JP2007057506A - Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition - Google Patents

Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition Download PDF

Info

Publication number
JP2007057506A
JP2007057506A JP2005246691A JP2005246691A JP2007057506A JP 2007057506 A JP2007057506 A JP 2007057506A JP 2005246691 A JP2005246691 A JP 2005246691A JP 2005246691 A JP2005246691 A JP 2005246691A JP 2007057506 A JP2007057506 A JP 2007057506A
Authority
JP
Japan
Prior art keywords
resin composition
analysis
additive
mid
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246691A
Other languages
Japanese (ja)
Inventor
Masuhiro Iida
益大 飯田
Osamu Ohama
理 大浜
Kenichiro Miyatake
健一郎 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005246691A priority Critical patent/JP2007057506A/en
Publication of JP2007057506A publication Critical patent/JP2007057506A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing method capable of accurately and rapidly performing qualitative and quantitative analyses of micro additives added to a resin composition. <P>SOLUTION: Mid-infrared spectrum in a mid-infrared region is measured so as to produce a peak in the additives in the resin composition to be analyzed, and, based on data of the mid-infrared spectrum, qualitative and quantitative analyses of the micro additives added in the resin composition are performed. When such spectrum measurement is performed, intensity of object peak can be sufficiently secured in the micro additives added to the resin composition, not only qualitative analysis of the micro additives but also the quantitative analysis of the micro additives can be performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂組成物中に含まれる微量添加物の定性分析および定量分析を行うための分析方法に関する。さらに、本発明は、この定性・定量分析方法で定量された微量添加物である酸化防止剤の含有量に基づいて樹脂組成物の寿命を分析する方法に関する。   The present invention relates to an analysis method for performing qualitative analysis and quantitative analysis of a trace additive contained in a resin composition. Furthermore, the present invention relates to a method for analyzing the lifetime of a resin composition based on the content of an antioxidant which is a trace additive quantified by this qualitative / quantitative analysis method.

樹脂やゴム製品中には、一般に添加剤が配合されており、この添加剤は、各製品の用途に応じた性能を発揮させる上で重要な役割を果たす。そして、添加剤の種類は多岐にわたるため、樹脂やゴム製品中の添加剤を分析することは製品の性能を確認するために非常に重要となる。   Additives are generally blended in resin and rubber products, and these additives play an important role in exerting performance according to the use of each product. And since there are a wide variety of additives, it is very important to analyze the additives in resins and rubber products in order to confirm the performance of the products.

さらに、添加剤の含有量は製品性能に大きな影響を及ぼす。例えば、酸化防止剤は耐熱寿命に影響を及ぼし、難燃剤は難燃性に影響を及ぼす。しかし、樹脂やゴム製品中の添加剤の含有量にばらつきが生じた場合には、初期性能品質、特に、樹脂寿命にばらつきが生ずることになる。このような、品質にばらつきが生じないようにするためには、製品中に配合されている添加剤を定性分析するとともに定量分析して、品質管理を行う必要がある。   Furthermore, the additive content has a significant effect on product performance. For example, an antioxidant affects the heat-resistant life, and a flame retardant affects flame retardancy. However, when the content of the additive in the resin or rubber product varies, the initial performance quality, particularly the resin life, varies. In order to prevent such variations in quality, it is necessary to perform quality control by performing qualitative analysis and quantitative analysis of the additives blended in the product.

一般的な添加物分析法としては、液体クロマトグラフ分析装置(LC)やガスクロマトグラフ分析装置(GC)で測定する方法がある。   As a general additive analysis method, there is a method of measuring with a liquid chromatograph analyzer (LC) or a gas chromatograph analyzer (GC).

しかしながら、クロマトグラフによる分析方法は、樹脂から溶剤を用いて添加物成分を分離抽出しなければならない。この分離抽出作業は、長時間を要する上に、多量の溶剤が必要となり、さらに安全性を考慮して、溶剤が使用できる環境も必要となる。   However, the chromatographic analysis method must separate and extract additive components from the resin using a solvent. This separation and extraction operation requires a long time, requires a large amount of solvent, and further requires an environment in which the solvent can be used in consideration of safety.

また、クロマトグラフ分析装置は操作が困難であり、装置のメンテナンスや維持管理に手間や熟練の技能も要する。しかも、装置の設置場所が化学実験室などに限られ、工場の生産ライン近くに設置できず、生産する際の品質管理に即座に対応できないという不具合もある。   In addition, the chromatographic analyzer is difficult to operate, and labor and skill are required for maintenance and maintenance of the apparatus. In addition, the installation location of the apparatus is limited to chemical laboratories and the like, and it cannot be installed near the production line of the factory, and there is a problem that the quality control at the time of production cannot be dealt with immediately.

また、樹脂やゴム製品の寿命の評価は、例えば、製品について、疲れ試験、熱的試験、耐候性試験等、使用環境を想定した試験方法で試験を行って寿命の予測を行って評価することができる。しかし、このような寿命評価方法は、多大な測定時間を要するため、生産ラインで行うことができない。   In addition, the evaluation of the life of resin and rubber products should be performed by predicting the life by testing the product with a test method that assumes the usage environment such as fatigue test, thermal test, weather resistance test, etc. Can do. However, such a life evaluation method requires a great amount of measurement time and cannot be performed on a production line.

また、樹脂やゴム製品の寿命は、酸化防止剤の含有量に直結するので、酸化防止剤の含有量を測定することで寿命を概ね把握できる。そこで、試験試料を窒素雰囲気中で所定の温度まで昇温し、10分間保持した後、酸素雰囲気に切り替えて、試験材料が発熱反応を開始するまでの誘導時間を測定し、この測定時間を酸化誘導期として求める方法が提案されている(非特許文献1)。非特許文献1の方法では、酸化誘導期を求めることにより、樹脂材料の寿命と酸化防止剤の含有量を概ね把握し、この測定結果をもとに、製造される製品に要求される酸化劣化特性に応じて酸化防止剤の適切な配合処方を決定できる。   Moreover, since the lifetime of resin and rubber products is directly related to the content of the antioxidant, the lifetime can be generally grasped by measuring the content of the antioxidant. Therefore, the test sample was heated to a predetermined temperature in a nitrogen atmosphere, held for 10 minutes, then switched to an oxygen atmosphere, the induction time until the test material started an exothermic reaction was measured, and this measurement time was oxidized. A method for obtaining the induction period has been proposed (Non-Patent Document 1). In the method of Non-Patent Document 1, by obtaining the oxidation induction period, the life of the resin material and the content of the antioxidant are roughly grasped, and based on this measurement result, the oxidative deterioration required for the manufactured product. Depending on the characteristics, an appropriate formulation of antioxidant can be determined.

また、樹脂やゴム製品中に含まれる添加物の定性・定量分析を行う方法としては、特許文献1に記載された分析方法も提案されている。   In addition, as a method for qualitative and quantitative analysis of additives contained in resins and rubber products, an analysis method described in Patent Document 1 has also been proposed.

特許文献1に開示される分析方法は、樹脂組成物中に含まれる添加物の違いによって光の吸収率や反射率が異なる波長を含む近赤外線を用いて、樹脂組成物に対して近赤外線スペクトルの測定を行う。このスペクトルの測定により、添加物の違いに関する情報を含む近赤外線スペクトルデータを得て、この近赤外線スペクトルのデータに対して、コンピュータを用いたデータ解析が容易なケモメトリックスにおけるデータ解析手法を適用する。このデータ解析により、近赤外線スペクトルのデータから樹脂組成物中に含まれる添加物の違いに関する情報が抽出され、このデータ解析手法で取得された情報に基づいて、樹脂組成物中に含まれる添加物の種類と添加量を分析する。   The analysis method disclosed in Patent Document 1 uses a near-infrared spectrum with respect to a resin composition, using near-infrared light that includes wavelengths with different light absorption and reflectance depending on the additive contained in the resin composition. Measure. By measuring this spectrum, we obtain near-infrared spectrum data including information on the difference in additives, and apply the data analysis method in chemometrics, which allows easy data analysis using a computer, to this near-infrared spectrum data. . By this data analysis, information on the difference in the additives contained in the resin composition is extracted from the near-infrared spectrum data, and based on the information obtained by this data analysis method, the additives contained in the resin composition Analyze the type and amount added.

隅田憲武、福嶋容子著「ポリプロピレンサイクル材料の余寿命評価と品質管理」マテリアル学会誌2003年7月号Vol.15 P93〜97Noritake Sumida and Yoko Fukushima, “Evaluation of remaining life and quality control of polypropylene cycle materials”, Journal of Materials Society, July 2003, Vol.15, P93-97 特開2004−53440公報JP 2004-53440 A

非特許文献1に記載されている酸化誘導期の測定を行うためには、測定時間として30分間から120分は必要となる。従って、生産ラインで寿命評価をする際には、さらに短時間で評価を行うことが要求されるので、酸化誘導期の測定による寿命評価によっても、生産ライン中で行う場合には適さない。   In order to measure the oxidation induction period described in Non-Patent Document 1, 30 to 120 minutes are required as the measurement time. Therefore, when evaluating the life in the production line, it is required to perform the evaluation in a shorter time. Therefore, the life evaluation based on the measurement of the oxidation induction period is not suitable for performing in the production line.

また、特許文献1については、近赤外線スペクトルにより定性・定量分析を行っている。ここで、近赤外線領域での分光分析は、分子の倍音振動および結合振動による吸収で分析するため、吸収バンド幅が広く、他成分の吸収バンドと重畳してしまう。そのため、近赤外線スペクトルは、多種類の樹脂や添加物を配合している材料系では、各成分のピークが重畳し、定性、定量分析ができなくなる。特に、添加物が微量である場合には、その添加物の定量は非常に困難となる。従って、スペクトルを測定しただけでは、ポリ塩化ビニル樹脂など、配合が単純な系でしか分析ができないという不具合がある。   Moreover, about patent document 1, the qualitative and quantitative analysis is performed by the near-infrared spectrum. Here, since the spectral analysis in the near-infrared region is analyzed by absorption due to overtone vibration and binding vibration of molecules, the absorption band width is wide and overlaps with the absorption bands of other components. Therefore, in the near infrared spectrum, in the material system in which various types of resins and additives are blended, the peaks of the respective components are superimposed, and qualitative and quantitative analysis cannot be performed. In particular, when the amount of the additive is very small, it is very difficult to quantify the additive. Therefore, only by measuring the spectrum, there is a problem that analysis is possible only with a system having a simple composition, such as a polyvinyl chloride resin.

そこで、特許文献1では、各成分の単独ピークを得るために、ケモメトリックスにおけるデータ解析手法を適用しているが、このようなデータ解析を行っても、スペクトル的に類似化合物が存在したり、微量に添加されている添加物については、データ解析の精度が著しく低下してしまう。その結果、樹脂組成物中の微量添加物を迅速かつ高精度に定性分析や定量分析することが困難となり、10重量%未満の微量な添加物定量を高精度に行うことができないし、添加物の種類が増えれば増えるほど定性・定量分析が困難となる。   Therefore, in Patent Document 1, in order to obtain a single peak of each component, a data analysis method in chemometrics is applied. Even if such data analysis is performed, there are spectrally similar compounds, For additives that are added in trace amounts, the accuracy of data analysis is significantly reduced. As a result, it is difficult to perform qualitative analysis and quantitative analysis of trace additives in the resin composition quickly and with high accuracy, and it is not possible to perform quantitative determination of trace additives less than 10% by weight with high accuracy. As the number of types increases, qualitative and quantitative analysis becomes more difficult.

ところで、近赤外線領域での分光分析に対し、中赤外線領域での分光分析は、分子間の基本振動(官能基の伸縮振動)を吸収してスペクトルが得られるので、官能基の振動が特異的に現れる。また近赤外線スペクトルとは異なり、中赤外線スペクトルでは、構造的に極めて類似した構造同士でも、そのスペクトルは全く一致する事がないので、官能基の種類を見分けるだけでなく、それらが置かれている環境についての情報も得ることができる。   By the way, in contrast to spectroscopic analysis in the near infrared region, spectroscopic analysis in the mid infrared region absorbs fundamental vibrations between molecules (stretching vibrations of functional groups) and obtains a spectrum. Appears in Also, unlike the near-infrared spectrum, the mid-infrared spectrum does not match the types of functional groups even in structures that are structurally very similar. Information about the environment can also be obtained.

また、中赤外線スペクトルは、近赤外線スペクトルに比べて大きな吸収特性を有する。通常、中赤外線スペクトルによる分光分析を行うには、吸収強度が強いことから、例えば透過法による分析を行う場合には、試料の厚みを0.05mm以下にしなければ樹脂組成物全体の定性・定量分析が行えない。即ち、従来から行われている中赤外線領域におけるスペクトルの測定は、樹脂組成物全体の定性・定量分析を行うことを目的としてなされている。   Further, the mid-infrared spectrum has a larger absorption characteristic than the near-infrared spectrum. Usually, when performing spectroscopic analysis using the mid-infrared spectrum, the absorption intensity is strong. For example, when analyzing by the transmission method, the qualitative and quantitative analysis of the entire resin composition is required unless the sample thickness is 0.05 mm or less. Cannot be done. That is, the conventional measurement of the spectrum in the mid-infrared region is performed for the purpose of qualitative / quantitative analysis of the entire resin composition.

このように、従来から行われている中赤外線領域におけるスペクトルの測定は、樹脂組成物全体の定性・定量分析を行うため、樹脂組成物中に微量に添加剤が添加されている場合には、この添加剤のピークが現れにくくなる。従って、中赤外線領域におけるスペクトルの測定では、樹脂組成物中に微量に添加される添加物の定性・定量分析を高精度で、しかも、迅速に行うことはできなかった。   Thus, the conventional measurement of the spectrum in the mid-infrared region is to perform qualitative and quantitative analysis of the entire resin composition, and when a small amount of additive is added to the resin composition, This additive peak is less likely to appear. Therefore, in the measurement of the spectrum in the mid-infrared region, qualitative and quantitative analysis of additives added in a minute amount in the resin composition cannot be performed with high accuracy and speed.

本発明は、このような上記課題を解決するために成したものであり、樹脂組成物中に微量に添加される添加物の定性・定量分析を高精度で、しかも、短時間で行うことができる分析方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and can perform qualitative and quantitative analysis of additives added in a trace amount in a resin composition with high accuracy and in a short time. The purpose is to provide an analytical method that can be used.

本発明は、中赤外線スペクトルの特性を利用し、樹脂組成物中の主成分樹脂の分析を行うのではなく、積極的に樹脂組成物中に微量に添加される添加物の定性・定量分析を行えるように中赤外線スペクトルの測定を行うことにより、上記目的を達成する。   The present invention utilizes the characteristics of the mid-infrared spectrum and does not analyze the main component resin in the resin composition, but actively performs qualitative and quantitative analysis of additives added in a small amount to the resin composition. The above object is achieved by measuring the mid-infrared spectrum as possible.

本発明の樹脂組成物中の微量添加物の分析方法は、分析対象となる樹脂組成物に対して、樹脂組成物中の微量添加物に対してピークが出るように、中赤外線領域(25μm〜2500nm)におけるスペクトルを測定し、この中赤外線スペクトルのデータに基づいて、樹脂組成物中の微量添加物の定性分析および定量分析を行うことを特徴とする。   The analysis method of the trace additive in the resin composition of the present invention is such that a peak appears with respect to the trace additive in the resin composition with respect to the resin composition to be analyzed. The spectrum at 2500 nm) is measured, and based on the data of the mid-infrared spectrum, qualitative analysis and quantitative analysis of a trace additive in the resin composition are performed.

本発明の分析方法は、主成分樹脂について吸収強度が強すぎてスペクトル測定により分析できない場合が生じるぐらい、樹脂組成物の中赤外線の吸収量が多くなるようにスペクトル測定を行う。このようにスペクトル測定を行うことにより、樹脂組成物中の微量に添加されている添加物に対して、対象ピークの強度を十分に確保することができ、微量添加物の定性分析だけでなく、微量添加物の定量分析も可能となる。   The analysis method of the present invention performs the spectrum measurement so that the absorption amount of the mid-infrared ray of the resin composition increases to the extent that the absorption intensity of the main component resin is too strong to be analyzed by the spectrum measurement. By performing the spectrum measurement in this way, for the additive added in a trace amount in the resin composition, it is possible to sufficiently ensure the intensity of the target peak, not only the qualitative analysis of the trace additive, Quantitative analysis of trace additives is also possible.

本発明では、全反射(ATR)測定法、拡散反射法(粉体試料をKBrやKClの粉末に希釈する)、光音響(PAS)測定法、透過法、反射率測定(正反射及び高感度反射法)などの分光分析法でスペクトルを測定することができる。本発明は、特に、透過法による測定が、高精度の定性・定量分析を行う上で好ましい。   In the present invention, total reflection (ATR) measurement method, diffuse reflection method (powder sample is diluted with KBr or KCl powder), photoacoustic (PAS) measurement method, transmission method, reflectance measurement (regular reflection and high sensitivity) The spectrum can be measured by a spectroscopic analysis method such as a reflection method. In the present invention, measurement by the transmission method is particularly preferable for performing highly accurate qualitative and quantitative analysis.

そして、本発明の分析方法では、中赤外線スペクトルの測定を行う測定対象物は、樹脂組成物を0.05mm超3.0mm以下の厚みを有するシート状に形成したものとすることが好ましい。樹脂組成物をシート状に形成する場合には、プレスしてシート状にすると、樹脂組成物を緻密な状態にでき、さらに、高精度な分析が可能となる。   And in the analysis method of this invention, it is preferable that the measurement object which measures a mid-infrared spectrum shall form the resin composition in the sheet form which has more than 0.05 mm and the thickness of 3.0 mm or less. When the resin composition is formed into a sheet shape, if the resin composition is pressed into a sheet shape, the resin composition can be brought into a dense state, and a highly accurate analysis can be performed.

樹脂組成物の厚みを0.05mm以下とする場合には、微量添加物について十分な吸収ピーク強度が得られず、微量添加物の定性・定量分析、特に定量分析が確実に行えない。また、樹脂組成物の厚みを3.0mm超とすると、微量添加物に対しても吸収が強過ぎてしまい、適性な定性・定量分析が行えなくなる。そして、測定対象となる樹脂組成物を上記厚みとすることにより、微量添加物の十分な吸収ピーク強度が得られて、微量添加物の定性・定量分析を確実に行うことができる。樹脂組成物のシートの厚みは、0.1mm以上1.0mm以下とすることがさらに好ましい。   When the thickness of the resin composition is 0.05 mm or less, sufficient absorption peak intensity cannot be obtained for the trace additive, and qualitative / quantitative analysis, especially quantitative analysis, of the trace additive cannot be reliably performed. On the other hand, if the thickness of the resin composition is more than 3.0 mm, absorption is too strong even for a trace amount of additive, and appropriate qualitative and quantitative analysis cannot be performed. And by making the resin composition used as a measuring object into the said thickness, sufficient absorption peak intensity | strength of a trace additive can be obtained, and the qualitative and quantitative analysis of a trace additive can be performed reliably. The thickness of the resin composition sheet is more preferably 0.1 mm or more and 1.0 mm or less.

特に、樹脂組成物の中赤外線スペクトルの測定を上記厚みの範囲(0.05mm超3.0mm以下)で透過法により行う場合には、微量添加物の添加量が1重量%以下であっても、高精度で定性・定量分析ができるし、例えば、10種類の添加物が添加されていても高精度で定性・定量分析ができる。   In particular, when the measurement of the mid-infrared spectrum of the resin composition is performed by the transmission method within the above thickness range (over 0.05 mm to 3.0 mm or less), even if the amount of the trace additive added is 1% by weight or less, the Qualitative / quantitative analysis can be performed with high accuracy. For example, even if 10 kinds of additives are added, qualitative / quantitative analysis can be performed with high accuracy.

また、中赤外線スペクトルの測定を、全反射測定法(ATR法)により行う場合でも、微量添加物の添加量が3重量%程度の添加量ならば、高精度で定性・定量分析ができる。   Further, even when the mid-infrared spectrum is measured by the total reflection measurement method (ATR method), qualitative / quantitative analysis can be performed with high accuracy if the addition amount of the trace additive is about 3% by weight.

なお、微量添加物の定性・定量分析を行うために、本発明では、所定の添加物が所定量添加された樹脂組成物について、予め中赤外線スペクトルの測定を行い、スペクトルデータから定量対象(微量添加物)のピークを選定して、添加物含有量とピーク強度との関係を示す検量線を作成しておく。そして、この検量線に基づいて微量添加物の定性分析および定量分析を行う。   In order to perform qualitative and quantitative analysis of trace additives, in the present invention, a mid-infrared spectrum is measured in advance for a resin composition to which a predetermined amount of a predetermined additive has been added, and a quantitative target (a trace amount is determined from the spectrum data). The peak of the additive) is selected, and a calibration curve showing the relationship between the additive content and the peak intensity is prepared. Based on this calibration curve, qualitative analysis and quantitative analysis of the trace additive are performed.

また、本発明の分析方法は、樹脂組成物に対して、中赤外線スペクトルの測定を行った後、中赤外線スペクトルのデータに対して、微分処理を実施した後、多変量解析によるデータ処理を行うことが好ましい。微分処理を実施することにより、ベースライン変動の除去および重なり合った複数のピークの分離を行う。そして、多変量解析によるデータ処理を行って、樹脂組成物中の微量添加物についてピーク強度を求める。   In the analysis method of the present invention, the mid-infrared spectrum is measured for the resin composition, the differential processing is performed on the data of the mid-infrared spectrum, and then data processing by multivariate analysis is performed. It is preferable. By performing a differentiation process, baseline fluctuations are removed and a plurality of overlapping peaks are separated. And the data processing by multivariate analysis is performed, and a peak intensity is calculated | required about the trace amount additive in a resin composition.

多変量解析によるデータ処理を行うためのデータ解析法としては、主成分分析法、主成分回帰法(PCR法(Principal component regression))、部分最小二乗法(PLS分析法(Partial Least Squares))、階層的クラスター分析法、SIMCA法、Simple Beer’s law、SMLR(Stepwise multiple linear regression)、CLS法(Classical least
squares)などが挙げられ、何れのデータ解析法においても本発明は適用可能である。特に、好ましいデータ解析法は、PLS法である。
Data analysis methods for data processing by multivariate analysis include principal component analysis, principal component regression (PCR (Principal component regression)), partial least squares (PLS analysis (Partial Least Squares)), Hierarchical cluster analysis method, SIMCA method, Simple Beer's law, SMLR (Stepwise multiple linear regression), CLS method (Classical least
The present invention is applicable to any data analysis method. In particular, the preferred data analysis method is the PLS method.

なお、本発明の分析方法は、一つのピークのみを定量対象にするのではなく、必要な波長範囲の全ての波長を使用して計算する多変量解析を行い、検量線に基づき定量値を算出することにより、複数の種類の微量添加物に対しても定性・定量分析が可能となる。   Note that the analysis method of the present invention does not set only one peak for quantification, but performs multivariate analysis using all wavelengths in the required wavelength range, and calculates the quantitative value based on the calibration curve. By doing so, qualitative and quantitative analysis is possible even for a plurality of types of trace additives.

このように、中赤外線スペクトルのデータに対して、微分処理と多変量解析によるデータ処理を行うことにより、微量添加物について、さらに高精度な定性・定量分析が可能となる。   Thus, by performing data processing by differential processing and multivariate analysis on the data of the mid-infrared spectrum, it becomes possible to perform qualitative / quantitative analysis with higher accuracy for trace additives.

特に、前記した微分処理と多変量解析によるデータ処理を行うためには、透過法で、赤外吸収スペクトルを測定することが好ましい。この場合、得られたスペクトルデータに対して微分処理を行い、この微分処理が成されたデータに対して、多変量解析によるデータ処理を行い、検量線に基づいて添加剤の定量値を算出する。   In particular, in order to perform the above-described differential processing and data processing by multivariate analysis, it is preferable to measure an infrared absorption spectrum by a transmission method. In this case, differential processing is performed on the obtained spectrum data, data processing by multivariate analysis is performed on the data subjected to the differential processing, and a quantitative value of the additive is calculated based on a calibration curve. .

ところで、耐久性が要求される樹脂組成物中には、通常、酸化防止剤が添加されている。そして、樹脂組成物の主成分が非架橋型難燃性樹脂組成物であるときには、耐久性を持たせるために、酸化防止剤(微量添加物)として、ヒンダードフェノール系酸化防止剤またはイオウ系酸化防止剤の少なくとも一つを添加させている。このように微量の酸化防止剤が添加されている樹脂組成物に対して、本発明の樹脂組成物中の微量添加物の分析方法を用いることにより、添加されている酸化防止剤の定量分析を行って、寿命の評価を短時間で行うことができる。   Incidentally, an antioxidant is usually added to a resin composition requiring durability. And when the main component of the resin composition is a non-crosslinked flame retardant resin composition, as an antioxidant (a trace additive), a hindered phenol-based antioxidant or a sulfur-based compound is used to provide durability. At least one antioxidant is added. By using the method for analyzing trace additives in the resin composition of the present invention for a resin composition to which trace amounts of antioxidants are added, quantitative analysis of the added antioxidant can be performed. The lifetime can be evaluated in a short time.

本発明の樹脂組成物中の微量添加物の分析方法は、樹脂組成物の主成分について中赤外線スペクトルの測定を行うのではなく、樹脂組成物中に微量に添加されている添加物の中赤外線スペクトルの測定を積極的に行って、微量添加物について十分な吸収ピークを得るようにしている。本発明は、このようにして微量添加物について確実に吸収ピークが得られるので、吸収ピークのデータに基づいて、各微量添加物の定性分析と定量分析を高精度で、かつ短時間で行うことができる。   The analysis method of the trace additive in the resin composition of the present invention is not to measure the mid-infrared spectrum for the main component of the resin composition, but to the mid-infrared additive added in a trace amount in the resin composition. The spectrum is actively measured to obtain a sufficient absorption peak for the trace additive. Since the present invention can reliably obtain an absorption peak for a trace additive in this way, based on the absorption peak data, qualitative analysis and quantitative analysis of each trace additive can be performed with high accuracy and in a short time. Can do.

さらに、中赤外線スペクトルのデータにより、官能基の種類を見分けて添加物の定性と添加量を定量するだけでなく、添加剤の作用機構を知ることができ、樹脂組成物の構造変化(反応生成物の有無および生成量)も解析することができるので、温度や圧力などの製造条件の最適化も図れる。   Furthermore, the mid-infrared spectrum data not only identifies the types of functional groups and quantifies the qualitative and additive amount of the additive, but also knows the mechanism of action of the additive, and changes the structure of the resin composition (reaction generation). The presence / absence of a product and the production amount) can also be analyzed, so that manufacturing conditions such as temperature and pressure can be optimized.

このように、本発明の分析方法は、中赤外線領域における分光分析なので、樹脂組成物中から添加物を分離抽出せずとも定性・定量分析ができ、しかも、測定時間も数分で済み、測定を容易に行うことができるので、工場内の製造ラインでの品質管理分析を行う場合に適している。   As described above, since the analysis method of the present invention is spectroscopic analysis in the mid-infrared region, qualitative and quantitative analysis can be performed without separating and extracting additives from the resin composition, and the measurement time is only a few minutes. This is suitable for performing quality control analysis on a production line in a factory.

本発明の分析方法は、樹脂組成物中の添加物配合量の管理分析に適用することができるので、樹脂組成物全体の品質管理を行うことができるようになる。   Since the analysis method of the present invention can be applied to the management analysis of the additive compounding amount in the resin composition, the quality control of the entire resin composition can be performed.

特に、添加物が酸化防止剤の場合には、この酸化防止剤が樹脂材料の寿命に直結するので、酸化防止剤の含有量を定量することにより、この含有量から樹脂組成物の寿命評価、寿命管理の分析を行うことができる。   In particular, when the additive is an antioxidant, since this antioxidant is directly linked to the life of the resin material, by quantifying the content of the antioxidant, the life evaluation of the resin composition from this content, Lifetime management analysis can be performed.

以下、本発明の樹脂組成物中の微量添加物の分析方法に係る実施例について説明する。本発明の分析方法は、微量添加物の分析が行われる測定対象の樹脂組成物が、プロピレン単量体の含有率が50重量%以上となるプロピレン系樹脂を主成分とする非架橋型難燃性樹脂をベース樹脂とし、微量添加物として、ヒンダードフェノール系酸化防止剤と、イオウ系酸化防止剤とが添加されたものについて、微量添加剤を定性・定量する場合に好適である。   Hereinafter, examples relating to a method for analyzing a trace additive in the resin composition of the present invention will be described. The analysis method of the present invention is a non-crosslinked flame retardant mainly composed of a propylene-based resin whose propylene monomer content is 50% by weight or more in a resin composition to be measured in which analysis of a trace amount additive is performed. It is suitable for qualitative and quantitative determination of trace additives for those in which a hindered phenolic antioxidant and a sulfurous antioxidant are added as a trace additive using a base resin as a trace additive.

本実施例では、ベース樹脂が、プロピレン単量体の含有率が100重量%のポリプロピレン樹脂である樹脂組成物を用いた。   In this example, a resin composition in which the base resin is a polypropylene resin having a propylene monomer content of 100% by weight was used.

そして、本例の樹脂組成物は、このポリプロピレン樹脂100重量部に対して、水酸化マグネシウム(金属水和物)を70重量部、ヒンダードフェノール系酸化防止剤を3重量部、イオウ系酸化防止剤(イミダゾール系化合物のもの)を5重量部と、酸化亜鉛(金属酸化物)を5重量部を配合したものを用いた。   The resin composition of this example is based on 100 parts by weight of this polypropylene resin, 70 parts by weight of magnesium hydroxide (metal hydrate), 3 parts by weight of hindered phenolic antioxidant, and sulfurous antioxidant. A mixture of 5 parts by weight of an agent (imidazole compound) and 5 parts by weight of zinc oxide (metal oxide) was used.

さらに、この樹脂組成物を、厚み1.0mmのプレスシートに成形して、このプレスシートに対して、中赤外線領域(波長が2.5〜25μm)でのスペクトル測定と近赤外線領域(波長が1.0〜2.5μm)でのスペクトル測定を行った。   Further, the resin composition was molded into a 1.0 mm thick press sheet, and the press sheet was subjected to spectrum measurement in the mid-infrared region (wavelength 2.5 to 25 μm) and near infrared region (wavelength 1.0 to 2.5). spectrum measurement at μm).

さらに、中赤外線領域でのスペクトル測定は、ATR法と透過法とを行い、近赤外線領域でのスペクトル測定は、透過法で行った。   Furthermore, the spectrum measurement in the mid-infrared region was performed by the ATR method and the transmission method, and the spectrum measurement in the near-infrared region was performed by the transmission method.

得られたスペクトルデータを図1から図3に示す。図1は、中赤外線領域でのスペクトルデータで透過法によるものであり、図2は、中赤外線領域でのスペクトルデータでATR法によるものであり、図3は、近赤外線領域でのスペクトルデータで透過法によるものである。   The obtained spectral data are shown in FIGS. Fig. 1 shows the spectral data in the mid-infrared region and is based on the transmission method, Fig. 2 shows the spectral data in the mid-infrared region and is based on the ATR method, and Fig. 3 shows the spectral data in the near-infrared region. By the transmission method.

図1に示すように、透過法による中赤外線領域のスペクトルデータでは、各ピークが最も大きく顕著に現れ、微量添加剤の定性・定量分析が行えた。そして、図2に示すように、ATR法による中赤外線領域のスペクトルデータにおいては、ピーク強度は透過法に比べて小さいが、図1のピークと同じ箇所にピーク強度が現れているので、同じく微量添加剤の定性・定量分析が行えた。しかし、図3に示す近赤外線領域でのスペクトルデータでは、ピークのバンド幅が広いために、ピークが連続的に重畳し、微量添加物の定性・定量が行えなかった。   As shown in FIG. 1, in the spectral data in the mid-infrared region by the transmission method, each peak appeared most significantly, and qualitative and quantitative analysis of a trace amount of additive could be performed. As shown in FIG. 2, in the spectral data in the mid-infrared region by the ATR method, the peak intensity is smaller than that of the transmission method, but the peak intensity appears at the same location as the peak in FIG. Qualitative and quantitative analysis of additives was possible. However, in the spectral data in the near-infrared region shown in FIG. 3, since the peak bandwidth is wide, the peaks are continuously superimposed, and qualitative and quantitative determination of trace additives cannot be performed.

さらに、図1に示す透過法による中赤外線領域のスペクトルデータに対して、一次微分処理を行うことにより、図4に示すデータが得られた。この一次微分処理により、ベースラインの変動を除去して、部分的に重畳しているピークを分離でき、定性・定量分析の性能をさらに向上できた。   Furthermore, the data shown in FIG. 4 was obtained by performing a first-order differentiation process on the spectral data in the mid-infrared region by the transmission method shown in FIG. By this first derivative processing, it was possible to remove baseline fluctuations and separate partially overlapping peaks, further improving the performance of qualitative and quantitative analysis.

本実施例は、ベース樹脂がプロピレン単量体の含有率が100重量%のポリプロピレン樹脂である樹脂組成物を用い、ポリプロピレン樹脂100重量部に対して、水酸化マグネシウム(金属水和物)を70重量部、酸化亜鉛(金属酸化物)を5重量部を配合し、ヒンダードフェノール系酸化防止剤とイオウ系酸化防止剤(イミダゾール系化合物のもの)の添加量を変動させてみた。   In this example, a resin composition in which the base resin is a polypropylene resin having a propylene monomer content of 100% by weight is used, and magnesium hydroxide (metal hydrate) is added to 100 parts by weight of the polypropylene resin. Part by weight, 5 parts by weight of zinc oxide (metal oxide) were blended, and the amounts of hindered phenol antioxidant and sulfur antioxidant (imidazole compound) were varied.

樹脂組成物は、実施例1と同様に、厚み1.0mmのプレスシートに成形し、実施例1と同じ方法でスペクトルの測定を行った。なお、各スペクトルデータに対しては、一次微分処理と、多変量解析によるデータ処理を行っている。多変量解析によるデータ処理は、Thermo
Electron 社製の多変量解析ソフト(商品名:TQ Analyst)を用いて、PLS法によりデータ解析を行った。その結果を、表1に示す。
The resin composition was molded into a 1.0 mm thick press sheet in the same manner as in Example 1, and the spectrum was measured by the same method as in Example 1. In addition, with respect to each spectrum data, the primary differential process and the data process by multivariate analysis are performed. Data processing with multivariate analysis
Data analysis was performed by the PLS method using Electron multivariate analysis software (trade name: TQ Analyst). The results are shown in Table 1.

Figure 2007057506
Figure 2007057506

表1からも解るように、透過法による中赤外線領域のスペクトルデータでは、添加剤の添加量が1重量%以下であっても、添加物の定性・定量分析が確実に行えた。また、ATR法による中赤外線領域のスペクトルデータにおいては、添加剤の添加量が1重量%以下では、定性・定量ができなかったが、それより多ければ定性・定量分析が確実に行えた。しかし、近赤外線領域でのスペクトルデータでは、添加剤の添加量が10重量%を超えなければ定性・定量分析ができなかった。このように、近赤外線領域でのスペクトル測定では、微量な添加物の定性・定量分析が行えないことが判る。   As can be seen from Table 1, in the spectral data in the mid-infrared region obtained by the transmission method, qualitative and quantitative analysis of the additive could be performed reliably even when the additive amount was 1% by weight or less. Further, in the spectral data in the mid-infrared region by the ATR method, qualitative / quantitative analysis could not be performed if the additive amount was 1% by weight or less, but if it was more than that, qualitative / quantitative analysis could be performed reliably. However, in the spectral data in the near-infrared region, qualitative and quantitative analysis could not be performed unless the additive amount exceeded 10% by weight. Thus, it is understood that qualitative / quantitative analysis of trace amounts of additives cannot be performed by spectrum measurement in the near infrared region.

本実施例は、ベース樹脂がプロピレン単量体の含有率が100重量%のポリプロピレン樹脂である樹脂組成物を用い、ポリプロピレン樹脂100重量部に対して、添加剤の種類を変動させたときに、添加剤の定性・定量が行えるか否かを測定してみた。なお、添加剤は、ポリプロピレン樹脂100重量部に対して3重量部となるように添加した。   This example uses a resin composition in which the base resin is a polypropylene resin with a propylene monomer content of 100% by weight, and when the type of additive is varied with respect to 100 parts by weight of the polypropylene resin, It was measured whether the additive could be qualitatively or quantitatively determined. The additive was added so as to be 3 parts by weight with respect to 100 parts by weight of the polypropylene resin.

樹脂組成物は、実施例1と同様に、厚み1.0mmのプレスシートに形成し、中赤外線領域(波長が2.5〜25μm)でのスペクトル測定と近赤外線領域(波長が1.0〜2.5μm)でのスペクトル測定を透過法によって行った。なお、各スペクトルデータに対しては、微分処理と、多変量解析によるデータ処理を行っている。多変量解析によるデータ処理は、Thermo
Electron 社製の多変量解析ソフト(商品名:TQ Analyst)を用いて、PLS法によりデータ解析を行った。その結果を、表2に示す。
The resin composition is formed on a press sheet having a thickness of 1.0 mm as in Example 1, and the spectrum measurement in the mid-infrared region (wavelength is 2.5 to 25 μm) and the near-infrared region (wavelength is 1.0 to 2.5 μm). Spectral measurements were made by transmission method. Each spectrum data is subjected to differential processing and data processing by multivariate analysis. Data processing with multivariate analysis
Data analysis was performed by the PLS method using Electron multivariate analysis software (trade name: TQ Analyst). The results are shown in Table 2.

Figure 2007057506
Figure 2007057506

表2からも解るように、中赤外線領域のスペクトルデータでは、10種類の添加剤を配合しても、定性・定量分析が可能であり、10種以下であれば、確実に定性・定量が行えた。しかし、近赤外線領域でのスペクトルデータでは、添加剤が1種類であれば、定性・定量分析が可能であったが、添加剤が2〜3種になると確実な定性分析が行えず、それ以上になると全く定性分析できなかった。   As can be seen from Table 2, spectral data in the mid-infrared region can be qualitatively and quantitatively analyzed even if 10 types of additives are added. It was. However, in the spectral data in the near infrared region, qualitative and quantitative analysis was possible with only one additive, but reliable qualitative analysis could not be performed with two or three additives. Qualitative analysis was not possible at all.

以上の測定結果から、本発明の分析方法によれば、樹脂組成物中にヒンダードフェノール系酸化防止剤と、イオウ系酸化防止剤が微量に添加されていても、各酸化防止剤の定性・定量分析を赤外吸収スペクトル測定により確実に行えることが確認できた。   From the above measurement results, according to the analysis method of the present invention, even when a small amount of hindered phenol antioxidant and sulfur antioxidant are added to the resin composition, It was confirmed that quantitative analysis could be reliably performed by infrared absorption spectrum measurement.

その結果、樹脂組成物中の添加物定量分析結果から、配合している添加物の実際の含有量が評価できるようになり、樹脂製品を製造する際の品質管理を容易に行うことができる。本発明の分析方法で添加物を定量する場合、実施例1の中赤外線スペクトルを透過法で測定する場合には、1分以内で測定できた。また、微量添加剤が3種から10種の場合でも1分以内で中赤外線スペクトルの測定ができた。   As a result, the actual content of the additive added can be evaluated from the result of quantitative analysis of the additive in the resin composition, and quality control when manufacturing the resin product can be easily performed. When the additive was quantified by the analysis method of the present invention, when the mid-infrared spectrum of Example 1 was measured by the transmission method, it could be measured within 1 minute. Further, even when the amount of the trace additive was 3 to 10, the mid-infrared spectrum could be measured within 1 minute.

さらに、添加物の中でも酸化防止剤(老化防止剤)の含有量は、樹脂材料の寿命に直結するため、本発明の分析方法を用いることにより、樹脂組成物中の添加物含有量が定量できるので、樹脂組成物の寿命評価・寿命管理が行える。ここで、従来の寿命評価は、酸化誘導期(OIT)を求めるために、高温下で加速試験を実施していたが、測定時間に30分から120分程度もかかっていた。しかしながら、本発明の分析方法によれば、赤外吸収スペクトル測定により添加物の定量を行うので、わずかな時間で樹脂組成物の寿命を評価することができる。   Further, among the additives, the content of the antioxidant (anti-aging agent) is directly related to the life of the resin material. Therefore, by using the analysis method of the present invention, the content of the additive in the resin composition can be quantified. Therefore, life evaluation and life management of the resin composition can be performed. Here, in the conventional life evaluation, an acceleration test was performed at a high temperature in order to obtain an oxidation induction period (OIT), but it took about 30 to 120 minutes for the measurement time. However, according to the analysis method of the present invention, since the additive is quantified by infrared absorption spectrum measurement, the lifetime of the resin composition can be evaluated in a short time.

なお、熱履歴を伴う製造プロセスにおいては、添加物が反応する場合があり、本発明の分析方法を用いれば、添加物の反応状態を添加物含有量から評価することができるようになる。その結果、本発明の分析方法を用いることにより、製造プロセス(温度、圧力など)の管理も行うことができるようになる。   In addition, in the manufacturing process with a thermal history, an additive may react, and if the analysis method of this invention is used, it will become possible to evaluate the reaction state of an additive from additive content. As a result, the manufacturing process (temperature, pressure, etc.) can be managed by using the analysis method of the present invention.

本発明の樹脂組成物中の微量添加物の分析方法は、特に、耐久性を有する樹脂組成物中に含まれる酸化防止剤の含有量を確実に定量できるので、樹脂組成物の寿命を評価をする方法として好適である。   The method for analyzing a trace amount additive in the resin composition of the present invention can evaluate the lifetime of the resin composition in particular because the content of the antioxidant contained in the durable resin composition can be reliably quantified. This is a suitable method.

本発明の樹脂組成物中の微量添加物の分析方法によるスペクトルのグラフであって、中赤外線領域で透過法により測定したスペクトルのグラフである。It is the graph of the spectrum by the analysis method of the trace amount additive in the resin composition of this invention, Comprising: It is the graph of the spectrum measured by the transmission method in the mid-infrared region. 本発明の樹脂組成物中の微量添加物の分析方法によるスペクトルのグラフであって、中赤外線領域でATR法により測定したスペクトルのグラフである。It is the graph of the spectrum by the analysis method of the trace amount additive in the resin composition of this invention, Comprising: It is the graph of the spectrum measured by ATR method in the mid-infrared region. 近赤外線領域で透過法により測定したスペクトルのグラフである。It is the graph of the spectrum measured by the transmission method in the near infrared region. 図1で得られたスペクトルデータに対して、一次微分処理をしたときのスペクトルのグラフである。It is a graph of a spectrum when the primary differentiation process is performed on the spectrum data obtained in FIG.

Claims (5)

分析対象となる樹脂組成物に対して、
樹脂組成物中の微量添加物に対してピークが出るように、中赤外線領域における中赤外線スペクトルを測定し、
この中赤外線スペクトルのデータに基づいて、
樹脂組成物中の微量添加物の定性分析および定量分析を行うことを特徴とする樹脂組成物中の微量添加物の分析方法。
For the resin composition to be analyzed
Measure the mid-infrared spectrum in the mid-infrared region so that a peak appears for the trace additive in the resin composition,
Based on this mid-infrared spectrum data,
A method for analyzing a trace additive in a resin composition, comprising qualitative analysis and quantitative analysis of the trace additive in a resin composition.
中赤外線スペクトルの測定は、樹脂組成物を0.05mm超3.0mm以下の厚みを有するシート状に形成して行うことを特徴とする請求項1に記載の樹脂組成物中の微量添加物の分析方法。   The method for analyzing a trace additive in a resin composition according to claim 1, wherein the measurement of the mid-infrared spectrum is performed by forming the resin composition into a sheet having a thickness of more than 0.05 mm and not more than 3.0 mm. . 中赤外線スペクトルの測定を透過法で行うことを特徴とする請求項2に記載の樹脂組成物中の微量添加物の分析方法。   The method for analyzing a trace additive in a resin composition according to claim 2, wherein the mid-infrared spectrum is measured by a transmission method. 中赤外線スペクトルのデータに対して、
微分処理を実施して、ベースライン変動の除去および重なり合った複数のピークの分離を行った後、
多変量解析によるデータ処理を行って、樹脂組成物中の微量添加物について分光分析によるピーク強度を求めて、
樹脂組成物中の微量添加物の定性分析および定量分析を行うことを特徴とする請求項1から請求項3の何れかに記載の樹脂組成物中の微量添加物の分析方法。
For mid-infrared spectrum data,
After performing a differentiation process to remove baseline fluctuations and separate multiple peaks,
Perform data processing by multivariate analysis, find the peak intensity by spectroscopic analysis for trace additives in the resin composition,
The qualitative analysis and quantitative analysis of the trace additive in a resin composition are performed, The analysis method of the trace additive in the resin composition in any one of Claims 1-3 characterized by the above-mentioned.
樹脂組成物が非架橋型難燃性樹脂組成物であり、微量添加物がヒンダードフェノール系酸化防止剤またはイオウ系酸化防止剤の少なくとも一つを含み、これらの酸化防止剤の添加量を請求項1から請求項4の何れかに記載の樹脂組成物中の微量添加物の分析方法によって定量することにより、樹脂組成物中の酸化防止剤の含有量を求めて樹脂組成物の寿命評価、寿命管理の分析を行うことを特徴とする樹脂組成物の寿命分析方法。   The resin composition is a non-crosslinked flame retardant resin composition, and the trace amount additive contains at least one of a hindered phenol antioxidant or a sulfur antioxidant, and the amount of these antioxidants added is claimed. The life evaluation of the resin composition by determining the content of the antioxidant in the resin composition by quantifying by the analysis method of the trace additive in the resin composition according to any one of Items 1 to 4, A method for analyzing the life of a resin composition, comprising performing analysis of life management.
JP2005246691A 2005-08-26 2005-08-26 Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition Pending JP2007057506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246691A JP2007057506A (en) 2005-08-26 2005-08-26 Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246691A JP2007057506A (en) 2005-08-26 2005-08-26 Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition

Publications (1)

Publication Number Publication Date
JP2007057506A true JP2007057506A (en) 2007-03-08

Family

ID=37921123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246691A Pending JP2007057506A (en) 2005-08-26 2005-08-26 Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition

Country Status (1)

Country Link
JP (1) JP2007057506A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281606A (en) * 2009-06-02 2010-12-16 Osaka Gas Co Ltd Lifetime evaluating material and rubber pipe
CN103926211A (en) * 2014-04-25 2014-07-16 孙西钊 Intelligent qualitative and quantitative detection method for human body stones
JP2017015503A (en) * 2015-06-30 2017-01-19 株式会社フジクラ Method for inspecting biomass plastic degree
WO2018131186A1 (en) 2017-01-10 2018-07-19 住友電気工業株式会社 Method for detecting residual crosslinking aid
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding
JP2021170036A (en) * 2018-11-15 2021-10-28 アンリツ株式会社 Material characteristic inspection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113838A (en) * 1981-12-28 1983-07-06 Showa Electric Wire & Cable Co Ltd Measuring method for quantity of organic foaming agent in organic foaming agent-filled polyethylene composition
JPH08226896A (en) * 1995-02-22 1996-09-03 Showa Shell Sekiyu Kk Detecting method of deterioration of lubricating oil
JP2003285328A (en) * 2002-03-28 2003-10-07 Sharp Corp Method for recycling waste material of thermoplastic resin composition as resources
JP2004053440A (en) * 2002-07-22 2004-02-19 Toyama Prefecture Method for analyzing additives in polymeric material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113838A (en) * 1981-12-28 1983-07-06 Showa Electric Wire & Cable Co Ltd Measuring method for quantity of organic foaming agent in organic foaming agent-filled polyethylene composition
JPH08226896A (en) * 1995-02-22 1996-09-03 Showa Shell Sekiyu Kk Detecting method of deterioration of lubricating oil
JP2003285328A (en) * 2002-03-28 2003-10-07 Sharp Corp Method for recycling waste material of thermoplastic resin composition as resources
JP2004053440A (en) * 2002-07-22 2004-02-19 Toyama Prefecture Method for analyzing additives in polymeric material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281606A (en) * 2009-06-02 2010-12-16 Osaka Gas Co Ltd Lifetime evaluating material and rubber pipe
CN103926211A (en) * 2014-04-25 2014-07-16 孙西钊 Intelligent qualitative and quantitative detection method for human body stones
JP2017015503A (en) * 2015-06-30 2017-01-19 株式会社フジクラ Method for inspecting biomass plastic degree
WO2018131186A1 (en) 2017-01-10 2018-07-19 住友電気工業株式会社 Method for detecting residual crosslinking aid
KR20190104141A (en) 2017-01-10 2019-09-06 스미토모덴키고교가부시키가이샤 Detection method of residual crosslinking aid
US11415569B2 (en) 2017-01-10 2022-08-16 Sumitomo Electric Industries, Ltd. Method for detecting residual crosslinking aid
JP2021170036A (en) * 2018-11-15 2021-10-28 アンリツ株式会社 Material characteristic inspection device
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding

Similar Documents

Publication Publication Date Title
CN102313722B (en) Proximate analyzing method for coal quality based on multivariate linear regression
US10041926B2 (en) Method for predicting total petroleum hydrocarbon concentration in soils
Baird et al. Non-destructive measurement of the degradation of transformer insulating paper
Masili et al. Prediction of physical–chemical properties of crude oils by 1H NMR analysis of neat samples and chemometrics
JP2007057506A (en) Method for analyzing micro additive in resin composition, and method for analyzing lifetime of resin composition
CN105319198A (en) Gasoline benzene content prediction method based on Raman spectrum analysis technology
Henriques et al. Determination of formaldehyde/urea molar ratio in amino resins by near‐infrared spectroscopy
Chen et al. Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil
Hamerton et al. Multivariate analysis of spectra of cyanate ester/bismaleimide blends and correlations with properties
Watanabe et al. Nondestructive evaluation of drying stress level on wood surface using near-infrared spectroscopy
Zhang et al. Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol
Abbas et al. Prediction of source rock origin by chemometric analysis of Fourier transform infrared–attenuated total reflectance spectra of oil petroleum: evaluation of aliphatic and aromatic fractions by self-modeling mixture analysis
Brown et al. Optimised determinations of water in ethanol by encoded photometric near-infrared spectroscopy: A special case of sequential standard addition calibration
Liu et al. Rapid detection of hydrolyzed leather protein adulteration in infant formula by near-infrared spectroscopy
CN112881318B (en) Method for detecting methanol content in transformer insulating paper
CN110865044A (en) Spectral analysis method for identifying white oil-doped organic silicon product
Chang et al. Development of moisture content prediction model for Larix kaempferi sawdust using near infrared spectroscopy
Zhi-Na et al. Rapid measurement of diesel engine oil quality by near infrared spectroscopy (NIRS)
Dong et al. A new approach to the determination of moisture in hydrocarbon lubricating oils by mid-FTIR spectroscopy
JP2021128162A (en) Method for analyzing oil content in metal compound powder and method for detecting mixed oil content in metal compound powder
Li et al. Use of near-infrared spectroscopy for prediction of biomass and polypropylene in wood plastic composites
Smith et al. Optimisation of partial least squares regression calibration models in near-infrared spectroscopy: a novel algorithm for wavelength selection
KR20130020868A (en) The quantitative analysis method of polycarbonate in polycarbonate / acrylonitirle-stryrene-acrylrubber blend polymer using attenuated total reflectance
CN105181641A (en) Infrared detection method for rapeseed oil quality and application
JP5412896B2 (en) Chemical species determination method and chemical species determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100818