JP2007054705A - Manufacturing method of visible light response type photocatalyst - Google Patents

Manufacturing method of visible light response type photocatalyst Download PDF

Info

Publication number
JP2007054705A
JP2007054705A JP2005240778A JP2005240778A JP2007054705A JP 2007054705 A JP2007054705 A JP 2007054705A JP 2005240778 A JP2005240778 A JP 2005240778A JP 2005240778 A JP2005240778 A JP 2005240778A JP 2007054705 A JP2007054705 A JP 2007054705A
Authority
JP
Japan
Prior art keywords
nitrogen
titanium
disulfide
visible light
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240778A
Other languages
Japanese (ja)
Other versions
JP4639355B2 (en
Inventor
Hiroshi Katsuta
博司 勝田
Kazuaki Ito
一昭 伊東
Hideo Unno
英雄 海野
Mitsue Soma
光枝 相馬
Haruya Yamamoto
春也 山本
Katsumasa Takano
勝昌 高野
Masato Yoshikawa
正人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Atox Co Ltd
Original Assignee
Japan Atomic Energy Agency
Atox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Atox Co Ltd filed Critical Japan Atomic Energy Agency
Priority to JP2005240778A priority Critical patent/JP4639355B2/en
Publication of JP2007054705A publication Critical patent/JP2007054705A/en
Application granted granted Critical
Publication of JP4639355B2 publication Critical patent/JP4639355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a visible light response type photocatalyst having a high-performance catalytic activity based on high light absorbing power even in the region of visible light. <P>SOLUTION: The photocatalyst is manufactured by producing titanium disulfide from titanium dioxide and carbon disulfide or from titanium tetrachloride and hydrogen disulfide and heating the resultant titanium disulfide, as the starting material, in a gas flow comprising nitrogen, oxygen, ammonia and water vapor to 400-650°C. The photocatalyst contains crystals of the anatase and rutile phases added with nitrogen and sulfur. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、可視光応答型光触媒である、さらに詳しくは、窒素及び硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン(TiO-x(N,S)x)可視光応答形光触媒の製造方法に関するものである。 The present invention is a visible light responsive photocatalyst, and more particularly, titanium dioxide (TiO 2 -x (N, S) x) visible light responsive form containing anatase and rutile two-phase crystal forms added with nitrogen and sulfur The present invention relates to a method for producing a photocatalyst.

紫外線の光エネルギーを利用する二酸化チタン光触媒は、空気及び水の浄化、殺菌、抗菌などを目的に幅広く応用されている。一方で、光触媒反応のさらなる高効率化を目指し、地上に到達する太陽光の大部分を占める可視光領域が利用できる可視光応答型光触媒の開発に向けた研究も盛んに行われている。   Titanium dioxide photocatalysts utilizing the light energy of ultraviolet rays have been widely applied for the purpose of purifying air and water, sterilizing, antibacterial and the like. On the other hand, with the aim of further increasing the efficiency of the photocatalytic reaction, research for the development of a visible light responsive photocatalyst that can use the visible light region that occupies most of the sunlight reaching the ground has been actively conducted.

これまで、クロム(Cr)などの金属イオン添加による電子構造改質によって実現させようという試みが大半を占めてきた。しかしほとんどの場合、添加された不純物イオンが、キャリアである電子・正孔の再結合中心として働くため、可視光領域において触媒能は見られず、さらに紫外光領域においても触媒能は見られず、さらに紫外光領域における二酸化チタン本来の光触媒能さえも低下してしまっていた。   Until now, most attempts have been made to achieve this by modifying the electronic structure by adding metal ions such as chromium (Cr). However, in most cases, the added impurity ions act as recombination centers for the electrons and holes that are carriers, so that no catalytic ability is seen in the visible light region, and no catalytic ability is seen even in the ultraviolet light region. Furthermore, even the original photocatalytic ability of titanium dioxide in the ultraviolet region has been reduced.

最近、非金属イオンの窒素、フッ素、硫黄などを添加し、二酸化チタンの酸素格子位置に置換した場合に、光触媒能が向上することがわかってきた。窒素とフッ素よりも大きなイオン半径を持つ硫黄を酸素と置換した場合(特許文献1,非特許文献1,非特許文献2及び非特許文献3)や、格子間に導入することにより(非特許文献4)、二酸化チタンの電子構造がより大幅に改質されることが報告されている。   Recently, it has been found that the photocatalytic performance is improved when nitrogen, fluorine, sulfur, etc. of non-metal ions are added and substituted at the oxygen lattice position of titanium dioxide. When sulfur having an ionic radius larger than that of nitrogen and fluorine is replaced with oxygen (Patent Document 1, Non-Patent Document 1, Non-Patent Document 2 and Non-Patent Document 3), or introduced between lattices (Non-Patent Document) 4) It has been reported that the electronic structure of titanium dioxide is significantly modified.

その合成方法には、二硫化チタン(TiS)を空気中で焼成する方法(特許文献1)、出発材料として有機物を用いる方法(非特許文献4)、二硫化炭素(CS)ガス中で二酸化チタンを部分硫化させる方法(非特許文献5)が知られている。また窒素を添加したもの(特許文献2)窒素とフッ素を添加したもの(特許文献3)が知られている。 In the synthesis method, titanium disulfide (TiS 2 ) is fired in air (Patent Document 1), an organic material is used as a starting material (Non-Patent Document 4), and carbon disulfide (CS 2 ) gas is used. A method of partially sulfiding titanium dioxide (Non-Patent Document 5) is known. Moreover, what added nitrogen (patent document 2) and added nitrogen and fluorine (patent document 3) are known.

窒素と硫黄を同時に添加する方法としては、アナターゼ型二酸化チタンをアンモニア雰囲気で加熱して窒素添加の二酸化チタンを作った後に、炭素、硫黄あるいは水素を熱拡散、レーザドーピング法、プラズマドーピング法、あるいはイオン注入法で添加する方法(特許文献4,5)が知られている。   Nitrogen and sulfur can be added simultaneously by heating anatase-type titanium dioxide in an ammonia atmosphere to form nitrogen-added titanium dioxide, followed by thermal diffusion of carbon, sulfur, or hydrogen, laser doping, plasma doping, or A method of adding by ion implantation (Patent Documents 4 and 5) is known.

また、二硫化チタンを酸素雰囲気で加熱して、硫黄ドープ型酸化チタンを作り、これをアンモニア流通雰囲気でアニールすることにより窒素、硫黄同時ドープの酸化チタン粉末を作る方法(非特許文献6)が知られている。   In addition, there is a method (Non-Patent Document 6) in which titanium disulfide is heated in an oxygen atmosphere to produce sulfur-doped titanium oxide, and this is annealed in an ammonia circulation atmosphere to form titanium oxide powder simultaneously doped with nitrogen and sulfur. Are known.

しかしながら、二硫化チタンを酸素、窒素、アンモニアの混合雰囲気の中で加熱することにより窒素と硫黄を同時に添加し、しかもこれらガス成分の混合比を変えることにより添加窒素と硫黄の量をコントロールできるとともに、その基本となるアナターゼ型酸化チタンとルチル型酸化チタンの構成割合をコントロールできる可視光型二酸化チタン及びその製造方法に関する報告例はない。
特願2002−161069 可視光応答型光触媒: 硫黄添加二酸化チタン 工業材料(日刊工業新聞社発行),2003年7月号 34−36ページ Sulfur-doping into rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first pinciples band calculation studies.Journal of Applied Physics 93, 2003年発行5156−5160ページ Visible light induced degradation of methylene blue on S-doped TiO2Chemistry Letters 32, 2003年発行330−331ページ Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible LightChemistry Letters 32, 2003年発行364−365ページ Themogravimetric study of the sulfurization of TiO2 nanoparticles using CS2 and the decomposition of their sulfurized productThermochimica Acta, 410(1-2), 2004年発行27−34ページ 窒素、硫黄同時ドープアナターゼ型酸化チタン粉末の 可視光活性評価 会報 光触媒 Vol.15(2004)p.56 特開2004−75528 特開2004−292225 特開2004−47786 特開2004−47787
However, while adding titanium and sulfur simultaneously by heating titanium disulfide in a mixed atmosphere of oxygen, nitrogen and ammonia, the amount of added nitrogen and sulfur can be controlled by changing the mixing ratio of these gas components. There is no report on a visible light type titanium dioxide capable of controlling the basic composition ratio of anatase type titanium oxide and rutile type titanium oxide and a method for producing the same.
Japanese Patent Application No. 2002-161069 Visible light responsive photocatalyst: Sulfur-added titanium dioxide Industrial materials (published by Nikkan Kogyo Shimbun), July 2003, pages 34-36 Sulfur-doping into rutile-titanium dioxide by ion implantation: photocurrent spectroscopy and first pinciples band calculation studies.Journal of Applied Physics 93, 2003, pages 5156-5160 Visible light induced degradation of methylene blue on S-doped TiO2 Chemistry Letters 32, 2003, pages 330-331 Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible LightChemistry Letters 32, 2003, pages 364-365 Themogravimetric study of the sulfurization of TiO2 nanoparticles using CS2 and the decomposition of their sulfurized productThermochimica Acta, 410 (1-2), 2004, pages 27-34 Visible Light Activity Evaluation of Nitrogen and Sulfur Codoped Anatase Type Titanium Oxide Powder Photocatalyst Vol.15 (2004) p.56 JP 2004-75528 JP 2004-292225 A JP 2004-47786 A JP 2004-47787 A

以上説明したように、可視光応答型光触媒の用途は極めて多く、高性能材料の開発に向けて多くの研究が進められている。   As described above, the visible light responsive photocatalyst has many uses, and many studies are being conducted toward the development of high-performance materials.

現在の製造方法の主たるものは、アナターゼ型二酸化チタンを原料として、低温プラズマ処理により酸素欠陥を導入する方法や、加速器による金属元素のインプランテーション法、種々の化合物を添加した水酸化チタンの焼成、または結晶を構成している酸素を窒素や硫黄で置換する方法等がある。   The main production methods are: anatase-type titanium dioxide as a raw material, a method of introducing oxygen defects by low-temperature plasma treatment, a metal element implantation method using an accelerator, firing of titanium hydroxide added with various compounds, Alternatively, there is a method of replacing oxygen constituting the crystal with nitrogen or sulfur.

これらの方法で調製した試料は可視光領域で光吸収を示すが、紫外光領域の光吸収と比較すると、可視光での光吸収は100分の1程度と低く、十分な触媒活性を示すことができない状況である。   Samples prepared by these methods show light absorption in the visible light region, but compared with light absorption in the ultraviolet light region, the light absorption in the visible light is as low as about 1/100 and exhibits sufficient catalytic activity. It is a situation that can not be.

本発明は可視光領域でも高い光吸収能に基づく高性能の触媒活性を有する可視光応答型光触媒の製造方法を提供するものである。   The present invention provides a method for producing a visible light responsive photocatalyst having high performance catalytic activity based on high light absorption ability even in the visible light region.

(1)このような課題に対し、本発明に係る窒素と硫黄添加の二酸化チタン可視光応答形光触媒の製造方法は、二酸化チタンと二硫化炭素、又は四塩化チタンと二硫化水素から二硫化チタンを作り、この二硫化チタンを出発物質とし、窒素、酸素、アンモニア及び水蒸気を含有する気流中で400℃〜650℃に加熱するもので、窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含むものである。
(2)そして前記出発物質である二硫化チタンは市販のものでも可能にした。
(3)また前記の製造方法で、添加される窒素(N)と硫黄(S)の量が、チタン(Ti)に対する原子数比をN/Ti,S/Tiで表し、それぞれの値がほぼ等しく、かつ両者の和(N/Ti+S/Ti)が約1%である。
(4)さらに、前記製造方法で、酸素濃度は窒素と空気を混合したガスを用い、空気量を0〜100%の範囲で変化させることによってコントロールし、アンモニアガスと水蒸気は、窒素と空気の混合ガスを約28%濃度のアンモニア水中でバブリングして供給し、この気流中で二硫化チタンを加熱することを特徴とする。
(5)さらに、前記(4)の製造方法で、アンモニア水のバブリングに替えて、アンモニアガスと窒素と酸素との混合ガスを作り、この混合ガスの気流中で二硫化チタンを加熱することにより製造するようにした。
(6)さらにまた、前記(5)の製造方法で、気流中のアンモニアガス濃度が3〜10vol%とした。
(1) In response to such problems, the method for producing a nitrogen and sulfur-added titanium dioxide visible light responsive photocatalyst according to the present invention comprises titanium dioxide and carbon disulfide, or titanium tetrachloride and hydrogen disulfide to titanium disulfide. And is heated to 400 ° C. to 650 ° C. in an air stream containing nitrogen, oxygen, ammonia and water vapor, using this titanium disulfide as a starting material. Anatase and rutile two-phase crystal forms added with nitrogen and sulfur Is included.
(2) Titanium disulfide as the starting material was made commercially available.
(3) Further, in the above manufacturing method, the amount of nitrogen (N) and sulfur (S) added represents the atomic ratio with respect to titanium (Ti) as N / Ti and S / Ti, and the respective values are almost equal. They are equal and the sum of both (N / Ti + S / Ti) is about 1%.
(4) Further, in the above manufacturing method, the oxygen concentration is controlled by changing the amount of air in a range of 0 to 100% using a gas in which nitrogen and air are mixed. The mixed gas is supplied by bubbling in ammonia water having a concentration of about 28%, and titanium disulfide is heated in this air stream.
(5) Further, in the manufacturing method of (4), instead of bubbling ammonia water, a mixed gas of ammonia gas, nitrogen, and oxygen is made, and titanium disulfide is heated in the air stream of the mixed gas. I tried to make it.
(6) Furthermore, in the production method of (5) above, the ammonia gas concentration in the airflow is 3 to 10 vol%.

二酸化チタンと二硫化炭素、又は四塩化チタンと二硫化水素から二硫化チタンを作り、この二硫化チタンあるいは市販の二硫化チタンを出発物質とし、窒素、酸素、アンモニア及び水蒸気を含有する気流中で400℃〜650℃に加熱することにより、高性能な可視光応答性を有する二酸化チタン可視光応答形光触媒を製造することができた。   Titanium disulfide is made from titanium dioxide and carbon disulfide, or titanium tetrachloride and hydrogen disulfide, and this titanium disulfide or commercially available titanium disulfide is used as a starting material in an air stream containing nitrogen, oxygen, ammonia and water vapor. By heating to 400 ° C. to 650 ° C., a titanium dioxide visible light responsive photocatalyst having high performance visible light response could be produced.

(1)本発明に係る窒素と硫黄添加の二酸化チタン可視光応答形光触媒の製造方法は、二酸化チタンと二硫化炭素又は四塩化チタンから二硫化チタンを作り、この二硫化チタンを出発物質とし、窒素、酸素、アンモニア及び水蒸気を含有する気流中で400℃〜650℃に加熱することにより製造することを特徴とするもので、窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含むものである。
(2)そして前記出発物質である二硫化チタンは市販のものでも可能である。
(3)さらに、前記(1)の製造方法において、添加される窒素(N)と硫黄(S)の量が、チタン(Ti)に対する原子数比をN/Ti,S/Tiで表し、それぞれの値がほぼ等しく、かつ両者の和(N/Ti+S/Ti)が約1%であることを特徴とするものである。
(4)また前記(1)の製造方法において、酸素濃度は窒素と空気を混合したガスを用い、空気量を0〜100%の範囲で変化させることによってコントロールし、アンモニアガスと水蒸気は、窒素と空気の混合ガスを約28%濃度のアンモニア水中でバブリングして供給し、この気流中で二硫化チタンを加熱することを特徴とするものである。
(5)さらに、前記(4)の製造方法において、アンモニア水のバブリングに替えて、アンモニアガスと窒素と酸素との混合ガスを作り、この混合ガスの気流中で二硫化チタンを加熱することにより製造することを特徴とするものである。
(6)さらにまた、前記(5)の製造方法において、気流中のアンモニアガス濃度が3〜10vol%であることを特徴とするものである。
(1) The method for producing a nitrogen- and sulfur-added titanium dioxide visible light responsive photocatalyst according to the present invention comprises producing titanium disulfide from titanium dioxide and carbon disulfide or titanium tetrachloride, and using the titanium disulfide as a starting material. It is produced by heating to 400 ° C. to 650 ° C. in an air stream containing nitrogen, oxygen, ammonia and water vapor, and includes anatase and rutile two-phase crystal forms to which nitrogen and sulfur are added. .
(2) Titanium disulfide as the starting material may be commercially available.
(3) Furthermore, in the production method of (1), the amount of nitrogen (N) and sulfur (S) added represents the atomic ratio with respect to titanium (Ti) as N / Ti and S / Ti, respectively. Are substantially equal, and the sum of both (N / Ti + S / Ti) is about 1%.
(4) In the production method of (1), the oxygen concentration is controlled by using a gas in which nitrogen and air are mixed, and the amount of air is changed in the range of 0 to 100%. It is characterized in that a mixed gas of water and air is supplied by bubbling in about 28% ammonia water, and titanium disulfide is heated in this air stream.
(5) Further, in the production method of (4), instead of bubbling ammonia water, a mixed gas of ammonia gas, nitrogen and oxygen is made, and titanium disulfide is heated in the air stream of the mixed gas. It is characterized by manufacturing.
(6) Furthermore, in the production method of (5), the ammonia gas concentration in the airflow is 3 to 10 vol%.

以下図面を参照して本発明に係る可視光応答型光触媒の製造方法について詳細に説明する。図1参照。
まず図示しないが二酸化チタンと二硫化炭素、又は四塩化チタンと二硫化水素から二硫化チタンを作り、または市販の二硫化チタンを出発物質とし、この出発物質である二硫化チタンを電気炉内に入れ窒素、空気、アンモニア及び水蒸気を含有する気流中で前記電気炉により400℃〜650℃に加熱する。
Hereinafter, a method for producing a visible light responsive photocatalyst according to the present invention will be described in detail with reference to the drawings. See FIG.
First, although not shown, titanium disulfide is made from titanium dioxide and carbon disulfide, or titanium tetrachloride and hydrogen disulfide, or commercially available titanium disulfide is used as a starting material, and this starting material titanium disulfide is placed in an electric furnace. It heats to 400-650 degreeC with the said electric furnace in the airflow containing nitrogen, air, ammonia, and water vapor | steam.

二硫化チタンは電気炉での加熱により酸化されて二酸化チタンになるが、この反応時に分解した気流中のアンモニアの成分である窒素と、二硫化チタンの分解による硫黄とが酸素に代わって酸化チタン中に取り込まれる。それと同時に、二硫化チタンの硫黄の一部が残留して窒素と硫黄が添加された可視光応答型の光触媒ができる。   Titanium disulfide is oxidized to titanium dioxide by heating in an electric furnace. Nitrogen, which is a component of ammonia in the air stream decomposed during this reaction, and sulfur resulting from decomposition of titanium disulfide replace titanium with titanium oxide. Captured inside. At the same time, a visible light responsive photocatalyst in which a part of the sulfur of titanium disulfide remains and nitrogen and sulfur are added can be obtained.

この場合、混合気流中の酸素濃度が高いほど電気炉内での化学反応に伴う発熱量は高く、高温型であるルチル型二酸化チタンの濃度が高くなる。酸素濃度は窒素と空気を混合したガスを用いて、空気量を0〜100%(この時の酸素濃度は0〜21%)の範囲で制御することにより調整する。   In this case, the higher the oxygen concentration in the mixed gas stream, the higher the amount of heat generated by the chemical reaction in the electric furnace, and the higher the concentration of rutile titanium dioxide, which is a high temperature type. The oxygen concentration is adjusted by controlling the amount of air in a range of 0 to 100% (the oxygen concentration at this time is 0 to 21%) using a gas in which nitrogen and air are mixed.

アンモニアガスは窒素と空気の混合ガスを、約28%濃度のアンモニア水中をバブリングして供給する。この場合アンモニア水のバブリングに伴い水蒸気も同時に供給されるが、水蒸気は必ずしも必要ではなく、図2に示すようにアンモニアガスと窒素と酸素の混合ガスの気流を作ってこの雰囲気中で二硫化チタンを加熱することにより二酸化チタン触媒を製造することもできる。   As the ammonia gas, a mixed gas of nitrogen and air is supplied by bubbling about 28% ammonia water. In this case, water vapor is simultaneously supplied along with the bubbling of the ammonia water, but the water vapor is not always necessary, and as shown in FIG. The titanium dioxide catalyst can also be produced by heating the catalyst.

以上説明したように二硫化チタンは空気中で酸素の量を制限しつつ加熱することにより、硫黄添加の可視光応答型の二酸化チタン触媒を製造することができる。この場合の二酸化チタンはベージュ色の粉末となる。一方アンモニアを添加した空気中で加熱すると黄色に着色した二酸化チタンが得られる。   As described above, titanium disulfide can be heated while limiting the amount of oxygen in air, whereby a sulfur-added visible light responsive titanium dioxide catalyst can be produced. The titanium dioxide in this case becomes a beige powder. On the other hand, when heated in air added with ammonia, yellow colored titanium dioxide is obtained.

これは窒素及び硫黄が二酸化チタンの結晶格子上の酸素と置換並びに格子間に侵入して存在したためと考える。窒素ガス100%でアンモニア水をバブリングした雰囲気中で二硫化チタンを加熱した場合、酸素の供給は水蒸気の分解によるものが主となってその量が少ないため、反応は緩やかに進行する。このため試料は全体が黒色(市販の二硫化チタンはS/Ti比が約1.90の非化学量論的組成のため黒色を示す)からベージュ色に、更に黄色に変化する。   This is considered to be because nitrogen and sulfur existed by substitution with oxygen on the crystal lattice of titanium dioxide and intrusion between the lattices. When titanium disulfide is heated in an atmosphere in which ammonia water is bubbled with 100% nitrogen gas, the reaction proceeds slowly because the supply of oxygen is mainly due to decomposition of water vapor and the amount thereof is small. For this reason, the whole sample changes from black (commercially available titanium disulfide is black due to the non-stoichiometric composition with an S / Ti ratio of about 1.90) to beige and further to yellow.

これは先ず硫黄添加の二酸化チタンが生成し、続いて窒素が添加された結果の変色と推定される。400℃〜450℃で加熱する場合、反応に要する時間は長時間となるが、反応時の温度を低く抑えることができるため、結晶形はアナターゼが多くなり、窒素、硫黄の添加量も多く可視光領域での光吸収量も高くなる。   This is presumably a discoloration resulting from the formation of sulfur-added titanium dioxide followed by the addition of nitrogen. When heating at 400 ° C to 450 ° C, the reaction takes a long time, but the temperature during the reaction can be kept low, so that the crystal form contains more anatase and more nitrogen and sulfur are added. The amount of light absorption in the light region is also increased.

図3は空気でアンモニア水をバブリングした気流中で二硫化チタンを加熱(450℃,30分)した粉末試料のX線回折装置(波動の回析現象を利用し、物質中の原子・分子配置の周期性に関する情報を得るための装置)によるX線回折パターンを示す。又図4は窒素ガスでアンモニア水をバブリングした気流中で二硫化チタンを加熱(450℃,4時間)した粉末試料のX線回折パターンを示す。図3と図4はアナターゼ型の二酸化チタンが主であるが、ルチル型の二酸化チタンが僅かであるが混在していることが示されている(図3、図4のRutile TiO(110)参照)。 Figure 3 shows an X-ray diffractometer for powder samples in which titanium disulfide is heated (450 ° C, 30 minutes) in an air stream bubbling ammonia water with air (the arrangement of atoms and molecules in the material using the diffraction of waves) X-ray diffraction pattern by an apparatus for obtaining information on periodicity of FIG. 4 shows an X-ray diffraction pattern of a powder sample obtained by heating titanium disulfide (450 ° C., 4 hours) in an air stream bubbling ammonia water with nitrogen gas. 3 and 4 show that anatase-type titanium dioxide is mainly used, but rutile-type titanium dioxide is a little mixed (Rutile TiO 2 (110) in FIGS. 3 and 4). reference).

図5は、拡散反射分光法により得られた光吸収スペクトルの測定結果を示す。
図5では、空気でアンモニア水をバブリングした場合と、窒素ガスでアンモニア水をバブリングして製造した場合、更にアンモニア水のバブリングは行わずに空気中で製造した場合の酸化チタン触媒と、アナターゼおよびルチル型酸化チタンの吸光度を比較している。
FIG. 5 shows the measurement result of the light absorption spectrum obtained by diffuse reflection spectroscopy.
In FIG. 5, the titanium oxide catalyst when an aqueous ammonia is bubbled with air, when the aqueous ammonia is bubbled with nitrogen gas, and when it is produced in the air without further bubbling of the aqueous ammonia, anatase and The absorbance of rutile titanium oxide is compared.

図5で(a)は空気でアンモニア水をバブリングした気流中で、450℃,30分加熱した試料(Sample D)、(b)は窒素でアンモニア水をバブリングした気流中で、450℃,4時間加熱した試料(No.94)、(c)は空気中で400℃,15時間加熱した試料(No.6)、(d)はルチル型二酸化チタン、(e)はアナターゼ型二酸化チタンの波長−吸光度曲線を示す。   In FIG. 5, (a) is a sample (Sample D) heated at 450 ° C. for 30 minutes in an air stream bubbling ammonia water with air, and (b) is 450 ° C., 4 in an air stream bubbling ammonia water with nitrogen. Sample heated for time (No. 94), (c) sample heated in air at 400 ° C. for 15 hours (No. 6), (d) rutile titanium dioxide, (e) wavelength of anatase titanium dioxide -Shows an absorbance curve.

図5に示したようにアナターゼ型二酸化チタンの光吸収が380nmより短波長領域、またルチル型酸化チタンの光吸収が400nmより短波長領域であったのに対して、本発明の可視光応答型光触媒では、紫外光領域にあるピーク加えて可視光領域にも第二のピークを持った幅広い光吸収(400nm〜600nm)が測定された。   As shown in FIG. 5, the light absorption of anatase-type titanium dioxide was in a wavelength region shorter than 380 nm, and the light absorption of rutile-type titanium oxide was in a wavelength region shorter than 400 nm. In the photocatalyst, broad light absorption (400 nm to 600 nm) having a peak in the ultraviolet light region and a second peak in the visible light region was measured.

図6は拡散反射分光法による吸光度における420nm〜600nmの範囲での積分値を示し、アナターゼはアナターゼ型酸化チタン、ルチルはルチル型酸化チタン、No.6は空気中で400℃,15時間加熱した試料、Sample Dは空気でアンモニア水をバブリングした気流中で、450℃,30分加熱した試料、No.94は窒素でアンモニア水をバブリングした気流中で、450℃,4時間加熱した試料についての各積分結果を示している。図6で明らかなように、本発明で得られた触媒(No.94)400nm〜600nmでの波長域の光吸収量の積分値は、ルチル型二酸化チタンの約10倍、またアナターゼ型二酸化チタンの約30倍が得られた。   6 shows the integrated value in the range of 420 nm to 600 nm in absorbance by diffuse reflectance spectroscopy. Anatase is anatase-type titanium oxide, rutile is rutile-type titanium oxide, No. 6 No. 6 is a sample heated in air at 400 ° C. for 15 hours, Sample D is a sample heated in air current bubbling ammonia water at 450 ° C. for 30 minutes, No. 6 94 shows each integration result for a sample heated at 450 ° C. for 4 hours in an air stream bubbling ammonia water with nitrogen. As apparent from FIG. 6, the integrated value of the light absorption amount in the wavelength region of the catalyst (No. 94) 400 nm to 600 nm obtained in the present invention is about 10 times that of rutile titanium dioxide, and anatase titanium dioxide. About 30 times greater than

図7は本発明で得られた粉末試料(Sample D)の電子状態密度を、X線光電子分光法(XPS)(XPSは代表的な表面分析装置の一つで、固体の表面から数nmの深さ領域に関する元素および化学結合状態の分析に用いる。また、Arイオンでエッチングすることにより、最表面の汚染物を除去した面やサブミクロンオーダーまでの深さ方向分析が可能である)により測定した結果を示す。   FIG. 7 shows the density of electronic states of a powder sample (Sample D) obtained in the present invention, measured by X-ray photoelectron spectroscopy (XPS) (XPS is one of typical surface analyzers, several nm from the surface of a solid. It is used for analysis of elemental and chemical bonding states in the depth region, and by etching with Ar ions, it is possible to analyze the depth direction down to the submicron order or the surface from which contaminants on the outermost surface have been removed. The results are shown.

図7によると、Ti 2p、N 1s、S 2p軌道の電子に由来するピークが、それぞれ460 eV、400 eV、160 eVの位置に観測された。これらは二酸化チタンの酸素と置換した窒素や硫黄の存在を示している。また、これらのピークの強度は試料調製時の酸素、窒素、アンモニアの混合雰囲気の混合ガス成分比や加熱温度により変化する。窒素、硫黄の添加量を増やすには、混合ガス成分中の酸素量を低くして二硫化チタンと酸素との反応熱に基づく試料温度の上昇を避けて500℃以下で合成すると良い。この場合の構成はアナターゼ型二酸化チタンの組成がほとんどとなる。窒素と硫黄のピークの面積強度比からTiに対する原子数比N/Ti,S/Ti比を見積もったところ、NとSはそれぞれが0.1〜0.5%で両者の和が1%弱であった。   According to FIG. 7, peaks derived from electrons of Ti 2p, N 1s, and S 2p orbitals were observed at positions of 460 eV, 400 eV, and 160 eV, respectively. These indicate the presence of nitrogen and sulfur substituted for oxygen in titanium dioxide. In addition, the intensity of these peaks varies depending on the mixed gas component ratio in the mixed atmosphere of oxygen, nitrogen, and ammonia at the time of sample preparation and the heating temperature. In order to increase the addition amount of nitrogen and sulfur, it is preferable to synthesize at 500 ° C. or less by reducing the amount of oxygen in the mixed gas component and avoiding an increase in the sample temperature based on the reaction heat between titanium disulfide and oxygen. In this case, the composition of anatase type titanium dioxide is almost the same. When the ratios of the number of atoms N / Ti and S / Ti with respect to Ti were estimated from the area intensity ratio of the nitrogen and sulfur peaks, N and S were each 0.1 to 0.5% and the sum of both was less than 1%. Met.

製造した粉末の光触媒性能を評価するために、メチレンブルー溶液の酸化分解試験を行った。(図示せず。)メチレンブルー溶液は青色に着色しているが、光触媒等の影響により酸化分解されると、透明になる。濃度0.01ミリモル/リットル(mmol/l)のメチレンブルー水溶液に製造した粉末試料を入れ、その脱色効果を従来のアナターゼ型光触媒と比較した。その結果、室内の蛍光灯照射下で本発明の光触媒粉末の方が十分短時間で脱色が進むことが確認された。   In order to evaluate the photocatalytic performance of the produced powder, an oxidative decomposition test of a methylene blue solution was performed. (Not shown) The methylene blue solution is colored blue, but becomes transparent when it is oxidatively decomposed by the influence of a photocatalyst or the like. The prepared powder sample was put in an aqueous solution of methylene blue having a concentration of 0.01 mmol / liter (mmol / l), and the decolorization effect was compared with that of a conventional anatase photocatalyst. As a result, it was confirmed that the photocatalyst powder of the present invention progresses decolorization in a sufficiently short time under indoor fluorescent lamp irradiation.

可視光応答型光触媒製造方法1を示す(アンモニア水のバブリング有り)。A visible light responsive photocatalyst production method 1 is shown (with ammonia water bubbling). 可視光応答型光触媒製造方法2を示す(アンモニア水のバブリング無し)。A visible light responsive photocatalyst production method 2 is shown (no bubbling of aqueous ammonia). 空気でアンモニア水をバブリングした気流中で、450℃、30分加熱した試料(Sample.D)のX線回折図形。X-ray diffraction pattern of a sample (Sample.D) heated at 450 ° C. for 30 minutes in an air stream bubbling ammonia water with air. 窒素ガスでアンモニア水をバブリングした気流中で、450℃、4時間加熱した試料(No.94)のX線回折図形。X-ray diffraction pattern of a sample (No. 94) heated at 450 ° C. for 4 hours in an air stream bubbling ammonia water with nitrogen gas. 拡散反射分光法による吸光度の比較グラフを示し、(a)は空気でアンモニア水をバブリングした気流中で、450℃、30分加熱した試料(Sample.D)、(b)は窒素でアンモニア水をバブリングした気流中で、450℃、4時間加熱した試料(No.94)、(c)は空気中で400℃、15時間加熱した試料(No.6)、(d)はルチル型二酸化チタン、(e)はアナターゼ型二酸化チタンの吸光度を示す。A comparative graph of absorbance by diffuse reflectance spectroscopy is shown. (A) is a sample heated at 450 ° C. for 30 minutes in an air stream bubbling ammonia water with air (Sample.D), (b) is ammonia water with nitrogen. Sample heated at 450 ° C. for 4 hours in a bubbled air flow (No. 94), (c) sample heated at 400 ° C. for 15 hours in air (No. 6), (d) is rutile titanium dioxide, (E) shows the light absorbency of anatase type titanium dioxide. 拡散反射分光法による吸光度における420nm〜600nmの範囲の積分値を示し、アナターゼはアナターゼ型酸化チタン、ルチルはルチル型酸化チタン、No.6は空気中で400℃、15時間加熱した試料、Sample.Dは空気でアンモニア水をバブリングした気流中で、450℃、30分加熱した試料、No.94は窒素でアンモニア水をバブリングした気流中で、450℃、4時間加熱した試料についての積分値である。The integrated value in the range of 420 nm to 600 nm in absorbance by diffuse reflectance spectroscopy is shown. Anatase is anatase type titanium oxide, rutile is rutile type titanium oxide, No. 6 is a sample heated in air at 400 ° C. for 15 hours, Sample. D is an integrated value for a sample heated at 450 ° C. for 30 minutes in an air stream bubbling ammonia water with air, and No. 94 is a sample heated at 450 ° C. for 4 hours in an air stream bubbling ammonia water with nitrogen. is there. 本発明による可視光応答型光触媒(Sample D)のXPS測定結果。The XPS measurement result of the visible light responsive photocatalyst (Sample D) by this invention.

Claims (6)

二酸化チタンと二硫化炭素、又は四塩化チタンと二硫化水素から二硫化チタンを作り、この二硫化チタンを出発物質とし、窒素、酸素、アンモニア及び水蒸気を含有する気流中で400℃〜650℃に加熱することを特徴とする窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン(TiO−x(N,S)x)可視光応答型光触媒の製造方法。 Titanium disulfide is made from titanium dioxide and carbon disulfide, or titanium tetrachloride and hydrogen disulfide, and this titanium disulfide is used as a starting material, and the temperature is set to 400 ° C. to 650 ° C. in an air stream containing nitrogen, oxygen, ammonia and water vapor. A method for producing a titanium dioxide (TiO 2 -x (N, S) x) visible light responsive photocatalyst comprising a crystalline form of anatase and rutile two phases to which nitrogen and sulfur are added, characterized by heating. 出発物質である二硫化チタンが市販のものである請求項1記載の窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン可視光応答型光触媒の製造方法。   The method for producing a titanium dioxide visible light responsive photocatalyst comprising a nitrogen and sulfur-added anatase and rutile two-phase crystal form according to claim 1, wherein the starting material is titanium disulfide. 添加される窒素(N)と硫黄(S)の量を、チタン(Ti)に対する原子数比N/Ti,S/Tiで表し、それぞれの値がほぼ等しく、かつ両者の和(N/Ti+S/Ti)が約1%である請求項1記載の窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン可視光応答型光触媒の製造方法。   The amount of nitrogen (N) and sulfur (S) to be added is represented by the atomic ratio N / Ti, S / Ti with respect to titanium (Ti), the respective values are substantially equal, and the sum of both (N / Ti + S / The method for producing a titanium dioxide visible light responsive photocatalyst comprising a crystal form of anatase and rutile two phases added with nitrogen and sulfur according to claim 1, wherein Ti) is about 1%. 酸素濃度は窒素と空気を混合したガスを用い、空気量を0〜100%の範囲で変化させることによってコントロールし、アンモニアガスと水蒸気は、窒素と空気の混合ガスを約28%濃度のアンモニア水中でバブリングして供給し、この気流中で二硫化チタンを加熱することを特徴とする請求項1記載の窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン可視光応答形光触媒の製造方法。   The oxygen concentration is controlled by changing the amount of air in the range of 0 to 100% using a mixture of nitrogen and air. Ammonia gas and water vapor are mixed with a mixture of nitrogen and air in about 28% ammonia water. A titanium dioxide visible light responsive photocatalyst comprising nitrogen and sulfur-added anatase and rutile two-phase crystal forms according to claim 1, wherein the titanium disulfide is heated by bubbling and heating in this air stream. Manufacturing method. アンモニア水のバブリングに替えて、アンモニアガスと窒素と酸素との混合ガスを作り、この混合ガスの気流中で二硫化チタンを加熱することを特徴とする請求項4記載の窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン可視光応答形光触媒の製造方法。   5. The nitrogen and sulfur are added according to claim 4, wherein a mixed gas of ammonia gas, nitrogen and oxygen is made instead of bubbling of ammonia water, and titanium disulfide is heated in a stream of this mixed gas. A method for producing a titanium dioxide visible light responsive photocatalyst comprising anatase and rutile two-phase crystal forms. 気流中のアンモニアガス濃度が3〜10vol%である請求項5記載の窒素並びに硫黄を添加したアナターゼ及びルチル二相の結晶形を含む二酸化チタン可視光応答形光触媒の製造方法。
The method for producing a titanium dioxide visible light responsive photocatalyst comprising a nitrogen and sulfur-added anatase and rutile two-phase crystal form according to claim 5, wherein the ammonia gas concentration in the air stream is 3 to 10 vol%.
JP2005240778A 2005-08-23 2005-08-23 Method for producing visible light responsive photocatalyst Expired - Fee Related JP4639355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240778A JP4639355B2 (en) 2005-08-23 2005-08-23 Method for producing visible light responsive photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240778A JP4639355B2 (en) 2005-08-23 2005-08-23 Method for producing visible light responsive photocatalyst

Publications (2)

Publication Number Publication Date
JP2007054705A true JP2007054705A (en) 2007-03-08
JP4639355B2 JP4639355B2 (en) 2011-02-23

Family

ID=37918643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240778A Expired - Fee Related JP4639355B2 (en) 2005-08-23 2005-08-23 Method for producing visible light responsive photocatalyst

Country Status (1)

Country Link
JP (1) JP4639355B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020505A (en) * 2013-08-16 2015-02-26 성균관대학교산학협력단 A visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
CN104588064A (en) * 2015-01-14 2015-05-06 桂林电子科技大学 Visible-light response bismuth magnesium-graphite-like carbon nitride composite photocatalyst and preparation method thereof
CN107876075A (en) * 2017-10-31 2018-04-06 江苏师范大学 A kind of g C3N4/ZnGa2O4The in-situ synthetic method of hetero-junctions visible light catalyst
CN111020669A (en) * 2019-12-06 2020-04-17 湖北大学 Medical S-TiO on titanium metal surface2-xMethod for producing thin film
JP2021072263A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP2021072276A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
CN113083268A (en) * 2021-04-02 2021-07-09 西安建筑科技大学 Crystal form controllable TiO2Preparation method of photocatalytic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2004000863A (en) * 2002-06-03 2004-01-08 Japan Atom Energy Res Inst Method for manufacturing visible light response type photocatalyst material
JP2004143032A (en) * 2002-08-26 2004-05-20 Tokuyama Corp Sulfur-containing metal oxide
JP2005206412A (en) * 2004-01-22 2005-08-04 Toshiba Ceramics Co Ltd Titanium dioxide particulate and titanium dioxide porous material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2004000863A (en) * 2002-06-03 2004-01-08 Japan Atom Energy Res Inst Method for manufacturing visible light response type photocatalyst material
JP2004143032A (en) * 2002-08-26 2004-05-20 Tokuyama Corp Sulfur-containing metal oxide
JP2005206412A (en) * 2004-01-22 2005-08-04 Toshiba Ceramics Co Ltd Titanium dioxide particulate and titanium dioxide porous material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150020505A (en) * 2013-08-16 2015-02-26 성균관대학교산학협력단 A visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
KR101606642B1 (en) * 2013-08-16 2016-03-28 성균관대학교산학협력단 A visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same
CN104588064A (en) * 2015-01-14 2015-05-06 桂林电子科技大学 Visible-light response bismuth magnesium-graphite-like carbon nitride composite photocatalyst and preparation method thereof
CN107876075A (en) * 2017-10-31 2018-04-06 江苏师范大学 A kind of g C3N4/ZnGa2O4The in-situ synthetic method of hetero-junctions visible light catalyst
JP2021072263A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP2021072276A (en) * 2019-11-01 2021-05-06 凸版印刷株式会社 Catalyst for fuel cells, electrode catalyst layers, membrane electrode assembly, polymer electrolyte fuel cell, production method of catalyst for fuel cells, and production method of electrode catalyst layers
JP7360129B2 (en) 2019-11-01 2023-10-18 Toppanホールディングス株式会社 Fuel cell catalyst, electrode catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell, method for manufacturing fuel cell catalyst, and method for manufacturing electrode catalyst layer
CN111020669A (en) * 2019-12-06 2020-04-17 湖北大学 Medical S-TiO on titanium metal surface2-xMethod for producing thin film
CN113083268A (en) * 2021-04-02 2021-07-09 西安建筑科技大学 Crystal form controllable TiO2Preparation method of photocatalytic material
CN113083268B (en) * 2021-04-02 2023-08-11 西安建筑科技大学 Crystal form controllable TiO 2 Preparation method of photocatalytic material

Also Published As

Publication number Publication date
JP4639355B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4639355B2 (en) Method for producing visible light responsive photocatalyst
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Jang et al. Formation of crystalline TiO2− xNx and its photocatalytic activity
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
Ai et al. NO treated TiO2 as an efficient visible light photocatalyst for NO removal
Rani et al. Effect of graphene in enhancing the photo catalytic activity of zirconium oxide
Dolat et al. Preparation of photoactive nitrogen-doped rutile
KR101798129B1 (en) Reduction method of metal oxides and manufacturing method of reduced titania using the same
EP1908730A1 (en) Nitrogen doped titanium oxide nanoparticles
Serpone et al. Second generation visible-light-active photocatalysts: preparation, optical properties, and consequences of dopants on the band gap energy of TiO2
Moslah et al. Synthesis of W‐doped TiO2 by low‐temperature hydrolysis: Effects of annealing temperature and doping content on the surface microstructure and photocatalytic activity
Le et al. Formation of surface defects by thermal shock method for the improved photocatalytic activity of ZnO nanoparticles
Nawaz et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants
Liu et al. Formation of CeMnxOy/OMS-2 nanocomposite significantly enhances UV–vis-infrared light-driven catalytic activity
JP4135907B2 (en) Visible light active photocatalyst particles
KR100924515B1 (en) Manufacturing Method of Visible Rays Active Anatase Type Titanium Dioxide Photocatalyst
Hamdan et al. Photocatalytic degradation of synthetic sulfur pollutants in petroleum fractions under different pH and photocatalyst
JP2008006344A (en) Visible light-responsive photocatalyst
Shao-you et al. Sulfur doped lead monoxide superfine powder materials: solid-state synthesis, characterization, adsorption and photocatalytic property of methylene blue
Naufal et al. Direct sunlight active Sm3+ doped TiO2 photocatalyst
Suguna et al. A detailed investigation on the structural, optical, and photocatalytic properties of ZnO@ ZnS core–shell nanostructures
Vhangutte et al. Influence of synthesis methods on physical and photocatalytic properties of Bi2WO6 for decomposition of organic dyes and Cr (VI) reduction
Radha et al. Structural, optical and photocatalytic properties of anatase/rutile TiO2 nanoparticles
JP2005288316A (en) Photocatalyst and its production method
KR101206489B1 (en) Manufacturing Method of Visible Rays Active Anatase-Brookite Type Titanium Dioxide Photocatalyst

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees