基板搬送方向と直交するとともに、基板Kの全幅に渡り当該基板Kと一定間隔を隔てて対峙するように当該基板Kの上方に設けられており、上部外周面から内周面に貫通し、ガス供給機構40から処理ガスが供給される供給穴23aと、下部外周面から内周面に貫通し、前記供給された処理ガスを基板Kに向けて吐出するスリット状の吐出穴23bとを、当該外部誘電体23の円周方向に180°隔てた位置にそれぞれ備えている。   The external dielectric 23 is provided above the substrate K so that its axis is orthogonal to the substrate transport direction and faces the substrate K at a predetermined interval over the entire width of the substrate K. A supply hole 23a penetrating from the surface to the inner peripheral surface and supplying the processing gas from the gas supply mechanism 40, and penetrating from the lower outer peripheral surface to the inner peripheral surface, and discharging the supplied processing gas toward the substrate K. A slit-like discharge hole 23b is provided at a position 180 ° apart from the outer dielectric 23 in the circumferential direction.

前記供給穴23aは、外部誘電体23の軸線方向に200mm〜300mmの間隔Pで複数形成され、前記吐出穴23bは、その長手方向が外部誘電体23の軸線と平行に形成されるとともに、基板Kの幅よりも長く形成されている。尚、供給穴23aの好ましい形成間隔Pは220mmである。   A plurality of the supply holes 23a are formed at intervals P of 200 mm to 300 mm in the axial direction of the external dielectric 23, and the discharge holes 23b are formed so that the longitudinal direction thereof is parallel to the axis of the external dielectric 23 and the substrate. It is formed longer than the width of K. A preferable formation interval P of the supply holes 23a is 220 mm.

また、この供給穴23aの内周面には、図示しないオリフィスが設けられて、当該供給穴23aから外部誘電体23と内部誘電体25との間に流入する処理ガスの流量が調整されており、これによって、各供給穴23aから流入する処理ガスの流量が均一にされる。   Further, an orifice (not shown) is provided on the inner peripheral surface of the supply hole 23a, and the flow rate of the processing gas flowing between the external dielectric 23 and the internal dielectric 25 from the supply hole 23a is adjusted. Thereby, the flow rate of the processing gas flowing from each supply hole 23a is made uniform.

前記接地電極24は、外部誘電体23の端部(一方端及び他方端)と供給穴23aとの間の外周面、及び外部誘電体23の供給穴23a間の外周面にそれぞれ設けられ、吐出穴23bを塞がないように下部側が外部誘電体23の軸線方向に沿って開口している。   The ground electrode 24 is provided on the outer peripheral surface between the end portion (one end and the other end) of the external dielectric 23 and the supply hole 23a and the outer peripheral surface between the supply hole 23a of the external dielectric 23, respectively. The lower side is opened along the axial direction of the external dielectric 23 so as not to block the hole 23b.

前記内部誘電体25は、その両端部が外部誘電体23の端部から突出して前記封止部材30の凹部30a内に設けられており、この凹部30a内に配設された前記保持部材31によって当該端部が保持されている。   Both ends of the internal dielectric 25 protrude from the end of the external dielectric 23 and are provided in the recess 30a of the sealing member 30. The holding member 31 provided in the recess 30a The end is held.

前記ガス流制御部材28は、外部誘電体23と内部誘電体25との間の、当該外部誘電体23の円周方向において供給穴23aと吐出穴23bとの間であり且つ供給穴23aの両側に配設される。具体的には、外部誘電体23の軸線を中心にした、供給穴23aの軸線からの配設角度θが60°以下となる位置(本例では、45°の位置)に、長手方向が外部誘電体23の軸線と平行となるように配設されている。また、ガス流制御部材28は、その長手方向の長さLが、供給穴23aの形成間隔Pの5%〜30%の長さとなるように構成されている。尚、前記配設角度θの下限は、供給穴23aを塞がずに当該供給穴23aに最も接近した位置となる角度である。また、このガス流制御部材28は、各供給穴23aに対応して外部誘電体23の軸線方向に複数設けられている。また、供給穴23aの形成間隔Pが220mmのとき、好ましいガス流制御部材28の長さLは30mm〜60mmである。   The gas flow control member 28 is between the outer dielectric 23 and the inner dielectric 25, between the supply hole 23a and the discharge hole 23b in the circumferential direction of the outer dielectric 23, and on both sides of the supply hole 23a. It is arranged. Specifically, the longitudinal direction is externally at a position where the arrangement angle θ from the axis of the supply hole 23a with respect to the axis of the external dielectric 23 is 60 ° or less (in this example, 45 °). The dielectric 23 is disposed so as to be parallel to the axis. Further, the gas flow control member 28 is configured such that the length L in the longitudinal direction is 5% to 30% of the formation interval P of the supply holes 23a. The lower limit of the arrangement angle θ is an angle at which the supply hole 23a is closest to the supply hole 23a without closing the supply hole 23a. A plurality of gas flow control members 28 are provided in the axial direction of the external dielectric 23 corresponding to the supply holes 23a. When the formation interval P of the supply holes 23a is 220 mm, the preferable length L of the gas flow control member 28 is 30 mm to 60 mm.

前記スペーサ29は、供給穴23aの軸線と直交し、外部誘電体23の軸線を含む対称面Mを基準にしてガス流制御部材28と対称位置に設けられ、外部誘電体23と内部誘電体25との間の間隔を一定にするためのものである。尚、このスペーサ29は、その長手方向の長さが処理ガスの流動を妨げないようにガス流制御部材28よりも短く形成され、また、ガス流制御部材28と同様に、各供給穴23aに対応して外部誘電体23の軸線方向に複数設けられている。   The spacer 29 is provided at a position symmetrical to the gas flow control member 28 with respect to a symmetry plane M that is orthogonal to the axis of the supply hole 23a and includes the axis of the outer dielectric 23, and the outer dielectric 23 and the inner dielectric 25. It is for making the interval between the two constant. The spacer 29 is formed to be shorter than the gas flow control member 28 so that the length in the longitudinal direction does not hinder the flow of the processing gas, and, similar to the gas flow control member 28, the spacer 29 is formed in each supply hole 23a. Correspondingly, a plurality of external dielectrics 23 are provided in the axial direction.

前記ガス供給機構40は、例えば、圧力スイング吸着(PSA)式窒素ガス生成装置などから構成されるもので、外部誘電体23の各供給穴23aにそれぞれ接続した供給管40aを備えており、この供給管40aを介して供給穴23aから外部誘電体23と内部誘電体25との間に所定の処理ガス(窒素ガスを主成分とする処理ガス)を供給する。   The gas supply mechanism 40 is composed of, for example, a pressure swing adsorption (PSA) type nitrogen gas generation device, and includes a supply pipe 40a connected to each supply hole 23a of the external dielectric 23. A predetermined processing gas (processing gas containing nitrogen gas as a main component) is supplied between the outer dielectric 23 and the inner dielectric 25 from the supply hole 23a through the supply pipe 40a.

以上のように構成された本例の表面処理装置1によれば、ガス供給機構40により供給管40aを介して供給穴23aから外部誘電体23と内部誘電体25との間に処理ガスが供給されると、供給された処理ガスは、当該外部誘電体23と内部誘電体25との間をこれらの円周方向や軸線方向に向けて流動し、円周方向に向けて流動する処理ガスは、ガス流制御部材28によって軸線方向に向かう流れとされる。これにより、外部誘電体23と内部誘電体25との間の処理ガスは、円周方向の流速が遅くなって軸線方向に広がるように流動し、少なくとも吐出穴側において流速や圧力が略均一な状態で当該外部誘電体23と内部誘電体25との間に充満する。   According to the surface treatment apparatus 1 of the present example configured as described above, the processing gas is supplied from the gas supply mechanism 40 between the external dielectric 23 and the internal dielectric 25 from the supply hole 23a through the supply pipe 40a. Then, the supplied processing gas flows between the outer dielectric 23 and the inner dielectric 25 in the circumferential direction and the axial direction, and the processing gas flowing in the circumferential direction is The gas flow control member 28 sets the flow in the axial direction. As a result, the processing gas between the outer dielectric 23 and the inner dielectric 25 flows so that the circumferential flow velocity becomes slow and spreads in the axial direction, and at least at the discharge hole side, the flow velocity and pressure are substantially uniform. In this state, the space between the outer dielectric 23 and the inner dielectric 25 is filled.

内部電極26と接地電極24との間には、高周波電源27により高周波電力が印加され、当該内部電極26と接地電極24とによって高周波電界が形成されており、前記処理ガスは、この高周波電界によって当該内部電極26(内部誘電体25)と接地電極24(外部誘電体23)との間に生じる放電により、ラジカル原子やイオンなどを含んだプラズマとされる。   A high-frequency power is applied between the internal electrode 26 and the ground electrode 24 by a high-frequency power source 27, and a high-frequency electric field is formed by the internal electrode 26 and the ground electrode 24. The processing gas is generated by this high-frequency electric field. By discharge generated between the internal electrode 26 (internal dielectric 25) and the ground electrode 24 (external dielectric 23), plasma containing radical atoms and ions is generated.

そして、プラズマ化された処理ガスは、吐出穴23bから外部へ吐出され、吐出された処理ガス中のラジカル原子やイオンによって、搬送ローラ10により搬送される基板Kの表面が処理される(例えば、成膜処理や表面改質処理などが行われる)。   The plasma-ized processing gas is discharged to the outside from the discharge hole 23b, and the surface of the substrate K transported by the transport roller 10 is processed by radical atoms and ions in the discharged processing gas (for example, A film formation process, a surface modification process, etc. are performed).

上述のように、本例の表面処理装置1における処理ガス吐出装置20では、外部誘電体23と内部誘電体25との間に、長手方向が外部誘電体23の軸線と平行にガス流制御部材28を配設しているので、このガス流制御部材28により処理ガスを外部誘電体23の軸線方向に流動させて、当該処理ガスをその流速や圧力が少なくとも外部誘電体23の吐出穴23b側において略均一となるように外部誘電体23と内部誘電体25との間に充満させることができ、当該外部誘電体23と内部誘電体25との間の処理ガスを均一にプラズマ化することができる。   As described above, in the processing gas discharge device 20 in the surface processing apparatus 1 of this example, the gas flow control member is disposed between the external dielectric 23 and the internal dielectric 25 so that the longitudinal direction is parallel to the axis of the external dielectric 23. 28, the gas flow control member 28 causes the processing gas to flow in the axial direction of the external dielectric 23, and the processing gas has a flow velocity and pressure of at least the discharge hole 23 b side of the external dielectric 23. Can be filled between the outer dielectric 23 and the inner dielectric 25 so as to be substantially uniform, and the processing gas between the outer dielectric 23 and the inner dielectric 25 can be made into plasma uniformly. it can.

また、供給穴23aを外部誘電体23の上部外周面に、吐出穴23bを外部誘電体23の下部外周面に形成して、当該供給穴23aと吐出穴23bとを外部誘電体23の円周方向に180°隔てた位置にそれぞれ設けるとともに、ガス流制御部材28を、外部誘電体23の軸線を中心にした、供給穴23aの軸線からの配設角度θが60°以下となる位置に配設しており、外部誘電体23と内部誘電体25との間の処理ガスをより効果的に均一にプラズマ化することができる。   Further, the supply hole 23 a is formed on the upper outer peripheral surface of the external dielectric 23 and the discharge hole 23 b is formed on the lower outer peripheral surface of the external dielectric 23, and the supply hole 23 a and the discharge hole 23 b are arranged on the circumference of the external dielectric 23. The gas flow control member 28 is disposed at a position where the arrangement angle θ from the axis of the supply hole 23a is 60 ° or less with the axis of the external dielectric 23 as the center. The processing gas between the outer dielectric 23 and the inner dielectric 25 can be more effectively and uniformly converted into plasma.

尚、供給穴23aと吐出穴23bとを180°隔てて形成しているのは、外部誘電体23の円周両方向における処理ガスの流動距離を同じにして外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力を同じにすることができるからであり、また、前記配設角度θを60°以下にしているのは、60°よりも大きくすると、当該ガス流制御部材28の配設位置が吐出穴23b側に近づき、吐出穴23b側において流速や圧力を略均一な状態にして処理ガスを外部誘電体23と内部誘電体25との間に充満させることができないからである。   The supply hole 23a and the discharge hole 23b are formed 180 degrees apart from each other because the flow distance of the processing gas in both circumferential directions of the outer dielectric 23 is the same. This is because the flow velocity and pressure of the processing gas flowing between them can be made the same, and the arrangement angle θ is set to 60 ° or less when the flow angle is larger than 60 °. The arrangement position of the member 28 approaches the discharge hole 23b side, and the flow rate and pressure are made substantially uniform on the discharge hole 23b side so that the processing gas cannot be filled between the external dielectric 23 and the internal dielectric 25. Because.

また、供給穴23aの軸線と直交し、外部誘電体23の軸線を含む対称面Mを基準にしてガス流制御部材28と対称位置にスペーサ29を設けており、ガス流制御部材28を外部誘電体23と内部誘電体25との間に配設することによって外部誘電体23と内部誘電体25との間の間隔が一定とならなくなるようなことがあっても、当該外部誘電体23と内部誘電体25との間に一定の間隔を確実に形成することができる。   A spacer 29 is provided at a position symmetrical to the gas flow control member 28 with respect to the symmetry plane M that is orthogonal to the axis of the supply hole 23a and includes the axis of the external dielectric 23, and the gas flow control member 28 is connected to the external dielectric. Even if the distance between the external dielectric 23 and the internal dielectric 25 may not be constant due to the arrangement between the body 23 and the internal dielectric 25, the external dielectric 23 and the internal dielectric 25 A certain distance can be reliably formed between the dielectric 25.

尚、外部誘電体23と内部誘電体25との間の間隔が一定でなければならないのは、当該外部誘電体23と内部誘電体25との間で放電を確実に生じさせて、プラズマの生成が不均一になるのを防止するためである。   Note that the interval between the external dielectric 23 and the internal dielectric 25 must be constant because a discharge is surely generated between the external dielectric 23 and the internal dielectric 25 to generate plasma. This is to prevent non-uniformity.

また、供給穴23aの形成間隔Pを200mm〜300mmに設定しており、処理ガスを外部誘電体23と内部誘電体25との間に効率的に供給することができるとともに、均一に充満させることができる。   In addition, the formation interval P of the supply holes 23a is set to 200 mm to 300 mm, so that the processing gas can be efficiently supplied between the external dielectric 23 and the internal dielectric 25 and can be uniformly filled. Can do.

尚、このような範囲としているのは、供給穴23aの形成間隔Pが200mmよりも短いと、供給穴23aの数が多くなるために、処理ガスを効率的に外部誘電体23と内部誘電体25との間に供給することができないからであり、供給穴23aの形成間隔Pが300mmよりも長いと、供給穴23aの形成間隔Pが広くなって処理ガスを外部誘電体23と内部誘電体25との間に均一に充満させることができないからである。   Note that such a range is used because if the formation interval P of the supply holes 23a is shorter than 200 mm, the number of supply holes 23a increases, so that the processing gas is efficiently passed between the external dielectric 23 and the internal dielectric. 25, when the formation interval P of the supply holes 23a is longer than 300 mm, the formation interval P of the supply holes 23a is increased, and the processing gas is supplied to the external dielectric 23 and the internal dielectric. This is because it cannot be uniformly filled with 25.

また、前記ガス流制御部材28の長手方向の長さLを、供給穴23aの形成間隔Pの5%〜30%の長さとしており、処理ガスの流速や圧力を外部誘電体23の吐出穴23b側において略均一にすることができるとともに、当該処理ガスを外部誘電体23と内部誘電体25との間に均一に充満させることができる。   Further, the length L in the longitudinal direction of the gas flow control member 28 is set to 5% to 30% of the formation interval P of the supply holes 23a, and the flow rate and pressure of the processing gas are set to the discharge holes of the external dielectric 23. 23b can be made substantially uniform, and the processing gas can be uniformly filled between the outer dielectric 23 and the inner dielectric 25.

尚、このような範囲としているのは、ガス流制御部材28の長手方向の長さLが供給穴23aの形成間隔Pの5%よりも短いと、当該ガス流制御部材28によって、外部誘電体23の円周方向に向けて流動する処理ガスの流れを外部誘電体23の軸線方向に向けるという効果が得られ難く、供給穴23aの形成間隔Pの30%よりも長いと、外部誘電体23の円周方向においてガス流制御部材28と吐出穴23bとの間に処理ガスが充満し難くなって処理ガスが不均一に充満するからである。   Note that such a range is used when the length L in the longitudinal direction of the gas flow control member 28 is shorter than 5% of the formation interval P of the supply holes 23a, and the external dielectric is caused by the gas flow control member 28. The effect of directing the flow of the processing gas flowing in the circumferential direction of the outer peripheral body 23 in the axial direction of the outer dielectric 23 is difficult to obtain, and if it is longer than 30% of the formation interval P of the supply holes 23a, the outer dielectric 23 This is because the processing gas is less likely to be filled between the gas flow control member 28 and the discharge hole 23b in the circumferential direction, and the processing gas is unevenly filled.

また、外部誘電体23の外周面に接地電極24を設けており、不純物の混入のない処理ガスを吐出穴23bから吐出させることができる。これは、外部電極22が接地電極24のみから構成され、外部誘電体23を備えていないと、プラズマ中のイオンが接地電極24側に移動して衝突し、この衝突によって接地電極24がスパッタされ、当該接地電極24を構成する原子が処理ガス中に不純物として含まれてしまうからである。   In addition, the ground electrode 24 is provided on the outer peripheral surface of the external dielectric 23, and a processing gas free from impurities can be discharged from the discharge hole 23b. This is because if the external electrode 22 is composed only of the ground electrode 24 and the external dielectric 23 is not provided, ions in the plasma move to the ground electrode 24 side and collide, and the ground electrode 24 is sputtered by this collision. This is because atoms constituting the ground electrode 24 are contained as impurities in the processing gas.

斯くして、本例の表面処理装置1によれば、上記処理ガス吐出装置20が、処理ガスを均一にプラズマ化することができることから、基板K表面にラジカル原子やイオンを均一に供給することができ、プラズマ表面処理を効率的且つムラなく実施することができる。   Thus, according to the surface treatment apparatus 1 of the present example, the process gas discharge apparatus 20 can uniformly convert the process gas into plasma, so that radical atoms and ions are uniformly supplied to the surface of the substrate K. The plasma surface treatment can be performed efficiently and without unevenness.

因みに、処理ガス吐出装置20の実施例1として、ガス流制御部材28の配設角度θを45°と、ガス流制御部材28の長手方向の長さLを32mmとして、外部誘電体23と内部誘電体25との間に供給穴23aから処理ガスを供給したところ、当該外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力は、図5のようになった。   Incidentally, as Example 1 of the processing gas discharge device 20, the arrangement angle θ of the gas flow control member 28 is set to 45 °, and the length L in the longitudinal direction of the gas flow control member 28 is set to 32 mm. When the processing gas was supplied to the dielectric 25 from the supply hole 23a, the flow velocity and pressure of the processing gas flowing between the external dielectric 23 and the internal dielectric 25 were as shown in FIG.

また、実施例2として、ガス流制御部材28の配設角度θを45°と、ガス流制御部材28の長手方向の長さLを48mmとして、外部誘電体23と内部誘電体25との間に供給穴23aから処理ガスを供給したところ、当該外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力は、図6のようになった。   Further, as Example 2, the arrangement angle θ of the gas flow control member 28 is set to 45 °, and the length L in the longitudinal direction of the gas flow control member 28 is set to 48 mm. When the processing gas was supplied to the supply hole 23a, the flow velocity and pressure of the processing gas flowing between the external dielectric 23 and the internal dielectric 25 were as shown in FIG.

一方、比較例1として、ガス流制御部材28を設けずに、外部誘電体23と内部誘電体25との間に供給穴23aから処理ガスを供給したところ、当該外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力は、図7のようになった。   On the other hand, as a comparative example 1, when the processing gas is supplied from the supply hole 23a between the external dielectric 23 and the internal dielectric 25 without providing the gas flow control member 28, the external dielectric 23 and the internal dielectric The flow velocity and pressure of the processing gas flowing between 25 and 25 are as shown in FIG.

また、比較例2として、ガス流制御部材28の配設角度θを90°と、ガス流制御部材28の長手方向の長さLを16mmとして、外部誘電体23と内部誘電体25との間に供給穴23aから処理ガスを供給したところ、当該外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力は、図8のようになった。   As Comparative Example 2, the arrangement angle θ of the gas flow control member 28 is 90 °, and the length L in the longitudinal direction of the gas flow control member 28 is 16 mm. When the processing gas was supplied to the supply hole 23a, the flow velocity and pressure of the processing gas flowing between the external dielectric 23 and the internal dielectric 25 were as shown in FIG.

また、比較例3として、ガス流制御部材28の配設角度θを45°と、ガス流制御部材28の長手方向の長さLを16mmとして、外部誘電体23と内部誘電体25との間に供給穴23aから処理ガスを供給したところ、当該外部誘電体23と内部誘電体25との間を流動する処理ガスの流速や圧力は、図9のようになった。   Further, as Comparative Example 3, the arrangement angle θ of the gas flow control member 28 is 45 °, and the length L in the longitudinal direction of the gas flow control member 28 is 16 mm. When the processing gas was supplied to the supply hole 23a, the flow velocity and pressure of the processing gas flowing between the external dielectric 23 and the internal dielectric 25 were as shown in FIG.

前記実施例1及び実施例2と、前記比較例1乃至3とを対比すると、ガス流制御部材28を、その配設角度θを60°以下で、その長手方向の長さLを供給穴23aの形成間隔Pの5%〜30%の長さで設けることによって、処理ガスの流速や圧力が少なくとも外部誘電体23の吐出穴23b側において略均一となっていることがわかり、このことからも、本例の処理ガス吐出装置20によれば、処理ガスの流速や圧力を少なくとも外部誘電体23の吐出穴23b側において略均一にすることができると言える。尚、上記図5乃至図9において、(a)は、処理ガスの流速分布を、(b)は、処理ガスの圧力分布をそれぞれ示しており、また、図の下部側が吐出穴23b側を示している。   When the first and second embodiments are compared with the first to third comparative examples, the gas flow control member 28 has an arrangement angle θ of 60 ° or less and a longitudinal length L of the supply hole 23a. It can be seen that the flow rate and pressure of the processing gas are substantially uniform at least on the discharge hole 23b side of the external dielectric 23 by providing it at a length of 5% to 30% of the formation interval P of FIG. According to the processing gas discharge device 20 of this example, it can be said that the flow velocity and pressure of the processing gas can be made substantially uniform at least on the discharge hole 23b side of the external dielectric 23. 5 to 9, (a) shows the flow velocity distribution of the processing gas, (b) shows the pressure distribution of the processing gas, and the lower side of the drawing shows the discharge hole 23b side. ing.

以上、本発明の一実施形態について説明したが、本発明の採り得る具体的な態様は、何らこれに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all.

上例では、ガス流制御部材28を、外部誘電体23と内部誘電体25との間に隙間が形成されないように設けたが、これに限られるものではなく、図3や図4に示すように、ガス流制御部材28と外部誘電体23や内部誘電体25との間に、外部誘電体23と内部誘電体25との間の距離dの20%〜50%の長さgの隙間28aが形成されるようにガス流制御部材28を設け、前記スペーサ29を省略するようにしても良い。   In the above example, the gas flow control member 28 is provided so that no gap is formed between the outer dielectric 23 and the inner dielectric 25, but the present invention is not limited to this, and as shown in FIGS. Further, between the gas flow control member 28 and the external dielectric 23 or the internal dielectric 25, a gap 28a having a length g of 20% to 50% of the distance d between the external dielectric 23 and the internal dielectric 25 is provided. The gas flow control member 28 may be provided such that the spacer 29 is omitted.

これは、外部誘電体23と内部誘電体25との間をガス流制御部材28によって完全に塞ごうとすると、当該ガス流制御部材28の製造精度などにより、前記スペーサ29を設けたとしても、外部誘電体23と内部誘電体25との間の間隔を一定にすることができず、プラズマの生成が不均一になるからである。但し、隙間28aの長さgが外部誘電体23と内部誘電体25との間の距離dの50%よりも大きくなると、当該ガス流制御部材28によって、外部誘電体23の円周方向に向けて流動する処理ガスの流れを外部誘電体23の軸線方向に向けるという効果が得られ難くなる。   This is because if the space between the outer dielectric 23 and the inner dielectric 25 is completely closed by the gas flow control member 28, even if the spacer 29 is provided due to the manufacturing accuracy of the gas flow control member 28, etc. This is because the interval between the external dielectric 23 and the internal dielectric 25 cannot be made constant, and plasma generation becomes nonuniform. However, when the length g of the gap 28a is larger than 50% of the distance d between the outer dielectric 23 and the inner dielectric 25, the gas flow control member 28 causes the outer dielectric 23 to face in the circumferential direction. Therefore, it is difficult to obtain the effect of directing the flow of the flowing processing gas in the axial direction of the external dielectric 23.

また、上例では、外部誘電体23の軸線方向に200mm〜300mmの間隔で複数の供給穴23aを形成したが、これに限られるものではなく、供給穴23aを一つだけ形成するようにしても良い。   In the above example, the plurality of supply holes 23a are formed at intervals of 200 mm to 300 mm in the axial direction of the external dielectric 23. However, the present invention is not limited to this, and only one supply hole 23a is formed. Also good.

この場合、外部誘電体23の軸線方向の長さを200mm〜300mmとし、供給穴23aを外部誘電体23の軸線方向中央部に形成するとともに、ガス流制御部材28の長手方向の長さを、外部誘電体23の軸線方向の長さの5%〜30%にすると良い。このようにしても、供給穴23aの形成間隔Pを200mm〜300mmにしたときや、ガス流制御部材28の長手方向の長さLを供給穴23aの形成間隔Pの5%〜30%の長さにしたときと同様の理由から、処理ガスを外部誘電体23と内部誘電体25との間に効率的に供給したり、均一に充満させたり、処理ガスの流速や圧力を外部誘電体23の吐出穴23b側において略均一にすることができる。尚、この場合において、外部誘電体23の軸線方向の長さが220mmであり、ガス流制御部材28の長手方向の長さが30mm〜60mmであれば、更に好ましい。   In this case, the length of the external dielectric 23 in the axial direction is set to 200 mm to 300 mm, the supply hole 23a is formed in the center in the axial direction of the external dielectric 23, and the length of the gas flow control member 28 in the longitudinal direction is The outer dielectric 23 may be 5% to 30% of the length in the axial direction. Even if it does in this way, when the formation interval P of the supply hole 23a is 200 mm to 300 mm, the length L in the longitudinal direction of the gas flow control member 28 is 5% to 30% of the formation interval P of the supply hole 23a. For the same reason as described above, the processing gas is efficiently supplied between the outer dielectric 23 and the inner dielectric 25, or is uniformly filled, and the flow rate and pressure of the processing gas are changed to the outer dielectric 23. The discharge holes 23b can be made substantially uniform. In this case, it is more preferable that the length of the external dielectric 23 in the axial direction is 220 mm and the length of the gas flow control member 28 in the longitudinal direction is 30 mm to 60 mm.

また、前記吐出穴23bは、スリット状のものに限られるものではなく、外部誘電体23の軸線方向に所定間隔で形成された複数の貫通穴から構成しても良い。   Further, the discharge hole 23b is not limited to the slit-shaped one, and may be composed of a plurality of through holes formed at predetermined intervals in the axial direction of the external dielectric 23.

また、内部電極26の内部に冷却液を流通させる冷却管を適宜設けて、この冷却管内を流通する冷却液により内部電極26を冷却し、これによって、石英ガラス管たる外部誘電体23や内部誘電体25が破損するのを防止するようにしても良い。   In addition, a cooling pipe through which the cooling liquid flows is appropriately provided inside the internal electrode 26, and the internal electrode 26 is cooled by the cooling liquid flowing through the cooling pipe, whereby the external dielectric 23 and the internal dielectric as a quartz glass tube are cooled. The body 25 may be prevented from being damaged.

また、上例では、基板Kを処理するように構成したが、処理対象物は基板Kに限定されるものではなく、また、処理ガスも窒素ガスを主成分とするものに限定されるものではない。   In the above example, the substrate K is configured to be processed. However, the processing target is not limited to the substrate K, and the processing gas is not limited to the main component of nitrogen gas. Absent.

本発明の一実施形態に係る表面処理装置の概略構成を示した正断面図である。It is the front sectional view showing the schematic structure of the surface treatment apparatus concerning one embodiment of the present invention. 図1における矢示A−A方向の断面図である。It is sectional drawing of the arrow AA direction in FIG. 本発明の他の実施形態に係る吐出機構の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the discharge mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る吐出機構の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the discharge mechanism which concerns on other embodiment of this invention. 実施例1における処理ガスの流速分布及び圧力分布を示した図である。It is the figure which showed the flow velocity distribution and pressure distribution of the process gas in Example 1. FIG. 実施例2における処理ガスの流速分布及び圧力分布を示した図である。It is the figure which showed the flow velocity distribution and pressure distribution of the process gas in Example 2. FIG. 比較例1における処理ガスの流速分布及び圧力分布を示した図である。It is the figure which showed the flow velocity distribution and pressure distribution of the process gas in the comparative example 1. 比較例2における処理ガスの流速分布及び圧力分布を示した図である。It is the figure which showed the flow velocity distribution and pressure distribution of the process gas in the comparative example 2. 比較例3における処理ガスの流速分布及び圧力分布を示した図である。It is the figure which showed the flow velocity distribution and pressure distribution of the process gas in the comparative example 3.

符号の説明Explanation of symbols

1 表面処理装置
10 搬送ローラ
20 処理ガス吐出装置
21 吐出機構
22 外部電極
23 外部誘電体
23a 供給穴
23b 吐出穴
24 接地電極(電極本体)
25 内部誘電体
26 内部電極
27 高周波電源
28 ガス流制御部材
29 スペーサ
30 封止部材
31 保持部材
40 ガス供給機構
40a 供給管
DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 10 Conveyance roller 20 Process gas discharge apparatus 21 Discharge mechanism 22 External electrode 23 External dielectric material 23a Supply hole 23b Discharge hole 24 Ground electrode (electrode main body)
25 Internal Dielectric 26 Internal Electrode 27 High Frequency Power Supply 28 Gas Flow Control Member 29 Spacer 30 Sealing Member 31 Holding Member 40 Gas Supply Mechanism 40a Supply Pipe

Claims (9)

処理ガスをプラズマ化して吐出する吐出手段と、該吐出手段に前記処理ガスを供給するガス供給手段とからなる処理ガス吐出装置であって、
前記吐出手段は、
接地された管状の部材からなる電極であって、外周面から内周面に貫通し、前記ガス供給手段から前記処理ガスが供給される供給穴と、外周面から内周面に貫通し、前記供給された処理ガスを吐出する吐出穴とを有する外部電極と、
管状に形成され、前記外部電極の管内に、該外部電極と一定間隔を隔てるように且つ該外部電極と同軸に設けられる内部誘電体と、
前記内部誘電体の管内に設けられる内部電極と、
前記内部電極と外部電極との間に電力を印加する電力供給手段とを備え、
前記ガス供給手段は、前記外部電極の供給穴に接続した供給管を備え、該供給管を介して前記供給穴から前記外部電極と内部誘電体との間に前記処理ガスを供給するように構成され、
前記外部電極と内部誘電体との間に供給された処理ガスは、前記電力供給手段により前記内部電極と外部電極との間に電力が印加されることによってプラズマ化された後、前記吐出穴から外部へ吐出されるように構成された処理ガス吐出装置において、
前記外部電極と内部誘電体との間の、該外部電極の円周方向において前記供給穴と吐出穴との間であり且つ該供給穴を塞がない位置に、長手方向が該外部電極の軸線と平行に配設される棒状のガス流制御部材をそれぞれ備えてなることを特徴とする処理ガス吐出装置。
A processing gas discharge apparatus comprising: discharge means for converting a processing gas into plasma and discharging; and a gas supply means for supplying the processing gas to the discharge means,
The discharge means is
An electrode made of a grounded tubular member, penetrating from the outer peripheral surface to the inner peripheral surface, penetrating from the gas supply means to the processing gas, and penetrating from the outer peripheral surface to the inner peripheral surface, An external electrode having a discharge hole for discharging the supplied processing gas;
An internal dielectric formed in a tubular shape and provided in the tube of the external electrode so as to be spaced apart from the external electrode and coaxially with the external electrode;
An internal electrode provided in the internal dielectric tube;
Power supply means for applying power between the internal electrode and the external electrode,
The gas supply means includes a supply pipe connected to the supply hole of the external electrode, and is configured to supply the processing gas from the supply hole to the external electrode and the internal dielectric via the supply pipe. And
The processing gas supplied between the external electrode and the internal dielectric is turned into plasma by applying power between the internal electrode and the external electrode by the power supply means, and then from the discharge hole. In the processing gas discharge apparatus configured to be discharged to the outside,
Between the external electrode and the internal dielectric, in the circumferential direction of the external electrode, between the supply hole and the discharge hole and at a position where the supply hole is not blocked, the longitudinal direction is the axis of the external electrode A processing gas discharge device comprising a rod-like gas flow control member disposed in parallel with each other.
前記外部電極の供給穴と吐出穴とは、該外部電極の円周方向に180°隔てた位置にそれぞれ形成され、
前記ガス流制御部材は、前記外部電極の軸線を中心にした配設角度が、前記供給穴の軸線から60°以下に設定されてなることを特徴とする請求項1記載の処理ガス吐出装置。
The external electrode supply hole and the discharge hole are respectively formed at positions separated by 180 ° in the circumferential direction of the external electrode,
The processing gas discharge apparatus according to claim 1, wherein the gas flow control member has an arrangement angle about the axis of the external electrode set to 60 ° or less from the axis of the supply hole.
前記供給穴の軸線と直交し、前記外部電極の軸線を含む対称面を基準にして前記ガス流制御部材と対称位置に、前記外部電極と内部誘電体との間の間隔を一定にするためのスペーサが設けられてなることを特徴とする請求項2記載の処理ガス吐出装置。   For making a space between the external electrode and the internal dielectric constant at a position symmetrical to the gas flow control member with respect to a symmetry plane perpendicular to the axis of the supply hole and including the axis of the external electrode The processing gas discharge device according to claim 2, further comprising a spacer. 前記ガス流制御部材と外部電極又は内部誘電体との間には、該外部電極と内部誘電体との間の距離の20%〜50%の隙間が形成されてなることを特徴とする請求項1又は2記載の処理ガス吐出装置。   The gap between 20% and 50% of the distance between the external electrode and the internal dielectric is formed between the gas flow control member and the external electrode or the internal dielectric. 3. A processing gas discharge apparatus according to 1 or 2. 前記外部電極には、前記供給穴が200mm〜300mmの間隔で該外部電極の軸線方向に複数形成され、
前記ガス流制御部材は、前記各供給穴に対応するように前記外部電極の軸線方向に複数設けられてなることを特徴とする請求項1乃至4記載のいずれかの処理ガス吐出装置。
In the external electrode, a plurality of the supply holes are formed in the axial direction of the external electrode at intervals of 200 mm to 300 mm,
5. The processing gas discharge apparatus according to claim 1, wherein a plurality of the gas flow control members are provided in the axial direction of the external electrode so as to correspond to the supply holes. 6.
前記ガス流制御部材は、その長手方向の長さが、前記供給穴の形成間隔の5%〜30%の長さであることを特徴とする請求項5記載の処理ガス吐出装置。   6. The processing gas discharge apparatus according to claim 5, wherein a length of the gas flow control member in a longitudinal direction is 5% to 30% of a formation interval of the supply holes. 前記外部電極は、その軸線方向の長さが200mm〜300mmであり、前記供給穴が該軸線方向中央部に形成されてなり、
前記ガス流制御部材は、その長手方向の長さが、前記外部電極の軸線方向の長さの5%〜30%であることを特徴とする請求項1乃至4記載のいずれかの処理ガス吐出装置。
The external electrode has a length in the axial direction of 200 mm to 300 mm, and the supply hole is formed in a central portion in the axial direction.
5. The process gas discharge according to claim 1, wherein a length of the gas flow control member in a longitudinal direction is 5% to 30% of a length in an axial direction of the external electrode. apparatus.
前記外部電極は、管状に形成され、前記供給穴及び吐出穴を有する外部誘電体と、該外部誘電体の外周面に前記供給穴及び吐出穴を塞がないように設けられ、接地された電極本体とからなり、
前記電力供給手段は、前記内部電極と外部電極の電極本体との間に電力を印加するように構成され、
前記ガス供給手段は、前記供給管を介して前記供給穴から前記外部誘電体と内部誘電体との間に前記処理ガスを供給するように構成されてなることを特徴とする請求項1乃至7記載のいずれかの処理ガス吐出装置。
The external electrode is formed in a tubular shape, and has an external dielectric having the supply hole and the discharge hole, and an electrode grounded so as not to block the supply hole and the discharge hole on the outer peripheral surface of the external dielectric. Consisting of the body,
The power supply means is configured to apply power between the electrode body of the internal electrode and the external electrode;
The said gas supply means is comprised so that the said process gas may be supplied between the said external dielectric material and an internal dielectric material from the said supply hole through the said supply pipe | tube. Any of the processing gas discharge apparatus of description.
処理対象物を支持する支持手段と、
前記請求項1乃至8記載のいずれかの処理ガス吐出装置とを備え、
前記処理ガス吐出装置は、前記吐出穴が前記支持手段によって支持された処理対象物と対峙するように配置され、
前記処理ガス吐出装置から吐出された処理ガスによって前記処理対象物の表面を処理するように構成されてなることを特徴とする表面処理装置。
Support means for supporting the object to be treated;
A processing gas discharge device according to any one of claims 1 to 8,
The processing gas discharge device is disposed so that the discharge hole faces the processing object supported by the support means,
A surface treatment apparatus configured to treat the surface of the object to be treated with a treatment gas discharged from the treatment gas discharge apparatus.
JP2005244196A 2005-08-25 2005-08-25 Treated gas discharging device, and surface treatment device equipped therewith Withdrawn JP2007059242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244196A JP2007059242A (en) 2005-08-25 2005-08-25 Treated gas discharging device, and surface treatment device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244196A JP2007059242A (en) 2005-08-25 2005-08-25 Treated gas discharging device, and surface treatment device equipped therewith

Publications (1)

Publication Number Publication Date
JP2007059242A true JP2007059242A (en) 2007-03-08

Family

ID=37922538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244196A Withdrawn JP2007059242A (en) 2005-08-25 2005-08-25 Treated gas discharging device, and surface treatment device equipped therewith

Country Status (1)

Country Link
JP (1) JP2007059242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098002B1 (en) * 2018-10-19 2020-04-07 세메스 주식회사 Apparatus for processing substrate
KR102097984B1 (en) * 2018-10-19 2020-05-26 세메스 주식회사 Apparatus and method for processing substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098002B1 (en) * 2018-10-19 2020-04-07 세메스 주식회사 Apparatus for processing substrate
KR102097984B1 (en) * 2018-10-19 2020-05-26 세메스 주식회사 Apparatus and method for processing substrate

Similar Documents

Publication Publication Date Title
KR101039087B1 (en) Plasma processing apparatus
TWI475127B (en) Plasma CVD device
US8709351B2 (en) Atmospheric treater with roller confined discharge chamber
KR101563396B1 (en) Vacuum deposition apparatus
JP2006297339A (en) Treated-gas discharging apparatus and surface treatment apparatus equipped with same
KR101698717B1 (en) Apparatus for processing an object
JP5594820B2 (en) Uniform atmospheric pressure plasma generator
US9474141B1 (en) Arc atmospheric pressure plasma device
JPH057861B2 (en)
US20090229523A1 (en) Film depositing apparatus
JP4630874B2 (en) Atmospheric pressure large area glow plasma generator
JP2007059242A (en) Treated gas discharging device, and surface treatment device equipped therewith
JP2007294210A (en) Treatment gas discharging device and surface treatment device equipped with it
JP2007188823A (en) Treatment gas discharging device and surface treatment device equipped with the same
JP2007280641A (en) Plasma treatment device and plasma treatment method
JP2010129198A (en) Plasma treatment device
JP2003109799A (en) Plasma treatment apparatus
JP4567979B2 (en) Plasma processing system and plasma processing method
EP3666376B1 (en) Surface modification device
JP2007026981A (en) Plasma processing device
TWI655232B (en) Surface modification device
TWI602474B (en) Plasma surface processing apparatus
JP2007185635A (en) Device for discharging treating gas and surface treatment apparatus with the same
JP2978991B2 (en) Chemical dry etching equipment
JP2007188824A (en) Treatment gas discharging device and surface treatment device equipped with the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104